高考数学平面向量1

合集下载

届数学一轮复习第五章平面向量第1节平面向量的概念及线性运算教学案含解析

届数学一轮复习第五章平面向量第1节平面向量的概念及线性运算教学案含解析

第1节平面向量的概念及线性运算考试要求1。

了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4。

掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义。

知识梳理1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量.平行向量又叫共线向量。

规定:0与任一向量平行。

(5)相等向量:长度相等且方向相同的向量。

(6)相反向量:长度相等且方向相反的向量。

2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:a+b=b+a。

(2)结合律:(a+b)+c=a+(b+c)减法减去一个向量相当于加上这个向量的相反向量a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λaλ(μa)=λμa;(λ+μ)a=λa+μa;λ(a+b)=λa+λb=03.共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa。

[常用结论与微点提醒]1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即错误!+错误!+错误!+…+错误!=错误!,特别地,一个封闭图形,首尾连接而成的向量和为零向量.2。

中点公式的向量形式:若P为线段AB的中点,O为平面内任一点,则错误!=错误!(错误!+错误!).3。

错误!=λ错误!+μ错误!(λ,μ为实数),若点A,B,C共线,则λ+μ=1.4.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是考虑向量的方向;二是要特别注意零向量的特殊性,考虑零向量是否也满足条件.诊断自测1。

高考数学(文)《平面向量》专题复习

高考数学(文)《平面向量》专题复习
专题5 平面向量
第1节 平面向量的概念及线性运算、 平面向量基本定理
600分基础 考点&考法
❖考点29 平面向量的基本概念及线性运算 ❖考点30 平面向量的坐标运算
返回
考点29 平面向量的基本概念及线性运算
❖考法1 平面向量的有关概念 ❖考法2 平面向量的线性运算
返回
考点29 平面向量的基本概念及线性运算
【注意】①向量数乘的特殊情况:当λ=0时,λa=0;当a=0时,λa=0.②实数和向量可 以求积,但不能求和、求差.③正确区分向量数量积与向量数乘的运算律.
返回
考法2 平面向量的线性运算
返回
考点30 平面向量的坐标运算
❖考法3 平面向量基本定理的应用 ❖考法4 平面向量的共线问题 ❖考法5 平面向量的坐标表示与运算
1.向量的有关概念
2.向量的线性运算
考法1 平面向量的有关概念
解决平面向量的有关概念的问题时,应注意以下两点: 1.应正确理解向量的概念 ①向量既有大小,又有方向,任意两个向量不能比较大小,只可以 判断它们是否相等,但它们的模可以比较大小;②大小与方向是向 量的两个要素,分别是向量的代数特征与几何特征;③向量可以自 由平移,任一组平行向量都可以移到同一直线上. 2.正确理解共线向量与平行向量 共线向量就是平行向量,其要求是几个非零向量的方向相同或相反, 当然向量所在直线可以平行,也可以重合,其中“共线”的含义不 同于平面几何中“共线”的含义.
(2)b在a方向上的投影是 一个数量,当0°≤θ< 90°时为正;当90°<θ ≤180°时为负;当θ= 90°时为0.
考点31 平面向量的数量积
【注意】x1y2-x2y1=0与x1x2+y1y2=0不同,前者是两向量a=(x1,y1), b=(x2,y2)共线的充要条件,后者是它们垂直的充要条件.

高考数学 平面向量的概念及线性运算、平面向量基本定理及坐标表示 高考真题

高考数学    平面向量的概念及线性运算、平面向量基本定理及坐标表示    高考真题

专题六 平面向量6.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示考点一 平面向量的概念及线性运算1.(2022全国乙文,3,5分)已知向量a =(2,1),b =(-2,4),则|a -b |= ( )A.2B.3C.4D.5答案D 由题意知a -b =(4,-3),所以|a -b |=√42+(−3)2=5,故选D .2.(2022新高考Ⅰ,3,5分)在△ABC 中,点D 在边AB 上,BD =2DA.记CA ⃗⃗⃗⃗⃗ =m ,CD ⃗⃗⃗⃗⃗ =n ,则CB ⃗⃗⃗⃗⃗ = ( )A.3m -2nB.-2m +3nC.3m +2nD.2m +3n答案B 由题意可知,DA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ −CD ⃗⃗⃗⃗⃗ =m -n ,又BD =2DA ,所以BD ⃗⃗⃗⃗⃗⃗ =2DA ⃗⃗⃗⃗⃗ =2(m -n ),所以CB ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ +DB⃗⃗⃗⃗⃗⃗ =n -2(m -n )=3n -2m ,故选B .3.(2015课标Ⅰ理,7,5分)设D 为△ABC 所在平面内一点,BC ⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗ ,则( ) A.AD ⃗⃗⃗⃗ =-13AB ⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗ B.AD ⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗ -43AC ⃗⃗⃗⃗ C.AD⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗ D.AD ⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗ -13AC ⃗⃗⃗⃗ 答案 A AD⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +BD ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +BC ⃗⃗⃗⃗ +CD ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +43BC ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +43(AC ⃗⃗⃗⃗ -AB ⃗⃗⃗⃗ )=-13AB ⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗ .故选A. 4.(2014课标Ⅰ文,6,5分)设D,E,F 分别为△ABC 的三边BC,CA,AB 的中点,则EB ⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =( ) A.AD ⃗⃗⃗⃗ B.12AD ⃗⃗⃗⃗ C.BC ⃗⃗⃗⃗ D.12BC⃗⃗⃗⃗ 答案 A 设AB⃗⃗⃗⃗ =a,AC ⃗⃗⃗⃗ =b,则EB ⃗⃗⃗⃗ =-12b+a,FC ⃗⃗⃗⃗ =-12a+b,从而EB ⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =(−12b +a )+(−12a +b )=12(a+b)=AD ⃗⃗⃗⃗ ,故选A.5.(2015课标Ⅱ理,13,5分)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ= . 答案12解析 由于a ,b 不平行,所以可以以a ,b 作为一组基底,于是λa +b 与a +2b 平行等价于λ1=12,即λ=12.6.(2015北京理,13,5分)在△ABC 中,点M,N 满足AM⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗ =NC ⃗⃗⃗⃗ .若MN ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗ +y AC ⃗⃗⃗⃗ ,则x = ,y = .答案12;-16解析 由AM⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗ 知M 为AC 上靠近C 的三等分点,由BN ⃗⃗⃗⃗ =NC ⃗⃗⃗⃗ 知N 为BC 的中点,作出草图如下:则有AN⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ ),所以MN ⃗⃗⃗⃗⃗ =AN ⃗⃗⃗⃗ -AM ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ )-23·AC ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ -16AC ⃗⃗⃗⃗ , 又因为MN ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗ +y AC⃗⃗⃗⃗ ,所以x=12,y=-16. 7.(2013江苏,10,5分)设D,E 分别是△ABC 的边AB,BC 上的点,AD=12AB,BE=23BC.若DE⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗ (λ1,λ2为实数),则λ1+λ2的值为 . 答案12解析 DE ⃗⃗⃗⃗ =DB ⃗⃗⃗⃗ +BE ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗ -AB ⃗⃗⃗⃗ )=-16AB ⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗ , ∵DE⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗ ,∴λ1=-16,λ2=23,故λ1+λ2=12. 考点二 平面向量的基本定理及坐标运算1.(2015课标Ⅰ文,2,5分)已知点A(0,1),B(3,2),向量AC⃗⃗⃗⃗ =(-4,-3),则向量BC ⃗⃗⃗⃗ =( ) A.(-7,-4) B.(7,4) C.(-1,4) D.(1,4)答案 A 根据题意得AB ⃗⃗⃗⃗ =(3,1),∴BC ⃗⃗⃗⃗ =AC ⃗⃗⃗⃗ -AB⃗⃗⃗⃗ =(-4,-3)-(3,1)=(-7,-4).故选A. 2.(2014北京文,3,5分)已知向量a =(2,4),b =(-1,1),则2a -b =( ) A.(5,7) B.(5,9) C.(3,7) D.(3,9)答案 A 由a =(2,4)知2a =(4,8),所以2a -b =(4,8)-(-1,1)=(5,7).故选A. 3.(2014广东文,3,5分)已知向量a =(1,2),b =(3,1),则b -a =( ) A.(-2,1) B.(2,-1) C.(2,0) D.(4,3) 答案 B b -a =(3,1)-(1,2)=(2,-1).故答案为B.4.(2014福建理,8,5分)在下列向量组中,可以把向量a =(3,2)表示出来的是( )A.e 1=(0,0),e 2=(1,2)B.e 1=(-1,2),e 2=(5,-2)C.e 1=(3,5),e 2=(6,10)D.e 1=(2,-3),e 2=(-2,3) 答案 B 设a=k 1e 1+k 2e 2,A 选项,∵(3,2)=(k 2,2k 2),∴{k 2=3,2k 2=2,无解.B 选项,∵(3,2)=(-k 1+5k 2,2k 1-2k 2), ∴{−k 1+5k 2=3,2k 1−2k 2=2,解之得{k 1=2,k 2=1. 故B 中的e 1,e 2可把a 表示出来. 同理,C 、D 选项同A 选项,无解.5.(2021全国乙文,13,5分)已知向量a =(2,5),b =(λ,4),若a ∥b ,则λ= .答案85解题指导:利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2=x 2y 1”解题.解析由已知a ∥b 得2×4=5λ,∴λ=85.解题关键:记准两平面向量共线的充要条件是解这类问题的关键.6.(2017山东文,11,5分)已知向量a =(2,6),b =(-1,λ).若a ∥b ,则λ= . 答案 -3解析 本题考查向量平行的条件. ∵a=(2,6),b =(-1,λ),a ∥b , ∴2λ-6×(-1)=0,∴λ=-3.7.(2016课标Ⅱ文,13,5分)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m= . 答案 -6解析 因为a ∥b ,所以m 3=4−2,解得m=-6. 易错警示 容易把两个向量平行与垂直的条件混淆. 评析 本题考查了两个向量平行的充要条件.8.(2014陕西,13,5分)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ= . 答案12解析∵a∥b,∴sin 2θ×1-cos2θ=0,∴2sin θcos θ-cos2θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=1 2 .。

高考数学总复习 第八章 第1讲 平面向量及其线性运算配套课件 文

高考数学总复习 第八章 第1讲 平面向量及其线性运算配套课件 文
(1)求以线段 AB,AC 为邻边的平行四边形的两条对角线的
长;
解:(1)由题设知A→B=(3,5),A→C=(-1,1), 则A→B+A→C=(2,6),A→B-A→C=(4,4). 所以|A→B+A→C|=2 10,|A→B-A→C|=4 2. 故所求的两条对角线长分别为 4 2,2 10.
第十九页,共27页。
A.0
B.B→E
图 8-1-1
C.A→D
D.C→F
第九页,共27页。
4.设O→A=e1,O→B=e2,若 e1 与 e2 不共线,且点 P 在线段 AB 上,|AP|∶|PB|=2,如图 8-1-2,则O→P=( C )
A.13e1-23e2 C.13e1+23e2
图 8-1-2
B.23e1+13e2 D.23e1-13e2
非零向量 a 共线的充要条件是有且仅有一个(yī ɡè)实数λ,使得b=λa,
即 b∥a(⇔3b)=若λaO(→a≠P0=). xO→A+yO→B ,三点 P,A,B 共线⇔x+y=1. 若P→A=λP→B,则 P,A,B 三点共线.
第十六页,共27页。
【互动探究(tànjiū)】
3.(2013 年陕西)已知向量 a=(1,m),b=(m,2),若 a∥b, 则实数(shìshù) mC =)(
第六页,共27页。
5.共线向量及其坐标表示
使得((s1hb)ǐ=向deλ量)a__a_(_a_≠_0_)与_.b 共线的充要条件是存在唯一一个(yī ɡè)实数λ,
(2)设 a=(x1,y1),b=(x2,y2),其中 b≠0,当且仅当 x1y2 -x2y1=0 时,向量(xiàngliàng) a,b 共线.
第八章 平面(píngmiàn)向量

