高中数学 离散型随机变量的方差
高中数学必修2-3第二章2.3 2.3.2离散型随机变量的方差
2.3.2 离散型随机变量的方差1.问题导航(1)离散型随机变量的方差及标准差的定义是什么?(2)方差具有哪些性质?两点分布与二项分布的方差分别是什么? (3)如何计算简单离散型随机变量的方差? 2.例题导读(1)例4求随机变量的均值和方差、标准差,请试做教材P 68练习1题. (2)例5是均值和方差的实际应用,请试做教材P 68练习3题.1.方差、标准差的定义及方差的性质 (1)方差及标准差的定义:设离散型随机变量X 的分布列为①方差D (X )=∑n i =1(x i -E (X ))2p i . ②标准差为________D (X ).(2)方差的性质:D (aX +b )=________a 2D (X ). 2.两个常见分布的方差(1)若X 服从两点分布,则D (X )=________p (1-p ). (2)若X ~B (n ,p ),则D (X )=________np (1-p ).1.判断(对的打“√”,错的打“×”)(1)离散型随机变量的方差越大,随机变量越稳定.( ) (2)若a 是常数,则D (a )=0.( )(3)离散型随机变量的方差反映了随机变量偏离于期望的平均程度.( ) 答案:(1)× (2)√ (3)√2.一批产品中,次品率为13,现连续抽取4次,其次品数记为X ,则D (X )的值为( )A.43B.83C.89D .1答案:C3.如果X 是离散型随机变量,E (X )=6,D (X )=0.5,X 1=2X -5,那么E (X 1)和D (X 1)分别是( )A .E (X 1)=12,D (X 1)=1B .E (X 1)=7,D (X 1)=1C .E (X 1)=12,D (X 1)=2 D .E (X 1)=7,D (X 1)=2 答案:D4.已知随机变量X ________.答案:3.561.方差与标准差的作用随机变量的方差与标准差一样,都是反映随机变量的取值的稳定与波动、集中与离散程度的,方差越小,取值越集中,稳定性越高,波动性越小;反之,方差越大,取值越不集中,稳定性越差,波动性越大.2.随机变量的方差与样本方差的关系随机变量的方差是总体的方差,它是一个常数,样本的方差则是随机变量,是随样本的变化而变化的.对于简单随机样本,随着样本容量的增加,样本的方差越来越接近于总体的方差.求离散型随机变量的方差袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号.求ξ的分布列、均值和方差;[解] 由题意得,ξ的所有可能取值为0,1,2,3,4,P (ξ=0)=1020=12,P (ξ=1)=120,P (ξ=2)=220=110,P (ξ=3)=320,P (ξ=4)=420=15.故ξ的分布列为所以E (ξ)=0×12+1×120+2×110+3×320+4×15=1.5,D (ξ)=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.[互动探究] 在本例条件下,若η=aξ+b ,E (η)=1,D (η)=11,试求a ,b 的值. 解:由D (aξ+b )=a 2D (ξ)=11,E (aξ+b )=aE (ξ)+b =1,及E (ξ)=1.5,D (ξ)=2.75,得2.75a 2=11,1.5a +b =1,解得a =2,b =-2或a =-2,b =4.1.求离散型随机变量X 的均值、方差的步骤: (1)理解X 的意义,写出X 的所有可能的取值; (2)求X 取每一个值的概率; (3)写出随机变量X 的分布列;(4)由均值、方差的定义求E (X ),D (X ).2.对于变量间存在关系的方差,在求解过程中应注意方差性质的应用,如D (aξ+b )=a 2D (ξ),这样处理既避免了求随机变量η=aξ+b 的分布列,又避免了繁杂的计算,简化了1.(1)已知随机变量ξ若E (ξ)=23,则D (ξ)的值为________.解析:由分布列的性质,得 12+13+p =1,解得p =16. ∵E (ξ)=0×12+1×13+16x =23,∴x =2.D (ξ)=⎝⎛⎭⎫0-232×12+⎝⎛⎭⎫1-232×13+⎝⎛⎭⎫2-232×16=1527=59. 答案:59(2)甲、乙两人进行定点投篮游戏,投篮者若投中,则继续投篮,否则由对方投篮,第一次由甲投篮;已知每次投篮甲、乙命中的概率分别为13,34.在前3次投篮中,乙投篮的次数为ξ,求ξ的分布列、期望.解:乙投篮的次数ξ的取值为0,1,2.P (ξ=0)=13×13=19;P (ξ=1)=13×23+23×14=718.P (ξ=2)=23×34=12.故ξ的分布列为E (ξ)=0×19+1×718+2×12=2518,D (ξ)=(0-2518)2×19+(1-2518)2×718+(2-2518)2×12=149324.两点分布与二项分布的方差一出租车司机从某饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率是13.(1)求这位司机遇到红灯数ξ的期望与方差;(2)若遇上红灯,则需等待30 s ,求司机总共等待时间η的期望与方差. [解] (1)易知司机遇上红灯次数ξ服从二项分布,且ξ~B (6,13),故E (ξ)=6×13=2,D (ξ)=6×13×(1-13)=43.(2)由已知η=30ξ,故E (η)=30E (ξ)=60(s),D (η)=900D (ξ)=1 200.解决此类问题的第一步是判断随机变量ξ服从什么分布,第二步代入相应的公式求解.若ξ服从两点分布,则D (ξ)=p (1-p );若ξ服从二项分布,即ξ~B (n ,p ),则D (ξ)=np (1-p ).2.(1)(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:由E (X )=30,D (X )=20,可得⎩⎪⎨⎪⎧np =30,np (1-p )=20,解得p =13.答案:13(2)在某地举办的射击比赛中,规定每位射手射击10次,每次一发.记分的规则为:击中目标一次得3分;未击中目标得0分;并且凡参赛的射手一律另加2分.已知射手小李击中目标的概率为0.8,求小李在比赛中得分的数学期望与方差.解:用ξ表示小李击中目标的次数,η表示他的得分,则由题意知ξ~B(10,0.8),η=3ξ+2.因为E(ξ)=10×0.8=8,D(ξ)=10×0.8×0.2=1.6,所以E(η)=E(3ξ+2)=3E(ξ)+2=3×8+2=26(分),D(η)=D(3ξ+2)=32×D(ξ)=9×1.6=14.4.均值、方差的综合应用甲、乙两名射手在一次射击中得分为两个相互独立的随机变量X与Y,且X,Y 的分布列如下:(1)求a,b的值;(2)计算X,Y的期望与方差,并以此分析甲、乙技术状况.[解](1)由离散型随机变量的分布列的性质可知a+0.1+0.6=1,得a=0.3.同理0.3+b+0.3=1,得b=0.4.(2)E(X)=1×0.3+2×0.1+3×0.6=2.3,E(Y)=1×0.3+2×0.4+3×0.3=2,D(X)=(1-2.3)2×0.3+(2-2.3)2×0.1+(3-2.3)2×0.6=0.81,D(Y)=(1-2)2×0.3+(2-2)2×0.4+(3-2)2×0.3=0.6.由于E(X)>E(Y),说明在一次射击中,甲的平均得分比乙高,但D(X)>D(Y),说明甲得分的稳定性不如乙,因此甲、乙两人技术水平都不够全面,各有优势与劣势.离散型随机变量的期望反映了离散型随机变量取值的平均水平,而方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度.因此在实际决策问题中,需先运算均值,看一下谁的平均水平高,然后再计算方差,分析一下谁的水平发挥相对稳定,当然不同的模型要求不同,应视情况而定.3.甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相试评定这两个保护区的管理水平.解:甲保护区违规次数ξ的数学期望和方差分别为E (ξ)=0×0.3+1×0.3+2×0.2+3×0.2=1.3;D (ξ)=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21.乙保护区的违规次数η的数学期望和方差分别为E (η)=0×0.1+1×0.5+2×0.4=1.3; D (η)=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41.因为E (ξ)=E (η),D (ξ)>D (η),所以两个保护区内每个季度发生的违规事件的平均次数相同,但甲保护区的违规事件次数相对分散和波动性大,乙保护区的违规事件次数更集中和稳定,说明乙保护区的管理水平较好.试求D (X )和D (2X -1).[解] E (X )=0×0.2+1×0.2+2×0.3+3×0.2+4×0.1=1.8,所以D (X )=(0-1.8)2×0.2+(1-1.8)2×0.2+(2-1.8)2×0.3+(3-1.8)2×0.2+(4-1.8)2×0.1=1.56.所以D (2X -1)=4D (X )=4×1.56=6.24.[错因与防范] (1)解答本例易将方差的性质用错,即D (aZ +b )=aD (Z )+b . (2)解决此类问题方法,应利用公式E (aX +b )=aE (X )+b ,D (aX +b )=a 2D (X ),将求E (aX +b ),D (aX +b )的问题转化为求E (X ),D (X )的问题,从而可以避免求aX +b 的分布列的繁琐的计算,解题时可根据两者之间的关系列出等式,进行相关计算.4.已知随机变量X ~B (100,0.2),那么D (4X +3)的值为( ) A .64 B .256 C .259 D .320解析:选B.由X ~B (100,0.2)知n =100,p =0.2, 由公式得D (X )=np (1-p )=100×0.2×0.8=16, 因此D (4X +3)=42D (X )=16×16=256.1.设一随机试验的结果只有A 和A ,且P (A )=m ,令随机变量ξ=⎩⎪⎨⎪⎧1,A 发生,0,A 不发生,则ξ的方差D (ξ)等于( )A .mB .2m (1-m )C .m (m -1)D .m (1-m ) 解析:选D.随机变量ξ∴E (ξ)=0×(1-m )+1×m =m .∴D (ξ)=(0-m )2×(1-m )+(1-m )2×m =m (1-m ).2.已知随机变量X +Y =8,若X ~B (10,0.6),则E (Y ),D (Y )分别是( ) A .6和2.4 B .2和2.4 C .2和5.6 D .6和5.6解析:选B.由已知随机变量X +Y =8,所以有Y =8-X . 因此,求得E (Y )=8-E (X )=8-10×0.6=2, D (Y )=(-1)2D (X )=10×0.6×0.4=2.4.3.有两台自动包装机甲与乙,包装质量分别为随机变量X 1,X 2,已知E (X 1)=E (X 2),D (X 1)>D (X 2),则自动包装机________的质量较好.解析:因为E (X 1)=E (X 2),D (X 1)>D (X 2),故乙包装机的质量稳定. 答案:乙4.若随机变量X 的分布列为:(1)求m 的值;(2)求E (X )和D (X ).解:(1)由随机变量分布列的性质,得0.1+0.2+0.4+m +0.1=1,解得m =0.2.(2)E (X )=-2×0.1+(-1)×0.2+0×0.4+1×0.2+2×0.1=0,D (X )=(-2-0)2×0.1+(-1-0)2×0.2+(0-0)2×0.4+(1-0)2×0.2+(2-0)2×0.1=1.2.[A.基础达标]1.下列说法正确的是( )A .离散型随机变量ξ的数学期望E (ξ)反映了ξ取值的概率的平均值B .离散型随机变量ξ的方差D (ξ)反映了ξ取值的平均水平C .离散型随机变量ξ的数学期望E (ξ)反映了ξ取值的平均水平D .离散型随机变量ξ的方差D (ξ)反映了ξ取值的概率的平均值解析:选C.由离散型随机变量的数学期望与方差的定义可知,C 正确.故选C. 2.设X ~B (n ,p ),若D (X )=4,E (X )=12,则n 和p 分别为( ) A .18和23B .16和12C .20和13D .15和14解析:选A.∵X ~B (n ,p ),∴⎩⎪⎨⎪⎧np =12,np (1-p )=4,解得p =23,n =18.3.已知X 的分布列如下表所示,则下列式子:①E (X )=-13;②D (X )=2327;③P (X =0)=13.其中正确的有( )A.0个 B .1个 C .2个D .3个解析:选C.E (X )=(-1)×12+0×13+1×16=-13,D (X )=(-1+13)2×12+(0+13)2×13+(1+13)2×16=59,故只有①③正确. 4.设随机变量ξ的分布列为P (ξ=k )=C k n (23)k ·(13)n -k ,k =0,1,2,…,n ,且E (ξ)=24,则D (ξ)的值为( ) A .8B .12 C.29D .16解析:选A.由题意可知ξ~B (n ,23),∴23n =E (ξ)=24.∴n =36. ∴D (ξ)=n ×23×(1-23)=29×36=8.5.(2015·滨州高二期末检测)若随机变量X 的分布列为:P (X =m )=13,P (X =n )=a ,若E (X )=2,则D (X )的最小值等于( )A .0B .2C .4D .无法计算解析:选A.依题意有a =1-13=23,所以E (X )=13m +23n =2,即m +2n =6.又D (X )=13(m-2)2+23(n -2)2=2n 2-8n +8=2(n -2)2,所以当n =2时,D (X )有最小值为0.6.(2014·高考浙江卷)随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.解析:设P (ξ=1)=a ,P (ξ=2)=b ,则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎨⎧a =35,b =15,所以D (ξ)=15+35×0+15×1=25.答案:257.(2015·扬州高二检测)设一次试验成功的概率为p ,进行100次独立重复试验,当p =________时,成功次数的标准差的值最大,其最大值为________.解析:由独立重复试验的方差公式可以得到 D (ξ)=np (1-p )≤n (p +1-p 2)2=n4,等号在p =1-p =12时成立,所以D (ξ)max =100×12×12=25,D (ξ)max =25=5.答案:1258.随机变量ξ的分布列如下,其中a ,b ,c 成等差数列.若E (ξ)=53,则D (ξ)的值为________.解析:因为a ,b ,c 成等差数列,所以a +c =2b .又因为a +b +c =1,所以b =13.又因为E (ξ)=a +2b +3c =53,所以a =12,b =13,c =16,所以ξ的分布列为所以D (ξ)=(1-53)2×12+(2-53)2×13+(3-53)2×16=59.答案:599.设在12个同类型的零件中有2个次品,抽取3次进行检验,每次抽取1个,并且取出不再放回,若以ξ表示取出次品的个数,求ξ的分布列、期望值及方差.解:ξ的可能值为0,1,2,P (ξ=0)=C 02C 310C 312=611;P (ξ=1)=C 12C 210C 312=922;P (ξ=2)=C 22C 110C 312=122.∴ξ的分布列为∴E (ξ)=0×611+1×922+2×122=12,D (ξ)=(0-12)2×611+(1-12)2×922+(2-12)2×122=322+988+988=1544.10.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望E (ξ)=3,标准差D (ξ)=62. (1)求n ,p 的值并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.解:因为每一株沙柳成活率均为p ,种植了n 株沙柳,相当于做n 次独立重复试验,因此ξ服从二项分布ξ~B (n ,p ).(1)由E (ξ)=np =3,D (ξ)=np (1-p )=32,得1-p =12,从而n =6,p =12.ξ的分布列为:(2)记“需要补种沙柳”为事件A ,则P (A )=P (ξ≤3), 得P (A )=1+6+15+2064=2132.[B.能力提升]1.有甲、乙两名学生,经统计,他们在解答同一份数学试卷时,各自的成绩在80分、90分、100分的概率分布列大致如下表所示:甲:乙:试分析两名学生的成绩水平.解:∵E (X )=80×0.2+90×0.6+100×0.2=90,D (X )=(80-90)2×0.2+(90-90)2×0.6+(100-90)2×0.2=40,E (Y )=80×0.4+90×0.2+100×0.4=90,D (Y )=(80-90)2×0.4+(90-90)2×0.2+(100-90)2×0.4=80, ∵E (X )=E (Y ),D (X )<D (Y ),∴甲生与乙生的成绩均值一样,甲的方差较小,因此甲生的学习成绩较稳定.2.如表,左边为四大名著,右边为名著作者,一位小学语文教师为了激发学生阅读名著的热情,在班内进行名著和其作者的连线游戏,作为奖励,参加连线的同学每连对一个奖励一朵小红花.假定一名小学生对四大名著没有了解,只是随机地连线,试求该学生得到小红花数X 的分布列及其均值、方差.解:可能为0个,1个,2个,4个.P (X =0)=9A 44=924,P (X =1)=C 14×2A 44=824, P (X =2)=C 24×1A 44=624,P (X =4)=1A 44=124. 故X 的分布列为:∴E (X )=0×924+1×824+2×624+4×124=1, D (X )=924×(0-1)2+824×(1-1)2+624×(2-1)2+124×(4-1)2=9+0+6+924=1. 3.某学校为高二年级开展第二外语选修课,要求每位同学最多可以选报两门课程.已知有75%的同学选报法语课,有60%的同学选报日语课.假设每个人对课程的选报是相互独立的,且各人的选报相互之间没有影响.(1)任选1名同学,求其选报过第二外语的概率;(2)任选3名同学,记ξ为3人中选报过第二外语的人数,求ξ的分布列、期望和方差. 解:设事件A :选报法语课;事件B :选报日语课.由题设知,事件A 与B 相互独立,且P (A )=0.75,P (B )=0.6.(1)法一:任选1名同学,该同学一门课程都没选报的概率是P 1=P (A -B -)=P (A )·P (B )=0.25×0.4=0.1.所以该人选报过第二外语的概率是P 2=1-P 1=1-0.1=0.9.法二:任选1名同学,该同学只选报一门课程的概率是P 3=P (AB )+P (AB )=0.75×0.4+0.25×0.6=0.45,该人选报两门课程的概率是P 4=P (AB )=0.75×0.6=0.45.所以该同学选报过第二外语的概率是P 5=P 3+P 4=0.45+0.45=0.9.(2)因为每个人的选报是相互独立的,所以3人中选报过第二外语的人数ξ服从二项分布B (3,0.9),P (ξ=k )=C k 3×0.9k ×0.13-k ,k =0,1,2,3, 即ξ的分布列是ξ的期望是E(ξ)=(或ξ的期望是E(ξ)=3×0.9=2.7),ξ的方差是D(ξ)=3×0.9×(1-0.9)=0.27.。
高中数学选择性必修三 7 3 2 离散型随机变量的方差
规律方法 (1)均值体现了随机变量取值的平均大小,在两种产品相比较时,只比较均 值往往是不恰当的,还需比较它们的取值的离散程度,即通过比较方差,才能准确地 得出更恰当的判断. (2)离散型随机变量的分布列、均值、方差之间存在着紧密的联系,利用题目中所给出 的条件,合理地列出方程或方程组求解,同时也应注意合理选择公式,简化问题的解 答过程.
a+c+13=1,
c=14.
