(完整版)分子生物学简答题全
分子生物学简答题全

简答题1.为什么利用RNAi抑制一个基因的表达较利用反义RNA技术更为彻底。
答:RNAi是外源或内源性的双链RNA 进入细胞后引起与其同源的mRNA特异性降解.dsRNA进入细胞后,在Dicer作用下,分解为21-22bp的SiRNA.SiRNA结合相关酶,形成RNA介导的沉默复合物RISC.RISC在ATP作用下,将双链SiRNA变成单链SiRNA,进而成为有活性的RISC,又称为slicer.slicer与靶mRNA结合,导致其断裂,进而导致其彻底降解。
反义RNA是与靶mRNA互补的RNA,它通过与靶mRNA特异结合而抑制其翻译表达,反义RNA是与靶mRNA是随机碰撞并通过碱基互补配对,所以,mRNA不一定完全被抑制。
2.简述真核基因表达的调控机制。
答:(1)DNA和染色质结构对转录的调控:①DNA甲基化,②组蛋白对基因表达的抑制,③染色质结构对基因表达的调控作用,④基因重排,⑤染色质的丢失,⑥基因扩增;(2)转录起始调控:①反式作用因子活性调节,包括表达调节、共价调节,配体调节等蛋白质相互作用调节),②反式作用因子与顺式作用原件结合对转录过程进行调控;(3)转录后调控:①5’端加帽和3’端多核苷酸化调控,②选择剪接调控,③mRNA运输调控,④mRNA稳定性调控;(4)翻译起始的调控:①阻遏蛋白的调控,②对翻译因子的调控,③对AUG的调控,④mRNA 5’端非编码区的调控,⑤小分子RNA;(5)翻译后加工调控:①新生肽链的水解,②肽链中氨基酸的共价修饰,③信号肽调控。
3.简述mRNA加工过程。
答:(1)5′端加帽(由加帽酶催化5′端加入7-甲苷乌苷酸,形成帽子结构m7GpppmNP-)。
(2)3′端加入Poly(A)尾(A、组蛋白的成熟mRNA无需加polyA尾;B、加尾信号包括AAUAAA和富含GU的序列;C、加尾不需模板;D剪切过程需要多种蛋白质因子的辅助)。
(3)mRNA前体的剪接(剪接加工以除去内含子序列,并将外显子序列连接成为成熟的有功能的mRNA分子。
分子生物学简答题(整理)

1阐述操纵子(operon)学说:见课本2、乳糖操纵子的作用机制?/简述乳糖操纵子的结构及其正、负调控机制答:A、乳糖操纵子的组成:大肠杆菌乳糖操纵子含Z、Y、A三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵序列O,一个启动子P和一个调节基因I。
B、阻遏蛋白的负性调节:没有乳糖存在时,I 基因编码的阻遏蛋白结合于操纵序列O处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。
所以,乳糖操纵子的这种调控机制为可诱导的负调控。
C、CAP的正性调节:在启动子上游有CAP结合位点,当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP浓度升高,与CAP结合,使CAP发生变构,CAP结合于乳糖操纵子启动序列附近的CAP结合位点,激活RNA聚合酶活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。
D、协调调节:乳糖操纵子中的I基因编码的阻遏蛋白的负调控与CAP的正调控两种机制,互相协调、互相制约。
3、基因调控的水平有哪些?基因调控的意义?答:a、DNA水平的调控。
b、转录水平上的调控。
c、转录后的调控。
d、翻译水平的调控。
e、细胞质与基因调控。
意义:适应物理,化学等环境因素变化,调节代谢,维持细胞生长与分裂。
4、简述乳糖操纵子的结构及其正负调控机制。
答:结构:A、Y和Z,以及启动子、控制子和阻遏子。
正调控机制:CAP分解代谢产物激活蛋白质,直接作用于操纵子区上与cAMP结合形成CAP-cAMP复合物,转录进行。
负调控机制:a、无诱导物时结构基因不转录。
b、有诱导物时与阻遏基因相结合,形成无活性阻遏物,RNA聚合酶可与启动子区相结合,起始基因转录。
5、简述Trp操纵子的结构及其调控机制。
答:Trp操纵子由5个结构基因TrpE、TrpD、TrpC、TrpB、TrpA组成一个多顺因子的基因簇,在5'端是启动子、操纵子、前导顺序和弱化子区域。
分子生物学简答题全

