热工基础课件及答案讲解
热工基础 课后题答案
二零一七年,秋第一章 热力学第一定律1-1用水银压力计测量容器中的压力,在水银柱上加一段水,若水柱高1020mm,水银柱高900mm ,当时大气压力计上的度数为b 755mmHg p =.求容器中气体的压力。
解:查表可知:21mmH O=9.80665Pa 1mmHg=133.3224Pa 由题中条件可知2H O Hg b1020 mm 9.80665 Pa 900mm 133.3224Pa 755mm 133.3224Pa 230.651 KPa 0.231MPap p p p =++=⨯+⨯+⨯=≈容器 即容器中气体的压力为0.231MPa.1-2容器中的真空度为600mmHg v p =,气压计上的高度是b 755mmHg p =,求容器中气体的绝对压力(用Pa 表示)。
如果容器中的绝对压力不变,而气压计上高度为b 770mmHg p =,求此时真空表的度数(以mmHg 表示).解:因为600mmHg=600mm 133.3224Pa=79993.4Pa v p =⨯ b 755mmHg=755mm 133.3224Pa=100658.4Pa p =⨯容器中气体的绝对压力为b v 100658.479993.420665Pa p p p =-=-=若以mmHg 表示真空度,则2066520665Pa=mmHg 155mmHg 133.3224p ==则当气压计高度为b 770mmHg p =时,真空表的读数为770mmHg 155mmHg 615mmHg vb p p p '=-=-=1-3用斜管压力计测量锅炉烟道气的真空度,管子倾斜角30α=︒,压力计使用密度30.8g/cm ρ=的煤油,斜管中液柱长200mm l =,当地大气压力b 745mmHg p =.求烟气的真空度(mmHg )及绝对压力。
解:压力计斜管中煤油产生的压力为33sin 0.810kg /m 9.80.2m sin30=784Pa j p gl ρα==⨯⨯⨯⨯︒当地大气压为b 745mmHg=745mm 133.3224Pa/mm=99325.2Pa p =⨯则烟气的绝对压力为b j 99325.2Pa 784Pa 98541.2Pa p p p =-=-=若压力计斜管中煤油产生的压力用mmH 2O 表示,则烟气的真空度为22784=784Pa=mmH O=79.95mmH O 9.80665j p1-6气体初态为3110.3MPa, 0.2m p V ==,若在等压条件下缓慢可逆地膨胀到320.8m V =,求气体膨胀所做的功。
热工基础(张学学)第一章.ppt
溶解、燃烧、电加热等。
可逆过程是一个理想过程。可逆过程的条件:准平衡过 程+无耗散效应。
17
1-5 功量与热量
1. 功量与示功图
(1) 膨胀功
工质在体积膨胀时所作 的功称为膨胀功。符号为W,
单位为J 或kJ。
对于微元可逆过程:
W pAdx pdV
功是过程量而不是状态量。
因此,微元功只能用δw表示, 而不能用dw表示。
19
2. 热量、熵与示热图
(1)热量
系统与外界之间依靠温差传递的能量称为热量,符号为 Q ,单位为J 或kJ。
单位质量工质所传递的热量用 q 表示,单位为 J/kg 或
kJ/kg。
热量正负的规定:系统吸热时q > 0;系统放热时q < 0 。 热量和功量都是系统与外界在相互作用的过程中所传递 的能量,都是过程量而不是状态量。
单位面积上所受到的垂直作用力(即压强)。单位为Pa (帕),1 Pa =1 N/m2 。
压力测量:
绝对压力 p;
大气压力 pb; 表压力 pe; 真空度 pv。
只有绝对压力 p 才是状态参数。 当绝对压力 p 高于大气压力 pb 时,有:p = pb + pe 当绝对压力 p 低于大气压力 pb 时,有:p = pb - pv
物质交换的系统。系统的容 积始终保持不变,也称为控 制容积系统。 (3)绝热系统:与外界没 有热量交换的系统。
(4)孤立系统:与外界既 无能量(功量、热量)交换 又无物质交换的系统。
进口
出口
4
1-2 平衡状态及基本状态参数
1. 平衡状态
(1)状态(热力状态)
热工基础课件及答案讲解(PPT文档)
33
观察下面的过程,看热能是如何转换为功的
气缸
活塞
飞轮
热 源
工质、机器和热源组成的系统
假设过程是可逆的。 问题:过程可逆的条件是什么?