答案
5 12
1 4
5.甲、乙两人进行定点投篮游戏,投篮者若投中,则继续投篮,否则由对方投篮,第 一次由甲投篮;已知每次投篮甲、乙命中的概率分别为13,34. (1)求第三次由乙投篮的概率; (2)在前 3 次投篮中,乙投篮的次数为 X,求 X 的分布列、期望及标准差. 解 (1)设第三次由乙投篮为事件 A,则 P(A)=13×23+23×34=1138.
【训练3】 袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n=1, 2,3,4).现从袋中任取一球,X表示所取球的标号. (1)求X的方差; (2)若Y=aX+b,E(Y)=1,D(Y)=11,试求a,b的值.
解 (1)X的分布列为
X0 1 2 3 4
P
1 2
1 20
1 10
3 20
1 5
则 E(X)=0×12+1×210+2×110+3×230+4×15=1.5. D(X)=(0-1.5)2×12+(1-1.5)2×210+(2-1.5)2×110+(3-1.5)2×230+(4-1.5)2×15=2.75. (2)由D(Y)=a2D(X),得a2·2.75=11,得a=±2. 又E(Y)=aE(X)+b,所以当a=2时, 由1=2×1.5+b,得b=-2; 当a=-2时,由1=-2×1.5+b,得b=4. 所以ab= =2-,2或ab= =- 4 2,即为所求.
高中数学第二章概率253离散型随机变量的方差课件北师大版选修2
第20页
◎思考题 2 已知 X 是一个随机变量,随机变量 X+5 的分
布列如下:
X+5 -2 -1 0
1
2
P
0.2 0.1 0.1 0.4 0.2
第29页
n
【思路】 解答本题可先利用分布列的性质 p i=1求出a的
i=1
值,然后写出相应的分布列并计算出相应期望与方差,最后结 合甲、乙两人射中环数的期望与方差分析两人的射击技术的好 坏.
第30页
【解析】 (1)依题意,0.5+3a+a+0.1=1 解得 a=0.1.
∵乙射中 10,9,8 环的概率分别为 0.3,0.3,0.2,
第17页
题型二 方差的性质 例2 已知随机变量ξ的分布列为
ξ1 2 3 4 5 P 0.1 0.2 0.4 0.2 0.1 另一随机变量η=2ξ-3,求E(η),D(η).
第18页
【解析】 E(η)=2E(ξ)-3=2×(1×0.1+2×0.2+3×0.4+ 4×0.2+5×0.1)-3=2×3-3=3,
n
偏离程度,而 D(X)= (xi-E(X))2pi 为这些偏离程度的加权平
i=1
均,刻画了随机变量 X 与其均值 E(X)的平均偏离程度.我们称 D(X)为随机变量 X 的方差,其算术平方根 D(X)为随机变量 X 的标准差.
第5页
3.随机变量的方差和标准差都反映了随机变量的取值偏离 于均值的平均程度,方差(或标准差)越小,则随机变量偏离于均 值的平均程度越小.
样本方差反映了所有样本数据与样本平均值的偏离程度, 用它可以刻画样本数据的稳定性.
2.3.2离散型随机变量的方差
EX=c×1=c = × = DX=( -c)2×1=0 =(c- ) =( =
四、例题讲解
篮球运动员在比赛中每次罚球命中得1分 例1.篮球运动员在比赛中每次罚球命中得 分, 篮球运动员在比赛中每次罚球命中得 罚不中得0分 罚不中得 分.已知某运动员罚球命中的概率为 0.7,则他罚球 次的得分 的方差是多少? 次的得分X的方差是多少 ,则他罚球1次的得分 的方差是多少? 小结: 一般地,如果随机变量X服从两点分布, 小结: 一般地,如果随机变量X服从两点分布,
X P 1 p 0 1-p -
EX = 1 × p + 0 × (1 − p ) = p
服从两点分布, 若 X 服从两点分布,则 DX = p(1 − p )
篮球运动员在比赛中每次罚球命中得1分 例2.篮球运动员在比赛中每次罚球命中得 分, 篮球运动员在比赛中每次罚球命中得 罚不中得0分 罚不中得 分.已知某运动员罚球命中的概率为 0.7,他连续罚球 次;求X的方差。 的方差。 ,他连续罚球3次 的方差 解: (1) X~B(3,0.7) ~ ( , )
ξ
P
1 0.4
2 0.2
3 0.2
4 0.1
5 0.1
商场经销一件该商品,采用 期付款 其利润为200 期付款, 商场经销一件该商品,采用1期付款,其利润为 期或3期付款 期或5 元,分2期或 期付款,其利润为 期或 期付款,其利润为250元,分4期或 元 期或 期付款,其利润为300元, η 表示经销一件该商品的 期付款,其利润为 元 利润。 利润。 位顾客中, (1)求事件 :”购买该商品的 位顾客中,至少有 )求事件A: 购买该商品的3位顾客中 一位采用1期付款 的概率P(A); 期付款” 一位采用 期付款” 的概率 ; 的分布列及期望E (2)求 η 的分布列及期望 η 。 )
高中数学专题讲义-离散型随机变量的期望与方差1
1. 离散型随机变量及其分布列⑴离散型随机变量 如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.随机变量常用大写字母,,X Y L 表示.如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. ⑵离散型随机变量的分布列将离散型随机变量X 所有可能的取值i x 与该取值对应的概率i p (1,2,,)i n =L 列表表示:X 1x 2x … i x … n x P1p2p…i p…n pX 的分布列.2.几类典型的随机分布⑴两点分布如果随机变量X 的分布列为X 1 0 P p q其中01p <<,1q p =-X 服从参数为p 的二点分布.二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X X 的分布列满足二点分布.X 1P 0.8 0.2两点分布又称01-布又称为伯努利分布. ⑵超几何分布 一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为C C ()C m n mM N Mn NP X m --==(0m l ≤≤,l 为n 和M 中较小的一个).我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N ,M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列.知识内容数学期望⑶二项分布1.独立重复试验如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为()C (1)kk n k n n P k p p -=-(0,1,2,,)k n =L . 2.二项分布若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是()C k k n kn P X k p q -==,其中0,1,2,,k n =L .于是得到由式001110()C CC C n n n k k n k nn n n n n q p p q p qp q p q --+=++++L L 各对应项的值,所以称这样的散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p .二项分布的均值与方差:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.⑷正态分布1. 概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为X 的概率密度曲线.曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. 2.正态分布⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布. 服从正态分布的随机变量叫做正态随机变量,简称正态变量. 正态变量概率密度曲线的函数表达式为22()2()x f x μσ--=,x ∈R ,其中μ,σ是参数,且0σ>,μ-∞<<+∞.式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作2(,)N μσ. 正态变量的概率密度函数的图象叫做正态曲线.⑵标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. ⑶重要结论:①正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是68.3%,95.4%,99.7%.②正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则.⑷若2~()N ξμσ,,()f x 为其概率密度函数,则称()()()xF x P x f t dt ξ-∞==⎰≤为概率分布函数,特别的,2~(01)N ξμσ-,,称22()t x x dt φ-=⎰为标准正态分布函数. ()()x P x μξφσ-<=.标准正态分布的值可以通过标准正态分布表查得.分布函数新课标不作要求,适当了解以加深对密度曲线的理解即可.3.离散型随机变量的期望与方差1.离散型随机变量的数学期望定义:一般地,设一个离散型随机变量X 所有可能的取的值是1x ,2x ,…,n x ,这些值对应的概率是1p ,2p ,…,n p ,则1122()n n E x x p x p x p =+++L ,叫做这个离散型随机变量X 的均值或数学期望(简称期望).离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平. 2.离散型随机变量的方差一般地,设一个离散型随机变量X 所有可能取的值是1x ,2x ,…,n x ,这些值对应的概率是1p ,2p ,…,n p ,则2221122()(())(())(())n n D X x E x p x E x p x E x p =-+-++-L 叫做这个离散型随机变量X 的方差.离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小(离散程度).()D X 叫做离散型随机变量X 的标准差,它也是一个衡量离散型随机变量波动大小的量.3.X 为随机变量,a b ,为常数,则2()()()()E aX b aE X b D aX b a D X +=++=,; 4. 典型分布的期望与方差:⑴二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np .⑵二项分布:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.⑶超几何分布:若离散型随机变量X 服从参数为N M n ,,的超几何分布,则()nME X N=,2()()()(1)n N n N M M D X N N --=-.4.事件的独立性如果事件A 是否发生对事件B 发生的概率没有影响,即(|)()P B A P B =,这时,我们称两个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.如果事件1A ,2A ,…,n A 相互独立,那么这n 个事件都发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A =⨯⨯⨯I I L I L ,并且上式中任意多个事件i A 换成其对立事件后等式仍成立.5.条件概率对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号“(|)P B A ”来表示.把由事件A 与B 的交(或积),记做D A B =I (或D AB =).【例1】 投掷1枚骰子的点数为ξ,则ξ的数学期望为( )A .3B .3.5C .4D .4.5【例2】 同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ,则ξ的数学期望是( )A .20B .25C .30D .40【例3】 从123456,,,,,这6个数中任取两个,则两数之积的数学期望为 .【例4】 一射手对靶射击,直到第一次命中为止,每次命中率为0.6,现共有4颗子弹,命中后尚余子弹数目ξ的期望为( )A .2.44B .3.376C .2.376D .2.4【例5】 一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (a 、b 、()01c ∈,),已知他投篮一次得分的数学期望为2(不计其它得分情况),则ab 的最大值为( )A .148B .124C .112D .16【例6】 一家保险公司在投保的50万元的人寿保险的保单中,估计每一千保单每年有15个理赔,若每一保单每年的营运成本及利润的期望值为200元,试求每一保单的保费.【例7】 甲乙两人独立解出某一道数学题的概率依次为1212()P P P P >,,已知该题被甲或乙解出的概率为0.8,甲乙两人同时解出该题的概率为0.3,求:⑴12P P ,; ⑵解出该题的人数X 的分布列及EX .典例分析【例8】甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是12,且面试是否合格互不影响.求签约人数ξ的数学期望.【例9】某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:⑴⑵已知每吨该商品的销售利润为2千元,ξ表示该种商品两周销售利润的和(单位:千元).若以上述频率作为概率,且各周的销售量相互独立,求ξ的分布列和数学期望.【例10】某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为23,科目B每次考试成绩合格的概率均为12.假设各次考试成绩合格与否均互不影响.在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望Eξ.【例11】某同学如图所示的圆形靶投掷飞镖,飞镖落在靶外(环数记为0)的概率为0.1,飞镖落在靶内的各个点是椭机的.已知圆形靶中三个圆为同心圆,半径分别为30cm、20cm、10cm,飞镖落在不同区域的环数如图中标示.设这位同学投掷一次一次得到的环数这个随机变量X,求X的分布列及数学期望.8910【例12】某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.⑴求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A;⑵求η的分布列及期望Eη.【例13】学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有2人,会跳舞的有5人,现从中选2人.设ξ为选出的人中既会唱歌又会跳舞的人数,且7Pξ>=.(0)10⑴求文娱队的人数;⑵写出ξ的概率分布列并计算期望.【例14】一接待中心有A、B、C、D四部热线电话.已知某一时刻电话A、B占线的概率为0.5,电话C、D占线的概率为0.4,各部电话是否占线相互之间没有影响.假设该时刻有X部电话占线,试求随机变量X的概率分布和它的期望.【例15】某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.40.50.6,,,且客人是否游览哪个景点互不影响,设X表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.求X的分布及数学期望.【例16】某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为45、35、25,且各轮问题能否正确回答互不影响.⑴求该选手被淘汰的概率;⑵该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望.(注:本小题结果可用分数表示)【例17】在某次测试中,甲、乙、丙三人能达标的概率分别为0.4,0.5,0.8,在测试过程中,甲、乙、丙能否达标彼此间不受影响.⑴求甲、乙、丙三人均达标的概率;⑵求甲、乙、丙三人中至少一人达标的概率;⑶设X表示测试结束后达标人数与没达标人数之差的绝对值,求X的概率分布及数学期望EX.【例18】在1,2,3,…,9这9个自然数中,任取3个数.⑴求这3个数中恰有1个是偶数的概率;⑵设ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望Eξ.【例19】甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为12,乙、丙面试合格的概率都是13,且面试是否合格互不影响.求:⑴至少有1人面试合格的概率;⑵签约人数X的分布列和数学期望.【例20】某公司“咨询热线”电话共有8路外线,经长期统计发现,在8点到10点这段时间内,外线电话同时打入情况如下表所示:①求至少一种电话不能一次接通的概率;②在一周五个工作日中,如果至少有三个工作日的这段时间(8点至10点)内至少一路电话不能一次接通,那么公司的形象将受到损害,现用该事件的概率表示公司形象的“损害度”,求上述情况下公司形象的“损害度”.⑵求一周五个工作日的这段时间(8点至10点)内,电话同时打入数ξ的期望.【例21】某先生居住在城镇的A处,准备开车到单位B处上班,若该地各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率,如图.(例如:A C D→→算作两个路段:路段AC发生堵车事件的概率为110,路段CD发生堵车事件的概率为115).记路线A C F B→→→中遇到堵车次数为随机变量X,求X的数学期望()E X.11510【例22】口袋里装有大小相同的4个红球和8个白球,甲、乙两人依规则从袋中有放回摸球,每次摸出一个球,规则如下:若一方摸出一个红球,则此人继续下一次摸球;若一方摸出一个白球,则由对方接替下一次摸球,且每次摸球彼此相互独立,并由甲进行第一次摸球;求在前三次摸球中,甲摸得红球的次数ξ的分布列及数学期望.【例23】 某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金10元;摸出两个红球可获得奖金50元.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次,令X 表示甲、乙两人摸球后获得的奖金总额.求:⑴X 的概率分布;⑵X 的期望.【例24】 如图所示,甲、乙两只小蚂蚁分别位于一个单位正方体的A 点和1C 点处,每只小蚂蚁都可以从每一个顶点处等可能地沿各条棱向每个方向移动,但不能按原路线返回.如:甲在A 时可沿AB ,AD ,1AA 三个方向移动,概率都是13,到达B 点时,可沿BC ,1BB 两个方向移动,概率都是12.已知小蚂蚁每秒钟移动的距离为1个单位.⑴如果甲、乙两只小蚂蚁都移动1秒,则它们所走的路线是异面直线的概率是多少?⑵若乙蚂蚁不动,甲蚂蚁移动3秒后,甲、乙两只小蚂蚁间的距离的期望值是多少?D1C1(乙)B1A(甲)B CDA1【例25】从集合{}12345,,,,的所有非空子集....中,等可能地取出一个.