高考数学(理)三轮冲刺课时训练:平面向量(1)(含答案)

高考数学(理)三轮冲刺课时训练:平面向量(1)(含答案)

平面向量课时提升训练(1)1、已知是圆:上的两个点,是线段上的动点,当的面积最大时,则的最大值是()A.-1B. 0C.D.2、在△ABC中,已知,P为线段AB上的点,且的最大值为()A.3 B.4 C.5 D.63、已知内一点满足关系式,则的面积与的面积之比为(A)(B)(C)(D)4、已知平面向量、、两两所成角相等,且,则等于()A.2 B.5 C.2或5 D.或5、已知向量都是单位向量,且,则的值为()A、-1B、C、D、16、设向量与的夹角为,定义与的“向量积”:是一个向量,它的模,若,则A. B.4 C. D.27、已知所在的平面内一点满足,则()8、下列命题中正确的个数是()⑴若为单位向量,且,=1,则=;⑵若=0,则=0⑶若,则;⑷若,则必有;⑸若,则A. 0B. 1C. 2D. 39、平面上点P与不共线的三点A、B、C满足关系:++=,则下列结论正确的是( )(A)P在CA上,且=2 (B)P在AB上,且=2(C)P在BC上,且=2 (D)P点为△ABC的重心10、已知a,b是不共线的向量,=λa+b,=a+μb(λ,μ∈R),那么A、B、C三点共线的充要条件为( )(A)λ+μ=2 (B)λ-μ=1(C)λμ=-1 (D)λμ=111、若O为△ABC所在平面内一点,且满足(-)²(+-2)=0,则△ABC 的形状为( )(A)正三角形 (B)直角三角形 (C)等腰三角形 (D)斜三角形12、已知平面内不共线的四点O,A,B,C满足=+,则||∶||=( )(A)1∶3 (B)3∶1 (C)1∶2 (D)2∶113、a,b为非零向量,“函数f(x)=(ax+b)2为偶函数”是“a⊥b”的( )(A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件14、已知O为所在平面内一点,满足,则点O 是的()A.外心B.内心C.垂心D.重心15、函数为定义在上的减函数,函数的图像关于点(1,0)对称,满足不等式,,为坐标原点,则当时,的取值范围为()A. B. C. D.16、过双曲线的左焦点作圆的切线,切点为E,延长FE交双曲线右支于点P,若,则双曲线的离心率为(A)(B)(C)(D)17、若等边的边长为,平面内一点满足,则()A. B. C. D.18、在△ABC中,△ABC的面积夹角的取值范围是()A. B. C. D.19、下列四个结论:①若,且,则或;②若,则或;③若不平行的两个非零向量,满足,则;④若平行,则.其中正确的个数是A. B.1 C. 2 D. 320、已知M是△ABC内的一点,且=2,∠BAC=30°,若△MBC,△MCA和△MAB的面积分别为,x,y,则+的最小值是()21、设,是两个非零向量()+|=|||,则若⊥|+|=||+|=|||,使得,使得||=|||22、下列命题正确的个数()(1)命题“”的否定是“∀x∈R,x2+1≤3x”;(2)函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的必要不充分条件;(3)“x2+2x≥ax在x∈[1,2]上恒成立”⇔“(x2+2x)min≥(ax)max在x∈[1,2]上恒成立”(4)“平面向量与的夹角是钝角”的充分必要条件是“”A. 1 B. 2 C. 3 D. 423、已知,点在内, ,若,则A. B. C. D.24、、在中,有命题①;②;③若,则为等腰三角形;④若,则为锐角三角形.上述命题正确的是()A、①②B、①④C、②③D、②③④25、已知△ABC为等边三角形,AB=2.设点P,Q满足,,λ∈R.若=﹣,则λ=()26、如图在矩形ABCD中,AB=,BC=4,点E为BC的中点,点F在CD上,若,则的值是()27、若,,均为单位向量,且,,则的最大值为()28、在边长为1的正六边形A1A2A3A4A5A6中,的值为()﹣29、在中,M 是BC 的中点,AM=4,点P 在AM 上且满足等于A.6B.C.D.30、 已知与的夹有为,与的夹角为,若,则=( )A. B. C. D.2 31、已知点点是线段的等分点,则等于( )A .B .C .D .32、如图,在中,,,,则等于( ▲ )A. B. C. D.33、已知是所在平面内一点,且,则与的面积之比为( )A. B . C. D.34、设正六边形的中心为点,为平面内任意一点,则( )A. B.C.3D.635、对任意两个非零的平面向量和,定义;若平面向量满足,与的夹角,且,都在集合中,则A. B. C. D.36、若两个非零向量满足,则向量与的夹角为()A. B. C. D.37、如图正六边形ABCDEF中,P是△CDE内(包括边界)的动点,设(α、β∈R),则的取值范围是A. B. C. D.38、已知点是的中位线上任意一点,且. 设,,,的面积分别为,,,,记,,,定义.当取最大值时,则等于(A)(B)(C)(D)39、设是已知的平面向量且,关于向量的分解,有如下四个命题:①给定向量,总存在向量,使;②给定向量和,总存在实数和,使;③给定单位向量和正数,总存在单位向量和实数,使;④给定正数和,总存在单位向量和单位向量,使;上述命题中的向量,和在同一平面内且两两不共线,则真命题的个数是A.1 B.2 C.3 D.440、已知a,b是单位向量,a²b=0.若向量c满足|c-a-b|=1,则|c|的最大值为A. B. C. D.1、C2、A3、A4、C5、D ,而都是单位向量,,所以6、D7、B 8、A9、A.++=⇒+=-⇒+=⇒=2⇒∥⇒P在CA上.10、D.由题意得必存在m(m≠0)使=m²,即λ a+b=m(a+μb),得λ=m,1=mμ,∴λμ=1.11、C.∵(-)²(+-2)=0,∴²(-+-)=0,即²(+)=0,设D为BC的中点,∴²2=0,∴△ABC为等腰三角形.12、D.因为=+,所以-=-,得=,又-=-+,得=,所以||∶||=∶=2∶1,故选D.13、C.f(x)=a2x2+2a²bx+b2,∵a、b为非零向量,若f(x)为偶函数,则f(-x)=f(x)恒成立,∴a2x2-2a²bx+b2=a2x2+2a²bx+b2,∴4a²bx=0,又x∈R,∴a²b=0,∴a⊥b;若a⊥b,则a²b=0,∴f(x)=a2x2+b2,∴f(x)为偶函数.综上,选C.14、C 15、D试题分析:因为函数的图像关于点(1,0)对称,所以的图象关于原点对称,即函数为奇函数,由得,所以,所以,即,画出可行域如图,可得=x+2y∈[0,12].故选D.16、A17、C 18、B 19、D20、解:由已知得=bccos∠BAC=2⇒bc=4,故S△ABC=x+y+=bcsinA=1⇒x+y=,而+=2(+)³(x+y)=2(5++)≥2(5+2)=18,故选B.21、解答:解:对于A,,,显然|+|=||﹣||,但是与不垂直,而是共线,所以A不正确;对于B,若⊥,则|+|=|﹣|,矩形的对角线长度相等,所以|+|=||﹣||不正确;对于C,若|+|=||﹣||,则存在实数λ,使得=λ,例如,,显然=,所以正确.对于D,若存在实数λ,使得=λ,则|+|=||﹣||,例如,显然=,但是|+|=||﹣||,不正确.故选C.22、解答:解:(1)根据特称命题的否定是全称命题,∴(1)正确;(2)f(x)=﹣=cos2ax,最小正周期是=π⇒a=±1,∴(2)正确;(3)例a=2时,x2+2x≥2x在x∈[1,2]上恒成立,而(x2+2x)min=3<2x max=4,∴(3)不正确;(4)∵•=||||cos,∵=π时<0,∴(4)错误.故选B 23、D 24、C 25、解:∵,,λ∈R∴,∵△ABC为等边三角形,AB=2∴=+λ+(1﹣λ)=2³2³cos60°+λ³2³2³cos180°+(1﹣λ)³2³2³cos180°+λ(1﹣λ)³2³2³cos60°=﹣2λ2+2λ+2∵=﹣∴4λ2﹣4λ+1=0∴(2λ﹣1)2=0∴故选A26、解:选基向量和,由题意得,=,=4,∴,∴==+=,即cos0=,解得=1,∵点E为BC的中点,=1,∴,,∴=()•()==5+,故选B.27、解:∵,,均为单位向量,且,,则﹣﹣+≤0,∴•()≥1.而=+++2﹣2﹣2=3﹣2•()≤3﹣2=1,故的最大值为 1,故选B.28、解:连接A1A5,∵A1A2A3A4A5A6是正六边形,∴△A1A2A3中,∠A1A2A3=120°又∵A1A2=A2A3=1,∴A1A3==同理可得A1A3=A3A5=∴△A1A3A5是边长为的等边三角形,由向量数量积的定义,得=•cos120°=﹣故选B29、B 30、 D 应用向量加法, 三角形法则知.31、C32、【答案】B.33、C34、D 35、【答案】B【解析】因为,,且和都在集合中,所以,,所以,因为,所以,故有.故选B.36、【答案】C【解析】因为,所以以OA、OB为邻边做的平行四边形为矩形,所以,,所以向量与的夹角为。