简答题6.为什么利用RNAi抑制一个基因得表达较利用反义RNA技术更为彻底。
答:RNAi就是外源或内源性得双链RNAﻩ进入细胞后引起与其同源得mRNA特异性降解、dsRNA进入细胞后,在Dicer作用下,分解为21-22bp得SiRNA、SiRNA结合相关酶,形成RNA介导得沉默复合物RISC、RISC在A TP作用下,将双链SiRNA变成单链SiRNA,进而成为有活性得RISC,又称为slicer、slicer与靶mRNA结合,导致其断裂,进而导致其彻底降解.反义RNA就是与靶mRNA互补得RNA,它通过与靶mRNA特异结合而抑制其翻译表达,反义RNA就是与靶mRNA就是随机碰撞并通过碱基互补配对,所以,mRNA不一定完全被抑制。
8。
简述真核基因表达得调控机制。
答:(1)DNA与染色质结构对转录得调控:①DNA甲基化,②组蛋白对基因表达得抑制,③染色质结构对基因表达得调控作用,④基因重排,⑤染色质得丢失,⑥基因扩增;(2)转录起始调控:ﻩ①反式作用因子活性调节,包括表达调节、共价调节,配体调节等蛋白质相互作用调节),②反式作用因子与顺式作用原件结合对转录过程进行调控;(3)转录后调控:①5'端加帽与3’端多核苷酸化调控,②选择剪接调控,③mRNA运输调控,④mRNA稳定性调控;(4)翻译起始得调控:①阻遏蛋白得调控,②对翻译因子得调控,③对AUG得调控,④mRNA 5’端非编码区得调控,⑤小分子RNA;(5)翻译后加工调控:①新生肽链得水解,②肽链中氨基酸得共价修饰,③信号肽调控.9。
简述mRNA加工过程。
答:(1)5′端加帽(由加帽酶催化5′端加入7-甲苷乌苷酸,形成帽子结构m7GpppmNP-)。
(2)3′端加入Poly(A)尾(A、组蛋白得成熟mRNA无需加polyA尾;B、加尾信号包括AAUAAA与富含GU得序列;C、加尾不需模板;D剪切过程需要多种蛋白质因子得辅助)。
(3)mRNA前体得剪接(剪接加工以除去内含子序列,并将外显子序列连接成为成熟得有功能得mRNA分子.内含子两端得结构通常就是5′—GU……AG-3′。
(完整word版)分子生物学简答题