34
气缸
可逆过程模拟
活塞
飞轮
热 源
左止点
p
1
v
35
气缸
活塞
续4飞1 轮
热 源
左止点
p
1
2
v
36
气缸
热 源
左止点
p
1
续4飞1 轮
第二章 热力学第一定律
教学目标:使学生深入理解并熟练掌握热力学第一定律 的内容和实质,能将工程实际问题建立热力学模型。 知识点:理解和掌握热力学第一定律基本表达式——基 本能量方程;理解和掌握闭口系、开口系和稳定流动能 量方程及其常用的简化形式;掌握能量方程的内在联系 与共性,热变功的实质。 能力点:培养学生正确、灵活运用基本能量方程,对工 程实际中的有关问题进行简化和建立模型的能力。培养 学生结合系统的特点推导出闭口系、开口系及稳定流动 过程能量方程的逻辑思维能力和演绎思维能力。 1
?进入系统的能量qdvpde???2??111cvdeiwdvpde?22?离开系统的能量?控制容积系统储存能量的增加量57cvidewdvpdeqdvpde??????222111??icvwdvpdedvpdedeq????????111222进入系统的能量离开系统的能量系统储存能量的增加量pvuhgzcuemvvmeef???????212?58iffcvwmgzchmgzchdeq????????????????????????????112112222222此式为开口系能量方程的一般表达式????????????????2f2f?进出系统的工质有若干股则方程为
热工基础(第二版)-张学学(1)绪论课件
2022/10/23
15
0-2 热工基础的研究内容
热工基础
(热工理论基础)
工程热力学篇 传热学篇
主要研究内容:
热工基础主要研究热能利用的基 本规律、提高热能利用率的方法以及 热能利用过程及自然界所有热现象中 热量传递的基本规律。
2022/10/23
17
1.工程热力学的研究内容与研究方法
(1)研究内容
我国的CO2排放量仅次于美国,居世界第二,占 世界总排放量的13.6%。
据世界银行报导,我国城市空气污染对人体健 康和生产造成的损失估计每年200亿美元;酸雨使农 作物减产每年损失达50亿美元。
2022/10/23
12
3. 能量的转换与利用
能量的利用过程,实质上是能量的传递与转换过程。
燃料电池
机械能
高温热源 吸热Q1 作功W
热机 机械能
放热Q2
水泵
冷却水
低温热源
如何提高热机的热能利用率(热效率)是
工程热力学的主要研究内容之一 。
2022/10/23
19
2.传热学的研究内容与研究方法
(1)研究内容
传热学以热力学第一、第二定律为 基础,研究热量传递的规律。
所谓热量,是指在温差的作用下传递的热能的 数量。由于在人们的日常生活和生产实践中温差 几乎无处不在,所以热量传递是普遍存在的物理 现象。
工程热力学主要研究热能和机械能 之间相互转换的规律及提高能量转换经 济性的途径和技术措施 。
(2)研究方法
工程热力学采用经典热力学的宏观
(不涉及微观,整体对待)研究方法,
还普遍采用抽象、概括、理想化和简化
处理方法。
2022/10/23
18
热工基础(正式)全
正向运动(膨胀)时,吸 收热源的热量,所作膨胀功除 去用于排斥大气外,全部储存 在飞轮的动能中。
若无摩擦等耗散效应
反向运动(压缩)时,利用飞 轮的动能来推动活塞逆行,压缩工 质所消耗的功恰与膨胀功相等。
同时压缩过程中质向热源所 排热量也恰与膨胀时所吸收的热 量相等。
如果系统经历了一个过程后,系统可沿原过程的路线反 向进行,回复到原状态,不在外界留下任何影响,则该过 程称为可逆过程。
热力学第零定律
如果两个热力学系统中的每一个都与第三个热力学系 统处于热平衡(温度相同),则它们彼此也必定处于热平衡。 这一结论称做《热力学第零定律》。
热力学第零定律表明,一切互为热平衡的系统具有一 个数值上相等的共同的宏观性质──温度。温度计测定物体 温度正是依据这个原理。
热力学第零定律的重要性在于它给出了温度的定义和 温度的测量方法。它为建立温度概念提供了实验基础。
理想气体实际并不存在, 在现实物质中,即使是绝热可 逆过程,系统的熵也在增加, 不过增加的少。
热力学第三定律发现者 德国物理化学家能斯特
三、理想气体的状态方程
kg K
pV mRgT
Pa m3
pv RgT pV nRT p0V0 RT0
1kg n mol 1mol标准状态
气体常数:J/(kg.K) R=mRg=8.3145J/(mol.K)
(2) 特别是在下列技术领域存在传热问题
a 航空航天:高温叶片冷却;空间飞行器重返大气 层冷却;超高音速飞行器(Ma=10)冷却;
b 微电子: 电子芯片冷却 c 生物医学:肿瘤高温热疗;生物芯片;组织与器
官的冷冻保存 d 军 事:飞机、坦克;激光武器;弹药贮存 e 新 能 源:太阳能;燃料电池
热工基础复习总结PPT课件