第一节 平面向量的概念讲义--高三数学一轮复习备考

第一节 平面向量的概念讲义--高三数学一轮复习备考

平面向量与复数第一节平面向量的概念一、课程标准1.向量概念(1)通过对力、速度、位移等的分析,了解平面向量的实际背景,理解平面向量的意义和两个向量相等的含义;(2)理解平面向量的几何表示和基本要素.2.向量运算(1)借助实例和平面向量的几何表示,掌握平面向量加、减运算及运算规则,理解其几何意义;(2)通过实例分析,掌握平面向量数乘运算及运算规则,理解其几何意义.理解两个平面向量共线的含义;(3)了解平面向量的线性运算性质及其几何意义;(4)通过物理中功等实例,理解平面向量数量积的概念及物理意义,会计算平面向量的数量积;(5)通过几何直观了解平面向量投影的概念及投影向量的意义.新高考命题方向:主要考查平面向量的线性运算(加法、减法、数乘向量)及其几何意义、共线向量基本定理,有时也会有创新的新定义问题;题型以选择题、填空题为主,属于中低档题目,偶尔会在解答题中作为工具出现.考查理性思维、数学探究、数学抽象学科素养.二、知识梳理知识点一向量的有关概念名称定义备注向量既有又有的量;向量的大小叫做向量的(或称)平面向量是自由向量零向量长度为的向量记作,其方向是任意的单位向量长度等于长度的向量非零向量a的单位向量为±a|a|平行向量方向或的非零向量(又叫做共线向量)0与任意向量或共线相等向量长度且方向的向量两向量只有相等或不等,不能比较大小相反向量长度且方向的向量0的相反向量为01.对于平行向量易忽视两点:(1)零向量与任意向量平行;(2)表示两平行向量的有向线段所在的直线平行或重合,易忽视重合这一情况.2.单位向量的定义中只规定了长度,没有方向限制. 知识点二 向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算法则法则(1)交换律:a +b = (2)结合律:(a +b )+c =减法 求a 与b 的相反向量-b 的和的运算叫做a 与b 的差法则a -b =a +(-b )数乘求实数λ与向量a 的积的运算|λa |= ;当λ>0时,λa 的方向与a 的方向 ;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =λ(μa )=(λμ)a ;(λ+μ)a = ;λ(a +b )=知识点三 共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得 . 知识点四 平面向量的数量积 1.向量的夹角 定义图示范围共线与垂直已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则 就是a 与b 的夹角设θ是a 与b 的夹角,则θ的取值范围是θ=0或θ=π⇔ ,⇔a ⊥b• 温馨提醒 •对于两个非零向量a 与b ,由于当θ=0°时,a ·b >0,所以a ·b >0是两个向量a ,b 夹角为锐角的必要不充分条件;a ·b =0也不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b .2.平面向量的数量积 (1)投影向量①如图,设a ,b 是两个非零向量,AB → =a ,CD →=b ,分别过A ,B 作CD 的垂线,垂足分别为A 1,B 1,得到,我们称上述变换为向量a 向向量b 投影,叫做向量a 在向量b 上的投影向量.如图,在平面内任取一点O 作OM → =a ,ON →=b ,过M 作ON 的垂线,垂足为M 1,则就是向量a 在向量b 上的投影向量,设与b 方向相同的单位向量为e ,〈a ,b 〉为θ,则=(|a |cos θ)e .两个向量数量积的几何意义:a ·b 等于a 在b 上的投影数量与b 的模的乘积. (2)向量数量积的运算律①a ·b = ;②(λa )·b =λ(a ·b )= ;③(a +b )·c = .• 温馨提醒 •1.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去一个向量.2.a ·b =0不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b . 3.在用|a |=a 2 求向量的模时,一定要先求出a 2再进行开方.三、基础自测1.若m ∥n ,n ∥k ,则向量m 与向量k ( )A .共线B .不共线C .共线且同向D .不一定共线 2.已知a·b =-122 ,|a |=4,a 和b 的夹角为135°,则|b |为( ) A .12 B .6 C .33 D .33.(易错题)已知两个非零向量a 与b 的夹角为θ,则“a ·b >0”是“θ为锐角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4.已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( ) A .4 B .3 C .2 D .05.已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA → =a ,OB → =b ,则DC → =________,BC →=________(用a ,b 表示).四、核心题型题型一 平面向量的有关概念及线性运算例1(1) (多选)已知a ,b 是两个单位向量,下列命题中正确的是( )A .|a |=|b |=1B .a ·b =1C .当a ,b 反向时,a +b =0D .当a ,b同向时,a =b(2)设a ,b 都是非零向量,下列四个条件中,一定能使a |a | +b|b |=0成立的是( )A .a =2bB .a ∥bC .a =-13b D .a ⊥b(3)在△ABC 中,D 为AB 的中点,点E 满足EB → =4EC → ,则ED →=( )A .56 AB → -43 AC → B .43 AB → -56 AC → C .56 AB → +43 AC →D .43AB → +56AC →题型二 平面向量共线定理的应用例2(1)已知两个非零向量a ,b 互相垂直,若向量m =4a +5b 与n =2a +λb 共线,则实数λ的值为( )A .5B .3C .52 D .2(2)设a ,b 是不共线的两个向量,已知BA → =a +2b ,BC → =4a -4b ,CD →=-a +2b ,则( )A .A ,B ,D 三点共线 B .B ,C ,D 三点共线 C .A ,B ,C 三点共线 D .A ,C ,D 三点共线(3)已知O 为△ABC 内一点,且AO → =12 (OB → +OC → ),AD → =tAC →,若B ,O ,D 三点共线,则t 的值为( )A .14B .13C .12D .23题型三 平面向量的数量积及应用例3(1)已知在矩形ABCD 中,AB =4,AD =2.若E ,F 分别为AB ,BC 的中点,则DE → ·DF →=( )A .8B .10C .12D .14(2)在如图所示的平面图形中,已知OM =1,ON =2,∠MON =120°,BM → =2MA → ,CN →=2NA → ,则BC → ·OM →的值为( )A .-15B .-9C .-6D .0(3) 已知|a |=6,e 为单位向量,当向量a ,e 的夹角θ分别等于45°,90°,135°时,求向量a 在向量e 上的投影向量.(4)(2021·全国甲卷)若向量a ,b 满足|a |=3,|a -b |=5,a·b =1,则|b |=________. (5)已知向量a ,b 满足(a +2b )·(5a -4b )=0,且|a |=|b |=1,则a 与b 的夹角θ为( )A .3π4B .π4C .π3D .2π3(6)(2020·全国Ⅱ卷)已知单位向量a ,b 的夹角为45°,k a -b 与a 垂直,则k =________.五、变式训练1.如图所示,在直角梯形ABCD 中,DC → =14 AB → ,BE → =2EC → ,且AE → =rAB → +sAD →,则2r +3s =( )A .1B .2C .3D .42..设两个非零向量a 与b 不共线.(1)若AB → =a +b ,BC → =2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.3.已知a ,b 均为单位向量,它们的夹角为60°,那么|a +3b |=( )A .7B .10C .13D .44.非零向量a ,b ,c 满足a ·b =a ·c ,a 与b 的夹角为π6 ,|b |=4,则c 在a 上的投影向量的长度为( )A .2B .23C .3D .4六、作业一轮复习资料《课时作业》437页 A 组:全部 B 组:2、3。