⑴记性质:γ集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;⑵记所取出的非空子集的元素个数为ξ,求ξ的分布列和数学期望Eξ.【例26】某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区.B 肯定是受A感染的.对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是12.同样也假定D受A、B和C感染的概率都是13.在这种假定之下,B、C、D中直接..受A感染的人数X就是一个随机变量.写出X的分布列(不要求写出计算过程),并求X的均值(即数学期望).【例27】⑴用红、黄、蓝、白四种不同颜色的鲜花布置如图一所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域用不同颜色鲜花,问共有多少种不同的摆放方案?⑵用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图二所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域使用不同颜色鲜花.求恰有两个区域用红色鲜花的概率.⑶条件同⑵,记花圃中红色鲜花区域的块数为X,求它的分布列及其数学期望EX.图二图一【例28】有甲、乙两个箱子,甲箱中有6张卡片,其中有2张写有数字0,2张写有数字1,2张写有数字2;乙箱中有6张卡片,其中3张写有数字0,2张写有数字1,1张写有数字2.⑴如果从甲箱中取出1张卡片,乙箱中取出2张卡片,那么取得的3张卡片都写有数字0的概率是多少?⑵从甲、乙两个箱子中各取一张卡片,设取出的2张卡片数字之积为X,求X的分布列和期望.【例29】 A B ,两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是123A A A ,,,B 队队员是123B B B ,,,按以往多次比赛的统计,对阵队员之间胜负概率如下:现按表中对阵方式出场,每场胜队得1分,负队得0分.设A 队、B 队最后总分分别为ξη,.求ξη,的期望.【例30】 连续抛掷同一颗均匀的骰子,令第i 次得到的点数为i a ,若存在正整数k ,使126k a a a ++=L ,则称k 为你的幸运数字.⑴求你的幸运数字为4的概率;⑵若1k =,则你的得分为6分;若2k =,则你的得分为4分;若3k =,则你的得分为2分;若抛掷三次还没找到你的幸运数字则记0分.求得分ξ的分布列和数学期望.【例31】 在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A 处每投进一球得3分,在B 处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A 处的命中率1q 为0.25,在B 处的命中率为2q ,该同学选择先在A 处投一球,以后都在B 处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为⑴ 2⑵ 求随机变量ξ的数学期望E ξ;⑶ 试比较该同学选择都在B 处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.【例32】 在奥运会射箭决赛中,参赛号码为1~4号的四名射箭运动员参加射箭比赛.⑴通过抽签将他们安排到1~4号靶位,试求恰有两名运动员所抽靶位号与其参赛号码相同的概率;⑵记1号、2号射箭运动员射箭的环数为ξ(ξ所有取值为01210L ,,,,)的概率分别为1P 、2P .根据教练员提供的资料,其概率分布如下表:②判断1号,2号射箭运动员谁射箭的水平高?并说明理由.【例33】某人有10万元,准备用于投资房地产或购买股票,如果根据盈利表进行决策,那么,合理的投资方案应该是哪种?【例34】甲、乙两名工人加工同一种零件,分别检测5个工件,结果分别如下:试比较他们的加工水平.【例35】一软件开发商开发一种新的软件,投资50万元,开发成功的概率为0.9,若开发不成功,则只能收回10万元的资金,若开发成功,投放市场前,召开一次新闻发布会,召开一次新闻发布会不论是否成功都需要花费10万元,召开新闻发布会成功的概率为0.8,若发布成功则可以销售100万元,否则将起到负面作用只能销售60万元,而不召开新闻发布会则可销售75万元.⑴求软件成功开发且成功在发布会上发布的概率.⑵如果开发成功就召开新闻发布会的话,求开发商的盈利期望.⑶如果不召开新闻发布会,求开发商盈利的期望值,并由此决定是否应该召开新闻发布会.【例36】某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成400万元的损失.现有甲、乙两种相互独立的预防措施可供采用.单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率为0.9和0.85.若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少.(总费用=采取预防措施的费用+发生突发事件损失的期望值.)【例37】 最近,李师傅一家三口就如何将手中的10万块钱投资理财,提出了三种方案:第一种方案:将10万块钱全部用来买股票.据分析预测:投资股市一年可能获利40%,也可能亏损20%(只有这两种可能),且获利的概率为12; 第二种方案:将10万块钱全部用来买基金.据分析预测:投资基金一年可能获利20%,也可能损失10%,也可能不赔不赚,且三种情况发生的概率分别为311555,,; 第三种方案:将10万块钱全部存入银行一年,现在存款利率为4%,存款利息税率为5%.针对以上三种投资方案,请你为李师傅家选择一种合理的理财方法,并说明理由.【例38】 某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案,第二年与第一年相互独立.令(12)i i ξ=,表示方案i实施两年后柑桔产量达到灾前产量的倍数.⑴写出12ξξ,的分布列;⑵实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?⑶不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?【例39】某企业准备投产一批特殊型号的产品,已知该种产品的成本C与产量q的函数关系式为3232010(0)3qC q q q=-++>,该种产品的市场前景无法确定,有三种可能出现的情况,各种情形发生的概率及产品价格p与产量q的函数关系式如下表所示:123k q ,而市场前景无法确定的利润. ⑴分别求利润123L L L ,,与产量q 的函数关系式;⑵当产量q 确定时,求期望k E ξ;⑶试问产量q 取何值时,市场无法确定的利润取得最大值.【例40】 某电器商由多年的经验发现本店出售的电冰箱的台数ξ是一个随机变量,它的分布列1()(1212)12P k ξξ===L ,,,,设每售出一台电冰箱,该台冰箱可获利300元,若售不出则囤积在仓库,每台需支付保管费100元/月,问:该电器商月初购进多少台电冰箱才能使自己的月平均收入最大?【例41】 某鲜花店每天以每束2.5元购入新鲜玫瑰花并以每束5元的价格销售,店主根据以往的销售统计得到每天能以此价格售出的玫瑰花数ξ的分布列如表所示,若某天所购进的玫瑰花未售完,则当天未售出的玫瑰花将以每束1.5元的价格降价处理完毕.⑴若某天店主购入玫瑰花40束,试求该天其从玫瑰花销售中所获利润的期望; ⑵店主每天玫瑰花的进货量x (3050x ≤≤,单位:束)为多少时,其有望从玫瑰花销售中获取最大利润?。
高中数学《离散型随机变量的方差》导学案
2.3.2 离散型随机变量的方差知识点 方差、标准差的定义及方差的性质(1)设离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则称D (X )=□01∑ni =1 (x i -E (X ))2p i 为随机变量X 的方差,其算术平方根D (X )为随机变量X 的□02标准差. (2)随机变量的方差和标准差都反映了随机变量取值偏离于均值的□03平均程度,方差或标准差越小,则随机变量偏离于均值的□04平均程度越小. 知识点 两点分布与二项分布的方差X X 服从两点分布X ~B (n ,p ) D (X ) □01p (1-p )(其中p 为成功概率) □02np (1-p )方差的性质: D (aX +b )=a 2D (X ), D (C )=0(C 是常数).1.判一判(正确的打“√”,错误的打“×”)(1)离散型随机变量的方差越大,随机变量越稳定.( ) (2)若a 是常数,则D (a )=0.( )(3)离散型随机变量的方差反映了随机变量偏离于期望的平均程度.( ) 答案 (1)× (2)√ (3)√ 2.做一做(1)若随机变量X 服从两点分布,且成功的概率p =0.5,则E (X )和D (X )分别为________.(2)设随机变量ξ~B ⎝ ⎛⎭⎪⎫6,12,则D (ξ)=________.(3)如果X 是离散型随机变量,Y =3X +2,那么D (Y )=________D (X ). 答案 (1)0.5和0.25 (2)32 (3)9 解析 (1)因为X 服从两点分布, 所以X 的概率分布为X 0 1 P0.50.5所以E (X )=0×0.5+1×0.5=0.5, D (X )=0.52×0.5+(1-0.5)2×0.5=0.25. (2)因为随机变量ξ~B ⎝ ⎛⎭⎪⎫6,12,所以D (ξ)=6×12×⎝ ⎛⎭⎪⎫1-12=32.(3)由于X 是离散型随机变量,Y =3X +2呈线性关系,代入公式,则D (Y )=32D (X )=9D (X ).探究1 方差及标准差的计算 例1 已知随机变量X 的分布列为X 0 10 20 50 60 P1325115215115(1)求X 的方差及标准差; (2)设Y =2X -E (X ),求D (Y ).[解] (1)E (X )=0×13+10×25+20×115+50×215+60×115=16,D (X )=(0-16)2×13+(10-16)2×25+(20-16)2×115+(50-16)2×215+(60-16)2×115=384.∴D(X)=8 6.(2)∵Y=2X-E(X),∴D(Y)=D(2X-E(X))=4D(X)=4×384=1536.拓展提升求方差和标准差的关键是求分布列,只要有了分布列,就可以依据定义求数学期望,进而求出方差、标准差,同时还要注意随机变量aX+b的方差可用D(aX +b)=a2D(X)求解.[跟踪训练1]已知随机变量ξ的分布列如下表:(1)求ξ的均值、方差和标准差;(2)设η=2ξ+3,求E(η),D(η).解(1)均值E(ξ)=(-1)×12+0×13+1×16=-13;方差D(ξ)=(x1-E(ξ))2·p1+(x2-E(ξ))2·p2+(x3-E(ξ))2·p3=59;标准差D(ξ)=53.(2)E(η)=2E(ξ)+3=73;D(η)=4D(ξ)=209.探究2两点分布与二项分布的方差例2(1)篮球比赛中每次罚球命中得1分,不中得0分.已知某运动员罚球命中的概率为0.7,求他一次罚球得分的方差;(2)将一枚硬币连续抛掷5次,求正面向上的次数的方差;(3)老师要从10名同学中随机抽3名同学参加社会实践活动,其中男同学有6名,求抽到男同学人数的方差.[解](1)设一次罚球得分为X,X服从两点分布,即∴D (X )=p (1-p )=0.7×0.3=0.21.(2)设正面向上的次数为Y ,则Y ~B ⎝ ⎛⎭⎪⎫5,12,D (Y )=np (1-p )=5×12×12=1.25. (3)设抽到男同学的人数为ξ. ξ服从超几何分布,分布列为即∴E (ξ)=0×130+1×310+2×12+3×16=0.3+1+0.5=1.8,D (ξ)=(0-1.8)2×130+(1-1.8)2×310+(2-1.8)2×12+(3-1.8)2×16=0.56.拓展提升解决此类问题的第一步是判断随机变量ξ服从什么分布,第二步代入相应的公式求解.若ξ服从两点分布,则D (ξ)=p (1-p );若ξ服从二项分布,即ξ~B (n ,p ),则D (ξ)=np (1-p ).[跟踪训练2] (1)若随机变量X 的分布列如下表所示则E (X )=________,D (X )=________;(2)若随机变量X ~B (3,p ),D (X )=23,则p =________. 答案 (1)0.6 0.24 (2)13或23解析(1)∵E(X)=0×0.4+1×0.6=0.6,D(X)=0.6×(1-0.6)=0.6×0.4=0.24.(2)∵X~B(3,p),∴D(X)=3p(1-p),由3p(1-p)=23,得p=13或p=23.探究3方差的实际应用例3有甲、乙两名同学,据统计,他们在解答同一份数学试卷时,各自的分数在80分,90分,100分的概率分布大致如下表所示:试分析甲、乙两名同学谁的成绩好一些.[解]在解答同一份数学试卷时,甲、乙两人成绩的均值分别为E(X甲)=80×0.2+90×0.6+100×0.2=90,E(X乙) =80×0.4+90×0.2+100×0.4=90.方差分别为D(X甲)=(80 -90)2×0.2+(90 -90)2×0.6+(100-90)2×0.2 =40,D(X乙)=(80-90)2×0.4+(90-90)2×0.2+(100 -90)2×0.4=80.由上面数据,可知E(X甲)=E(X乙),D(X甲)<D(X乙).这表示甲、乙两人所得分数的均值相等,但两人的分数的稳定程度不同,甲同学分数较稳定,乙同学分数波动较大,所以甲同学的成绩较好.拓展提升离散型随机变量的均值反映了离散型随机变量取值的平均水平,而方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度.因此,在实际决策问题中,需先计算均值,看一下谁的平均水平高,然后再计算方差,分析一下谁的水平发挥相对稳定.因此,在利用均值和方差的意义去分析解决实际问题时,两者都要分析.[跟踪训练3]甲、乙两名射手在一次射击中得分为两个相互独立的随机变量ξ与η,且ξ,η的分布列为:ξ12 3P a 0.10.6η12 3P 0.3 b 0.3(1)求a,b的值;(2)计算ξ,η的期望与方差,并依此分析甲、乙技术状况.解(1)由离散型随机变量分布列的性质得a+0.1+0.6=1,解得a=0.3;同理0.3+b+0.3=1,解得b=0.4.(2)E(ξ)=1×0.3+2×0.1+3×0.6=2.3;E(η)=1×0.3+2×0.4+3×0.3=2;D(ξ)=(1-2.3)2×0.3+(2-2.3)2×0.1+(3-2.3)2×0.6=0.81;D(η)=(1-2)2×0.3+(2-2)2×0.4+(3-2)2×0.3=0.6.由于E(ξ)>E(η),说明在一次射击中,甲的平均得分比乙高,但D(ξ)>D(η),说明甲得分的稳定性不如乙,因此甲、乙两人技术水平都不够全面,各有优势与劣势.1.随机变量的方差和标准差都反映了随机变量取值的稳定与波动、集中与离散的程度,以及随机变量取值偏离于均值的平均程度.方差D (X )或标准差越小,则随机变量X 偏离均值的平均程度越小;方差越大,表明平均偏离的程度越大,说明X 的取值越分散.2.求离散型随机变量X 的均值、方差的步骤 (1)理解X 的意义,写出X 的所有可能的取值; (2)求X 取每一个值的概率; (3)写出随机变量X 的分布列; (4)由均值、方差的定义求E (X ),D (X ).特别地,若随机变量服从两点分布或二项分布,可根据公式直接计算E (X )和D (X ).1.已知随机变量X 的分布列为X 0 1 2 P131313设Y =2X +3,则D (Y )=( ) A.83 B.53 C.23 D.13 答案 A解析 ∵E (X )=0×13+1×13+2×13=1,∴D (X )=(0-1)2×13+(1-1)2×13+(2-1)2×13=23, ∴D (Y )=D (2X +3)=4D (X )=83.2.一批产品中,次品率为14,现有放回地连续抽取4次,若抽取的次品件数记为X ,则D (X )的值为( )A.43B.83C.34D.116 答案 C解析 由题意,次品件数X 服从二项分布,即X ~B ⎝ ⎛⎭⎪⎫4,14,故D (X )=np ·(1-p )=4×14×34=34.3.已知ξ~B (n ,p ),且E (3ξ+2)=9.2,D (3ξ+2)=12.96,则二项分布的参数n ,p 的值为( )A .n =4,p =0.6B .n =6,p =0.4C .n =8,p =0.3D .n =24,p =0.1 答案 B解析 由E (3ξ+2)=3E (ξ)+2,D (3ξ+2)=9D (ξ),及ξ~B (n ,p )时,E (ξ)=np ,D (ξ)=np (1-p )可知⎩⎪⎨⎪⎧ 3np +2=9.2,9np (1-p )=12.96,所以⎩⎪⎨⎪⎧n =6,p =0.4.故选B. 4.袋中有大小相同的三个球,编号分别为1,2,3,从袋中每次取出一个球,若取到球的编号为奇数,则取球停止,用 X 表示所有被取到的球的编号之和,则X 的方差为________.答案 179解析 X 的分布列为则E (X )=1×13+3×12+5×16=83,D (X )=179.5.一出租车司机从某饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是13.(1)求这位司机遇到红灯数ξ的期望与方差;(2)若遇上红灯,则需等待30秒,求司机总共等待时间η的期望与方差. 解 (1)易知司机遇上红灯次数ξ服从二项分布,且 ξ~B ⎝ ⎛⎭⎪⎫6,13,∴E (ξ)=6×13=2,D (ξ)=6×13×⎝ ⎛⎭⎪⎫1-13=43.(2)由已知η=30ξ,∴E (η)=30E (ξ)=60, D (η)=900D (ξ)=1200.A 级:基础巩固练一、选择题1.已知X 的分布列为X -1 0 1 P131313则①E (X )=13,②D (X )=2327,③P (X =0)=13,其中正确的个数为( ) A .0 B .1 C .2 D .3 答案 B解析 E (X )=(-1)×13+0×13+1×13=0,故①不正确;D (X )=(-1+0)2×13+(0+0)2×13+(1+0)2×13=23,故②不正确;③P (X =0)=13显然正确.2.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取1球,有放回地摸取5次,设摸得白球的个数为X ,已知E (X )=3,则D (X )=( )A.85B.65C.45D.25 答案 B解析 由题意知X ~B ⎝ ⎛⎭⎪⎫5,3m +3,所以E (X )=5×3m +3=3,解得m =2,所以X ~B ⎝ ⎛⎭⎪⎫5,35,故D (X )=5×35×25=65.3.设随机变量ξ的分布列为P (ξ=k )=C k n ⎝ ⎛⎭⎪⎫23k ·⎝ ⎛⎭⎪⎫13n -k,k =0,1,2,…,n ,且E (ξ)=24,则D (ξ)的值为( )A .8B .12 C.29 D .16 答案 A解析 由题意可知ξ~B ⎝ ⎛⎭⎪⎫n ,23,∴23n =E (ξ)=24.∴n =36.又D (ξ)=n ×23×⎝ ⎛⎭⎪⎫1-23=29×36=8.4.