第6页/共16页
四、理想气体的热力过程
1. 理想气体 4 种基本热力过程及多变过程的特点,过 程中状态参数及功与热量的计算,注意过程都是 可逆的。
2. 能按已知条件在 p-v及T-s 图上正确画出过程线, 注意过程线的起点应在 4 条基本过程线的交点上。
五、喷管、绝热节流 1. 喷管中气体流速和流量的计算、出口处压力 p2 与背压的关系、临界压力比的定义 、喷管的选型。
4)掌握热力学能、总能、焓、膨胀功、轴功、技术 功、流动功等概念以及膨胀功、技术功在 p- 图上 的图示。
第4页/共16页
3. 热力学第二定律的实质和经典表述。 1)理解热力学第二定律的实质和 2 种经典表述; 2)循环、卡诺循环(正、逆循环)的组成、经济性
指标, 卡诺定理的指导意义。
4. 熵的定义式,过程中引起熵变的原因,热熵流和熵
第7页/共16页
c 2(h1 h2 )
2. 绝热节流现象及其过程特点。
m A c
六、气体动力循环、致冷循环
1. 活塞式压气机的工作原理、三种压缩过程的分析及功和热量的计算;容积效率、 多级压缩的目的、最佳压力比及其确定原则、多级压缩的优缺点和参数特征。
2. 理解内燃机循环、燃气轮机循环和制冷循环的基 本工作原理;
注意定性温度、定型尺寸(特征尺寸)、特征速度 的选择和修正系数的使用。
三、辐射换热 1. 热辐射的基本概念: 包括热辐射的特点、 黑体、白体、透明体、灰体、辐射力、 有效辐个定律的内容及应用。 3. 角系数的定义、性质
角系数是纯几何参数,与表面性质无关,角系 数满足互换性、完整性和分解性。 4. 空间热阻、表面热阻、热阻网络图。 5. 两黑表面及两灰表面间辐射换热的计算。 6. 遮热板的原理及应用。
热工基础课件
根据受力平衡有:
pA p0 A ghA 0
化简得:
p p0 gh
h—静止流体中任意点在自由液面下的深度
这就是重力作用下的液体平衡方程,通常 称为流体静力学基本方程。——表达式之一
适用范围:重力作用下的平衡状态均质不可 压缩连通的流体。
热工基础 高职高专 ppt 高等职业教育 课件
若在静止液体中任取两 点 1 和 2 ,点 1 和点 2 压强各为 p1 和 p2, 位置坐标各为 z1 和 z2 , 则有:
p1 p0 g ( z0 z1 ) p2 p0 g ( z0 z2 )
以上两式同除以g,整理后得
p1 p2 z2 两式联立得 z1 g g
a
g
热工基础 高职高专 ppt 高等职业教育 课件
3.常见的等压面
• 重力作用下同一静止液体中的水平面。重
力场中等压面判别条件:静止的连通的均 质的水平面。 • 气液分界面,即液体的自由表面,各点压 强均等于分界面上气体的压强,如处于大 气中的液体表面均为一个大气压。 • 互不掺混的两种液体的分界面,如水和水 银等。
在实验室研究中,由于压强比较小,或便于计
量和表达,也可用液柱高度作为压强的单位。
也有一些用标准大气压或工程大气压作为压强
单位的情况,计算时需要换算成标准单位。
热工基础 高职高专 ppt 高等职业教育 课件
计示压强
讨论思考题2-4
讨论思考题2-5
热工基础 高职高专 ppt 高等职业教育 课件
第三节 等压面及其性质
M点的绝对压强和相对压强为
1-2为等压面,则p1=p2
p pa 2 gh2 1 gh1
Pe= ρ2gh2- ρ1gh1
热工基础课后答案超详细版(张学学)
第一章思考题1.平衡状态与稳定状态有何区别?热力学中为什幺要引入平衡态的概念?答:平衡状态是在不受外界影响的条件下,系统的状态参数不随时间而变化的状态。
而稳定状态则是不论有无外界影响,系统的状态参数不随时间而变化的状态。
可见平衡必稳定,而稳定未必平衡。
热力学中引入平衡态的概念,是为了能对系统的宏观性质用状态参数来进行描述。
2.表压力或真空度能否作为状态参数进行热力计算?若工质的压力不变,问测量其压力的压力表或真空计的读数是否可能变化?答:不能,因为表压力或真空度只是一个相对压力。
若工质的压力不变,测量其压力的压力表或真空计的读数可能变化,因为测量所处的环境压力可能发生变化。
3.当真空表指示数值愈大时,表明被测对象的实际压力愈大还是愈小?答:真空表指示数值愈大时,表明被测对象的实际压力愈小。
4. 准平衡过程与可逆过程有何区别?答:无耗散的准平衡过程才是可逆过程,所以可逆过程一定是准平衡过程,而准平衡过程不一定是可逆过程。
5. 不可逆过程是无法回复到初态的过程,这种说法是否正确?答:不正确。
不可逆过程是指不论用任何曲折复杂的方法都不能在外界不遗留任何变化的情况下使系统回复到初态,并不是不能回复到初态。
6. 没有盛满水的热水瓶,其瓶塞有时被自动顶开,有时被自动吸紧,这是什幺原因?答:水温较高时,水对热水瓶中的空气进行加热,空气压力升高,大于环境压力,瓶塞被自动顶开。