高考数学(平面向量)第一轮复习

高考数学(平面向量)第一轮复习

高考数学(平面向量)第一轮复习资料知识点小结1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 2、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y A B=--.4、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.baC BAa b C C -=A -AB =B设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.5、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)6、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.7、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0.⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b 同向时,a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-;22a a a a ⋅==或a a a =⋅.③ab a b ⋅≤.⑶运算律:①a b b a ⋅=⋅;②()()()a b a b a b λλλ⋅=⋅=⋅;③()a b c a c b c +⋅=⋅+⋅. ⑷坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+.若(),a x y =,则222a x y =+,或2a x y =+设()11,a x y =,()22,b x y =,则12120a b x x y y ⊥⇔+=.设a 、b 都是非零向量,()11,a x y =,()22,b x y =,θ是a 与b 的夹角,则12c o s a b a bx θ⋅==+试题选讲一、选择题 1.(2002上海春,13)若a 、b 、c 为任意向量,m ∈R ,则下列等式不一定...成立的是( ) A.(a +b )+c =a +(b +c ) B.(a +b )·c =a ·c +b ·c C.m (a +b )=m a +m b D.(a ·b )c =a (b ·c ) .答案:D解析:因为(a ·b )c =|a |·|b |·cos θ·c 而a (b ·c )=|b |·|c |·cos α·a 而c 方向与a 方向不一定同向.评述:向量的积运算不满足结合律.2.(2002天津文12,理10)平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OB OA OC βα+=,其中α、β∈R ,且α+β=1,则点C 的轨迹方程为( )A.3x +2y -11=0B.(x -1)2+(y -2)2=5C.2x -y =0D.x +2y -5=0.答案:D解析:设=(x ,y ),=(3,1),=(-1,3),α=(3α,α), βOB =(-β,3β)又αOA +βOB =(3α-β,α+3β)∴(x ,y )=(3α-β,α+3β),∴⎩⎨⎧+=-=βαβα33y x又α+β=1 因此可得x +2y =5评述:本题主要考查向量法和坐标法的相互关系及转换方法.3.(2001江西、山西、天津文)若向量a =(3,2),b =(0,-1),则向量2b -a 的坐标是( )A.(3,-4)B.(-3,4)C.(3,4)D.(-3,-4) 答案:D解析:设(x ,y )=2b -a =2(0,-1)-(3,2)=(-3,-4). 评述:考查向量的坐标表示法.4.(2001江西、山西、天津)设坐标原点为O ,抛物线y 2=2x 与过焦点的直线交于A 、B 两点,则OB OA ⋅等于( )A.43B.-43 C.3 D.-3答案:B解法一:设A (x 1,y 1),B (x 2,y 2),AB 所在直线方程为y =k (x -21),则OB OA ⋅=x 1x 2+y 1y 2.又⎪⎩⎪⎨⎧=-=x y x k y 2)21(2,得k 2x 2-(k 2+2)x +42k =0,∴x 1·x 2=41,而y 1y 2=k (x 1-21)k (x 2-21)=k 2(x 1-21)(x 2-21)=-1.∴x 1x 2+y 1y 2=41-1=-43. 解法二:因为直线AB 是过焦点的弦,所以y 1·y 2=-p 2=-1.x 1·x 2同上.评述:本题考查向量的坐标运算,及数形结合的数学思想.5.(2001上海)如图1,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a ,11D A =b ,A A 1=c .则下列向量中与MB 1相等的向量是( )A.-21a +21b +c B.21a +21b +c C.21a -21b +c D.-21a -21b +c 答案:A 解析:)(21111A B B ++=+==c +21(-a +b )=-21a +21b +c 评述:用向量的方法处理立体几何问题,使复杂的线面空间关系代数化,本题考查的是基本的向量相等,与向量的加法.考查学生的空间想象能力.6.(2001江西、山西、天津理,5)若向量a =(1,1),b =(1,-1),c =(-1,2),则c 等于( )A.-21a +23b B.21a -23b C.23a -21bD.-23a +21b 答案:B解析:设c =m a +n b ,则(-1,2)=m (1,1)+n (1,-1)=(m +n ,m -n ).∴⎩⎨⎧=--=+21n m n m ∴⎪⎪⎩⎪⎪⎨⎧-==2321n m评述:本题考查平面向量的表示及运算.7.(2000江西、山西、天津理,4)设a 、b 、c 是任意的非零平面向量,且相互不共线,则 ①(a ·b )c -(c ·a )b =0 ②|a |-|b |<|a -b | ③(b ·c )a -(c ·a )b 不与c 垂直④(3a +2b )(3a -2b )=9|a |2-4|b |2中,是真命题的有( ) A.①② B.②③ C.③④ D.②④答案:D解析:①平面向量的数量积不满足结合律.故①假;②由向量的减法运算可知|a |、|b |、|a -b |恰为一个三角形的三条边长,由“两边之差小于第三边”,故②真;③因为[(b ·c )a -(c ·a )b ]·c =(b ·c )a ·c -(c ·a )b ·c =0,所以垂直.故③假; ④(3a +2b )(3a -2b )=9·a ·a -4b ·b =9|a |2-4|b |2成立.故④真. 评述:本题考查平面向量的数量积及运算律.8.(1997全国,5)如果直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率为( )A.-31 B.-3 C.31 D.3答案:A解析:设直线l 的方程为y =kx +b (此题k 必存在),则直线向左平移3个单位,向上平移1个单位后,直线方程应为y =k (x +3)+b +1即y =kx +3k +b +1因为此直线与原直线重合,所以两方程相同.比较常数项得3k +b +1=b .∴k =-31.评述:本题考查平移变换与函数解析式的相互关系.二、填空题9.(2002上海文,理2)已知向量a 和b 的夹角为120°,且|a |=2,|b |=5,则(2a -b )·a =_____.答案:13解析:∵(2a -b )·a =2a 2-b ·a =2|a |2-|a |·|b |·cos120°=2·4-2·5(-21)=13. 评述:本题考查向量的运算关系.10.(2001上海春,8)若非零向量α、β满足|α+β|=|α-β|,则α与β所成角的大小为_____..答案:90°解析:由|α+β|=|α-β|,可画出几何图形,如图14. |α-β|表示的是线段AB 的长度,|α+β|表示线段OC 的长度,由|AB |=|OC |∴平行四边形OACB 为矩形,故向量α与β所成的角为90° 评述:本题考查向量的概念,向量的几何意义,向量的运算.这些知识不只在学习向量时用到,而且在复数、物理学中也是一些最基本的知识.11.(2000上海,1)已知向量OA =(-1,2),OB =(3,m ),若OA ⊥AB ,则m = . .答案:4解析:∵OA ={-1,2},OB ={3,m },OA OB AB -=={4,m -2},又OA ⊥AB ,∴-1×4+2(m -2)=0,∴m =4.评述:本题考查向量的概念,向量的运算,向量的数量积及两向量垂直的充要条件.12.(1999上海理,8)若将向量a =(2,1)围绕原点按逆时针方向旋转4π得到向量b ,则向量b 的坐标为_____.答案:(223,22) 解析:设a =OA =2+i ,b =OB ,由已知OA 、OB 的夹角为4π,由复数乘法的几何意义,得OB =OA (cos4π+isin4π)=(2+i )i i 22322)2222(+=+. ∴b =(223,22) 评述:本题考查向量的概念,向量与复数一一对应关系,考查变通、变换等数学方法,以及运用数学知识解决问题的能力.13.(1997上海,m =_____. 答案:-2∵(a +b )⊥(a-b ),∴(m +2)×m +(m -4)(-m -2)=0,∴m =-2.评述:本题考查平面向量的加、减法,平面向量的数量积及运算,两向量垂直的充要条件.14.(1996上海,15)已知a +b =2i -8j ,a -b =-8i +16j ,那么a ·b =_____.得∴a ·b =(-3)×5+4×(-12)=-63.评述:本题考查平面向量数量积的坐标表示及求法.15.(1996上海,15)已知O (0,0)和A (6,3)两点,若点P 在直线OA 上,且21=PA OP ,又P 是线段OB 的中点,则点B 的坐标是_____. 答案:(4,2)解析:设P (x ,y ),由定比分点公式12113210,22116210=+⋅+==+⋅+=y x , 则P (2,1),又由中点坐标公式,可得B (4,2).三、解答题16.(2003上海春,19)已知三棱柱ABC —A 1B 1C 1,在某个空间直角坐标系中,1},0,0,{},0,23,2{AA m AC m AB =-=={0,0,n }.(其中m 、n >0).如图2.(1)证明:三棱柱ABC —A 1B 1C 1是正三棱柱;(2)若m =2n ,求直线CA 1与平面A 1ABB 1所成角的大小.(1)证明:∵}0,23,2{mm AB AC BC=-=,∴| BC |=m ,又}0,0,{},0,23,2{m AC m m AB =-= ∴|AB |=m ,|AC |=m ,∴△ABC 为正三角形.又AB ·1AA =0,即AA 1⊥AB ,同理AA 1⊥AC ,∴AA 1⊥平面ABC ,从而三棱柱ABC —A 1B 1C 1是正三棱柱.(2)解:取AB 中点O ,连结CO 、A 1O .∵CO ⊥AB ,平面ABC ⊥平面ABB 1A 1,∴CO ⊥平面ABB 1A 1,即∠CA 1O 为直线CA 1与平面A 1ABB 1所成的角.在Rt △CA 1O 中,CO =23m ,CA 1=22n m +, ∴sin CA 1O =221=CA CO ,即∠CA 1O =45°.17.(2002上海春,19)如图3,三棱柱OAB —O 1A 1B 1,平面OBB 1O 1⊥平面OAB ,∠O 1OB =60°,∠AOB =90°,且OB =OO 1=2,OA =3.求:(1)二面角O 1—AB —O 的大小;(2)异面直线A 1B 与AO 1所成角的大小. (上述结果用反三角函数值表示) 解:(1)取OB 的中点D ,连结O 1D ,则O 1D ⊥O B.∵平面OBB 1O 1⊥平面OAB , ∴O 1D ⊥平面OA B.过D 作AB 的垂线,垂足为E ,连结O 1E . 则O 1E ⊥A B.∴∠DEO 1为二面角O 1—AB —O 的平面角. 由题设得O 1D =3,sin OBA =72122=+OB OA OA , ∴DE =DB sin OBA =721 ∵在R t △O 1DE 中,tan DEO 1=7,∴∠DEO 1=arctan7,即二面角O 1—AB —O 的大小为arctan 7.(2)以O 点为原点,分别以OA 、OB 所在直线为x 、y 轴,过O 点且与平面AOB 垂直的直线为z 轴,建立空间直角坐标系如图15.则O (0,0,0),O 1(0,1,3),A (3,0,0),A 1(3,1,3),B (0,2,0). 设异面直线A 1B 与AO 1所成的角为α, 则}3,1,3{},31,3{1111-=-=--=-=OO OA A O OA OB B A ,cos α71||||1111=⋅A O B A A O B A ,∴异面直线A 1B 与AO 1所成角的大小为arccos 71.18.(2002上海,17)如图5—4,在直三棱柱ABO —A ′B ′O ′中,OO ′=4,OA =4,OB =3,∠AOB =90°,D 是线段A ′B ′的中点,P 是侧棱BB ′上的一点,若OP ⊥BD ,求OP 与底面AOB 所成角的大小.(结果用反三角函数值表示)图3 图5—4 图5解法一:如图16,以O 点为原点建立空间直角坐标系.由题意,有B (3,0,0),D (23,2,4),设P (3,0,z ),则 BD ={-23,2,4},OP ={3,0,z }.∵BD ⊥OP ,∴·OP =-29+4z =0,z =89. ∵BB ′⊥平面AOB ,∴∠POB 是OP 与底面AOB 所成的角. tan POB =83,∴∠POB =arctan 83. 解法二:取O ′B ′中点E ,连结DE 、BE ,如图17,则DE ⊥平面OBB ′O ′,∴BE 是BD 在平面OBB ′O ′内的射影. 又∵OP ⊥B D.由三垂线定理的逆定理,得OP ⊥BE .在矩形OBB ′O ′中,易得Rt △OBP ∽Rt △BB ′E , ∴B B OBE B BP '=',得BP =89. (以下同解法一)19.(2002天津文9,理18)如图5,正三棱柱ABC —A 1B 1C 1的底面边长为a ,侧棱长为2a .(1)建立适当的坐标系,并写出点A 、B 、A 1、C 1的坐标; (2)求AC 1与侧面ABB 1A 1所成的角.解:(1)如图18,以点A 为坐标原点O ,以AB 所在直线为Oy 轴,以AA 1所在直线为Oz 轴,以经过原点且与平面ABB 1A 1垂直的直线为Ox 轴,建立空间直角坐标系.由已知,得A (0,0,0),B (0,a ,0),A 1(0,0,2 a ),C 1(a aa 2,2,23-). (2)坐标系如图,取A 1B 1的中点M ,于是有M (0,2,2aa ),连AM ,MC 1有 1MC =(-23a ,0,0),且AB =(0,a ,0),1AA =(0,0,2 a ) 由于1MC ·AB =0,1MC ·1AA =0,所以MC 1⊥面ABB 1A 1.∴AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角. ∵1AC =(a aa 2,2,23-),AM =(0,2,2a a ), ∴1AC ·AM =0+42a +2a 2=49a 2.而|1AC |=a a a a 32443222=++.|AM |=a a a 232422=+.∴cos <1AC ,AM >=2323492=⋅a a a.所以1AC 与AM 所成的角,即AC 1与侧面ABB 1A 1所成的角为30°.20.(2002天津文22,理21)已知两点M (-1,0),N (1,0),且点P 使,MN MP ⋅,PN PM ⋅⋅成公差小于零的等差数列.(1)点P 的轨迹是什么曲线?(2)若点P 坐标为(x 0,y 0),θ为PM 与PN 的夹角,求tan θ.解:(1)记P (x ,y ),由M (-1,0),N (1,0)得PM =-MP =(-1-x ,-y ), PN =-NP =(1-x ,-y ),MN =-NM =(2,0) ∴MP ·MN =2(1+x ),PM ·PN =x 2+y 2-1,NM ·NP =2(1-x ). 于是,MP ·MN ,·PN ,NM ·NP 是公差小于零的等差数列等价于⎪⎩⎪⎨⎧<+---++=-+,0)1(2)1(2)],1(2)1(2[21122x x x x y x 即⎩⎨⎧>=+0,322x y x 所以,点P 的轨迹是以原点为圆心,3为半径的右半圆.(2)点P 的坐标为(x 0,y 0).PM ·PN =x 02+y 02-1=2.|PM |·|PN |=20202020)1()1(y x y x +-⋅++.∴cos θ2202043tan .41||||x x x PB PM --=-=⋅θ21.(2001江西、山西、天津理)如图6,以正四棱锥V —ABCD 底面中心O 为坐标原点建立空间直角坐标系O —xyz ,其中Ox ∥BC ,Oy ∥AB ,E 为VC 的中点,正四棱锥底面边长为2a ,高为h .(1)求cos<DE BE , >;(2)记面BCV 为α,面DCV 为β,若∠BED 是二面角α—VC —β的平面角,求∠BED.图6 图5—7 图5—8解:(1)由题意知B (a ,a ,0),C (-a ,a ,0),D (-a ,-a ,0),E (2,2,2ha a -). 由此得,)2,23,2(),2,2,23(h a a DE h a a BE =--= ∴42322)232()223(22h a h h a a a a DE BE +-=⋅+⋅-+⋅-=⋅,222221021)2()2()23(||||h a h a a DE BE +=+-+-==. 由向量的数量积公式有cos<DE BE , >222222222210610211021423||||h a h a h a h a h a DE BE ++-=+⋅++-=⋅ (2)若∠BED 是二面角α—VC —β的平面角,则CV BE ⋅,则有CV BE⊥=0.又由C (-a ,a ,0),V (0,0,h ),有CV =(a ,-a ,h )且)2,2,23(ha a BE --=, ∴02223222=++-=⋅h a a .即h =2a ,这时有cos<DE BE ,>=31)2(10)2(610622222222-=++-=++-a a a a h a h a , ∴∠BED =<DE BE ,>=arccos (31-)=π-arccos 31评述:本小题主要考查空间直角坐标的概念、空间点和向量的坐标表示以及两个向量夹角的计算方法;考查运用向量研究空间图形的数学思想方法.22.(2001上海春)在长方体ABCD —A 1B 1C 1D 1中,点E 、F 分别在BB 1、DD 1上,且AE ⊥A 1B ,AF ⊥A 1D.(1)求证:A 1C ⊥平面AEF ;(2)若规定两个平面所成的角是这两个平面所组成的二面角中的锐角(或直角).则在空间中有定理:若两条直线分别垂直于两个平面,则这两条直线所成的角与这两个平面所成的角相等.试根据上述定理,在AB =4,AD =3,AA 1=5时,求平面AEF 与平面D 1B 1BD 所成角的大小.(用反三角函数值表示)(1)证明:因为CB ⊥平面A 1B ,所以A 1C 在平面A 1B 上的射影为A 1B . 由A 1B ⊥AE ,AE ⊂平面A 1B ,得A 1C ⊥AE . 同理可证A 1C ⊥AF .因为A 1C ⊥AF ,A 1C ⊥AE , 所以A 1C ⊥平面AEF .(2)解:过A 作BD 的垂线交CD 于G ,因为D 1D ⊥AG ,所以AG ⊥平面D 1B 1BD .设AG 与A 1C 所成的角为α,则α即为平面AEF 与平面D 1B 1BD 所成的角. 由已知,计算得DG =49. 如图19建立直角坐标系,则得点A (0,0,0),G (49,3,0),A 1(0,0,5), C (4,3,0).AG ={49,3,0},A 1C ={4,3,-5}.因为AG 与A 1C 所成的角为α, 所以cos α=25212arccos ,25212||||11==⋅⋅αC A AG C A AG .由定理知,平面AEF 与平面D 1B 1BD 所成角的大小为arccos25212. 注:没有学习向量知识的同学可用以下的方法求二面角的平面角.解法一:设AG 与BD 交于M ,则AM ⊥面BB 1D 1D ,再作AN ⊥EF 交EF 于N ,连接MN ,则∠ANM 即为面AEF 与D 1B 1BD 所成的角α,用平面几何的知识可求出AM 、AN 的长度.解法二:用面积射影定理cos α=AEFABDS S ∆∆. 评述:立体几何考查的重点有三个:一是空间线面位置关系的判定;二是角与距离的计算;三是多面体与旋转体中的计算.23.(2001上海)在棱长为a 的正方体OABC —O ′A ′B ′C ′中,E 、F 分别是棱AB 、BC 上的动点,且AE =BF .如图5—8.(1)求证:A ′F ⊥C ′E .(2)当三棱锥B ′—BEF 的体积取得最大值时,求二面角B ′—EF —B 的大小(结果用反三角函数表示)建立坐标系,如图5—20.(1)证明:设AE =BF =x ,则A ′(a ,0,a ),F (a -x ,a ,0),C ′(0,a ,a ),E (a ,x ,0)∴A '={-x ,a ,-a },E C '={a ,x -a ,-a }. ∵F A '·E C '=-xa +a (x -a )+a 2=0 ∴A ′F ⊥C ′E(2)解:设BF =x ,则EB =a -x 三棱锥B ′—BEF 的体积 V =61x (a -x )·a ≤6a (2a )2=241a 3当且仅当x =2a时,等号成立. 因此,三棱锥B ′—BEF 的体积取得最大值时BE =BF =2a,过B 作BD ⊥EF 于D ,连 B ′D ,可知B ′D ⊥EF .∴∠B ′DB 是二面角B ′—EF —B 的平面角在直角三角形BEF 中,直角边BE =BF =2a ,BD 是斜边上的高.∴BD =42a .∴tan B ′DB =22='BDBB 故二面角B ′—EF —B 的大小为arctan22.评述:本题考查空间向量的表示、运算及两向量垂直的充要条件.二次函数求最值或均值不等式求最值,二面角等知识.考查学生的空间想象能力和运算能力.用空间向量的观点处理立体几何中的线面关系,把几何问题代数化,降低了立体几何的难度.本题考查的线线垂直等价于F A '·E C '=0,使问题很容易得到解决.而体积的最值除用均值不等式外亦可用二次函数求最值的方法处理.二面角的平面角的找法是典型的三垂线定理找平面角的方法,计算较简单,有一定的思维量.24.(2000上海春,21)四棱锥P —ABCD 中,底面ABCD 是一个平行四边形,AB ={2,-1,-4},AD ={4,2,0},AP ={-1,2,-1}.(1)求证:PA ⊥底面ABCD ; (2)求四棱锥P —ABCD 的体积;(3)对于向量a ={x 1,y 1,z 1},b ={x 2,y 2,z 2},c ={x 3,y 3,z 3},定义一种运算: (a ×b )·c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,试计算(AB ×AD )·AP 的绝对值的值;说明其与四棱锥P —ABCD 体积的关系,并由此猜想向量这一运算(AB ×AD )·AP 的绝对值的几何意义. (1)证明:∵⋅=-2-2+4=0,∴AP ⊥AB . 又∵AD AP ⋅=-4+4+0=0,∴AP ⊥AD .∵AB 、AD 是底面ABCD 上的两条相交直线,∴AP ⊥底面ABCD . (2)解:设与的夹角为θ,则 cos θ1053416161428||||=+⋅++-=⋅AD AB AD ABV =31|AB |·|AD |·sin θ·|AP |=161411059110532=++⋅-⋅ (3)解:|(×AD )·AP |=|-4-32-4-8|=48它是四棱锥P —ABCD 体积的3倍.猜测:|(AB ×AD )·AP |在几何上可表示以AB 、AD 、AP 为棱的平行六面体的体积(或以AB 、AD 、AP 为棱的直四棱柱的体积).评述:本题考查了空间向量的坐标表示、空间向量的数量积、空间向量垂直的充要条件、空间向量的夹角公式和直线与平面垂直的判定定理、棱锥的体积公式等.主要考查考生的运算能力,综合运用所学知识解决问题的能力及空间想象能力.25.(2000上海,18)如图9所示四面体ABCD 中,AB 、BC 、BD 两两互相垂直,且AB =BC =2,E 是AC 中点,异面直线AD 与BE 所成的角的大小为arccos1010,求四面体ABCD 的体积.图9 图10 图11解:如图21建立空间直角坐标系 由题意,有A (0,2,0)、C (2,0,0)、E (1,1,0) 设D 点的坐标为(0,0,z )(z >0) 则BE ={1,1,0},={0,-2,z }, 设BE 与AD 所成角为θ. 则AD ·BE =2·224+cos θ=-2,且AD 与BE 所成的角的大小为arccos1010.∴cos 2θ=101422=+z ,∴z =4,故|BD |的长度为4. 又V A —BCD =61|AB |×|BC |×|BD |=38,因此,四面体ABCD 的体积为38.评述:本题考查空间图形的长度、角度、体积的概念和计算.以向量为工具,利用空间向量的坐标表示、空间向量的数量积计算线段的长度、异面直线所成角等问题,思路自然,解法灵活简便.26.(2000天津、江西、山西)如图10所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.(1)求BN 的长;(2)求cos<11,CB BA >的值; (3)求证:A 1B ⊥C 1M.解:如图22,建立空间直角坐标系O —xyz . (1)依题意得B (0,1,0)、N (1,0,1) ∴|BN |=3)01()10()01(222=-+-+-.(2)依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2)∴1BA ={-1,-1,2},1CB ={0,1,2,},1BA ·1CB =3,|1BA |=6,|1CB |=5∴cos<1BA ,1CB 30101||||1111=⋅CB BA CB BA .(3)证明:依题意,得C 1(0,0,2)、M (21,21,2),B A 1={-1,1,2}, M C 1={21,21,0}.∴A 1·M C 1=-2121++0=0,∴A 1⊥M C 1,∴A 1B ⊥C 1M . 评述:本题主要考查空间向量的概念及运算的基本知识.考查空间两向量垂直的充要条件27.(2000全国理,18)如图11,已知平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形且∠C 1CB =∠C 1CD =∠BCD =60°.(1)证明:C 1C ⊥BD ;(2)假定CD =2,CC 1=23,记面C 1BD 为α,面CBD 为β,求二面角α—BD —β的平面角的余弦值;(3)当1CC CD的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. (1)证明:设CB =a ,CD =b ,1CC =c ,则|a |=|b |,∵CB CD BD -==b -a , ∴BD ·1CC =(b -a )·c =b ·c -a ·c =|b |·|c |cos60°-|a |·|c |cos60°=0, ∴C 1C ⊥BD .(2)解:连AC 、BD ,设AC ∩BD =O ,连OC 1,则∠C 1OC 为二面角α—BD —β的平面角. ∵21)(21=+=CD BC CO(a +b ),2111=-=CC CO O C (a +b )-c∴CO ·211=OC (a +b )·[21(a +b )-c ] =41(a 2+2a ·b +b 2)-21a ·c -21b ·c=41(4+2·2·2cos60°+4)-21·2·23cos60°-21·2·23cos60°=23.则|CO |=3,|O C 1|=23,∴cos C 1OC 3311= (3)解:设1CC CD=x ,CD =2, 则CC 1=x 2.∵BD ⊥平面AA 1C 1C ,∴BD ⊥A 1C ∴只须求满足:D C C A 11⋅=0即可. 设A A 1=a ,AD =b ,DC =c , ∵C A 1=a +b +c ,D C 1=a -c ,∴D C C A 11⋅=(a +b +c )(a -c )=a 2+a ·b -b ·c -c 2=x x 242+-6,令6-242xx -=0,得x =1或x =-32(舍去). 评述:本题蕴涵着转化思想,即用向量这个工具来研究空间垂直关系的判定、二面角的求解以及待定值的探求等问题.28.(1999上海,20)如图12,在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD =90°,AD ∥BC ,AB =BC =a ,AD =2a ,且PA ⊥底面ABCD ,PD 与底面成30°角. (1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)求异面直线AE 与CD 所成角的大小.(1)证明:∵PA ⊥平面ABCD ,∴PA ⊥AB ,又AB ⊥AD .∴AB ⊥平面PAD .又∵AE ⊥PD ,∴PD ⊥平面ABE ,故BE ⊥PD .(2)解:以A 为原点,AB 、AD 、AP 所在直线为坐标轴,建立空间直角坐标系,则点C 、D 的坐标分别为(a ,a ,0),(0,2a ,0).∵PA ⊥平面ABCD ,∠PDA 是PD 与底面ABCD 所成的角,∴∠PDA =30°.于是,在Rt △AED 中,由AD =2a ,得AE =a .过E 作EF ⊥AD ,垂足为F ,在Rt △AFE 中,由AE =a ,∠EAF =60°,得AF =2a ,EF =23a ,∴E (0,23,21a a ) 于是,CD a a AE},23,21,0{=={-a ,a ,0}设AE 与CD 的夹角为θ,则由cos θ||||CD AE CDAE ⋅420)()23()21(002321)(0222222=++-⋅++⋅+⋅+-⋅a a a a a a a a ∴θ=arccos42,即AE 与CD 所成角的大小为arccos 42. 评述:第(2)小题中,以向量为工具,利用空间向量坐标及数量积,求两异面直线所成的角是立体几何中的常见问题和处理手段.29.(1995上海,21)如图13在空间直角坐标系中BC =2,原点O 是BC 的中 点,点A 的坐标是(21,23,0),点D 在平面yOz 上,且∠BDC =90°, ∠DCB =30°。