掷一枚质地均匀的骰子12次,则出现向上的一面是3的次数的均值和方差分别是( )A .2和5B .2和53C .4和83 D.72和1 答案 B解析 由题意知出现向上的一面为3的次数符合二项分布,掷12次骰子相当于做12次独立重复试验,且每次试验出现向上的一面为3的概率是16,∴E (ξ)=12×16=2,D (ξ)=12×16×56=53.故选B.5.随机变量X 的分布列为若a ,b ,c 成等差数列,E (X )=13,则D (X )=( ) A.49 B.59 C.13 D.23 答案 B解析 由题可得⎩⎪⎨⎪⎧a +b +c =1,-a +c =13,2b =a +c ,解得⎩⎪⎨⎪⎧a =16,b =13,c =12,所以D (X )=169×16+19×13+49×12=59.故选B.二、填空题6.设X ~B (n ,p ),且E (X )=15,D (X )=454,则n ,p 的值分别为________和________.答案 60 14 解析由题意,可知⎩⎨⎧E (x )=np =15,D (X )=np (1-p )=454,解得⎩⎨⎧n =60,p =14.7.两封信随机投入A ,B ,C 三个空邮箱中,则A 邮箱的信件数ξ的方差D (ξ)=________.答案 49解析 ξ的所有可能取值为0,1,2,P (ξ=0)=2×29=49,P (ξ=1)=C 12×29=49,P (ξ=2)=19,所以E (ξ)=0×49+1×49+2×19=23,D (ξ)=⎝ ⎛⎭⎪⎫0-232×49+⎝ ⎛⎭⎪⎫1-232×49+⎝ ⎛⎭⎪⎫2-232×19=49. 8.设p 为非负实数,随机变量X 的分布列为则E (X )的最大值为________,D (X )的最大值为________. 答案 32 1解析 E (X )=0×⎝ ⎛⎭⎪⎫12-p +1×p +2×12=p +1.又0≤12-p ≤12,∴0≤p ≤12. ∴E (X )max =32.D (X )=(p +1)2⎝ ⎛⎭⎪⎫12-p +p 2·p +(p -1)2·12=-p 2-p +1=-⎝ ⎛⎭⎪⎫p +122+54≤1, ∴当p =0时,D (X )max =1. 三、解答题9.如图,左边为四大名著,右边为名著作者,一位小学语文教师为了激发学生阅读名著的热情,在班内进行名著和其作者的连线游戏,作为奖励,参加连线的同学每连对一个奖励一朵小红花.假定一名小学生对四大名著没有了解,只是随机地连线,试求该学生得到小红花数X 的分布列及其均值、方差.《三国演义》罗贯中《水浒传》施耐庵《西游记》吴承恩《红楼梦》曹雪芹解该小学生连线的情况有都连错,连对一个,连对二个,连对四个,故其得小红花数可能为0个,1个,2个,4个.P(X=0)=9A44=924=38,P(X=1)=C14×2A44=824=13,P(X=2)=C24×1A44=624=14,P(X=4)=1A44=124.故所以E(X)=0×38+1×13+2×14+4×124=1,D(X)=38×(0-1)2+13×(1-1)2+14×(2-1)2+124×(4-1)2=9+0+6+924=1.B级:能力提升练10.甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相等.这两个保护区内每个季度发现违反保护条例的事件次数的分布列分别为:甲保护区:乙保护区:解甲保护区的违规次数ξ1的均值和方差为:E(ξ1)=0×0.3+1×0.3+2×0.2+3×0.2=1.3;D(ξ1)=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21.乙保护区的违规次数ξ2的均值和方差为:E(ξ2)=0×0.1+1×0.5+2×0.4=1.3;D(ξ2)=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41.因为E(ξ1)=E(ξ2),D(ξ1)>D(ξ2),所以两个保护区内每季度发生的违规事件平均次数是相同的,但乙保护区内发生的违规事件次数更集中和稳定,而甲保护区内发生的违规事件次数相对分散和波动.因此乙保护区的管理水平较高.。
高中数学_离散型随机变量的方差教学设计学情分析教材分析课后反思
2.3.2离散型随机变量的方差教学目标:知识与技能:掌握离散型随机变量的方差、标准差的意义;会根据离散型随机变量的分布列求出方差或标准差;掌握特殊分布的方差公式,会利用公式计算.过程与方法:通过两名同学射中目标靶环数情况引入本节内容,之后与样本方差比较,给出相应公式。
然后学会用公式计算有关随机变量的方差 。
情感、态度与价值观:感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。
教学重点:离散型随机变量的方差、标准差. 教学难点:离散型随机变量方差的实际应用。
教学过程: 一、复习回顾:1、数学期望:离散型随机变量X 的概率分布为则称11221()ni i n n i ii E X x p x p x p x p x p ==+++++=∑L L 的均值或数学期望,简称期望.数学期望的意义:它反映了离散型随机变量取值的平均水平2、期望的一个性质: ()()E aX b aE X b +=+3、两个特殊分布的均值 若X 服从两点分布,则E(X) =p若X :B (n,p )(二项分布),则E(X)=np.二、师生互动,新课讲解:问题:要从两名同学中挑选出一名,代表班级参加射击比赛.根据以往的成绩记录, 第一名同学击中目标靶的环数X 1的分布列为第二名同学击中目标靶的环数X 2的分布列为应派哪位同学参赛?通过计算得到的期望值相等12()8,()8.E X E X ==因此只通过均值并不能决定派哪名同学参赛,还有没有其他的指标来判断两名同学的射击情况?学生易联想到方差,在必修三中学过样本的方差,它反映的是样本数据的稳定性。
通过对样本方差的回顾2222121n S x x x x x x n ---⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦L 211.n i i i x x p n -=⎛⎫=- ⎪⎝⎭∑引出本节方差的定义. 三、方差的定义1.设离散型随机变量X 的概率分布为则:2(())i xE X -描述职x i ( i=1,2,3,……)相对于均值E(X)的偏离程度,()()()()()()2221122()n n D X x E x p x E x p x E x p =-+-++-L ()()21.ni i i x E X p ==-∑为这些偏离程度的加权平均,刻画了随机变量X 与其均值E (X )的平均偏离程度,我们称D (X )为随机变量X ()X σ)为随机变量X 的标准差。
人教版高中数学选修二23.3离散型随机变量的期望、方差
一年内,一辆车保险公司平均收益多少?
X -2000 1000 P 0.03 0.97
EX 2000 0.03 1000 0.97 910
人教版高中数学选修二23.3离散型随 机变量 的期望 、方差
教学过程
人教版高中数学选修二23.3离散型随 机变量 的期望 、方差
思考
m
p
一年中一辆车受损的概率为0.03。现保
温故知新:
1.一般地,若离散型随机变量X的概率分布为
X
x1 x2 …
xi … xn
P
p1 p2 …
pi … pn
则X的期望为:EX x1 p1 x2 p2 xi pi xn pn
它反映了离散型随机变量取值的平均水平。
X的方差为:
D ( x1 E )2 p1 ( xi E )2 pi ( xn E )2 pn
人教版高中数学选修二23.3离散型随 机变量 的期望 、方差
pm
据统计,一年中一辆车受损的概率为0.03。现保险公司拟 开设一年期租车保险,一辆车一年的保费为1000元,若在一 年内该车受损,则保险公司需赔偿3000元。
n ③ m , n , p应满足什么关系,保险公司方可盈利?
解:设 X 表示盈利数,则随机变量的分布列为
D np(1 p)
练习:
1.已知随机变量x的分布列为则Ex与Dx的值为(D)
(A) 0.6和0.7 (B)1.7和0.3 1 2 (C) 0.3和0.7 (D)1.7和0.21 P 0.3 0.7
2.已知x~B(100,0.5),则Ex=5__0_,Dx=2__5__,x=_5__. E(2x-1)=_9_9__, D(2x-1)=_1_0_0_, (2x-1)=__1_0__
离散型随机变量的方差
离散型随机变量的方差
离散型随机变量的方差:
1. 定义:
离散型随机变量的方差是指离散型随机变量的取值的波动的程度,是衡量离散型随机变量的离散性程度的一个数字特征。
其定义为:离散型随机变量的方差,就是
它的可能取值分量的概率值的平方与它的期望的差的绝对值的期望,用数学公式表示为: σ2=E(|X-E(X)|^2)。
2. 具体计算:
一般地,若离散型随机变量X有n种可能取值x1, x2,…,xn,且各取值的概率分
别为P1, P2,…, Pn,则它的方差可以计算为:σ2=Σ(xk-E(X))^2Pk(k=1,2,…,n),
这种表达式把概率积分变为概率和相乘。
3. 概念及特性:
(1)离散型随机变量的方差表示该变量取值分量和期望之间的偏离程度,值越大,变动程度越大,离散性越大,反之,若方差越小,说明变动越小,离散性越小。
(2)离散型随机变量的方差不是一个稳定的值,而是跟概率有关,若改变概率值,则方差值也会改变。
(3)方差是不等号两边的和,当方差的值大于0,则离散型随机变量的变动是有
方向的,反之,如果等于0,则表明该变量不会发生变化。
(4)方差在评价投资机会时,可用来衡量投资收益率的范围,当它越大时,投资
收益绝对值的变动也越大,说明投资机会的收益风险也增大。
人教版A版高中数学选修2-3:2.3离散型随机变量的均值与方差
反),(反正),(反反),所以试验一次成功的概率为 1-
1 2
2
= 3.
4
所以在 2 次试验中成功次数 X 的取值为 0,1,2,
其中 P(X=0)=
1 4
2 = 116,
P(X=1)=C21
×
3 4
×
1 4
=
38,
P(X=2)=34
×
3 4
=
196,
所以在 2 次试验中成功次数 X 的均值是 E(X)=0× 116+1×
他们考核所得的等次相互独立.
(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率;
(2)记这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量ξ,求随机变 量ξ的分布列和均值E(ξ).
思考怎样求离散型随机变量X的均值与方差?
解 (1)记“甲考核为优秀”为事件A,“乙考核为优秀”为事件B,“丙考核为优秀”为 事件C,“志愿者甲、乙、丙三人中至少有一名考核为优秀”为事件E,
请同学们阅读课本,通过自学完成以下问题:
• 1.下列结论正确的打“√”,错误的打“×”.
• (1)均值是算术平均数概念的推广,与概率无关.( ) • (2)均值与方差都是从整体上刻画离散型随机变量的情况,因此它们是一回 事.( ) • (3)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度, 方差或标准差越小,则偏离均值的平均程度越小.( ) • (4)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的均值,σ 是正态分布的标准差.( )
(2)从招聘职工(人数很多)中任意选取3人,记X为这3名职工中参加这种技能培 训时间不少于90小时的人数.试求X的分布列、均值E(X)和方差D(X).
高中数学选修2-3课时作业7:2.3.2离散型随机变量的方差
2.3.2 离散型随机变量的方差一、基础达标1.下列说法中,正确的是( )A .离散型随机变量的均值E (X )反映了X 取值的概率平均值B .离散型随机变量的方差D (X )反映了X 取值的平均水平C .离散型随机变量的均值E (X )反映了X 取值的平均水平D .离散型随机变量的方差D (X )反映了X 取值的概率平均值 [答案] C2.设一随机试验的结果只有A 和A ,且P (A )=m ,令随机变量ξ=⎩⎪⎨⎪⎧1,A 发生,0,A 不发生,则ξ的方差D (ξ)等于( ) A .m B .2m (1-m ) C .m (m -1) D .m (1-m )[答案] D[解析] 随机变量ξ的分布列为∴E (ξ)=0×(1-m )+1×m =m .∴D (ξ)=(0-m )2×(1-m )+(1-m )2×m =m (1-m ).∴故选D.3.已知随机变量X 的分布列为P (X =k )=13,k =1,2,3,则D (3X +5)等于( )A .6B .9C .3D .4 [答案] A[解析] E (X )=1×13+2×13+3×13=2,∴D (X )=13×[(1-2)2+(2-2)2+(3-2)2]=23,∴D (3X +5)=9D (X )=9×23=6.4.已知X ~B (n ,p ),E (X )=8,D (X )=1.6,则n 与p 的值分别是( ) A .100和0.08 B .20和0.4 C .10和0.2 D .10和0.8[答案] D[解析] 因随机变量X ~B (n ,p ), 则E (X )=np =8, D (X )=np ·(1-p )=1.6, 所以n =10,p =0.8.5.若D (ξ)=1,则D (ξ-D (ξ))=________. [答案] 1[解析] D (ξ-D (ξ))=D (ξ-1)=D (ξ)=1. 6.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________.[答案] 59[解析] 由题意得2b =a +c ①,a +b +c =1②,c -a =13③,以上三式联立解得a =16,b =13,c =12,故D (ξ)=59. 7.有甲、乙两种建筑材料,从中各取等量样品检查它们的抗拉强度如下:其中ξA ,ξB 120,试比较甲、乙两种建筑材料的稳定程度.(哪一种的稳定性较好)解 E (ξA )=110×0.1+120×0.2+125×0.4+130×0.1+135×0.2=125, E (ξB )=100×0.1+115×0.2+125×0.4+130×0.1+145×0.2=125,D (ξA )=0.1×(110-125)2+0.2×(120-125)2+0.4×(125-125)2+0.1×(130-125)2+0.2×(135-125)2=50,D (ξB )=0.1×(100-125)2+0.2×(115-125)2+0.4×(125-125)2+0.1×(130-125)2+0.2×(145-125)2=165,由此可见,E (ξA )=E (ξB ),D (ξA )<D (ξB ),故两种材料的抗拉强度的平均值相等,其稳定程度材料乙明显不如材料甲,故甲的稳定性好. 二、能力提升8.已知随机变量ξ的分布列如下表,则ξ的标准差为( )A.3.56B. 3.2C .3.2D. 3.56 [答案] D[解析] 依题意:0.4+0.1+x =1, ∴x =0.5,∴E (ξ)=1×0.4+3×0.1+5×0.5=3.2,∴D (ξ)=(1-3.2)2×0.4+(3-3.2)2×0.1+(5-3.2)2×0.5=3.56, ∴D (ξ)= 3.56.9.设随机变量ξ的分布列为P (ξ=k )=C k n (23)k (13)n -k,k =0,1,2,…,n ,且E (ξ)=24,则D (ξ)的值为( ) A .8B .12C.29D .16[答案] A[解析] 由题意可知ξ~B (n ,23),∴E (ξ)=23n =24.∴n =36.∴D (ξ)=36×23×(1-23)=8.10.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.[答案] 25[解析] 设P (ξ=1)=a ,P (ξ=2)=b , 则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎨⎧a =35,b =15,所以D (ξ)=15+35×0+15×1=25.11.有10张卡片,其中8张标有数字2,2张标有数字5,从中随机地抽取3张卡片,设3张卡片数字之和为ξ,求E (ξ)和D (ξ).解 这3张卡片上的数字之和为ξ,这一变量的可能取值为6,9,12.ξ=6表示取出的3张卡片上均标有2, 则P (ξ=6)=C 38C 310=715.ξ=9表示取出的3张卡片上两张标有2,一张标有5,则P (ξ=9)=C 28C 12C 310=715.ξ=12表示取出的3张卡片上一张标有2,两张标有5,则P (ξ=12)=C 18C 22C 310=115.∴ξ的分布列为∴E (ξ)=6×715+9×715+12×115=7.8.D (ξ)=(6-7.8)2×715+(9-7.8)2×715+(12-7.8)2×115=3.36.12.为了迎战下届奥运会,对甲、乙两名射手进行一次选拔赛.已知甲、乙两名射手在每次射击中击中的环数均大于6,且甲射中10,9,8,7环的概率分别为0.5,3a ,a ,0.1,乙射中10,9,8环的概率分别为0.3,0.3,0.2.(1)求ξ,η的分布列;(其中ξ为甲击中的环数,η为乙击中的环数)(2)求ξ,η的均值与方差,并以此比较甲、乙的射击技术.解(1)依据题意,知0.5+3a+a+0.1=1,解得a=0.1.∵乙射中10,9,8环的概率分别为0.3,0.3,0.2,∴乙射中7环的概率为1-(0.3+0.3+0.2)=0.2.∴ξ,η的分布列分别为(2)结合(1)中ξ,η的分布列可得:E(ξ)=10×0.5+9×0.3+8×0.1+7×0.1=9.2,E(η)=10×0.3+9×0.3+8×0.2+7×0.2=8.7,D(ξ)=(10-9.2)2×0.5+(9-9.2)2×0.3+(8-9.2)2×0.1+(7-9.2)2×0.1=0.96,D(η)=(10-8.7)2×0.3+(9-8.7)2×0.3+(8-8.7)2×0.2+(7-8.7)2×0.2=1.21.∵E(ξ)>E(η),说明甲平均射中的环数比乙高.又∵D(ξ)<D(η),说明甲射中的环数比乙集中,比较稳定.∴甲的射击技术好.三、探究与创新13.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,均值E(X)及方差D(X).解(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天的日销售量不低于100个且另1天的日销售量低于50个”.因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X=0)=C03(1-0.6)3=0.064,P(X=1)=C13·0.6(1-0.6)2=0.288,P(X=2)=C23·0.62(1-0.6)=0.432,P(X=3)=C33·0.63=0.216,则X的分布列为因为X~B(3,0.6),所以均值E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1-0.6)=0.72.。
高中数学离散型随机变量分布列、期望与方差