而水温较低时,热水瓶中的空气受冷,压力降低,小于环境压力,瓶塞被自动吸紧。
7. 用U形管压力表测定工质的压力时,压力表液柱直径的大小对读数有无影响?答:严格说来,是有影响的,因为U型管越粗,就有越多的被测工质进入U型管中,这部分工质越多,它对读数的准确性影响越大。
习题1-1 解:kPa bar p b 100.61.00610133.37555==⨯⨯=-1. kPa p p p g b 6.137********.100=+=+=2. kPa bar p p p b g 4.149494.1006.15.2==-=-=3. kPa mmHg p p p v b 3315.755700755==-=-=4. kPa bar p p p b v 6.50506.05.0006.1==-==-1-2 图1-8表示常用的斜管式微压计的工作原理。
热工基础课后答案超详细版(张学学)
p1 p真空室 pa 2 360 362kPa
p2 p1 pb 362 170 192kPa
pc pb p真空室 192 2 190kPa
F
( pb
p真空室 ) A
745 133.3
1 4
π 0.45 2
15.8kN
1-4 解:
p pb p水柱 +p汞柱=760+300 9.81 /133.3+800=1582mmHg 2.11bar
ΔU ab U b U a Q W 100 40 60kJ
所以, a-d-b 过程中工质与外界交换的热量为:
Qa d b ΔU ab W 60 20 80kJ
工质沿曲线从 b 返回初态 a 时,工质与外界交换的热量为:
Qb a 给定的 a 点内能值,可知 b 点的内能值为 60kJ,所以有 :
气体可以看作是理想气体理想气体的内能是温度的单值函数选取绝热气缸内的两部分气体共同作为热力学系统在过程中由于气缸绝热系统和外界没有热量交换同时气缸是刚性的系统对外作功为零故过程中系统的内能不变而系统30所以平衡时系统的温度仍为30
第一章 思考题 1. 平衡状态与稳定状态有何区别?热力学中为什幺要引入平衡态的概念? 答:平衡状态是在不受外界影响的条件下, 系统的状态参数不随时间而变化的状态。 而稳定 状态则是不论有无外界影响, 系统的状态参数不随时间而变化的状态。 可见平衡必稳定, 而 稳定未必平衡。 热力学中引入平衡态的概念, 是为了能对系统的宏观性质用状态参数来进行 描述。
1-9 解:由于假设气球的初始体积为零, 则气球在充气过程中, 内外压力始终保持相等, 恒等于大气压力 0.09MPa,所以气体对外所作的功为:
W p V 0.09 106 2 1.8 105 J
热工基础期末复习精品PPT课件
14
六、水定压加热汽化过程
1、水定压加热汽化过程
预热
汽化
过热
t < ts
t = ts
t = ts
t = ts
t >ts
15
第三章 理想气体混合物和湿空气
一、混合气体的分压力定律和分容积定律
质量分数 体积分数 摩尔分数 各种分数之间的换算
二、混合气体的比热容、热力学能、焓
1.比热容
c混 wici c混 xici Cm混xiCmi
们之间的比值是一定的。 热可以变为功,功也可以变为热;一定量的热消失时必定产生相 应量的功;消耗一定量的功时,必出现与之相应量的热。 应用范围:系统、工质、过程
第一定律第一解析式 QUW δQdUδW quw δqduδw 热 功的基本表达式
9
六、稳定流动能量方程式
流入系统的能量 – 流出系统的能量 = 系统内部储能增量: ΔECV 考虑到稳流特征: ΔECV=0 m1=m2=m; 及h=u+pv
3、 cp- cV
cpcVdh d T dudud p T vduduRdgTTduRg
cp cV Rg
迈耶公式
12
三、 理想气体热力学能和焓 仅是温度的函数 1、 因理想气体分子间无作用力
u u k u T d u c V d T
2、 hupvuRgT
hhT dhcpdT
3、利用气体热力性质表计算热量
Qmh2h1mc2f22c2f21mgz2z1W S
(A)
qh2h11 2cf22cf21 gz2z1 ws
(B)
1)改写式(B)为式(C)
q u w s p 2 v 2 p 1 v 1 1 2 c f 2 2 c f 2 1 g z 2 z 1 (C)
热工基础课后答案超详细版(张学学)
第一章思考题1.平衡状态与稳定状态有何区别?热力学中为什幺要引入平衡态的概念?答:平衡状态是在不受外界影响的条件下,系统的状态参数不随时间而变化的状态。
而稳定状态则是不论有无外界影响,系统的状态参数不随时间而变化的状态。
可见平衡必稳定,而稳定未必平衡。
热力学中引入平衡态的概念,是为了能对系统的宏观性质用状态参数来进行描述。
2.表压力或真空度能否作为状态参数进行热力计算?若工质的压力不变,问测量其压力的压力表或真空计的读数是否可能变化?答:不能,因为表压力或真空度只是一个相对压力。