课后思考题1. 试述乳糖操纵子的结构及调控原理?乳糖操纵子开放转录需要什么条件?(1)乳糖操纵子的结构:含Z、Y、A3个结构基因,分别编码乳糖代谢的3个酶;一个操纵序列O,一个启动序列P,一个CAP结合位点共同构成乳糖操纵子的调控区.乳糖操纵子的上游还有一个调节基因I。
(2)阻遏蛋白的负性调节:I基因的表达产物为一种阻遏蛋白,在没有乳糖存在时,阻遏蛋白与O序列结合,阻碍RNA聚合酶与P序列结合,抑制转录启动,乳糖操作子处于阻遏状态;当有乳糖存在时,乳糖转变为半乳糖,后者结合阻遏蛋白,使构象变化,阻遏蛋白与O序列解离,在CAP蛋白协作下发生转录。
(3)CAP的正性调节:分解代谢基因激活蛋白(CAP)分子内存在DNA和cAMP结合位点.当没有葡萄糖时,cAMP浓度较高,cAMP与CAP结合,cAMP-CAP结合于CAP结合位点,提高RNA转录活性;当有葡萄糖时,cAMP浓度降低,cAMP与CAP结合受阻,乳糖操纵子表达下降。
(4)协调调节:乳糖操纵子阻遏蛋白的负性调节和CAP的正性调节机制协调合作,CAP不能激活被阻遏蛋白封闭基因的表达,但如果没有CAP存在来加强转录活性,即使阻遏蛋白从操纵序列上解离仍无转录活性。
因此,乳糖操纵子开放转录需要的条件是:1)诱导物乳糖存在,解除阻遏蛋白的负调节。
2)葡萄糖缺乏,CAP蛋白活化,启动正调节。
2.试述原核生物和真核生物基因表达调控特点的异同.(1)相同点:转录起始是基因表达调控的关键环节。
(2)不同点:1)原核生物基因表达调控主要包括转录和翻译水平;真核基因表达调控包括染色质活化、转录、转录后加工、翻译、翻译后加工多个层次.2)原核基因表达调控主要为负调节;真核生物基因表达调控主要为正调节。
3)原核转录起始不需要转录因子,RNA聚合酶直接结合启动子,由σ因子决定基因表达的特异性;真核转录起始需要基础、特异两类转录因子,依赖DNA—蛋白质、蛋白质-蛋白质相互作用,调控转录激活。
分子生物学简答题

第二章1、DNA二级结构的特点?答:(1)DNA分子是由两条互相平行的脱氧核甘酸长链盘绕而成的(2)DNA分子中的脱氧核糖和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在内侧.2.阐述Meselson和Stahl关于DNA半保留复制的证明实验?答:用普通培养基(含14N的氮源)培养15N标记的大肠杆菌,经过一代后,所有DNA 的密度都在15N-DNA和14N-DNA之间,即形成了一半15N和一半14N的杂合分子,两代后出现等量的14N分子和14N-15N杂合分子。
若再继续培养,可以看到14N-DNA分子增多,说明DNA分子复制时均可被分成两个亚单位,分别构成子代分子的一半,这些亚单位经过很多代复制仍然保持着完整性。
3.描述大肠杆菌DNA聚合酶I在DNA生物合成过程中的作用?答:该酶被认为在切除由紫外线照射而形成的嘧啶二聚体中起着重要的作用,它也可用以出去冈崎片段5,端RNA引物,使冈崎片段间缺口消失,保证连接酶将片段连接起来。
4.DNA的损伤原因是什么?答:DNA的损伤分自发性损伤、物理因素引起的DNA损伤、和化学因素引起的DNA损伤.自发性损伤是由于DNA复制中的错误和碱基的自发性化学变化造成DNA的损伤.物理因素引起的DNA损伤常是缘于紫外线引起的DNA损伤和电离辐射引起的DNA损伤.化学因素引起的DNA损伤是突变剂或致癌剂对DNA的作用,包括烷化剂对DNA的损伤和碱基类似物对DNA的损伤.5.组蛋白具有哪些特性?答:进化上的极端保守性,无组织特异性,肽链上氨基酸分布的不对称性,组蛋白的修饰作用(包括甲基化,乙酰化,磷酸化,范素化9口「核糖基化),富含赖氨酸的组蛋白H56.比较原核生物和真核生物DNA复制的不同点。
答:真核生物每条染色质上可以有多处复制起始点,而原核生物只有一个起始点;真核生物的染色体在全部完成复制之前,个个起始点上DNA的复制不能再开始,而在快速生长的原核生物中,复制起始点上可以连续开始新的DNA复制,表现为虽只有一个复制单元,但可有多个复制叉。
分子生物学简答题