高考数学中的平面向量基本概念及相关性质

高考数学中的平面向量基本概念及相关性质

高考数学中的平面向量基本概念及相关性质随着人们生活中科技的快速发展,数学的地位越来越重要。

高考数学是整个中学阶段最关键的考试之一,考查学生的数学运算能力和逻辑思维能力。

在高考数学中,平面向量是一个重要的概念,涉及多个方面的知识,而且在实际生活中也有很广泛的应用,因此深入理解平面向量的基本概念及相关性质,对于提高数学水平和应对高考具有重要意义。

一. 矢量的概念和表示平面向量,又称矢量,是由大小和方向决定的量。

矢量可以用有向线段表示,有向线段的长度表示矢量的大小,而方向则是有向线段的方向。

例如,有向线段AB表示一个矢量,长度为5,方向为从A指向B。

记作$\overrightarrow{AB}$,其中上方的箭头表示矢量方向。

二. 矢量的加法和减法矢量的加法和减法是矢量数乘的特殊情形。

设$\overrightarrow{a}$和$\overrightarrow{b}$是两个矢量,$\lambda$是一个实数,则:(1)矢量加法 $\overrightarrow{a}+\overrightarrow{b}$表示从起点为$\overrightarrow{a}$的有向线段终点作为起点,画一条有向线段使之终点与$\overrightarrow{b}$的终点重合,这条线段的长度与方向所表示的量即为$\overrightarrow{a}+\overrightarrow{b}$。

(2)矢量减法 $\overrightarrow{a}-\overrightarrow{b}$表示从起点为$\overrightarrow{a}$的有向线段终点作为起点,画一条有向线段使之终点与$\overrightarrow{b}$的终点重合,这条线段的方向相反,长度为$\left| \overrightarrow{a} \right|-\left|\overrightarrow{b}\right|$,所表示的量即为$\overrightarrow{a}-\overrightarrow{b}$。

高考数学复习第4章平面向量第1讲平面向量及其线性运算

高考数学复习第4章平面向量第1讲平面向量及其线性运算

向量-b 的和的 减法
运算叫做 a 与 b
的差
三角形法则
运算律 a-b=a+(-b)
(续表) 向量 运算
定义
法则(或几何意义)
运算律
(1)|λa|=___|λ_|_|a_|__; (2)当λ>0 时,λa 的
数乘 求实数λ与向量 a 的积的运算
方向与 a 的方向相 同;当λ<0 时,λa 的 方向与 a 的方向相
量的个数为( B )
A.1
B.2
C. B.
4.如图 4-1-1,在正六边形 ABCDEF 中,B→A+C→D+E→F= (D )
图 4-1-1
A.0
B.B→E
C.A→D
D.C→F
考点 1 平面向量的基本概念
例 1:(1)(多选)下列命题正确的有( ) A.若|a|=|b|,则 a=b B.若 A,B,C,D 是不共线的四点,则A→B=D→C是四边形 ABCD 为平行四边形的充要条件 C.若 a=b,b=c,则 a=c D.若 a∥b,b∥c,则 a∥c
选 A.
答案:A
【规律方法】(1)相等向量具有传递性,非零向量的平行也 具有传递性.(2)共线向量即为平行向量,它们均与起点无关. (3)向量可以平移,平移后的向量与原向量是相等向量.解题时, 不要把它与函数图象的平移混为一谈.(4)非零向量 a 与|aa|的关系: |aa|是与 a 同方向的单位向量.
λ(μa)=___λ_μ_a___; (λ+μ)a=λa+μa; λ(a+b)=_λ_a_+__λ_b_
反;当λ=0 时,λa
=____0____
3.共线向量定理 向量 a(a≠0)与 b 共线的充要条件是存在唯一一个实数λ, 使得 b=λa.