若工质的压力不变,测量其压力的压力表或真空计的读数可能变化,因为测量所处的环境压力可能发生变化。
3.当真空表指示数值愈大时,表明被测对象的实际压力愈大还是愈小?答:真空表指示数值愈大时,表明被测对象的实际压力愈小。
4. 准平衡过程与可逆过程有何区别?答:无耗散的准平衡过程才是可逆过程,所以可逆过程一定是准平衡过程,而准平衡过程不一定是可逆过程。
5. 不可逆过程是无法回复到初态的过程,这种说法是否正确?答:不正确。
不可逆过程是指不论用任何曲折复杂的方法都不能在外界不遗留任何变化的情况下使系统回复到初态,并不是不能回复到初态。
6. 没有盛满水的热水瓶,其瓶塞有时被自动顶开,有时被自动吸紧,这是什幺原因?答:水温较高时,水对热水瓶中的空气进行加热,空气压力升高,大于环境压力,瓶塞被自动顶开。
而水温较低时,热水瓶中的空气受冷,压力降低,小于环境压力,瓶塞被自动吸紧。
7. 用U形管压力表测定工质的压力时,压力表液柱直径的大小对读数有无影响?答:严格说来,是有影响的,因为U型管越粗,就有越多的被测工质进入U型管中,这部分工质越多,它对读数的准确性影响越大。
习题1-1 解:kPa bar p b 100.61.00610133.37555==⨯⨯=-1. kPa p p p g b 6.137********.100=+=+=2. kPa bar p p p b g 4.149494.1006.15.2==-=-=3. kPa mmHg p p p v b 3315.755700755==-=-=4. kPa bar p p p b v 6.50506.05.0006.1==-==-1-2 图1-8表示常用的斜管式微压计的工作原理。
热工基础课后答案解析超详细版(张学学]
第一章思考题1.平衡状态与稳定状态有何区别?热力学中为什幺要引入平衡态的概念?答:平衡状态是在不受外界影响的条件下,系统的状态参数不随时间而变化的状态。
而稳定状态则是不论有无外界影响,系统的状态参数不随时间而变化的状态。
可见平衡必稳定,而稳定未必平衡。
热力学中引入平衡态的概念,是为了能对系统的宏观性质用状态参数来进行描述。
2.表压力或真空度能否作为状态参数进行热力计算?若工质的压力不变,问测量其压力的压力表或真空计的读数是否可能变化?答:不能,因为表压力或真空度只是一个相对压力。
若工质的压力不变,测量其压力的压力表或真空计的读数可能变化,因为测量所处的环境压力可能发生变化。
3.当真空表指示数值愈大时,表明被测对象的实际压力愈大还是愈小?答:真空表指示数值愈大时,表明被测对象的实际压力愈小。
4. 准平衡过程与可逆过程有何区别?答:无耗散的准平衡过程才是可逆过程,所以可逆过程一定是准平衡过程,而准平衡过程不一定是可逆过程。
5. 不可逆过程是无法回复到初态的过程,这种说法是否正确?答:不正确。
不可逆过程是指不论用任何曲折复杂的方法都不能在外界不遗留任何变化的情况下使系统回复到初态,并不是不能回复到初态。
6. 没有盛满水的热水瓶,其瓶塞有时被自动顶开,有时被自动吸紧,这是什幺原因?答:水温较高时,水对热水瓶中的空气进行加热,空气压力升高,大于环境压力,瓶塞被自动顶开。
而水温较低时,热水瓶中的空气受冷,压力降低,小于环境压力,瓶塞被自动吸紧。
7. 用U形管压力表测定工质的压力时,压力表液柱直径的大小对读数有无影响?答:严格说来,是有影响的,因为U型管越粗,就有越多的被测工质进入U型管中,这部分工质越多,它对读数的准确性影响越大。
习题1-1 解:kPa bar p b 100.61.00610133.37555==⨯⨯=-1. kPa p p p g b 6.137********.100=+=+=2. kPa bar p p p b g 4.149494.1006.15.2==-=-=3. kPa mmHg p p p v b 3315.755700755==-=-=4. kPa bar p p p b v 6.50506.05.0006.1==-==-1-2 图1-8表示常用的斜管式微压计的工作原理。
热工基础课后答案超详细版(张学学)
第一章思考题1.平衡状态与稳定状态有何区别?热力学中为什幺要引入平衡态的概念?答:平衡状态是在不受外界影响的条件下,系统的状态参数不随时间而变化的状态。
而稳定状态则是不论有无外界影响,系统的状态参数不随时间而变化的状态。
可见平衡必稳定,而稳定未必平衡。
热力学中引入平衡态的概念,是为了能对系统的宏观性质用状态参数来进行描述。
2.表压力或真空度能否作为状态参数进行热力计算?若工质的压力不变,问测量其压力的压力表或真空计的读数是否可能变化?答:不能,因为表压力或真空度只是一个相对压力。
若工质的压力不变,测量其压力的压力表或真空计的读数可能变化,因为测量所处的环境压力可能发生变化。