离散型随机变量——分布列、期望与方差从近几年高考试题看,离散型随机变量的期望与方差涉及到的试题背景有:①产品检验问题;②射击,投篮问题;③选题、选课,做题,考试问题;④试验,游戏,竞赛,研究性问题;⑤旅游,交通问题;⑥摸球球问题;⑦取卡片,数字和入座问题;⑧信息,投资,路线问题;⑨与概率分布直方图关联问题;⑩综合函数、方程、数列、不等式、导数、线性规划等知识问题着重考查分析问题和解决问题的能力。
一、离散型随机变量的分布列、期望与方差1.离散型随机变量及其分布列: (1)离散型随机变量:如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,这样的变量X 叫做一个随机变量.如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. (2)离散型随机变量的特点:①结果的可数性;②结果的未知性。
(3)离散型随机变量的分布列:设离散型随机变量X 所有可能的取值为i x ,与i x 对应的概率为i p (1,2,,)i n =,则下表:称为离散型随机变量X 的概率分布,或称为离散型随机变量X 的分布列. (4)离散型随机变量的分布列的性质:①0i p >(1,2,,)i n =;②11nii p==∑(1,2,,)i n =.③(P ξ≥1)()()k k k x P x P x ξξ+==+=+⋅⋅⋅ 2.离散型随机变量的数学期望:(1)定义:一般地,设一个离散型随机变量X 所有可能的取的值是1x ,2x ,…,n x , 这些值对应的概率是1p ,2p ,…,n p ,则1122()n n E x x p x p x p =+++,叫做这个离散型随机变量X 的均值或数学期望(简称期望).(2)离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平.3.离散型随机变量的方差:(1)定义:一般地,设一个离散型随机变量X 所有可能取的值是1x ,2x ,…,n x ,这 些值对应的概率是1p ,2p ,…,n p ,则2221122()(())(())(())n n D X x E x p x E x p x E x p =-+-++-叫做这个离散型随机变量X 的方差.(2)离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小 (离散程度).(3)()D X的算术平方根叫做离散型随机变量X 的标准差,它也是一个衡量离散 型随机变量波动大小的量.4.随机变量aX b +的期望与方差:①()()E aX b aE X b +=+;②2()().D aX b a D X +=二、条件概率与事件的独立性:1.条件概率:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件 概率,用符号“(|)P B A ”来表示.把由事件A 与B 的交(或积),记做D A B =(或D AB =). 2.事件的独立性如果事件A 是否发生对事件B 发生的概率没有影响,即(|)()P B A P B =,这时,我们称两 个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.如果事件1A ,2A ,…,n A 相互独立,那么这n 个事件都发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A =⨯⨯⨯,并且上式中任意多个事 件i A 换成其对立事件后等式仍成立.三、几类典型的概率分布:1.两点分布:如果随机变量X 的分布列为其中01p <<,1q p =-,则称离散型随机变量X 服从参数为p 的二点分布.注:①两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验, 所以这种分布又称为伯努利分布. ②();().E X p D X np ==2.超几何分布:一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件 ()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为C C ()C m n mM N Mn NP X m --==(0m l ≤≤,l 为n 和M 中较小的一个),称离散型随机变量X 的这 种形式的概率分布为超几何分布,也称X 服从参数为N ,M ,n 的超几何分布.记为:(,,)X H N M n .注:();ME X n N=2()()()(1)n N n N M M D X N N --=-. 3.二项分布:(1)定义:如果每次试验,只有两个可能的结果A 及A ,且事件A 发生的概率相同(p ). 那么重复地做n 次试验,各次试验的结果相互独立,这种试验称为n 次独立重复试验.在n 次试验中,事件A 恰好发生k 次的概率为:()C (1)kk n k n n P k p p -=-(0,1,,)k n =.(2)二项分布:若将事件A 发生的次数为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是()C k k n k n P X k p q-==, 其中0,1,2,,k n =,于是得到X 的分布列:由于表中第二行恰好是二项展开式00111()C C C C n n n kk n k n n n n n n q p p q p q p q p q --+=++++各对应项的值,所以称这样的离散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p . (3)二项分布的均值与方差:若~(,)X B n p ,则()E X np =,()D x npq =(1)q p =-.4.几何分布:(1)定义:在独立重复试验中,某事件第一次发生时,所作试验的次数X 也是一个正 整数的离散型随机变量.“X k =”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()k p A p =,()1,k p A p =- 那么112311231()()()()()()()(1)k k k k k P X k P A A A A A P A P A P A P A P A p p ---====-.(0,1,2,k =…);于是得到随机变量ξ的概率分布如下:记作(,),Xg k p(2)若(,),X g k p 则1()E X p =;21()pD X p-=(1)q p =-. 5.正态分布(1)概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上 面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则 这条曲线称为X 的概率密度曲线.(2)曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. (2)正态分布:①定义:如果随机现象是由一些互相独立的偶然因素所引起的, 而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作 用,则表示这样的随机现象的随机变量的概率分布近似服从正态分 布.服从正态分布的随机变量叫做正态随机变量,简称正态变量. ②正态变量概率密度曲线的函数表达式为 22()2()x f x μσ--=,x ∈R , 其中μ,σ是参数,且0σ>,μ-∞<<+∞.式中的参数μ和σ分别为正态变量的数学期望和标准差. 期望为μ、标准差为σ的正态分布通常记作:2(,)XN μσ.③正态变量的概率密度函数的图象叫做正态曲线.④标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. ⑤正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是 68.3%,95.4%,99.7%.⑥正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是 0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则.⑦若2~()N ξμσ,,()f x 为其概率密度函数,则称()()()xF x P x f t dt ξ-∞==⎰≤为概率分布函 数,特别的,2~(01)N ξμσ-,,称22()t x x dt φ-=⎰为标准正态分布函数,()()x P x μξφσ-<=.离散型随机变量——分布列、期望与方差考点1.产品检验问题:例1.已知甲盒子内有3个正品元件和4个次品元件,乙盒子内有5个正品元件和4个次品 元件,现从两个盒子内各取出2个元件,试求(1)取得的4个元件均为正品的概率; (2)取得正品元件个数ε的数学期望.例2.某车间在三天内,每天生产10件某产品,其中第一天,第二天分别生产出了1件、 2件次品,而质检部每天要从生产的10件产品中随意抽取4件进行检查,若发现有次品, 则当天的产品不能通过.(1)求第一天通过检查的概率;(2)求前两天全部通过检查的概率;(2)若厂内对车间生产的产品采用记分制:两天全不通过检查得0分,通过1天、 2天分别得1分、2分.求该车间在这两天内得分的数学期望.考点2.比赛问题:例3.,A B 两队进行篮球决赛,共五局比赛,先胜三局者夺冠,且比赛结束。
离散型随机变量的期望值和方差
12.2 离散型随机变量的期望值和方差一、知识梳理1.期望:若离散型随机变量ξ,当ξ=x i的概率为P(ξ=x i)=P i (i=1,2,…,n,…),则称Eξ=∑x i p i为ξ的数学期望,反映了ξ的平均值.期望是算术平均值概念的推广,是概率意义下的平均.Eξ由ξ的分布列唯一确定.2.方差:称Dξ=∑(x i-Eξ)2p i为随机变量ξ的均方差,简称方差. D叫标准差,反映了ξ的离散程度.3.性质:(1)E(aξ+b)=aEξ+b,D(aξ+b)=a2Dξ(a、b 为常数).(2)二项分布的期望与方差:若ξ~B(n,p),则Eξ=np,D ξ=npq(q=1-p).Dξ表示ξ对Eξ的平均偏离程度,Dξ越大表示平均偏离程度越大,说明ξ的取值越分散.二、例题剖析【例1】设ξ是一个离散型随机变量,其分布列如下表,试求E ξ、Dξ.拓展提高 既要会由分布列求E ξ、D ξ,也要会由E ξ、D ξ求分布列,进行逆向思维.如:若ξ是离散型随机变量,P (ξ=x 1)=53,P (ξ=x 2)=52,且x 1<x 2,又知E ξ=57,D ξ=256.求ξ的分布列.解:依题意ξ只取2个值x 1与x 2,于是有E ξ=53x 1+52x 2=57, D ξ=53x 12+52x 22-E ξ2=256. 从而得方程组⎪⎩⎪⎨⎧=+=+.1123,723222121x x x x【例2】 人寿保险中(某一年龄段),在一年的保险期内,每个被保险人需交纳保费a 元,被保险人意外死亡则保险公司赔付3万元,出现非意外死亡则赔付1万元.经统计此年龄段一年内意外死亡的概率是p 1,非意外死亡的概率为p 2,则a 需满足什么条件,保险公司才可能盈利?【例3】 把4个球随机地投入4个盒子中去,设ξ表示空盒子的个数,求E ξ、D ξ.特别提示求投球的方法数时,要把每个球看成不一样的.ξ=2时,此时有两种情况:①有2个空盒子,每个盒子投2个球;②1个盒子投3个球,另1个盒子投1个球.【例4】 若随机变量A 在一次试验中发生的概率为p (0<p <1),用随机变量ξ表示A 在1次试验中发生的次数.(1)求方差D ξ的最大值;(2)求ξξE D 12-的最大值. 【例5】 袋中装有一些大小相同的球,其中有号数为1的球1个,号数为2的球2个,号数为3的球3个,…,号数为n 的球n 个.从袋中任取一球,其号数作为随机变量ξ,求ξ的概率分布和期望.【例6】(湖北卷)某地最近出台一项机动车驾照考试规定;每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,使可领取驾照,不再参加以后的考试,否则就一直考到第4次为止。
高中数学选修2-3-离散型随机变量的期望与方差
离散型随机变量的期望与方差知识集结知识元离散型随机变量的期望与方差知识讲解1.离散型随机变量的期望与方差【知识点的知识】1、离散型随机变量的期望数学期望:一般地,若离散型随机变量ξ的概率分布为x1x2…x n…P p1p2…p n…则称Eξ=x1p1+x2p2+…+x n p n+…为ξ的数学期望,简称期望.数学期望的意义:数学期望离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平.平均数与均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令p1=p2=…=p n,则有p1=p2=…=p n=,Eξ=(x1+x2+…+x n)×,所以ξ的数学期望又称为平均数、均值.期望的一个性质:若η=aξ+b,则E(aξ+b)=aEξ+b.2、离散型随机变量的方差;方差:对于离散型随机变量ξ,如果它所有可能取的值是x1,x2,…,x n,…,且取这些值的概率分别是p1,p2,…,p n…,那么,称为随机变量ξ的均方差,简称为方差,式中的Eξ是随机变量ξ的期望.标准差:Dξ的算术平方根叫做随机变量ξ的标准差,记作.方差的性质:.方差的意义:(1)随机变量的方差的定义与一组数据的方差的定义式是相同的;(2)随机变量的方差、标准差也是随机变量的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;(3)标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛.例题精讲离散型随机变量的期望与方差例1.在某公司的一次投标工作中,中标可以获利12万元,没有中标损失成本费0.5万元、若中标的概率为0.6,设公司盈利为X万元,则D(X)=()A.7B.31.9C.37.5D.42.5例2.设随机变量ξ服从分布B(n,p),且E(ξ)=1.2,D(ξ)=0.96,则()A.n=6,p=0.2B.n=4,p=0.3C.n=5,p=0.24D.n=8,p=0.15例3.已知A,B两个不透明盒中各有形状、大小都相同的红球、白球若干个.A盒中有m个红球与10-m个白球,B盒中有10-m个红球与m个白球(0<m<10),若从A,B盒中各取一个球,ξ表示所取的2个球中红球的个数,则当Dξ取到最大值时,m的值为()A.3B.5C.7D.9当堂练习单选题练习1.随机变量ξ的分布列如表,且E(ξ)=1.1,则D(ξ)=()A.0.36B.0.52C.0.49D.0.68练习2.在某公司的一次投标工作中,中标可以获利12万元,没有中标损失成本费0.5万元、若中标的概率为0.6,设公司盈利为X万元,则D(X)=()A.7B.31.9C.37.5D.42.5练习3.设随机变量ξ服从分布B(n,p),且E(ξ)=1.2,D(ξ)=0.96,则()A.n=6,p=0.2B.n=4,p=0.3C.n=5,p=0.24D.n=8,p=0.15练习4.已知A,B两个不透明盒中各有形状、大小都相同的红球、白球若干个.A盒中有m个红球与10-m个白球,B盒中有10-m个红球与m个白球(0<m<10),若从A,B盒中各取一个球,ξ表示所取的2个球中红球的个数,则当Dξ取到最大值时,m的值为()A.3B.5C.7D.9解答题练习1.'为了积极支持雄安新区建设,某投资公司计划明年投资1000万元给雄安新区甲、乙两家科技企业,以支持其创新研发计划,经有关部门测算,若不受中美贸易战影响的话,每投入100万元资金,在甲企业可获利150万元,若遭受贸易战影响的话,则将损失50万元;同样的情况,在乙企业可获利100万元,否则将损失20万元,假设甲、乙两企业遭受贸易战影响的概率分别为0.6和0.5.(1)若在甲、乙两企业分别投资500万元,求获利1250万元的概率;(2)若在两企业的投资额相差不超过300万元,求该投资公司明年获利约在什么范围内?'练习2.'某蛇养殖基地因国家实施精准扶贫,大力扶持农业产业发展,拟扩大养殖规模.现对该养殖基地已经售出的王锦蛇的体长(单位:厘米)进行了统计,得到体长的频数分布表如下:若王锦蛇、乌梢蛇成年母蛇的购买成本分别为650元/条、600元/条,每条母蛇平均可为养殖场获得1200元/年的销售额,且每条蛇的繁殖年限均为整数,将每条蛇的繁殖年限的频率看作概率,以每条蛇所获得的毛利润(毛利润=总销售额-购买成本)的期望值作为购买蛇类的依据,试问:应购买哪类蛇?'练习3.'中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们]对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.②记抽到45岁以上的人数为x,求随机变量x的分布列及数学期望.'练习4.'已知甲、乙两名工人在同样条件下每天各生产100件产品,且每生产1件正品可获利20元,生产1件次品损失30元,甲、乙两名工人100天中出现次品件数的情况如表所示.(1)将甲每天生产的次品数记为x(单位:件),日利润记为y(单位:元),写出y与x的函数关系式;(2)如果将统计的100天中产生次品量的频率作为概率,记X表示甲、乙两名工人1天中各自日利润不少于1950元的人数之和,求随机变量X的分布列和数学期望.'练习5.'“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y.(1)求X为“回文数”的概率;(2)设随机变量ξ表示X,Y两数中“回文数”的个数,求ξ的概率分布和数学期望E(ξ).'。
离散型随时机变量的期望与方差
2.某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一 旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实 施结果:
投资成功 192次
投资失败 8次
则该公司一年后估计可获收益的期望是________元. 答案:4 760
3.已知 ξ服从二项分布,即ξ~B(100, ),则E(2ξ+3)=________. 解析:由已知Eξ=100× =50,∴E(2ξ+3)=2Eξ+3=103. 答案:103
【答题模板】
解答:根据已知条件随机变量x的取值分别是1,2,3.
P(x=1)=
,P(x=2)=
P(x=3)=
则随机变量ξ的分布列为
x
1
2
3
ξ
Eξ= +1+ =
【分析点评】
1. 离散型随机变量的期望和方差是高考考查离散型随机变量分布列的重 点.高考中也考查二项分布和几何分布相关的分布列及期望和方差.
复试验,故ξ~B(5, ),即有P(ξ=k)=
,k=0,1,2,3,4,5.
由此计算ξ的分布列如解法一.
(2)Eξ=
.
解法三:(1)同解法一或解法二. (2)由对称性与等可能性,在三层的任一层下电梯的人数同分布, 故期望值相等.即3Eξ=5,从而Eξ= .
变式2. 2010年广州亚运组委会向民间招募防暴犬,首先进行入围测试,计划考 查三类问题:①体能;②嗅觉;③反应,这三类问题中只要有两类通过测试, 就可以入围.某驯犬基地有4只优质犬参加测试,已知这4只优质犬通过①类问 题的概率都是 ,通过②类问题的概率都是 , 通过③类问题的概率都是 . (1)求每只优质犬能够入围的概率; (2)若每入围1只优质犬给基地计10分,设基地得分为随机变量ξ,求Eξ.