2023年新高考数学大一轮复习专题二平面向量与三角函数第1讲平面向量(含答案)

2023年新高考数学大一轮复习专题二平面向量与三角函数第1讲平面向量(含答案)

新高考数学大一轮复习专题:第1讲 平面向量[考情分析] 1.平面向量是高考的热点和重点,命题突出向量的基本运算与工具性,在解答题中常与三角函数、直线和圆锥曲线的位置关系问题相结合,主要以条件的形式出现,涉及向量共线、数量积等.2.常以选择题、填空题形式考查平面向量的基本运算,中低等难度;平面向量在解答题中一般为中等难度. 考点一 平面向量的线性运算 核心提炼1.平面向量加减法求解的关键是:对平面向量加法抓住“共起点”或“首尾相连”.对平面向量减法应抓住“共起点,连两终点,指向被减向量的终点”,再观察图形对向量进行等价转化,即可快速得到结果.2.在一般向量的线性运算中,只要把其中的向量当作一个字母看待即可,其运算方法类似于代数中合并同类项的运算,在计算时可以进行类比.例1 (1)如图所示,AD 是△ABC 的中线,O 是AD 的中点,若CO →=λAB →+μAC →,其中λ,μ∈R ,则λ+μ的值为( )A .-12B.12 C .-14D.14答案 A解析 由题意知,CO →=12(CD →+CA →)=12×⎝ ⎛⎭⎪⎫12CB →+CA →=14(AB →-AC →)+12CA →=14AB →-34AC →, 则λ=14,μ=-34,故λ+μ=-12.(2)已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0.若a ∥b ,则m n=________. 答案 -2解析 ∵a ∥b ,∴m ×(-1)=2×n ,∴m n=-2.(3)A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D ,若OC →=λOA →+μOB →(λ∈R ,μ∈R ),则λ+μ的取值范围是________.答案 (1,+∞)解析 由题意可得,OD →=kOC →=kλOA →+kμOB →(0<k <1),又A ,D ,B 三点共线,所以kλ+kμ=1,则λ+μ=1k>1,即λ+μ的取值范围是(1,+∞).易错提醒 在平面向量的化简或运算中,要根据平面向量基本定理恰当地选取基底,变形要有方向,不能盲目转化.跟踪演练1 (1)如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=________.答案 12解析 由题意可设CG →=xCE →(0<x <1), 则CG →=x (CB →+BE →)=x ⎝ ⎛⎭⎪⎫CB →+12CD →=x 2CD →+xCB →.因为CG →=λCD →+μCB →,CD →与CB →不共线,所以λ=x 2,μ=x ,所以λμ=12.(2)如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC →=xOA →+yOB →,则x +3y的取值范围是________.答案 [1,3]解析 设扇形的半径为1,以OB 所在直线为x 轴,O 为坐标原点建立平面直角坐标系(图略), 则B (1,0),A ⎝ ⎛⎭⎪⎫12,32,C (cos θ,sin θ)⎝ ⎛⎭⎪⎫其中∠BOC =θ,0≤θ≤π3.则OC →=(cos θ,sin θ)=x ⎝ ⎛⎭⎪⎫12,32+y (1,0),即⎩⎪⎨⎪⎧x 2+y =cos θ,32x =sin θ,解得x =23sin θ3,y =cos θ-3sin θ3,故x +3y =23sin θ3+3cos θ-3sin θ=3cos θ-33sin θ,0≤θ≤π3. 令g (θ)=3cos θ-33sin θ, 易知g (θ)=3cos θ-33sin θ在⎣⎢⎡⎦⎥⎤0,π3上单调递减,故当θ=0时,g (θ)取得最大值为3, 当θ=π3时,g (θ)取得最小值为1,故x +3y 的取值范围为[1,3].考点二 平面向量的数量积 核心提炼1.若a =(x ,y ),则|a |=a ·a =x 2+y 2. 2.若A (x 1,y 1),B (x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12.3.若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角, 则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22. 例2 (1)(2020·全国Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( )A .-3135B .-1935C.1735D.1935答案 D解析 ∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=25-12+36=49, ∴|a +b |=7,∴cos〈a ,a +b 〉=a ·a +b |a ||a +b |=a 2+a ·b|a ||a +b |=25-65×7=1935. (2)已知扇形OAB 的半径为2,圆心角为2π3,点C 是弧AB 的中点,OD →=-12OB →,则CD →·AB →的值为( )A .3B .4C .-3D .-4 答案 C解析 如图,连接CO ,∵点C 是弧AB 的中点, ∴CO ⊥AB ,又∵OA =OB =2,OD →=-12OB →,∠AOB =2π3,∴CD →·AB →=(OD →-OC →)·AB →=-12OB →·AB →=-12OB →·(OB →-OA →)=12OA →·OB →-12OB →2=12×2×2×⎝ ⎛⎭⎪⎫-12-12×4=-3. (3)已知在直角梯形ABCD 中,AB =AD =2CD =2,∠ADC =90°,若点M 在线段AC 上,则|MB →+MD →|的取值范围为________________.答案 ⎣⎢⎡⎦⎥⎤255,22 解析 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴, 建立如图所示的平面直角坐标系,则A (0,0),B (2,0),C (1,2),D (0,2),设AM →=λAC →(0≤λ≤1),则M (λ,2λ), 故MD →=(-λ,2-2λ),MB →=(2-λ,-2λ), 则MB →+MD →=(2-2λ,2-4λ), ∴|MB →+MD →|=2-2λ2+2-4λ2=20⎝⎛⎭⎪⎫λ-352+45,0≤λ≤1, 当λ=0时,|MB →+MD →|取得最大值为22, 当λ=35时,|MB →+MD →|取得最小值为255,∴|MB →+MD →|∈⎣⎢⎡⎦⎥⎤255,22.易错提醒 两个向量的夹角的范围是[0,π],在使用平面向量解决问题时要特别注意两个向量的夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不仅要求其数量积小于零,还要求不能反向共线.跟踪演练2 (1)(2019·全国Ⅰ)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( )A.π6B.π3C.2π3D.5π6 答案 B解析 方法一 设a 与b 的夹角为θ,因为(a -b )⊥b ,所以(a -b )·b =a ·b -|b |2=0, 又因为|a |=2|b |,所以2|b |2cos θ-|b |2=0, 即cos θ=12,又θ∈[0,π],所以θ=π3,故选B. 方法二 如图,令OA →=a ,OB →=b ,则BA →=OA →-OB →=a -b .因为(a -b )⊥b ,所以∠OBA =π2,又|a |=2|b |,所以∠AOB =π3,即a 与b 的夹角为π3,故选B.(2)(2020·新高考全国Ⅰ)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →·AB →的取值范围是( ) A .(-2,6) B .(-6,2) C .(-2,4) D .(-4,6)答案 A解析 如图,取A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则A (0,0),B (2,0),C (3,3),F (-1,3). 设P (x ,y ),则AP →=(x ,y ),AB →=(2,0),且-1<x <3. 所以AP →·AB →=(x ,y )·(2,0)=2x ∈(-2,6).(3)设A ,B ,C 是半径为1的圆O 上的三点,且OA →⊥OB →,则(OC →-OA →)·(OC →-OB →)的最大值是( ) A .1+ 2 B .1- 2 C.2-1 D .1答案 A解析 如图,作出OD →,使得OA →+OB →=OD →.则(OC →-OA →)·(OC →-OB →)=OC →2-OA →·OC →-OB →·OC →+OA →·OB →=1-(OA →+OB →)·OC →=1-OD →·OC →,由图可知,当点C 在OD 的反向延长线与圆O 的交点处时,OD →·OC →取得最小值,最小值为-2,此时(OC →-OA →)·(OC →-OB →)取得最大值,最大值为1+ 2.故选A.专题强化练一、单项选择题1.已知四边形ABCD 是平行四边形,点E 为边CD 的中点,则BE →等于( )A .-12AB →+AD →B.12AB →-AD →C.AB →+12AD →D.AB →-12AD →答案 A解析 由题意可知,BE →=BC →+CE →=-12AB →+AD →.2.(2020·广州模拟)加强体育锻炼是青少年生活学习中非常重要的组成部分,某学生做引体向上运动,处于如图所示的平衡状态时,若两只胳膊的夹角为π3,每只胳膊的拉力大小均为400 N ,则该学生的体重(单位:kg)约为(参考数据:取重力加速度大小为g =10 m/s 2,3≈1.732)( )A .63B .69C .75D .81 答案 B解析 设该学生的体重为m ,重力为G ,两臂的合力为F ′,则|G |=|F ′|,由余弦定理得|F ′|2=4002+4002-2×400×400×cos 2π3=3×4002,∴|F ′|=4003,∴|G |=mg =4003,m =403≈69kg.3.已知向量a =(1,2),b =(2,-2),c =(λ,-1),若c ∥(2a +b ),则λ等于( ) A .-2B .-1C .-12D.12答案 A解析 ∵a =(1,2),b =(2,-2),∴2a +b =(4,2),又c =(λ,-1),c ∥(2a +b ),∴2λ+4=0,解得λ=-2,故选A.4.(2020·潍坊模拟)在平面直角坐标系xOy 中,点P (3,1),将向量OP →绕点O 按逆时针方向旋转π2后得到向量OQ →,则点Q 的坐标是( )A .(-2,1)B .(-1,2)C .(-3,1)D .(-1,3) 答案 D解析 由P (3,1),得P ⎝⎛⎭⎪⎫2cos π6,2sin π6,∵将向量OP →绕点O 按逆时针方向旋转π2后得到向量OQ →,∴Q ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π6+π2,2sin ⎝ ⎛⎭⎪⎫π6+π2, 又cos ⎝⎛⎭⎪⎫π6+π2=-sin π6=-12,sin ⎝ ⎛⎭⎪⎫π6+π2=cos π6=32,∴Q (-1,3).5.(2020·泰安模拟)如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 等于( )A .0B .1C .2D .3 答案 C解析 如图,连接AO ,由O 为BC 的中点可得,AO →=12(AB →+AC →)=m 2AM →+n 2AN →, ∵M ,O ,N 三点共线, ∴m 2+n2=1. ∴m +n =2.6.在同一平面中,AD →=DC →,BE →=2ED →.若AE →=mAB →+nAC →(m ,n ∈R ),则m +n 等于( ) A.23B.34C.56D .1 答案 A解析 由题意得,AD →=12AC →,DE →=13DB →,故AE →=AD →+DE →=12AC →+13DB →=12AC →+13(AB →-AD →)=12AC →+13⎝ ⎛⎭⎪⎫AB →-12AC →=13AB →+13AC →,所以m =13,n =13,故m +n =23.7.若P 为△ABC 所在平面内一点,且|PA →-PB →|=|PA →+PB →-2PC →|,则△ABC 的形状为( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形答案 C解析 ∵|PA →-PB →|=|PA →+PB →-2PC →|,∴|BA →|=|(PA →-PC →)+(PB →-PC →)|=|CA →+CB →|,即|CA →-CB →|=|CA →+CB →|,两边平方整理得,CA →·CB →=0,∴CA →⊥CB →,∴△ABC 为直角三角形.故选C. 8.已知P 是边长为3的等边三角形ABC 外接圆上的动点,则||PA →+PB →+2PC →的最大值为( )A .23B .33C .43D .5 3 答案 D解析 设△ABC 的外接圆的圆心为O , 则圆的半径为332×12=3,OA →+OB →+OC →=0, 故PA →+PB →+2PC →=4PO →+OC →.又||4PO →+OC→2=51+8PO →·OC →≤51+24=75, 故||PA →+PB →+2PC →≤53, 当PO →,OC →同向共线时取最大值.9.如图,圆O 是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM →=xBA →+yBD →(x ,y ∈R ),则2x +y 的最大值为( )A.2B.3C .2D .2 2 答案 C解析 方法一 如图,连接DA ,以D 点为原点,BC 所在直线为x 轴,DA 所在直线为y 轴,建立如图所示的平面直角坐标系.设内切圆的半径为r ,则圆心为坐标(0,r ),根据三角形面积公式,得12×l △ABC ×r =12×AB ×AC ×sin60°(l △ABC 为△ABC 的周长),解得r =1.易得B (-3,0),C (3,0),A (0,3),D (0,0), 设M (cos θ,1+sin θ),θ∈[0,2π),则BM →=(cos θ+3,1+sin θ),BA →=(3,3),BD →=(3,0), 故BM →=(cos θ+3,1+sin θ)=(3x +3y ,3x ),故⎩⎨⎧cos θ=3x +3y -3,sin θ=3x -1,则⎩⎪⎨⎪⎧x =1+sin θ3,y =3cos θ3-sin θ3+23,所以2x +y =3cos θ3+sin θ3+43=23sin ⎝⎛⎭⎪⎫θ+π3+43≤2.当θ=π6时等号成立.故2x +y 的最大值为2.方法二 因为BM →=xBA →+yBD →,所以|BM →|2=3(4x 2+2xy +y 2)=3[(2x +y )2-2xy ]. 由题意知,x ≥0,y ≥0, |BM →|的最大值为232-32=3,又2x +y 24≥2xy ,即-2x +y 24≤-2xy ,所以3×34(2x +y )2≤9,得2x +y ≤2,当且仅当2x =y =1时取等号. 二、多项选择题10.(2020·长沙模拟)已知a ,b 是单位向量,且a +b =(1,-1),则( ) A .|a +b |=2 B .a 与b 垂直C .a 与a -b 的夹角为π4D .|a -b |=1 答案 BC解析 |a +b |=12+-12=2,故A 错误;因为a ,b 是单位向量,所以|a |2+|b |2+2a ·b =1+1+2a ·b =2,得a ·b =0,a 与b 垂直,故B 正确;|a -b |2=a 2+b 2-2a ·b =2,|a -b |=2,故D 错误;cos 〈a ,a -b 〉=a ·a -b |a ||a -b |=a 2-a ·b 1×2=22,所以a 与a -b 的夹角为π4,故C 正确. 11.设向量a =(k,2),b =(1,-1),则下列叙述错误的是( )A .若k <-2,则a 与b 的夹角为钝角B .|a |的最小值为2C .与b 共线的单位向量只有一个为⎝ ⎛⎭⎪⎫22,-22 D .若|a |=2|b |,则k =22或-2 2 答案 CD解析 对于A 选项,若a 与b 的夹角为钝角,则a ·b <0且a 与b 不共线,则k -2<0且k ≠-2,解得k <2且k ≠-2,A 选项正确;对于B 选项,|a |=k 2+4≥4=2,当且仅当k =0时等号成立,B 选项正确;对于C 选项,|b |=2,与b 共线的单位向量为±b |b |,即与b 共线的单位向量为⎝⎛⎭⎪⎫22,-22或⎝ ⎛⎭⎪⎫-22,22,C 选项错误;对于D 选项,∵|a |=2|b |=22,∴k 2+4=22,解得k =±2,D 选项错误.12.已知△ABC 是边长为2的等边三角形,D ,E 分别是AC ,AB 上的两点,且AE →=EB →,AD →=2DC →,BD 与CE 交于点O ,则下列说法正确的是( )A.AB →·CE →=-1B.OE →+OC →=0C .|OA →+OB →+OC →|=32D.ED →在BC →方向上的投影为76答案 BCD解析 因为AE →=EB →,△ABC 是等边三角形,所以CE ⊥AB ,所以AB →·CE →=0,选项A 错误;以E 为坐标原点,EA →,EC →的方向分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示,所以E (0,0),A (1,0),B (-1,0),C (0,3),D ⎝ ⎛⎭⎪⎫13,233, 设O (0,y ),y ∈(0,3),则BO →=(1,y ),DO →=⎝ ⎛⎭⎪⎫-13,y -233, 又BO →∥DO →,所以y -233=-13y ,解得y =32, 即O 是CE 的中点,OE →+OC →=0,所以选项B 正确;|OA →+OB →+OC →|=|2OE →+OC →|=|OE →|=32, 所以选项C 正确;ED →=⎝ ⎛⎭⎪⎫13,233,BC →=(1,3),ED →在BC →方向上的投影为ED →·BC →|BC →|=13+22=76,所以选项D 正确. 三、填空题13.(2020·全国Ⅱ)已知单位向量a ,b 的夹角为45°,k a -b 与a 垂直,则k =________. 答案 22解析 由题意知(k a -b )·a =0,即k a 2-b ·a =0.因为a ,b 为单位向量,且夹角为45°,所以k ×12-1×1×22=0,解得k =22. 14.在△ABC 中,AB =1,∠ABC =60°,AC →·AB →=-1,若O 是△ABC 的重心,则BO →·AC →=________.答案 5解析 如图所示,以B 为坐标原点,BC 所在直线为x 轴,建立平面直角坐标系.∵AB =1,∠ABC =60°,∴A ⎝ ⎛⎭⎪⎫12,32.设C (a,0). ∵AC →·AB →=-1,∴⎝ ⎛⎭⎪⎫a -12,-32·⎝ ⎛⎭⎪⎫-12,-32 =-12⎝ ⎛⎭⎪⎫a -12+34=-1,解得a =4. ∵O 是△ABC 的重心,延长BO 交AC 于点D ,∴BO →=23BD →=23×12()BA →+BC → =13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12,32+4,0=⎝ ⎛⎭⎪⎫32,36. ∴BO →·AC →=⎝ ⎛⎭⎪⎫32,36·⎝ ⎛⎭⎪⎫72,-32=5. 15.(2020·石家庄模拟)在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,点O为△ABC 的外接圆的圆心,A =π3,且AO →=λAB →+μAC →,则λμ的最大值为________. 答案 19解析 ∵△ABC 是锐角三角形,∴O 在△ABC 的内部,∴0<λ<1,0<μ<1.由AO →=λ(OB →-OA →)+μ(OC →-OA →), 得(1-λ-μ)AO →=λOB →+μOC →,两边平方后得,(1-λ-μ)2AO →2=(λOB →+μOC →)2=λ2OB →2+μ2OC →2+2λμOB →·OC →,∵A =π3,∴∠BOC =2π3,又|AO →|=|BO →|=|CO →|. ∴(1-λ-μ)2=λ2+μ2-λμ,∴1+3λμ=2(λ+μ),∵0<λ<1,0<μ<1,∴1+3λμ≥4λμ,设λμ=t ,∴3t 2-4t +1≥0,解得t ≥1(舍)或t ≤13, 即λμ≤13⇒λμ≤19,∴λμ的最大值是19.16.(2020·浙江)已知平面单位向量e 1,e 2满足|2e 1-e 2|≤2,设a =e 1+e 2,b =3e 1+e 2,向量a ,b 的夹角为θ,则cos 2θ的最小值是________. 答案 2829解析 设e 1=(1,0),e 2=(x ,y ),则a =(x +1,y ),b =(x +3,y ).由2e 1-e 2=(2-x ,-y ),故|2e 1-e 2|=2-x 2+y 2≤2,得(x -2)2+y 2≤2.又有x 2+y 2=1,得(x -2)2+1-x 2≤2,化简,得4x ≥3,即x ≥34,因此34≤x ≤1.cos 2θ=⎝ ⎛⎭⎪⎫a ·b|a |·|b |2=⎣⎢⎡⎦⎥⎤x +1x +3+y 2x +12+y 2x +32+y 22=⎝ ⎛⎭⎪⎫4x +42x +26x +102=4x +12x +13x +5=4x +13x +5=433x +5-833x +5=43-833x +5,。