3.当真空表指示数值愈大时,表明被测对象的实际压力愈大还是愈小?答:真空表指示数值愈大时,表明被测对象的实际压力愈小。
4. 准平衡过程与可逆过程有何区别?答:无耗散的准平衡过程才是可逆过程,所以可逆过程一定是准平衡过程,而准平衡过程不一定是可逆过程。
5. 不可逆过程是无法回复到初态的过程,这种说法是否正确?答:不正确。
不可逆过程是指不论用任何曲折复杂的方法都不能在外界不遗留任何变化的情况下使系统回复到初态,并不是不能回复到初态。
6. 没有盛满水的热水瓶,其瓶塞有时被自动顶开,有时被自动吸紧,这是什幺原因?答:水温较高时,水对热水瓶中的空气进行加热,空气压力升高,大于环境压力,瓶塞被自动顶开。
而水温较低时,热水瓶中的空气受冷,压力降低,小于环境压力,瓶塞被自动吸紧。
7. 用U形管压力表测定工质的压力时,压力表液柱直径的大小对读数有无影响?答:严格说来,是有影响的,因为U型管越粗,就有越多的被测工质进入U型管中,这部分工质越多,它对读数的准确性影响越大。
习题1-1 解:kPa bar p b 100.61.00610133.37555==⨯⨯=-1. kPa p p p g b 6.137********.100=+=+=2. kPa bar p p p b g 4.149494.1006.15.2==-=-=3. kPa mmHg p p p v b 3315.755700755==-=-=4. kPa bar p p p b v 6.50506.05.0006.1==-==-1-2 图1-8表示常用的斜管式微压计的工作原理。
热工基础-课后题答案
二零一七年,秋第一章热力学第一定律1-1用水银压力计测量容器中的压力,在水银柱上加一段水,若水柱高1020mm ,水银柱高900mm ,当时大气压力计上的度数为b 755mmHg p =。
求容器中气体的压力。
解:查表可知:21mmH O=9.80665Pa 1mmHg=133.3224Pa 由题中条件可知2H O Hg b1020 mm 9.80665 Pa 900mm 133.3224Pa 755mm 133.3224Pa 230.651 KPa 0.231MPap p p p =++=⨯+⨯+⨯=≈容器 即容器中气体的压力为0.231MPa 。
1-2容器中的真空度为600mmHg v p =,气压计上的高度是b 755mmHg p =,求容器中气体的绝对压力(用Pa 表示)。
如果容器中的绝对压力不变,而气压计上高度为b 770mmHg p =,求此时真空表的度数(以mmHg 表示).解:因为600mmHg=600mm 133.3224Pa=79993.4Pa v p =⨯ b 755mmHg=755mm 133.3224Pa=100658.4Pa p =⨯容器中气体的绝对压力为b v 100658.479993.420665Pa p p p =-=-=若以mmHg 表示真空度,则2066520665Pa=mmHg 155mmHg 133.3224p ==则当气压计高度为b 770mmHg p =时,真空表的读数为770mmHg 155mmHg 615mmHg vb p p p '=-=-=1-3用斜管压力计测量锅炉烟道气的真空度,管子倾斜角30α=︒,压力计使用密度30.8g/cm ρ=的煤油,斜管中液柱长200mm l =,当地大气压力b 745mmHg p =。
求烟气的真空度(mmHg )及绝对压力。
解:压力计斜管中煤油产生的压力为33sin 0.810kg /m 9.80.2m sin30=784Pa j p gl ρα==⨯⨯⨯⨯︒当地大气压为b 745mmHg=745mm 133.3224Pa/mm=99325.2Pa p =⨯则烟气的绝对压力为b j 99325.2Pa 784Pa 98541.2Pa p p p =-=-=若压力计斜管中煤油产生的压力用mmH 2O 表示,则烟气的真空度为22784=784Pa=mmH O=79.95mmH O 9.80665j p1-6气体初态为3110.3MPa, 0.2m p V ==,若在等压条件下缓慢可逆地膨胀到320.8m V =,求气体膨胀所做的功。
热工基础优秀课件
3.2.1静止流体所受的力
• 静止流体所受的外力有质量力和压应力两种,流体垂直 作用于单位面积上的力,称为流体的静压强,习惯上 又称为压力。
(1)压力单位 在国际单位制(SI制)中,压力的单位为N/m2,称
为帕斯卡(Pa),帕斯卡与其它压力单位之间的换算 关系为: 1atm(标准大气压)=1.033at(工程大气压)
应根据被测流体的种类及压差的大小选择指示液。
3.2.3 静力学原理在压力和压力差测量 上的应用
思考:若U形压差计安装在倾斜管路中,此时读
数 R反映了什么?