【高中数学】第七章 7.3.2 离散型随机变量的方差
7.3.2 离散型随机变量的方差学习目标 1.理解取有限个值的离散型随机变量的方差及标准差的概念.2.能计算简单离散型随机变量的方差,并能解决一些实际问题.3.掌握方差的性质以及两点分布的方差的求法,会利用公式求它们的方差.知识点一 离散型随机变量的方差、标准差 设离散型随机变量X 的分布列如表所示.X x 1 x 2 … x n Pp 1p 2…p n我们用X 所有可能取值x i 与E (X )的偏差的平方(x 1-E (X ))2,(x 2-E (X ))2,…,(x n -E (X ))2,关于取值概率的加权平均,来度量随机变量X 取值与其均值E (X )的偏离程度.我们称D (X )=(x 1-E (X ))2p1+(x 2-E (X ))2p 2+…+(x n -E (X ))2p n =∑i =1n(x i -E (X ))2p i 为随机变量X 的方差(variance),有时也记为Var (X ),并称D (X )为随机变量X 的标准差(standard deviation),记为σ(X ).知识点二 离散型随机变量方差的性质 1.设a ,b 为常数,则D (aX +b )=a 2D (X ). 2.D (c )=0(其中c 为常数).1.离散型随机变量的方差越大,随机变量越稳定.( × ) 2.若a 是常数,则D (a )=0.( √ )3.离散型随机变量的方差反映了随机变量取值偏离于均值的平均程度.( √ ) 4.若a ,b 为常数,则D (ax +b )=a D (x ).( × )一、求离散型随机变量的方差例1 袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球.ξ表示所取球的标号. (1)求ξ的分布列、均值和方差;(2)若η=aξ+b ,E (η)=1,D (η)=11,试求a ,b 的值. 解 (1)ξ的分布列为则E (ξ)=0×12+1×120+2×110+3×320+4×15=1.5.D (ξ)=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.(2)由D (η)=a 2D (ξ),得a 2×2.75=11,得a =±2. 又由E (η)=aE (ξ)+b ,得1.5a +b =1,所以当a =2时,由1=2×1.5+b ,得b =-2; 当a =-2时,由1=-2×1.5+b ,得b =4.所以⎩⎪⎨⎪⎧ a =2,b =-2或⎩⎪⎨⎪⎧a =-2,b =4即为所求.反思感悟 (1)求离散型随机变量方差的步骤 ①理解随机变量X 的意义,写出X 的所有取值; ②求出X 取每个值的概率; ③写出X 的分布列; ④计算E (X ); ⑤计算D (X ).(2)线性关系的方差计算:若η=aξ+b ,则D (η)=a 2D (ξ). 跟踪训练1 已知随机变量ξ的分布列如下表:(1)求E (ξ),D (ξ),D (ξ); (2)设η=2ξ+3,求E (η),D (η).解 (1)E (ξ)=(-1)×12+0×13+1×16=-13,D (ξ)=⎝⎛⎭⎫-1+132×12+⎝⎛⎭⎫0+132×13+⎝⎛⎭⎫1+132×16=59,D (ξ)=53. (2)E (η)=2E (ξ)+3=73,D (η)=4D (ξ)=209.二、方差的应用例2有甲、乙两种建筑材料,从中各取等量样品检查它们的抗拉强度如下:其中,ξA,ξB分别表示甲、乙两种材料的抗拉强度,在使用时要求抗拉强度不低于120,试比较甲、乙两种建筑材料的稳定程度(哪一个的稳定性较好).解E(ξA)=110×0.1+120×0.2+125×0.4+130×0.1+135×0.2=125.E(ξB)=100×0.1+115×0.2+125×0.4+130×0.1+145×0.2=125.D(ξA)=0.1×(110-125)2+0.2×(120-125)2+0.4×(125-125)2+0.1×(130-125)2+0.2×(135-125)2=50.D(ξB)=0.1×(100-125)2+0.2×(115-125)2+0.4×(125-125)2+0.1×(130-125)2+0.2×(145-125)2=165.由此可见E(ξA)=E(ξB),D(ξA)<D(ξB),故两种材料的抗拉强度的均值相等,其稳定程度材料乙明显不如材料甲,即甲的稳定性较好.反思感悟均值、方差在决策中的作用(1)均值:均值反映了离散型随机变量取值的平均水平,均值越大,平均水平越高.(2)方差:方差反映了离散型随机变量取值的离散波动程度,方差越大越不稳定.(3)在决策中常结合实际情形依据均值、方差做出决断.跟踪训练2甲、乙两个野生动物保护区有相同的自然环境,且候鸟的种类和数量也大致相同,两个保护区每个季度发现违反保护条例的事件次数的分布列分别为试评定这两个保护区的管理水平.解甲保护区内违反保护条例的次数X的均值和方差分别为E(X)=0×0.3+1×0.3+2×0.2+3×0.2=1.3,D(X)=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21.乙保护区内违反保护条例的次数Y的均值和方差分别为E (Y )=0×0.1+1×0.5+2×0.4=1.3,D (Y )=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41.因为E (X )=E (Y ),D (X )>D (Y ),所以两个保护区内每个季度发现违反保护条例的事件的平均次数相同,但甲保护区内违反保护条例的事件次数相对分散且波动较大,乙保护区内违反保护条例的事件次数更加集中和稳定,相对而言,乙保护区的管理更好一些. 三、分布列、均值、方差的综合应用例3 甲、乙两人进行定点投篮游戏,投篮者若投中,则继续投篮,否则由对方投篮;第一次由甲投篮,已知每次投篮甲、乙命中的概率分别为13,34.(1)求第三次由乙投篮的概率;(2)在前3次投篮中,乙投篮的次数为X ,求X 的分布列、均值及标准差. 解 (1)P =13×23+23×34=1318.(2)由题意,得X 的所有可能取值为0,1,2, P (X =0)=13×13=19.P (X =1)=13×23+23×14=718,P (X =2)=23×34=12.故X 的分布列为E (X )=0×19+1×718+2×12=2518,D (X )=⎝⎛⎭⎫0-25182×19+⎝⎛⎭⎫1-25182×718+⎝⎛⎭⎫2-25182×12=149324. ∴σ(X )=D (X )=14918. 反思感悟 处理综合问题的方法第一步:确定事件间的关系,是互斥、对立还是相互独立.第二步:要依据事件间的关系,选择相应的概率公式,计算相应事件的概率. 第三步:列分布列,并计算均值及方差.跟踪训练3 有三张形状、大小、质地完全相同的卡片,在各卡片上分别写上0,1,2,现从中任意抽取一张,将其上数字记作x ,然后放回,再抽取一张,其上数字记作y ,令X =xy ,求: (1)X 所取各值的分布列;(2)随机变量X 的均值与方差.解 (1)由题意知,随机变量X 的可能取值为0,1,2,4.“X =0”是指两次取的卡片上至少有一次为0,其概率为P (X =0)=1-23×23=59,“X =1”是指两次取的卡片上都标着1,其概率为P (X =1)=13×13=19,“X =2”是指两次取的卡片上一个标着1,另一个标着2,其概率为P (X =2)=2×13×13=29,“X =4”是指两次取的卡片上都标着2,其概率为P (X =4)=13×13=19.则X 的分布列为X 0 1 2 4 P59192919(2)E (X )=0×59+1×19+2×29+4×19=1,D (X )=(0-1)2×59+(1-1)2×19+(2-1)2×29+(4-1)2×19=169.1.设随机变量X 的方差D (X )=1,则D (2X +1)的值为( ) A .2 B .3 C .4 D .5 答案 C解析 D (2X +1)=4D (X )=4×1=4.2.有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本均值E (X 甲)=E (X 乙),方差分别为D (X 甲)=11,D (X 乙)=3.4.由此可以估计( ) A .甲种水稻比乙种水稻分蘖整齐 B .乙种水稻比甲种水稻分蘖整齐 C .甲、乙两种水稻分蘖整齐程度相同 D .甲、乙两种水稻分蘖整齐程度不能比较 答案 B3.(多选)下列说法中错误的是( )A .离散型随机变量X 的均值E (X )反映了X 取值的概率的平均值B .离散型随机变量X 的方差D (X )反映了X 取值的平均水平C .离散型随机变量X 的均值E (X )反映了X 取值的平均水平D .离散型随机变量X 的方差D (X )反映了X 取值的概率的平均值答案 ABD解析 E (X )反映了X 取值的平均水平,D (X )反映了X 取值的离散程度.4.已知离散型随机变量X 的分布列如下表所示,若E (X )=0,D (X )=1,则a =________,b =________.X -1 0 1 2 Pabc112答案512 14解析 由题意知⎩⎪⎨⎪⎧ a +b +c =1112,-a +c +16=0,a +c +13=1,解得⎩⎪⎨⎪⎧a =512,b =14,c =14.5.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.答案 25解析 设P (ξ=1)=a ,P (ξ=2)=b , 则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎨⎧a =35,b =15,所以D (ξ)=15+35×0+15×1=25.1.知识清单:(1)离散型随机变量的方差、标准差. (2)离散型随机变量的方差的性质. 2.方法归纳:转化化归. 3.常见误区:方差公式套用错误.1.随机变量X 的方差,反映其取值的( )A .平均水平B .分布规律C .波动大小D .最大值和最小值答案 C2.(多选)已知X 的分布列为则( ) A .E (X )=2912B .D (X )=121144C .D (X )=179144D .E (X )=1712答案 AC解析 ∵E (X )=1×14+2×13+3×16+4×14=2912,∴D (X )=⎝⎛⎭⎫1-29122×14+⎝⎛⎭⎫2-29122×13+⎝⎛⎭⎫3-29122×16+⎝⎛⎭⎫4-29122×14=179144. 3.由以往的统计资料表明,甲、乙两名运动员在比赛中的得分情况为现有一场比赛,应派哪位运动员参加较好( ) A .甲 B .乙 C .甲、乙均可 D .无法确定答案 A解析 ∵E (X 1)=E (X 2)=1.1,D (X 1)=1.12×0.2+0.12×0.5+0.92×0.3=0.49, D (X 2)=1.12×0.3+0.12×0.3+0.92×0.4=0.69, ∴D (X 1)<D (X 2),即甲比乙得分稳定, 故派甲运动员参加较好.4.设随机变量X 的概率分布列为P (X =k )=p k (1-p )1-k (k =0,1),则E (X ),D (X )的值分别是( ) A .0和1 B .p 和p 2 C .p 和1-pD .p 和(1-p )p答案 D解析 由X 的分布列知,P (X =0)=1-p ,P (X =1)=p , 故E (X )=0×(1-p )+1×p =p ,易知X 服从两点分布,∴D (X )=p (1-p ).5.已知随机变量X 的分布列为P (X =k )=13,k =1,2,3,则D (3X +5)等于( )A .6B .9C .3D .4 答案 A解析 E (X )=1×13+2×13+3×13=2,∴D (X )=13×[(1-2)2+(2-2)2+(3-2)2]=23,∴D (3X +5)=9D (X )=9×23=6.6.已知随机变量X 的分布列如表所示:则a =________,D (X )=________. 答案 0.5 3.56解析 根据随机变量分布列的性质,知0.4+0.1+a =1,所以a =0.5, E (X )=0.4+0.3+2.5=3.2,D (X )=2.22×0.4+0.22×0.1+1.82×0.5=3.56.7.已知离散型随机变量X 的可能取值为x 1=-1,x 2=0,x 3=1,且E (X )=0.1,D (X )=0.89,则对应x 1,x 2,x 3的概率p 1,p 2,p 3分别为________,________,________. 答案 0.4 0.1 0.5 解析 由题意知,⎩⎪⎨⎪⎧-p 1+p 3=0.1,1.21p 1+0.01p 2+0.81p 3=0.89,p 1+p 2+p 3=1,解得⎩⎪⎨⎪⎧p 1=0.4,p 2=0.1,p 3=0.5.8.若随机事件A 在1次试验中发生的概率为p (0<p <1),用随机变量X 表示A 在1次试验中发生的次数,则方差D (X )的最大值为________,此时p =________.答案 14 12解析 随机变量X 的所有可能的取值是0,1,并且P (X =1)=p ,P (X =0)=1-p . 从而E (X )=0×(1-p )+1×p =p , D (X )=(0-p )2×(1-p )+(1-p )2·p =p -p 2 =-⎝⎛⎭⎫p -122+14. ∵0<p <1,∴当p =12时,D (X )取最大值,最大值是14.9.甲、乙两名射手在一次射击中得分为两个相互独立的随机变量ξ与η,且ξ,η的分布列为(1)求a ,b 的值;(2)计算ξ,η的均值与方差,并以此分析甲、乙的技术状况.解 (1)由离散型随机变量的分布列的性质可知a +0.1+0.6=1,∴a =0.3. 同理0.3+b +0.3=1,b =0.4.(2)E (ξ)=1×0.3+2×0.1+3×0.6=2.3, E (η)=1×0.3+2×0.4+3×0.3=2,D (ξ)=(1-2.3)2×0.3+(2-2.3)2×0.1+(3-2.3)2×0.6=0.81, D (η)=(1-2)2×0.3+(2-2)2×0.4+(3-2)2×0.3=0.6.由于E (ξ)>E (η),说明在一次射击中,甲的平均得分比乙高,但D (ξ)>D (η),说明甲得分的稳定性不如乙,因此甲、乙两人技术水平都不够全面,各有优劣. 10.已知X 的分布列为(1)求X 2的分布列; (2)计算X 的方差;(3)若Y =4X +3,求Y 的均值和方差.解 (1)由分布列的性质,知12+14+a =1,故a =14,从而X 2的分布列为X 2 0 1 P1434(2)由(1)知a =14,所以X 的均值E (X )=(-1)×12+0×14+1×14=-14.故X 的方差D (X )=⎝⎛⎭⎫-1+142×12+⎝⎛⎭⎫0+142×14+⎝⎛⎭⎫1+142×14=1116. (3)因为Y =4X +3,所以E (Y )=4E (X )+3=2, D (Y )=42D (X )=11.11.设随机试验的结果只有A 发生和A 不发生,且P (A )=m ,令随机变量X =⎩⎪⎨⎪⎧1,A 发生,0,A 不发生,则X 的方差D (X )等于( ) A .m B .2m (1-m ) C .m (m -1) D .m (1-m )答案 D解析 显然X 服从两点分布,∴D (X )=m (1-m ). 12.(多选)已知随机变量X 的分布列是X 1 2 3 P13ab若E (X )=116,则( )A .a =12B .b =16C .D (X )=1736D .D (X )=2318答案 ABC解析 由题意得a +b =23.①由E (X )=13+2a +3b =116,②得2a +3b =32,联立①②,得a =12,b =16.所以D (X )=⎝⎛⎭⎫1-1162×13+⎝⎛⎭⎫2-1162×12+⎝⎛⎭⎫3-1162×16=1736.故选ABC. 13.已知随机变量ξ的分布列为ξ m n P13a若E (ξ)=2,则D (ξ)的最小值等于( ) A .0 B .2 C .4 D .无法计算 答案 D解析 由题意得a =1-13=23,所以E (ξ)=13m +23n =2,即m +2n =6.又D (ξ)=13×(m -2)2+23×(n -2)2=2(n -2)2,当n =2时,D (ξ)取得最小值,此时m =2,不符合题意,故D (ξ)无法取得最小值.14.若X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2,又已知E (X )=43,D (X )=29,则x 1+x 2的值为________. 答案 3解析 由已知得 ⎩⎨⎧x 1·23+x 2·13=43,⎝⎛⎭⎫x 1-432·23+⎝⎛⎭⎫x 2-432·13=29,即⎩⎪⎨⎪⎧2x 1+x 2=4,2⎝⎛⎭⎫x 1-432+⎝⎛⎭⎫x 2-432=23,解得⎩⎨⎧x 1=53,x 2=23或⎩⎪⎨⎪⎧x 1=1,x 2=2, 又x 1<x 2,所以⎩⎪⎨⎪⎧x 1=1,x 2=2,所以x 1+x 2=3.15.编号为1,2,3的三位学生随意入座编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的人数是ξ,则E (ξ)=________,D (ξ)=________. 答案 1 1解析 ξ的所有可能取值为0,1,3,ξ=0表示三位同学全坐错了,有2种情况,即编号为1,2,3的座位上分别坐了编号为2,3,1或3,1,2的学生,则P (ξ=0)=2A 33=13;ξ=1表示三位同学只有1位同学坐对了, 则P (ξ=1)=C 13A 33=12;ξ=3表示三位同学全坐对了,即对号入座, 则P (ξ=3)=1A 33=16.所以ξ的分布列为E (ξ)=0×13+1×12+3×16=1.D (ξ)=13×(0-1)2+12×(1-1)2+16×(3-1)2=1.16.A ,B 两个投资项目的利润率分别为随机变量X 1和X 2,根据市场分析,X 1和X 2的分布列分别如下表:(1)在A ,B 两个投资项目上各投资100万元,Y 1和Y 2分别表示投资项目A 和B 所获得的利润,求方差D (Y 1),D (Y 2);(2)将x (0≤x ≤100)万元投资项目A ,(100-x )万元投资项目B ,f (x )表示投资项目A 所得利润的方差与投资项目B 所得利润的方差的和.求f (x )的最小值,并指出x 为何值时,f (x )取得最小值.解 (1)根据题意,知Y 1和Y 2的分布列分别如下表:从而E (Y 1)=5×0.8+10×0.2=6,D (Y 1)=(5-6)2×0.8+(10-6)2×0.2=4,E (Y 2)=2×0.2+8×0.5+12×0.3=8,D (Y 2)=(2-8)2×0.2+(8-8)2×0.5+(12-8)2×0.3=12.(2)f (x )=D ⎝⎛⎭⎫x 100Y 1+D ⎝⎛⎭⎫100-x 100Y 2=⎝⎛⎭⎫x 1002D (Y 1)+⎝⎛⎭⎫100-x 1002D (Y 2)=41002[x 2+3(100-x )2] =12 500(4x 2-600x +30 000) =1625(x -75)2+3, 当x =75时,f (x )取得最小值3.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
高中数学选修课件:离散型随机变量的方差
对于二项分布B(n,p),其方差D(X) = np(1-p)。