高考数学一轮复习第5章平面向量第1节平面向量的概念及线性运算课件理新人教A版

高考数学一轮复习第5章平面向量第1节平面向量的概念及线性运算课件理新人教A版

[最新考纲] 1.了解向量的实际背景. 2.理解平面向量的概念,理解两个向量相等的含义. 3.理解向量的几何表示. 4.掌握向量加法、减法的运算,并理解其几何意义. 5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义. 6.了解向量线性运算的性质及其几何意义.
[考情分析]
[核心素养]
平面向量的相关概念,平面向量的线性运算,共线向 1.数学运算
量定理及其应用仍是 2021 年高考考查的热点,题型仍将是 2.直观想象
选择题与填空题,分值为 5 分.
1
课 前 ·基 础 巩 固
‖知识梳理‖ 1.向量的有关概念 (1)向量:既有大小又有 1 __方__向_____的量叫做向量,向量的大小叫做向量的 2 _____模____. (2)零向量:长度为 3 ___0______的向量,其方向是任意的. (3)单位向量:长度等于 4 _1_个__单__位___的向量.
(2)∵ka+b 与 a+kb 共线, ∴存在实数 λ,使 ka+b=λ(a+kb),即(k-λ)a=(λk-1)b. 又 a,b 是两个不共线的非零向量, ∴kλk--λ=1=0,0. ∴k2-1=0.∴k=±1.
|变式探究| 1.若将本例(1)中“B→C=2a+8b”改为“B→C=a+mb”,则 m 为何值时,A,B,D 三点共线? 解:B→D=B→C+C→D=(a+mb)+3(a-b)=4a+(m-3)b, 若 A,B,D 三点共线,则存在实数 λ,使B→D=λA→B, 即 4a+(m-3)b=λ(a+b),∴4m=-λ3,=λ,解得 m=7. 故当 m=7 时,A,B,D 三点共线.
法则(或几何意义)
运算律
交换律:a+b= 8 __b_+__a____;
结 合 律 : (a + b) + c = 9 _a_+__(b_+__c_)_

2020高考数学专题复习《平面向量》(讲义和练习)

2020高考数学专题复习《平面向量》(讲义和练习)

一、知识纲要1、向量的相关概念:《必修 4》 第二章平面向量(1) 向量: 既有大小又有方向的量叫做向量,记为 AB 或a 。

向量又称矢量。

①向量和标量的区别:向量既有大小又有方向;标量只有大小,没有方向。

普通的数量都是标量,力是一种常见的向量。

②向量常用有向线段来表示,但也不能说向量就是有向线段,因为向量是自由的,可以平移;有向线段有固定的起点和终点,不能随意移动。

(2) 向量的模:向量的大小又叫向量的模,它指的是:表示向量的有向线段的长度。

记作:| AB |或| a |。

向量本身不能比较大小,但向量的模可以比较大小。

(3) 零 向 量: 长度为 0 的向量叫零向量,记为0 ,零向量的方向是任意的。

①| a |=0; ② 0 与 0 的区别:写法的区别,意义的区别。

(4) 单位向量:模长为 1 个单位长度的非零向量叫单位向量。

若向量a 是单位向量,则| a |= 1 。

2、 向量的表示:(1)几何表示法:用带箭头的有向线段表示,如 AB ,注意:方向是“起点指向终点”。

→(2) 符号表示法:用一个小写的英文字母来表示,如 a , b 等;(3)坐标表示法:在平面内建立直角坐标系,以与 x 轴、 y 轴正方向相同的两个单位向量i 、 j 为基底向量,则平面内的任一向量 a 可表示为 a = xi + y j = ( x , y ) ,称( x , y ) 为向量 a 的坐标, a =( x , y ) 叫做向量 a 的坐标表示。