p1p2
(0 )gR(z2 z1)g
p1 z1
p2 z2
R A A’
3.2.3 静力学原理在压力和压力差测量
上的应用
• 2.压差计
(2)双液柱压差计
gz p常数
• 对于静止流体中任意两点1和2,则有:
p 2p 1g (z1z2)
两边同除以g
p2
g
p1
g
z1
z2
——静力学基本方程
3.2.2 流体静力学基本方程
• 讨论
(1)适用于重力场中静止、连续的同种不可压缩性流体;
(2)在静止的、连续的同种流体内,处于同一水平面上各点的压力 处处相等。压力相等的面称为等压面;
(3)压力具有传递性:液面上方压力变化时,液体内部各点的压力 也将发生相应的变化。即压力可传递,这就是帕斯卡定理;
(4)若记, 称为广义压力,代表单位体积静止流体的总势能(即 静压能p与位能gz之和),静止流体中各处的总势能均相等。因
此,位置越高的流体,其位能越大,而静压能则越小。
3.2.3 静力学原理在压力和压力差测量 上的应用
类似地,与x轴、y轴相垂直的面(参见图1-2)上受到 的应力分别为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
观察下面的过程,看热能是如何转换为功的
气缸 活塞 飞轮
热 源
工质、机器和热源组成的系统
假设过程是可逆的。
问题:过程可逆的条件是什么?
34
可逆过程模拟
气缸
活塞
飞轮
热 源
左止点
p
1
v
35
气缸
活塞
续41
飞轮
热 源
左止点
p
1
2
v
36
气缸
续41
飞轮
热 源
左止点
p
1
2
v
37
气缸
续41
飞轮
热 源
左止点
p
1
2
v
38
气缸
续41
飞轮
热 源
左止点
p
1
2
v
39
气缸
续41
飞轮
热 源
左止点
p
1
2
v
40
气缸
续41
飞轮
热 源
左止点
p
1
v
41
气缸
续41
飞轮
热 源
左止点
p
1
v
42
气缸
续41
飞轮
热 源
左止点
p
1
v
43
气缸
续41
飞轮
热 源
左止点 右止点
p
1
2
v
44
气缸
续41
飞轮
热 源
左止点 右止点
Pk
x2 x1
0 29
l
热力系
1 2 W Wb Wk pb A l k l (5) 2
而又: 所以:
k l 0.2MP 4 104 m2 80N a
(6)
l 0.80 cm
W 0.64 J
根据气体状态方程:
p1V1 mRg T1 p 2 V2 mRg T2
23
解:取缸内气体为热力系—闭口系。 分析:突然取走100kg负载, 气体失去平衡,振荡后最终建 立新的平衡。虽不计摩擦,但 由于非准静态,故过程不可逆, 但仍可应用第一定律解析式。 首先计算状态1及2的参数:
F1 195 p1 pb 771133.32 98100 2.941 105 Pa A 100 6 3 2 V1 A h 100 10 10 10 m F2 5 p2 pb 1.960 10 Pa A T2 T1
L 5cm
25
据 Q U W 由于m2=m1
W ? pdV
1 2
U U2 U1 m2u2 mu1 1
且 T2=T1
ukJ/kg 0.72 T K
2
U 0
不可逆 W pdV W ? 1
外力 Fe p2 A
向上移动了5cm,因此体系对外力作功
Qnet Wnet
16
闭系能量方程总结:
Q U W
Q dU W
m m
kg工质经过有限过程 kg工质经过微元过程
q u w q du w
1
1
kg工质经过有限过程
kg工质经过微元过程
注意上述方程的使用前提:系统无宏观动能和宏观势能变化!
以上各能量方程式适用于闭口系各种过 程(可逆或不可逆)及各种工质(理想 气体、实际气体或液体)
27
解: 取汽缸内的空气为热力系,这是一个闭口系。
Pb
Q E W
Pk
热力系
l
(1) (2) (3) (4)
28
根据:
Hale Waihona Puke E U Ek E p
根据题意: 所以:
Ek 0,
E p 0
E U mu
W pdV
1
2
K p pb x A
宏观动能:
1 2 Ek mc f 2
重力位能:
E p mgz
9
系统的储存能
三、系统的总储存能(简称总能)
热力学能 宏观动能
U
Ek
即
宏观位能 系统的储存能
EP
E
E U Ek EP
10
或
1 2 E U mc f mgz 2
1kg工质的总能为比总能:
1 2 e u c f gz 2
Q U W
若闭口系经过一个微元过程,则能量方程为微分 形式:
Q dU W
15
对于1kg工质,能量方程式为:
有限过程: 微元过程:
q u w
q du w
对于循环:
Q dU W
dU 0
Q W
p1V1 mRg T1 T1 p 2 V2 mRg T2 T2
P2 V2 0.3 106 (20 4 0.8) 106 T2 T1 (273 20) P1V1 0.1106 20106 1019 64K .