课后思考题1。
试述乳糖操纵子的结构及调控原理?乳糖操纵子开放转录需要什么条件?(1)乳糖操纵子的结构:含Z、Y、A3个结构基因,分别编码乳糖代谢的3个酶;一个操纵序列O,一个启动序列P,一个CAP结合位点共同构成乳糖操纵子的调控区。
乳糖操纵子的上游还有一个调节基因I。
(2)阻遏蛋白的负性调节:I基因的表达产物为一种阻遏蛋白,在没有乳糖存在时,阻遏蛋白与O序列结合,阻碍RNA聚合酶与P序列结合,抑制转录启动,乳糖操作子处于阻遏状态;当有乳糖存在时,乳糖转变为半乳糖,后者结合阻遏蛋白,使构象变化,阻遏蛋白与O序列解离,在CAP蛋白协作下发生转录。
(3)CAP的正性调节:分解代谢基因激活蛋白(CAP)分子内存在DNA和cAMP结合位点。
当没有葡萄糖时,cAMP浓度较高,cAMP与CAP结合,cAMP-CAP结合于CAP结合位点,提高RNA转录活性;当有葡萄糖时,cAMP浓度降低,cAMP与CAP结合受阻,乳糖操纵子表达下降。
(4)协调调节:乳糖操纵子阻遏蛋白的负性调节和CAP的正性调节机制协调合作,CAP不能激活被阻遏蛋白封闭基因的表达,但如果没有CAP存在来加强转录活性,即使阻遏蛋白从操纵序列上解离仍无转录活性。
因此,乳糖操纵子开放转录需要的条件是:1)诱导物乳糖存在,解除阻遏蛋白的负调节。
2)葡萄糖缺乏,CAP蛋白活化,启动正调节。
2.试述原核生物和真核生物基因表达调控特点的异同。
(1)相同点:转录起始是基因表达调控的关键环节。
(2)不同点:1)原核生物基因表达调控主要包括转录和翻译水平;真核基因表达调控包括染色质活化、转录、转录后加工、翻译、翻译后加工多个层次。
2)原核基因表达调控主要为负调节;真核生物基因表达调控主要为正调节。
3)原核转录起始不需要转录因子,RNA聚合酶直接结合启动子,由σ因子决定基因表达的特异性;真核转录起始需要基础、特异两类转录因子,依赖DNA—蛋白质、蛋白质—蛋白质相互作用,调控转录激活。
分子生物学简答题

3)原核转录起始不需要转录因子,RNA聚合酶直接结合启动子,由σ因子决定基因表达的特异性;真核转录起始需要基础、特异两类转录因子,依赖DNA-蛋白质、蛋白质-蛋白质相互作用,调控转录激活。
4)原核基因表达调控主要采用操纵子模型,转录出多顺反子RNA,实现协调调节;真核基因转录产物为单顺反子RNA,功能相关蛋白质的协调表达机制更为复杂。
(6)转录后调控包括对mRNA的加工修饰、转运、细胞质定位以及稳定性等多方面的调控。翻译调控点主要在起始阶段和延长阶段,翻译起始因子的磷酸化可调节蛋白质翻译。另外,小分子RNA通过干扰翻译过程抑制基因表达。
真核基因表达调控特点:1)既有瞬时调控,又有发育调控2)调控环节更多3)染色质结构变化影响转录效率4)转录调控以正调控为主5)调控元件复杂并且可以远离转录区6)转录因子种类多,调控机制更复杂
(1)具有自主复制起点,使载体在宿主细胞中进行自主复制,并能使克隆的外源DNA得到同步扩增;(2)至少有一个筛选标志;(3)有适宜的限制性核酸内切酶单一酶切位点,可供外源基因插入时选择。
11.简述分子生物学实验中的α互补和蓝白斑筛选的原理。
β-半乳糖苷酶(β-gal)的α片段与受体菌编码的ω片段(lacZ-ω)可以互补结合发挥β-gal的活性,称作α互补。一些质粒上带有β-半乳糖苷酶α片段的编码序列LacZ’,转化进入受体菌,可形成α互补,即可催化底物X-gal产生蓝色产物,使菌落变蓝。由于这些质粒的多克隆位点位于LacZ’内部,插入外源DNA片段后,使LacZ’不能编码产生有功能的β-gal的α片段,不能发生α互补,在X-gal存在下受体菌落呈白色。因此,蓝色菌落代表载体中LacZ’基因活性完好无损,没有插入外源DNA片段,白色菌落则表明着所含质粒带有外源DNA片段,为重组质粒。用蓝白斑筛选可以来区分转化进入受体菌的是空载体还是重组质粒。
分子生物学简答题