方差的意义
方差是各个数据与平均数之差的平方的平均数,用来衡量随机变量与其数学期望(即均值 )之间的偏离程度。
泊松分布方差求解
泊松分布的概念
泊松分布是一种统计与概率学里常见到的离散概率分布, 由法国数学家西莫恩·德尼·泊松在1838年时发表,适合于 描述单位时间内随机事件发生的次数。
标准差与方差在衡量数据波动大小方 面具有一致性,但在量纲上有所不同 。标准差与原始数据具有相同的单位 ,更便于在实际问题中进行解释和应 用。
03
常见离散型随机变量方差求解
二项分布方差求解
二项分布的概念
在n次独立重复的伯努利试验中,设每次试验中事件A发生的概率为p,用X表示n重伯努 利试验中事件A发生的次数,则X的可能取值为0,1,…,n,且对每一个k(0≤k≤n),事件 {X=k}即为“n次试验中事件A恰好发生k次”,随机变量X的离散概率分布即为二项分布。
在工业生产中,通过检测产品的某项指标( 如尺寸、重量等),并利用离散型随机变量 及其数学期望进行质量控制和改进。
02
方差定义及性质
方差概念引入
离散型随机变量的波动大小
方差用于衡量离散型随机变量取值的波动大小,即变量值与其数学期望的偏离程 度。
概率加权平均
方差实际上是各个数据与全体数据平均数之差的平方值的平均数,即概率加权平 均。
超几何分布的方差公式
对于超几何分布H(n, M, N),其方差D(X) = n(M/N)(1-M/N)(N-n)/(N-1)。注意,这个公式在抽样不放回 且n远小于N时近似成立。
方差的意义
超几何分布的方差用于描述在有限总体的抽样中,成功抽中指定种类物件的次数与其数学期望之间的偏离程 度。这反映了抽样结果的波动性和不确定性。
高中数学同步学案 离散型随机变量的方差
2.5.2 离散型随机变量的方差预习课本P64~67,思考并完成以下问题1.离散型随机变量的方差及标准差的定义是什么?2.方差具有哪些性质?3.两点分布与二项分布的方差分别是什么?[新知初探]1.离散型随机变量的方差 (1)设离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则称D(X)= i =1n(x i -E(X))2p i 为随机变量X 的方差,其算术平方根D(X)为随机变量X 的标准差.(2)随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度,方差或标准差越小,则随机变量偏离于均值的平均程度越小.2.几个常见的结论 (1)D(aX +b)=a 2D(X).(2)若X 服从两点分布,则D(X)=p(1-p). (3)若X ~B(n,p),则D(X)=np(1-p).[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)离散型随机变量的方差越大, 随机变量越稳定.( )(2)若a是常数, 则D(a)=0.( )(3)离散型随机变量的方差反映了随机变量偏离于期望的平均程度.( )答案:(1)×(2)√(3)√2.若随机变量X服从两点分布, 且成功的概率p=0.5, 则E(X)和D(X)分别为( )A.0.5和0.25 B.0.5和0.75C.1和0.25 D.1和0.75答案:A3.D(ξ-D(ξ))的值为( )A.无法求 B.0C.D(ξ) D.2D(ξ)答案:C4.牧场的10头牛,因误食疯牛病毒污染的饲料被感染,已知该病的发病率为0.02,设发病牛的头数为X,则D(X)等于________.答案:0.196求离散型随机变量的方差1.已知随机变量X的分布列为:X 0 1 2 3 4 5P 0.1 0.15 0.25 0.25 0.15 0.1则D(X)=________.解析:因为E(X)=0.1×0+0.15×1+0.25×2+0.25×3+0.15×4+0.1×5=2.5,所以D(X)=(0-2.5)2×0.1+(1-2.5)2×0.15+(2-2.5)2×0.25+(3-2.5)2×0.25+(4-2.5)2×0.15+(5-2.5)2×0.1=2.05.答案:2.05题点二:两点分布的方差2.某运动员投篮命中率p=0.8,则该运动员在一次投篮中命中次数ξ的方差为________.解析:依题意知:ξ 服从两点分布,所以D(ξ)=0.8×(1-0.8)=0.16.答案:0.16题点三:二项分布的方差3.一出租车司机从某饭店到火车站途中有6个交通岗, 假设他在各交通岗遇到红灯这一事件是相互独立的, 并且概率是13.(1)求这位司机遇到红灯数ξ的期望与方差;(2)若遇上红灯, 则需等待30秒, 求司机总共等待时间η的期望与方差. 解:(1)易知司机遇上红灯次数ξ服从二项分布,且ξ~B ⎝ ⎛⎭⎪⎫6, 13, ∴E(ξ)=6×13=2,D(ξ)=6×13×⎝ ⎛⎭⎪⎫1-13=43.(2)由已知η=30ξ,∴E(η)=30E(ξ)=60,D(η)=900D(ξ)=1 200.求离散型随机变量X 的方差的步骤(1)理解X 的意义,写出X 可能取的全部值; (2)求X 取各个值的概率,写出分布列; (3)根据分布列,由期望的定义求出E(X); (4)根据公式计算方差.离散型随机变量方差的性质[典例] 已知随机变量X 的分布列是X 0 1 2 3 4 P0.20.20.30.20.1试求D(X)和D(2X -1).[解] E(X)=0×0.2+1×0.2+2×0.3+3×0.2+4×0.1=1.8.∴D(X)=(0-1.8)2×0.2+(1-1.8)2×0.2+(2-1.8)2×0.3+(3-1.8)2×0.2+(4-1.8)2×0.1=1.56.利用方差的性质D(aX +b)=a 2D(X).∵D(X)=1.56, ∴D(2X-1)=4D(X)=4×1.56=6.24.求随机变量函数Y =aX +b 方差的方法求随机变量函数Y =aX +b 的方差,一是先求Y 的分布列,再求其均值,最后求方差;二是应用公式D(aX+b)=a 2D(X)求解.[活学活用]已知随机变量ξ的分布列为:ξ 0 1 x P1213p若E(ξ)=23.(1)求D(ξ)的值;(2)若η=3ξ-2,求D(η)的值.解:由分布列的性质,得12+13+p =1,解得p =16,∵E(ξ)=0×12+1×13+16x =23, ∴x=2.(1)D(ξ)=⎝ ⎛⎭⎪⎫0-232×12+⎝ ⎛⎭⎪⎫1-232×13+⎝ ⎛⎭⎪⎫2-232×16=1527=59.(2)∵η=3ξ-2,∴D(η)=D(3ξ-2)=9D(ξ)=5,∴D(η)= 5.方差的实际问题[典例] 为选拔奥运会射击选手,对甲、乙两名射手进行选拔测试.已知甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量ξ,η,甲、乙两名射手在每次射击中击中的环数均大于6环,且甲射中的10,9,8,7环的概率分别为0.5,3a,a,0.1,乙射中10,9,8环的概率分别为0.3,0.3,0.2.(1)求ξ,η的分布列;(2)求ξ,η的数学期望与方差,并以此比较甲、乙的射击技术并从中选拔一人. [解] (1)依题意,0.5+3a +a +0.1=1,解得a =0.1. ∵乙射中10,9,8环的概率分别为0.3,0.3,0.2, ∴乙射中7环的概率为1-(0.3+0.3+0.2)=0.2. ∴ξ,η的分布列分别为ξ 10 9 8 7 P0.50.30.10.1η10 9 8 7P 0.3 0.3 0.2 0.2(2)由(1)可得E(ξ)=10×0.5+9×0.3+8×0.1+7×0.1=9.2(环);E(η)=10×0.3+9×0.3+8×0.2+7×0.2=8.7(环);D(ξ)=(10-9.2)2×0.5+(9-9.2)2×0.3+(8-9.2)2×0.1+(7-9.2)2×0.1=0.96;D(η)=(10-8.7)2×0.3+(9-8.7)2×0.3+(8-8.7)2×0.2+(7-8.7)2×0.2=1.21.由于E(ξ)>E(η),说明甲平均射中的环数比乙高;又因为D(ξ)<D(η),说明甲射中的环数比乙集中,比较稳定.所以,甲比乙的技术好,故应选拔甲射手参加奥运会.利用均值和方差的意义解决实际问题的步骤(1)比较均值:离散型随机变量的均值反映了离散型随机变量取值的平均水平, 因此, 在实际决策问题中, 需先计算均值,看一下谁的平均水平高.(2)在均值相等的情况下计算方差:方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度. 通过计算方差,分析一下谁的水平发挥相对稳定.(3)下结论:依据均值和方差的几何意义做出结论.[活学活用]甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相等,而两个保护区内每个季度发现违反保护条例的事件次数的分布列分别为:甲保护区:X 0 1 2 3P 0.3 0.3 0.2 0.2乙保护区:Y 0 1 2P 0.1 0.5 0.4试评定这两个保护区的管理水平.解:甲保护区违规次数X的数学期望和方差为E(X)=0×0.3+1×0.3+2×0.2+3×0.2=1.3,D(X)=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21.乙保护区的违规次数Y的数学期望和方差为:E(Y)=0×0.1+1×0.5+2×0.4=1.3,D(Y)=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41.因为E(X)=E(Y),D(X)>D(Y),所以两个保护区内每个季度发生的违规事件的平均次数相同,但甲保护区的违规事件次数相对分散和波动,乙保护区内的违规事件次数更加集中和稳定.层级一 学业水平达标1.有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本方差分别为D(X 甲)=11,D(X 乙)=3.4.由此可以估计( )A .甲种水稻比乙种水稻分蘖整齐B .乙种水稻比甲种水稻分蘖整齐C .甲、乙两种水稻分蘖整齐程度相同D .甲、乙两种水稻分蘖整齐程度不能比较解析:选B ∵D(X 甲)>D(X 乙),∴乙种水稻比甲种水稻分蘖整齐. 2.若X ~B(n,p),且E(X)=6,D(X)=3,则P(X =1)的值为( ) A .3·2-2B .2-4C .3·2-10D .2-8解析:选C E(X)=np =6,D(X)=np(1-p)=3, ∴p=12,n =12,则P(X =1)=C 112×12×⎝ ⎛⎭⎪⎫1211=3·2-10.3.设随机变量X 的概率分布列为P(X =k)=p k·(1-p)1-k(k =0,1),则E(X),D(X)的值分别是( )A .0和1B .p 和p 2C .p 和1-pD .p 和(1-p)p解析:选D 由X 的分布列知,P(X =0)=1-p,P(X =1)=p,故E(X)=0×(1-p)+1×p=p,易知X 服从两点分布,∴D(X)=p(1-p).4.已知随机变量X +η=8,若X ~B(10,0.6),则E(η),D(η)分别是( ) A .6和2.4 B .2和2.4 C .2和5.6D .6和5.6解析:选B ∵X~B(10,0.6),∴E(X)=10×0.6=6,D(X)=10×0.6×(1-0.6)=2.4, ∴E(η)=8-E(X)=2,D(η)=(-1)2D(X)=2.4.5.设10≤x 1<x 2<x 3<x 4≤104,x 5=105,随机变量ξ1取值x 1,x 2,x 3,x 4,x 5的概率均为0.2,随机变量ξ2取值x 1+x 22,x 2+x 32,x 3+x 42,x 4+x 52,x 5+x 12的概率也均为0.2,若记D(ξ1),D(ξ2)分别为ξ1,ξ2的方差,则( ) A .D(ξ1)>D(ξ2)B .D(ξ1)=D(ξ2)C .D(ξ1)<D(ξ2)D .D(ξ1)与D(ξ2)的大小关系与x 1,x 2,x 3,x 4的取值有关解析:选A 由题意可知E(ξ1)=E(ξ2),又由题意可知,ξ1的波动性较大,从而有D(ξ1)>D(ξ2). 6.若事件在一次试验中发生次数的方差等于0.25,则该事件在一次试验中发生的概率为________. 解析:事件在一次试验中发生次数记为ξ,则ξ服从两点分布,则D(ξ)=p(1-p),所以p(1-p)=0.25,解得p =0.5.答案:0.57已知随机变量X 服从二项分布B(n,p).若E(X)=30,D(X)=20,则p =________.解析:由E(X)=30,D(X)=20,可得⎩⎪⎨⎪⎧np =30,np(1-p)=20,解得p =13.答案:138.已知离散型随机变量X 的分布列如下表:若E(X)=0,D(X)=1,则a =________,b =________. 解析:由题意⎩⎪⎨⎪⎧a +b +c +112=1,(-1)×a+0×b+1×c+2×112=0,(-1-0)2×a +(0-0)2×b +(1-0)2×c +(2-0)2×112=1,解得a =512,b =c =14.答案:512149.A,B 两个投资项目的利润率分别为随机变量X 1和X 2,根据市场分析,X 1和X 2的分布列分别为在A,B两个项目上各投资100万元,Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1),D(Y2).解:由题设可知Y1和Y2的分布列分别为E(Y1)=5×0.8+10×0.2=6,D(Y1)=(5-6)2×0.8+(10-6)2×0.2=4;E(Y2)=2×0.2+8×0.5+12×0.3=8,D(Y2)=(2-8)2×0.2+(8-8)2×0.5+(12-8)2×0.3=12.10.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)X表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X的均值和方差.解:设事件A表示“该地的1位车主购买甲种保险”,事件B表示“该地的1位车主购买乙种保险但不购买甲种保险”,事件C表示“该地的1位车主至少购买甲、乙两种保险中的1种”,事件D表示“该地的1位车主甲、乙两种保险都不购买”,则A,B相互独立.(1)由题意知P(A)=0.5,P(B)=0.3,C=A∪B,则P(C)=P(A∪B)=P(A)+P(B)=0.8.(2)D=C,P(D)=1-P(C)=1-0.8=0.2.由题意知X~B(100,0.2),所以均值E(X)=100×0.2=20,方差D(X)=100×0.2×0.8=16.层级二应试能力达标1.设二项分布X~B(n,p)的随机变量X的均值与方差分别是2.4和1.44,则二项分布的参数n,p的值为( )A.n=4,p=0.6 B.n=6,p=0.4C.n=8,p=0.3 D.n=24,p=0.1解析:选B 由题意得,np=2.4,np(1-p)=1.44,∴1-p =0.6,∴p=0.4,n =6.2.若ξ是离散型随机变量,P(ξ=x 1)=23,P(ξ=x 2)=13,且x 1<x 2,又已知E(ξ)=43,D(ξ)=29,则x 1+x 2的值为( )A .53 B .73C .3D .113解析:选Cx 1,x 2满足⎩⎪⎨⎪⎧23x 1+13x 2=43,⎝ ⎛⎭⎪⎫x 1-432×23+⎝ ⎛⎭⎪⎫x 2-432×13=29,解得⎩⎪⎨⎪⎧x 1=1,x 2=2或⎩⎪⎨⎪⎧x 1=53,x 2=23.∵x 1<x 2,∴x 1=1,x 2=2,∴x 1+x 2=3.3.某种种子每粒发芽的概率是90%,现播种该种子1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X 的数学期望与方差分别是( )A .100,90B .100,180C .200,180D .200,360解析:选D 由题意可知播种了1 000粒,没有发芽的种子数ξ服从二项分布,即ξ~B(1 000,0.1).而每粒需再补种2粒,补种的种子数记为X,故X =2ξ,则E(X)=2E(ξ)=2×1 000×0.1=200,故方差为D(X)=D(2ξ)=22·D(ξ)=4×1 000×0.1×0.9=360.4.若随机变量ξ的分布列为P(ξ=m)=13,P(ξ=n)=a,若E(ξ)=2,则D(ξ)的最小值等于( )A .0B .1C .4D .2解析:选A 由分布列的性质,得a +13=1,a =23.∵E(ξ)=2,∴m 3+2n3=2.∴m=6-2n.∴D(ξ)=13×(m-2)2+23×(n-2)2=23×(n-2)2+13×(6-2n -2)2=2n 2-8n +8=2(n -2)2.∴n=2时,D(ξ)取最小值0.5.随机变量ξ的取值为0,1,2.若P(ξ=0)=15,E(ξ)=1,则D(ξ)=________.解析:由题意设P(ξ=1)=p, 则ξ的分布列如下:由E(ξ)=1,可得p =35,所以D(ξ)=12×15+02×35+12×15=25.答案:256.已知离散型随机变量X 的可能取值为x 1=-1,x 2=0,x 3=1,且E(X)=0.1,D(X)=0.89,则对应x 1,x 2,x 3的概率p 1,p 2,p 3分别为________,________,________.解析:由题意知,-p 1+p 3=0.1, 1.21p 1+0.01p 2+0.81p 3=0.89.又p 1+p 2+p 3=1,解得p 1=0.4,p 2=0.1,p 3=0.5. 答案:0.4 0.1 0.57.有甲、乙两个建材厂,都想投标参加某重点建设项目,为了对重点建设项目负责,政府到两建材厂抽样验查,他们从中各取等量的样本检查它们的抗拉强度指数如下:其中ξ和η分别表示甲、乙两厂材料的抗拉强度,比较甲、乙两厂材料哪一种稳定性好. 解:E(ξ)=110×0.1+120×0.2+125×0.4+130×0.1+135×0.2=125, E(η)=100×0.1+115×0.2+125×0.4+130×0.1+145×0.2=125,D(ξ)=0.1×(110-125)2+0.2×(120-125)2+0.4×(125-125)2+0.1×(130-125)2+0.2×(135-125)2=50,D(η)=0.1×(100-125)2+0.2×(115-125)2+0.4×(125-125)2+0.1×(130-125)2+0.2×(145-125)2=165,由于E(ξ)=E(η),D(ξ)<D(η),故甲厂的材料稳定性较好.8.设在12个同类型的零件中有2个次品,抽取3次进行检验,每次抽取一个,并且取出不再放回,若以X 和Y 分别表示取出次品和正品的个数.(1)求X 的分布列、均值及方差; (2)求Y 的分布列、均值及方差. 解:(1)X 的可能值为0,1,2. 若X =0,表示没有取出次品, 其概率为P(X =0)=C 02C 310C 312=611,同理,有P(X =1)=C 12C 210C 312=922,P(X =2)=C 22C 110C 312=122.∴X 的分布列为X 0 1 2 P611922122∴E(X)=0×611+1×922+2×122=2.D(X)=⎝ ⎛⎭⎪⎫0-122×611+⎝ ⎛⎭⎪⎫1-122×922+⎝ ⎛⎭⎪⎫2-122×122=1544.(2)Y 的可能值为1,2,3,显然X +Y =3. P(Y =1)=P(X =2)=122,P(Y =2)=P(X =1)=922,P(Y =3)=P(X =0)=611.