此时| a |。

若已知 A ( x 1 , y 1 )和B ( x 2 , y 2 ) ,则 AB = ( x 2 -x 1,y 2 -y 1 ) , 即终点坐标减去起点坐标。

特别的,如果向量的起点在原点,那么向量的坐标数值与向量的终点坐标数值相同。

注意 注意 注意 注意a 3、 向量之间的关系:(1)平行(共线):对于两个非零向量,若它们的方向相同或相反的,那么就称这种关系 为平行,记作a ∥ b 。

2024年新高考版数学专题1_6.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示

2024年新高考版数学专题1_6.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示

零向量和共线向量不能作基底.
2.平面向量的坐标运算
已知a=(x1,y1),b=(x2,y2).
则a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),a∥b⇔x1y2-x2y1=0.
3.向量的坐标表示
若A(x1,y1),B(x2,y2),则
AB
=(x2-x1,y2-y1).
1 2
( BD
- BA )= BA +
1 4
BC
-
1 2
BA =
1 2
BA +
1 4
BC
,∴D
错误.故选AC.
答案 AC
考法二 向量共线问题的求解方法
1.两非零向量共线是指存在实数λ,使两向量可以相互表示,在应用时注意
待定系数法和方程思想的应用.
2.证明三点共线问题,可用向量共线来解决,但应注意向量共线和三点共
λ(μa)=(λμ)a; (λ+μ)a=λa+μa; λ(a+b)=λa+λb
2.共线向量定理 向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使b=λa.
考点二 平面向量基本定理及坐标运算
1.平面向量基本定理
如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向 量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.我们把{e1、e2}叫做表示这个平 面内所有向量的一个基底.
答案 6
高考 数学
专题六 平面向量
6.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示
基础篇
考点一 平面向量的概念及线性运算 1.向量的线性运算
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量一. 教学内容:平面向量二. 教学重点、难点及教学要求:1. 理解向量的概念,掌握向量的几何表示,了解共线向量的概念。

2. 掌握向量的加法和减法。

3. 掌握实数与向量的积,理解两个向量共线的充要条件。

4. 了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。

5. 掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度、垂直等问题,掌握向量垂直的条件。

6. 掌握两点间距离公式,以及线段的定比分点和中点公式,并且能熟练运用,掌握平移公式。

三. 知识串讲(一)向量的基本运算1. 有关概念(1)向量—既有大小又有方向的量叫做向量常用有向线段表示向量向量二要素方向长度⎧⎨⎪⎩⎪()向量的长度(模)—有向线段的长度或2||||AB a→→长度等于的向量叫做单位向量,1aaa→=→→||长度为的向量叫做零向量,记作00→(3)共线向量(平行向量)—方向相同或相反的向量叫做平行向量(即共线向量)。

()相等的向量—长度相等且方向相同的向量叫做相等的向量,4a b→=→零向量与零向量相等,00→=→向量可以在平面(空间)平行移动而不变。

规定:零向量与任一向量平行。

[练习]如图,、、分别是△各边的中点,写出图中与、、D E F ABC DE EF DF →→→相等的向量,并写出向量的相反向量即与长度相同方向相反的向量DE DE →→()2. 向量的加法、减法与数乘。

(1)向量的加法是用三角形法则来定义的。

也可以用平行四边形法则求,当与不共线时,两个法则是一致a b a b →+→→→的,而与共线时,平行四边形法则就不适用了a b →→例如:求a b c →+→+→如图:向量的多边形法则:多个向量相加,将它们顺序“头尾相接”,则以第一个向量的起点为起点,以最后一个向量的终点为终点的向量,即为这多个向量的和向量。

()向量的减法:向量加上的相反向量,即2a b a b a b →→→-→=→+-→()(3)实数与向量的积λλλλλλλλa a a a a a a a →→=→>→<→=→=→→→⎧⎨⎪⎪⎩⎪⎪长度方向:时,与同向;时与反向;时,,∥||||||0000()设向量,,及实数,,满足:4a b c →→→λμ ①a b b a →+→=→+→②()()a b c a b c →+→+→=→+→+→ ③a b a b →-→=→+-→() ④·λμλμ()()a a →=→ ⑤()λμλμ+→=→+→a a a ⑥λλλ()ab a b →+→=→+→ ⑦||||||λλa a →=→⑧±||||||||||a b a b a b →-→≤→→≤→+→(此不等式表示三角形两边之和大于第三边,两边之差小于第三边,也称为三角不等式)()向量与非零向量共线(平行)有且只有一个实数,使得5b a →→⇔λ b a →=→λ()平面向量基本定理(向量的分解定理),是同一平面内的两612e e →→个不共线向量,那么对该平面内任一向量,存在唯一实数对,,使得a →λλ12a e e →=→+→λλ1122这个定理表明:平面内的任一向量都可以沿两个不共线向量分解为唯一一对向量的和,叫做向量,的线性组合。

,叫做表示这一平面内λλ11221212e e e e e e →+→→→→→所有向量的一组基底。

注:①基底不唯一,关键是不共线;②基底给定,分解形式唯一⎧⎨⎩[练习]1.如图,平行四边形的两条对角线相交于点,且,,ABCD M AB a AD b →=→→=→用,表示,,和a b MA MB MC MD →→→→→→解:在平行四边形ABCD 中∵,AC a b DB a b →=→+→→=→-→∴MA AC a b a b→=-→=-→+→=-→-→12121212()∴MB DB a b a b→=→=→-→=→-→12121212()MC AC a b a b→=→=→+→=→+→12121212() MD BD DB a b a b→=→=-→=-→-→=-→+→1212121212() 21.设,不共线,点在上,求证:·且,OA OB P AB OP OA OB →→→=→+→+=λμλμλμ,∈R分析:∵点在上,可知与共线,得,再用以为起点P AB AP AB AP t AB O →→→→=→的向量,表示OA OB →→证明:∵A 、P 、B 三点共线可知与共线,AP AB →→则存在唯一实数t ,使得AP t AB →=→∴OP OA t OB OA →-→=→-→()即,令,OP t OB t OA t t →=→+-→==-()11μλ 则··且OP OA OB →=→+→+=λμλμ1注意:这是一个充分必要条件命题,可判定三点共线。

3121212.e e a e k e b k e e a b →→→=→+→→=→+→→→⇔,是不共线的向量,,,则∥_______________分析:∵与共线平行存在实数,使,即a b m a m b e k e →→⇔→=→→+→()12 =→+→→→mk e m e e e 1212,又,不共线 ∴±11==⎧⎨⎩⇒=mk k m k(二)向量的坐标运算1.在直角坐标系内,分别取与轴,轴同方向的两个单位向量,作x y i j →→为基底,则任一向量,有且只有一对实数,使得,称a x y a x i y j →→=→+→()()()x y a a x y ,叫做向量的直角坐标,记作,——向量的坐标表示→→=如图,当把向量的起点移至原点时,,是向量终点的坐标a x y a OA A →→=→() 即,与相等的向量的坐标也是,A x y a x y ()()→21122.()()已知,,,,a x y b x y R →=→=∈λ 则a b x i y j x i y j →+→=→+→+→+→()()1122 =+→++→()()x x i y y j 1212 ∴,,a b x x y y →+→=++()1212a b x x y y a x y x y →-→=--→==()()()12121111,,,,λλλλ3. 向量平行的坐标表示a x yb x y b a b →=→=→→→→⇔()()11220,,,,≠,则由∥存在一实数使λ a b x y x y →=→=λλ,即,,()()1122 即消去x x y y x y x y 121212210==⎧⎨⎩⇒-=λλλ ∴∥≠a b b x y x y →→→→⇔-=()0012214111222.()()()线段的定比分点,,,,分点,P x y P x y P x y设,是直线上的两点,点是上不同于,的任意一点,若存在一P P l P l P P 1212实数,使,则叫做点分有向线段所成的比λλλP P PP P P P 1212→=→→(在线段上时,;点在或的延长线上时,)P P P P P P P P 12122100λλ><则≠,xx xyy y=++=++⎧⎨⎪⎪⎩⎪⎪-1212111λλλλλ()若中点,则P P Pxx xyy y12121222=+=+⎧⎨⎪⎪⎩⎪⎪(三)平面向量的数量积1. 数量积的概念∠,,°°叫做向量与的夹AOB OA a OB b a b =(→=→→=→≤≤→→θθ)0180角,记作,<→→>a b()已知两个非零向量,它们的夹角为,则数量·叫1a b a b→→→→θθ||||cos做与的数量积或内积,记作·即··a b a b a b a b→→→→→→=→→()||||cosθ规定:零向量与任一向量的数量积为零。

()数量积的几何意义:数量积·等于的模与在的方2a b a a b a→→→→→→||向上的投影的乘积||cosb→θ2. 运算法则:()··,··1000a b b a a a→→=→→→→=→→=()···2()()()λλλa b a b a b→→=→→=→→()···3()a b c a c b c→+→→=→→+→→()设,,,,则··411221212a x y b x y a b x x y y →=→=→→=+()()3. 重要性质()设是单位向量,,则···1e a e e a a e a →=<→→>→→=→→=→θθ||cos ()⊥··2001212a b a b x x y y →→⇔→→=⇔+=()∥··或··3a b a b a b a b a b →→⇔→→=→→→→=-→→||||||||a a a a a a a x y →→=→→=→→=→=+·即·||||2222()··4cos ||||θ=→→→→a ba b()··5||||||a b a b →→≤→→(四)平移设F 是坐标平面内的一个图形,将F 上所有点按照同一方向,移动同样长度,得到图形F',这一过程叫做图形的平移。

设,,,,,P x y P x y PP h k ()'('')'()→= 由OP OP PP ''→=→+→⇒=+⇒=+=+⎧⎨⎩('')()()''x y x y h k x x hy y k ,,,—平移公式【典型例题】例1. 若非零向量,满足,则与所成角的大小为αβαβαβαβ→→→+→=→-→→→||||___________。

解析:由可画出几何图形,如图:||||αβαβ→+→=→-→||||αβαβ→+→→→-→表示平行四边形的对角线的长度,表该平行四边OACB OC 形,另一条对角线的长度BA →由已知||||OC BA →=→得平行四边形OACB 为矩形,所以与所成的角为°αβ→→90注:本题考查向量的概念,几何意义,向量的几何运算,等基本知识例2. 化简以下各式:①;AB BC CA →+→+→ ②;AB AC BD CD →-→+→-→ ③;OA OD AD →-→+→④NQ QP MN MP →+→+→-→结果为零向量的个数是() A. 1 B. 2C. 3D. 4解析:对于①AB BC CA AC CA →+→+→=→+→=→0 ②AB AC BD CD AB BD AC CD →-→+→-→=→+→-→+→()()=→-→=→AD AD 0③;OA OD AD DA AD →-→+→=→+→=→0或OA OD AD OA AD OD OD OD →-→+→=→+→-→=→-→=→()0④NQ QP MN MP →+→+→-→=→+→+→()NP PM MN=→+→=→NM MN 0答案:D例3. 已知是△的重心,求证:G ABC GA GB GC →+→+→=→分析:由三角形重心的性质,GA =2GD ,GB =2GE ,GC =2GF ,和向量加法的平行四边形法则,不难证明。

相关文档
最新文档