课后思考题1. 试述乳糖操纵子的结构及调控原理?乳糖操纵子开放转录需要什么条件?(1)乳糖操纵子的结构:含Z、Y、A3个结构基因,分别编码乳糖代谢的3个酶;一个操纵序列O,一个启动序列P,一个CAP结合位点共同构成乳糖操纵子的调控区。
乳糖操纵子的上游还有一个调节基因I。
(2)阻遏蛋白的负性调节:I基因的表达产物为一种阻遏蛋白,在没有乳糖存在时,阻遏蛋白与O序列结合,阻碍RNA聚合酶与P序列结合,抑制转录启动,乳糖操作子处于阻遏状态;当有乳糖存在时,乳糖转变为半乳糖,后者结合阻遏蛋白,使构象变化,阻遏蛋白与O序列解离,在CAP蛋白协作下发生转录。
(3)CAP的正性调节:分解代谢基因激活蛋白(CAP)分子内存在DNA和cAMP结合位点。
当没有葡萄糖时,cAMP浓度较高,cAMP与CAP结合,cAMP-CAP结合于CAP结合位点,提高RNA转录活性;当有葡萄糖时,cAMP浓度降低,cAMP与CAP结合受阻,乳糖操纵子表达下降。
(4)协调调节:乳糖操纵子阻遏蛋白的负性调节和CAP的正性调节机制协调合作,CAP 不能激活被阻遏蛋白封闭基因的表达,但如果没有CAP存在来加强转录活性,即使阻遏蛋白从操纵序列上解离仍无转录活性。
因此,乳糖操纵子开放转录需要的条件是:1)诱导物乳糖存在,解除阻遏蛋白的负调节。
2)葡萄糖缺乏,CAP蛋白活化,启动正调节。
2.试述原核生物和真核生物基因表达调控特点的异同。
(1)相同点:转录起始是基因表达调控的关键环节。
(2)不同点:1)原核生物基因表达调控主要包括转录和翻译水平;真核基因表达调控包括染色质活化、转录、转录后加工、翻译、翻译后加工多个层次。
2)原核基因表达调控主要为负调节;真核生物基因表达调控主要为正调节。
3)原核转录起始不需要转录因子,RNA聚合酶直接结合启动子,由σ因子决定基因表达的特异性;真核转录起始需要基础、特异两类转录因子,依赖DNA-蛋白质、蛋白质-蛋白质相互作用,调控转录激活。
分子生物学简答题

(4)协调调节:乳糖操纵子阻遏蛋白的负性调节和CAP的正性调节机制协调合作,CAP不能激活被阻遏蛋白封闭基因的表达,但如果没有CAP存在来加强转录活性,即使阻遏蛋白从操纵序列上解离仍无转录活性。
HBS突变碱基位于限制性核酸内切酶MstII位点(CC.TNAGG)中,突变(A变为T)导致该限制性酶切位点丢失,因此,可以设计镰状细胞贫血的PCR-RFLP诊断方法:PCR扩增HBB基因含第5/6/7密码子的片段(1.35kb),用MstII充分消化扩增产物,再用琼脂糖凝胶电泳分析。正常人扩增产物显示1.15kb和0.20kb两条条带,镰状细胞贫血患者扩增产物则显示1.35kb单一条带,携带者则有1.35kb、1.15kb和0.20kb三条条带。
PKA使丝氨酸或苏氨酸残基磷酸化PKC属于丝/苏氨酸蛋白激酶
上游信号:腺苷酸环化酶鸟苷酸环化酶
常见第二信使:cAMPcGMPIP3←脂类→DAGCa2+
效应蛋白:蛋白激酶APKGIP3门控钙通道PKC PKC,钙调蛋白激酶
9.请比较PCR反应和体内DNA复制过程的异同点。
10.克隆载体一般具备哪些基本特性?
4.简述真核生物基因表达调控的特点。
(1)真核生物基因表达调控主要为正调节。
(2)真核基因转录产物为单顺反子RNA,功能相关蛋白质的协调表达机制更为复杂。
(3)真核生物基因表达调控具有典型的多级调控特点,包括染色质水平调控、转录调控、转录后调控、翻译调控等。
分子生物学简答题全