∴Y 的分布列为Y 1 2 3 P122922611∴Y=-X +3,∴E(Y)=E(3-X)=3-E(X)=3-12=52,D(Y)=(-1)2D(X)=1544.(时间:120分钟 满分:150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中是随机事件的个数为( )①连续两次抛掷一枚质地均匀的骰子,两次都出现2点; ②在地球上,树上掉下的雪梨不抓住就往下掉; ③某人买彩票中奖;④已知一对夫妇有一个女儿,第二次生男孩; ⑤在标准大气压下,水加热到90 ℃会沸腾. A .1 B .2 C .3D .4解析:选C ①③④都有可能发生,也可能不发生,故是随机事件;对于②,在地球上,树上掉下的雪梨不抓住就往下掉,这是一定会发生的事件,属于必然事件.对于⑤,在标准大气压下,水加热到90 ℃会沸腾,是不可能事件.故选C .2.4个高尔夫球中有3个合格、1个不合格,每次任取一个,不放回地取两次.若每一次取到合格的高尔夫球,则第二次取到合格高尔夫球的概率为( )A .12 B .23C .34D .45解析:选B 法一:记事件A ={第一次取到的是合格高尔夫球},事件B ={第二次取到的是合格高尔夫球}.由题意可得P(A∩B)=3×24×3=12,P(A)=3×34×3=34,所以P(B|A)=P(A∩B )P(A)=1234=23.法二:记事件A ={第一次取到的是合格高尔夫球}, 事件B ={第二次取到的是合格高尔夫球}.由题意可得事件B 发生所包含的基本事件数n(A∩B)=3×2=6,事件A 发生所包含的基本事件数n(A)=3×3=9,所以P(B|A)=n(A∩B )n(A)=69=23.3.从分别写有A,B,C,D,E 的5张卡片中任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率为( )A .15B .25C .310D .710解析:选B 试验的所有基本事件总数为10,两字母恰好是相邻字母的有(A,B),(B,C),(C,D),(D,E)4种,故P =410=25.4.如果随机变量ξ表示抛掷一个各面分别有1,2,3,4,5,6的均匀的正方体向上面的数字,那么随机变量ξ的均值为( )A .2.5B .3C .3.5D .4解析:选 C P(ξ=k)=16(k =1,2,3,…,6),∴E(ξ)=1×16+2×16+…+6×16=16(1+2+…+6)=16×⎣⎢⎡⎦⎥⎤6×(1+6)2=3.5.5.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是310的事件为( ) A .恰有1只是坏的 B .4只全是好的 C .恰有2只是好的D .至多有2只是坏的解析:选C X =k 表示取出的螺丝钉恰有k 只为好的,则P(X =k)=C k 7C 4-k3C 410(k =1,2,3,4).∴P(X=1)=130,P(X =2)=310,P(X =3)=12,P(X =4)=16,故310表示恰好有2个是好的. 6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A .13 B .12C .23D .34解析:选A 记3个兴趣小组分别为1,2,3,甲参加1组记为“甲1”,则基本事件为:甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3,共9个.记事件A 为“甲、乙两位同学参加同一个兴趣小组”,其中事件A 有:甲1,乙1;甲2,乙2;甲3,乙3,共3个基本事件.因此P(A)=39=13.7.一个电路如图所示,A,B,C,D,E,F 为6个开关,其闭合的概率为12,且是相互独立的,则灯亮的概率是( )A .164B .5564C .18D .116解析:选B 设A 与B 中至少有一个不闭合的事件为T,E 与F 至少有一个不闭合的事件为R,则P(T)=P(R)=1-12×12=34,所以灯亮的概率为P =1-P(T)·P(R)·P(C )·P(D )=5564.8.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的均值为2(不计其他得分情况),则ab 的最大值为( )A .148 B .124C .112D .16解析:选D 由已知,得3a +2b +0·c=2,得3a +2b =2,所以ab =16×3a×2b≤16⎝ ⎛⎭⎪⎫3a +2b 22=16.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)9.一台机器生产某种产品,如果生产一件甲等品可获得50元,生产一件乙等品可获得30元,生产一件次品,要赔20元,已知这台机器生产出甲等品、乙等品和次品的概率分别为0.6,0.3和0.1,则这台机器每生产一件产品平均预期获利________元.解析:设生产一件该产品可获利钱数为X,则随机变量X 的取值可以是-20,30,50. 依题意,X 的分布列为X -20 30 50 P0.10.30.6故E(X)=-20×0.1+0.3×30+50×0.6=37(元). 答案:3710.从甲、乙等5名学生中随机选出2人,则基本事件总数为________种,甲被选中的概率为________. 解析:把5名同学依次编号为甲、乙、丙、丁、戊,基本事件空间Ω={甲乙,甲丙,甲丁,甲戊,乙丙,乙丁,乙戊,丙丁,丙戊,丁戊},包含基本事件总数n =10.设A 表示事件“甲被选中”,则A ={甲乙,甲丙,甲丁,甲戊},包含基本事件数m =4.所以概率为P =410=25.答案:10 2 511.某射手射击所得环数ξ的分布列如下:则x+y=________,若ξ的期望E(ξ)=8.9,则y的值为________.解析:由分布列的性质知x+y=1-0.1-0.3=0.6,所以x=0.6-y且7x+0.8+2.7+10y=8.9,解得y=0.4.答案:0.6 0.412.由于电脑故障,使得随机变量X的分布列中部分数据丢失(以“x”,“y”代替),其表如下:则丢失的两个数据x=________,y=________.解析:由分布列的性质得:0.2+0.1+0.x5+0.1+0.1y+0.2=1,可得0.x5+0.1y=0.4,∴0.x+0.05+0.1+0.0y=0.4,∴0.xy=0.25,∴x=2,y=5.答案:2 513.甲乙两人各射击一次,如果两人击中目标的概率都为0.6,则两人都击中目标的概率为________,目标被击中的概率为________.解析:由题意,得两人都击中目标的概率P1=0.6×0.6=0.36;目标被击中的概率P2=0.36+0.6×0.4×2=0.36+0.48=0.84.答案:0.36 0.8414.某处有供水龙头5个,调查表示每个水龙头被打开的可能性均为110, 3个水龙头同时被打开的概率为________.解析:对5个水龙头的处理可视为做5次独立试验,每次试验有2种可能结果:打开或不打开,相应的概率为0.1或1-0.1=0.9,根据题意得3个水龙头同时被打开的概率为C35×0.13×0.92=0.008 1.答案:0.008 115.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是________________(写出所有正确结论的序号).①P(B)=25;②P(B|A 1)=511;③事件B 与事件A 1相互独立; ④A 1,A 2,A 3是两两互斥的事件;⑤P(B)的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关.解析:从甲罐中取出一球放入乙罐,则A 1,A 2,A 3中任意两个事件不可能同时发生,即A 1,A 2,A 3两两互斥,故④正确,易知P(A 1)=12,P(A 2)=15,P(A 3)=310,则P(B|A 1)=511,P(B|A 2)=411,P(B|A 3)=411,故②对③错;∴P(B)=P(A 1B)+P(A 2B)+P(A 3B)=P(A 1)·P(B|A 1)+P(A 2)P(B|A 2)+P(A 3)·P(B|A 3)=12×511+15×411+310×411=922,故①⑤错误.综上知,正确结论的序号为②④.答案:②④三、解答题(本大题共5小题,共74分,解答时写出必要的文字说明、证明过程或演算步骤)16.(本小题满分14分)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求: (1)所取的2道题都是甲类题的概率; (2)所取的2道题不是同一类题的概率.解:法一:将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6.任取2道题,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.(1)用A表示“都是甲类题”这一事件,则A包含的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,所以P(A)=615=25.(2)用B表示“不是同一类题”这一事件,则B包含的基本事件有{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},共8个,所以P(B)=815.法二:(1)所取的2道题都是甲类题的事件数有C 24=6. 任取2道题的事件总数有C 26=15.故所取的2道题都是甲类题的概率为615=25.(2)所取的2道题不是同一类题的事件数有C 14C 12=8. 任取2道题的事件总数有C 26=15. 故所取的2道题不是同一类题的概率为815.17.(本小题满分15分)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门,再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.令ξ表示走出迷宫所需的时间.(1)求ξ的分布列; (2)求ξ的数学期望.解:(1)由题意知必须从1号通道走出迷宫,ξ的所有可能取值为:1,3,4,6. P(ξ=1)=13,P(ξ=3)=13×12=16,P(ξ=4)=13×12=16,P(ξ=6)=A 22×13×12×1=13,所以ξ的分布列为:(2)E(ξ)=1×13+3×16+4×16+6×13=72(小时).18.(本小题满分15分)某校从学生会宣传部6名成员(其中男生4人,女生2人)中,任选3人参加某省举办的演讲比赛活动.(1)设所选3人中女生人数为ξ,求ξ的分布列; (2)求男生甲或女生乙被选中的概率;(3)设“男生甲被选中”为事件A,“女生乙被选中”为事件B,求P(B)和P(B|A).解:(1)ξ的所有可能取值为0,1,2,依题意得P(ξ=0)=C 34C 36=15,P(ξ=1)=C 24C 12C 36=35,P(ξ=2)=C 14C 22C 36=15. ∴ξ的分布列为(2)设“甲、乙都不被选中”为事件C, 则P(C)=C 34C 36=420=15.∴所求概率为P(C )=1-P(C)=1-15=45.(3)P(B)=C 25C 36=1020=12;P(B|A)=C 14C 25=410=25.19.(本小题满分15分)为向国际化大都市目标迈进,某市今年新建三大类重点工程,它们分别是30项基础设施类工程、20项民生类工程和10项产业建设类工程.现有来该市的3名工人相互独立地从60个项目中任选一个项目参与建设.(1)求这3人选择的项目所属类别互异的概率;(2)将此3人中选择的项目属于基础设施类工程或产业建设类工程的人数记为X,求X 的分布列和数学期望.解:记第i 名工人选择的项目属于基础设施类、民生类、产业建设类分别为事件A i ,B i ,C i (i =1,2,3). 由题意知,P(A i )=3060=12,P(B i )=2060=13,P(C i )=1060=16.(1)3人选择的项目所属类别互异的概率 P =A 33P(A 1B 2C 3)=6×12×13×16=16.(2)任一名工人选择的项目属于基础设施类或产业建设类工程的概率P =12+16=23.由X ~B ⎝ ⎛⎭⎪⎫3,23, ∴P(X=k)=C k 3⎝ ⎛⎭⎪⎫23k ⎝ ⎛⎭⎪⎫1-233-k (k =0,1,2,3),∴X 的分布列为其数学期望为E(X)=3×23=2.20.(本小题满分15分)(山东高考)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望E(X). 解:(1)记事件A :“甲第一轮猜对”, 记事件B :“乙第一轮猜对”, 记事件C :“甲第二轮猜对”, 记事件D :“乙第二轮猜对”,记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +A BCD +A B CD +AB C D +ABC D ,由事件的独立性与互斥性,得P(E)=P(ABCD)+P(A BCD)+P(A B CD)+P(AB C D)+P(ABC D )=P(A)P(B)P(C)P(D)+P(A )P(B)P(C)P(D)+P(A)P(B )P(C)P(D)+P(A)·P(B)P(C )P(D)+P(A)P(B)P(C)P(D )=34×23×34×23+2×⎝ ⎛⎭⎪⎫14×23×34×23+34×13×34×23=23, 所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得 P(X =0)=14×13×14×13=1144,P(X =1)=2×⎝ ⎛⎭⎪⎫34×13×14×13+14×23×14×13=10144=572,P(X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P(X =3)=34×23×14×13+14×13×34×23=12144=112,P(X =4)=2×⎝ ⎛⎭⎪⎫34×23×34×13+34×23×14×23=60144=512,P(X =6)=34×23×34×23=36144=14.可得随机变量X 的分布列为所以数学期望E(X)=0×144+1×72+2×144+3×12+4×12+6×4=6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若X ~ B(n, p),则DX np(1 p)
题型一 求离散型随机变量的方差
袋中有 20 个大小相同的球,其中记上 0 号的 有 10 个,记上 n 号的有 n 个(n=1,2,3,4).现从袋中任取一球, ξ 表示所取球的标号.
(1)求 ξ 的分布列、均值和方差; (2)若 η=aξ+b,E(η)=1,D(η)=11,试求 a,b 的值.
课堂练习 书本第68页
1、已知随机变量X的分布列
X01234 P 0.1 0.2 0.4 0.2 0.1 求DX和σX.
解:EX 00.110.2 20.4 30.2 40.1 2 DX (0 2)2 0.1 (1 2)2 0.2 (2 2)2 0.4 (3 2)2 0.2 (4 2)2 0.1 1.2
人教A版选修2-3 第二章
2.3.2 离散型随机变量的方差
一、复习回顾
1、离散型随机变量的数学期望
X x1 x2 ··· xi ··· xn P p1 p2 ··· pi ··· pn
E X x1 p1 x2 p2 L xi pi L xn pn
数学期望是反映离散型随机变量的平均水平 2、数学期望的性质
0.2 0.1
根据工资待遇的差异情况,你愿意选择哪家单位?
解:EX1 1400, EX 2 1400 DX1 40000, DX 2 160000
在两个单位工资的数学期望相等的情况下, 如果认为自己能力很强,应选择工资方差大 的单位,即乙单位;如果认为自己能力不强, 就应选择工资方差小的单位,即甲单位。
X DX 1.2 1.095
2、若随机变量X满足P(X=c)=1,其中c为 常数,求EX和DX。
解:离散型随机变量X的分布列为:
Xc P1
单点分布
EX=c×1=c DX=(c-c)2×1=0
二.随机变量方差的性质
你能证明下面结论吗?
D(aX b) a2DX
三.特殊分布列的方差
练习册 第36页
练习 一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率 分布直方图,如图:
将日销售量落入各组的频率视为概率,并假设每天的销售量 相互独立. (1)求在未来连续3天里,有连续2天的日销售量都不低于100 个且另1天的日销售量低于50个的概率; (2)用X表示在未来3天里日销售量不低于100个的天数,求 随机变量X的分布列,期望及方差.
【解】 (1)由题意得,ξ 的所有可能取值为 0,1,2,3,4,P(ξ
=0)=1200=12,P(ξ=1)=210,P(ξ=2)=220=110,P(ξ=3)=230,
P(ξ=4)=240=15.
故 ξ 的分布列为
ξ0 1 2 3 4
P
1 2
1 20
1 10
3 20
1 5
所以 E(ξ)=0×12+1×210+2×110+3×230+4×15=1.5,D(ξ) =(0-1.5)2×12+(1-1.5)2×210+(2-1.5)2×110+(3-1.5)2×230 +(4-1.5)2×15=2.75.
(2)由 D(aξ+b)=a2D(ξ)=11,E(aξ+b)=aE(ξ)+b=1,及 E(ξ)=1.5,D(ξ)=2.75 得,2.75a2=11,1.5a+b=1,解得 a=2, b=-2 或 a=-2,b=4.
利用公式 E(aX+b)=aE(X)+b,D(aX+b)=a2D(X),将求 E(aX+b),D(aX+b)的问题转化为求 E(X),D(X)的问题,从而 可以避免求 aX+b 的分布列的繁琐的计算,解题时可根据两者 之间的关系列出等式,进行相关计算.
题型二 方差的实际应用
例2 有甲乙两个单位都愿意聘用你,而你能获得如下 信息:
甲单位不同职位月工资X1/元 1200 1400
获得相应职位的概率P1
0.4 0.3
1600 1800 0.2 0.1
乙单位不同职位月工资X2/元 1000 1400 1800 2200
获得相应职位的概率P2
0.4 0.3
E(aX b) aE X b
3 特殊分布列的数学期望
(1)X服从两点分布,则
X
1
P
p
则 EX p
0 1-p
(2)X服从二项分布,即X~B(n,p),则
EX np
一.离散型随机变量取值的方差
一般地,若离散型随机变量X的概率分布为:
X x1 x2 ··· xi ··· xn P p1 p2 ··· pi ··· pn
题型二 特殊分布列的均值与方差
1、已知X~B(n, p),EX 8,DX 1.6, 则n 10, p 0.8
2、有一批数量很大的商品,其中次品占 1%,现从中任意地连续取出200件商品, 设其次品数为X,求EX和DX。
2,1.98
例3. 如图是某城市通过抽样得到的居民某年的月均用水量(单 位:吨)的频率分布直方图. (1)求直方图中x的值; (2)若将频率视为概率,从这个城市随机抽取3位居民(看作有放 回抽样),求月均用水量在3~4吨的居民数X的分布列和数学期 望及其方差.
则称
DX ( x1 EX )2 p1 ( xi EX )2 pi ( xn EX )2 pn
n
( xi EX )2 pi 为随机变量X的方差。
i 1
称 X
DX 为随机变量X的标准差。
它们都是反映离散型随机变量偏离于均值的 平均程度的量,它们的值越小,则随机变量偏 离于均值的平均程度越小,即越集中于均值.