30
所以:
E U mu m 0.707 T
第二章 热力学第一定律
教学目标:使学生深入理解并熟练掌握热力学第一定律 的内容和实质,能将工程实际问题建立热力学模型。 知识点:理解和掌握热力学第一定律基本表达式——基 本能量方程;理解和掌握闭口系、开口系和稳定流动能 量方程及其常用的简化形式;掌握能量方程的内在联系 与共性,热变功的实质。 能力点:培养学生正确、灵活运用基本能量方程,对工 程实际中的有关问题进行简化和建立模型的能力。培养 学生结合系统的特点推导出闭口系、开口系及稳定流动 1 过程能量方程的逻辑思维能力和演绎思维能力。
13
一、闭口系统的能量方程
闭口系统的能量方程是热力学第一定律在 控制质量系统中的具体应用,是热力学第一定 律的基本能量方程式。
设闭系中工质从外界吸热Q后,从状态1变 化到状态2,同时对外作功W,则:
Q W E2 E1 E
Q E W
此式就是闭口系的能量方程式。
14
对于控制质量闭口系来说,常见的情况在状态变 化过程中,系统的宏观动能与位能的变化为零,或 可以忽略不计,因此更见的闭口系的能量方程是:
抽去隔板,求 U
解:取气体为热力系 —闭口系?开口系?
Q U W Q 0
W
?
U 0
即U1 U 2
强调:功是通过边界传递的能量。
22
例题2-2 如图,气缸内充以空气,活塞及负载195kg, 缸壁充分导热,取走100kg负载,待平衡后, 求: (1)活塞上升的高度 L (2)气体在过程中作的功,已知 ukJ/kg 0.72T K 且满足状态方程PV=mRgT, Rg=287J/(kg· ) K)
dV Adx
K K 2 W pb x Adx Apb x 2 x1 x 2 x12 x1 A 2 K 2 pb V2 V1 x 2 x12 2
x2
W斥
W弹 x
W Wb Wk 1 2P pb A l k l b 2
2
2-1 热力学第一定律的实质
能量守恒与转换定律指出:一切物质都具有能
量。能量既不可能创造,也不能消灭,它只能在一
定的条件下从一种形式转变为另一种形式。而在转 换中,能量的总量恒定不变。
第一定律的实质:能量守恒与转换定律在热现象 中的应用。
3
热力学第一定律的表述: 热是能的一种,机 械能变热能,或热能变机械能的时候,他们之 间的比值是一定的。 或:热可以变为功,功也可以变为热;一定量 的热消失时必定产生相应量的功;消耗一定量 的功时,必出现与之相应量的热。 热
5
下面的热力学系统具有哪些方面的能量?
cf
外部动能 热力系
内部能量
z 外部位能
6
一、热力学能(内能)
Uch 平移动能 Unu UkE 转动动能 f 1 T Uth 振动动能 U U (T , v) UpE— f 2 T , v Uch ——化学能 Uth ——内热能 UpE ——内位能 Unu ——原子能 UkE ——内动能
从已知条件逐步推向目标
从目标反过来缺什么补什么 4)不可逆过程的功可尝试从外部参数着手
32
2-3 能量的传递与转化 一、作功与传热
作功和传热是能量传递的两种方式,因此功 量与热量都是系统与外界所传递的能量,其 值并不由系统的状态确定,而是与传递时所 经历的具体过程有关。所以,功量和热量不 是系统的状态参数,而是与过程特征有关的 过程量,称为迁移能。 问题: 能量是否还有其它的传递方式?
V2 A (L L) (L L) 100 10 (L L) 10 m
6
4
3 24
过程中质量m不变
p1V1 p2V2 m1 m2 RgT1 RgT2
p1 2.941 V2 V1 103 L L 104 p2 1.960
W Fe L p2 A L 1.960 105 100 104 5 102 98J
注意:活塞位能增加
E p mgh 95 9.81 5 10 46.6J
2
W E 26? p
• 例题2-3 如图所示活塞面积A为4cm2,体积为 20cm3的气缸内充满压力为0.1MPa、温度20C的空气, 弹簧刚度系数k为100N/cm,初始时弹簧未变形。缓 慢地对空气加热,求当空气压力增加到表压力为 0.2MPa时共需加入多少热量。 (大气压力p0=0.1MPa ,u=0.707 T KJ/Kg,且满足状 态方程PV=mRgT, Rg=287J/(kg· ) K)