分子生物学简答题全————————————————————————————————作者:————————————————————————————————日期:简答题6.为什么利用RNAi抑制一个基因的表达较利用反义RNA技术更为彻底。
答:RNAi是外源或内源性的双链RNAﻩ进入细胞后引起与其同源的mRNA特异性降解.dsRNA进入细胞后,在Dicer作用下,分解为21-22bp的SiRNA.SiRNA结合相关酶,形成RNA介导的沉默复合物RISC.RISC在ATP作用下,将双链SiRNA变成单链SiRNA,进而成为有活性的RISC,又称为slicer.slicer与靶mRNA结合,导致其断裂,进而导致其彻底降解。
反义RNA是与靶mRNA互补的RNA,它通过与靶mRNA特异结合而抑制其翻译表达,反义RNA是与靶mRNA是随机碰撞并通过碱基互补配对,所以,mRNA不一定完全被抑制。
8.简述真核基因表达的调控机制。
答:(1)DNA和染色质结构对转录的调控:①DNA甲基化,②组蛋白对基因表达的抑制,③染色质结构对基因表达的调控作用,④基因重排,⑤染色质的丢失,⑥基因扩增;(2)转录起始调控:ﻩ①反式作用因子活性调节,包括表达调节、共价调节,配体调节等蛋白质相互作用调节),②反式作用因子与顺式作用原件结合对转录过程进行调控;(3)转录后调控:①5’端加帽和3’端多核苷酸化调控,②选择剪接调控,③mRNA运输调控,④mRNA稳定性调控;(4)翻译起始的调控:①阻遏蛋白的调控,②对翻译因子的调控,③对AUG的调控,④mRNA 5’端非编码区的调控,⑤小分子RNA;(5)翻译后加工调控:①新生肽链的水解,②肽链中氨基酸的共价修饰,③信号肽调控。
9.简述mRNA加工过程。
答:(1)5′端加帽(由加帽酶催化5′端加入7-甲苷乌苷酸,形成帽子结构m7GpppmNP-)。
(2)3′端加入Poly(A)尾(A、组蛋白的成熟mRNA无需加polyA尾;B、加尾信号包括AAUAAA和富含GU的序列;C、加尾不需模板;D剪切过程需要多种蛋白质因子的辅助)。
分子生物学简答题全

简答题6 •为什么利用RNAi抑制一个基因的表达较利用反义RNA技术更为彻底。
答:RNAi是外源或内源性的双链RNA 进入细胞后引起与其同源的mRNA特异性降解.dsRNA进入细胞后,在Dicer作用下,分解为21 - 22bp的SiRNA.SiRNA 结合相关酶,形成RNA介导的沉默复合物RISC.RISC在ATP作用下,将双链SiRNA变成单链SiRNA,进而成为有活性的RISC,又称为slicer.slicer与靶mRNA结合,导致其断裂,进而导致其彻底降解。
反义RNA是与靶mRNA互补的RNA,它通过与靶mRNA特异结合而抑制其翻译表达,反义RNA是与靶mRNA是随机碰撞并通过碱基互补配对,所以,mRNA不一定完全被抑制。
8 •简述真核基因表达的调控机制。
答:(1) DNA和染色质结构对转录的调控:①DNA甲基化,②组蛋白对基因表达的抑制,③染色质结构对基因表达的调控作用,④基因重排,⑤染色质的丢失,⑥基因扩增;(2)转录起始调控:①反式作用因子活性调节,包括表达调节、共价调节,配体调节等蛋白质相互作用调节),②反式作用因子与顺式作用原件结合对转录过程进行调控;(3)转录后调控:①5'端加帽和3 '端多核苷酸化调控,②选择剪接调控,③mRNA运输调控,④mRNA 稳定性调控;(4)翻译起始的调控:①阻遏蛋白的调控,②对翻译因子的调控,③对AUG的调控,④mRNA 5 '端非编码区的调控,⑤小分子RNA ;(5)翻译后加工调控:①新生肽链的水解,②肽链中氨基酸的共价修饰,③信号肽调控。
9 •简述mRNA加工过程。
答: (1) 5端加帽(由加帽酶催化5端加入7-甲苷乌苷酸,形成帽子结构m7GpppmNP- ) ( 2) 3端加入Poly(A)尾(A、组蛋白的成熟mRNA无需加polyA尾;B、加尾信号包括AAUAAA 和富含GU的序列;C、加尾不需模板;D剪切过程需要多种蛋白质因子的辅助)。
分子生物学简答题全

简答题6.为什么利用RNAi抑制一个基因的表达较利用反义RNA技术更为彻底。
答:RNAi是外源或内源性的双链RNA 进入细胞后引起与其同源的mRNA特异性降解.dsRNA进入细胞后,在Dicer作用下,分解为21-22bp的SiRNA.SiRNA结合相关酶,形成RNA介导的沉默复合物RISC.RISC在ATP作用下,将双链SiRNA变成单链SiRNA,进而成为有活性的RISC,又称为slicer.slicer与靶mRNA结合,导致其断裂,进而导致其彻底降解。
反义RNA是与靶mRNA互补的RNA,它通过与靶mRNA特异结合而抑制其翻译表达,反义RNA是与靶mRNA是随机碰撞并通过碱基互补配对,所以,mRNA不一定完全被抑制。
8.简述真核基因表达的调控机制。
答:(1)DNA和染色质结构对转录的调控:①DNA甲基化,②组蛋白对基因表达的抑制,③染色质结构对基因表达的调控作用,④基因重排,⑤染色质的丢失,⑥基因扩增;(2)转录起始调控:①反式作用因子活性调节,包括表达调节、共价调节,配体调节等蛋白质相互作用调节),②反式作用因子与顺式作用原件结合对转录过程进行调控;(3)转录后调控:①5’端加帽和3’端多核苷酸化调控,②选择剪接调控,③mRNA运输调控,④mRNA稳定性调控;(4)翻译起始的调控:①阻遏蛋白的调控,②对翻译因子的调控,③对AUG的调控,④mRNA 5’端非编码区的调控,⑤小分子RNA;(5)翻译后加工调控:①新生肽链的水解,②肽链中氨基酸的共价修饰,③信号肽调控。
9.简述mRNA加工过程。
答:(1)5′端加帽(由加帽酶催化5′端加入7-甲苷乌苷酸,形成帽子结构m7GpppmNP-)。
(2)3′端加入Poly(A)尾(A、组蛋白的成熟mRNA无需加polyA尾;B、加尾信号包括AAUAAA和富含GU的序列;C、加尾不需模板;D剪切过程需要多种蛋白质因子的辅助)。
(3)mRNA前体的剪接(剪接加工以除去内含子序列,并将外显子序列连接成为成熟的有功能的mRNA分子。
分子生物学简答题(整理)(word文档良心出品)

1阐述操纵子(operon)学说:见课本2、乳糖操纵子的作用机制?/简述乳糖操纵子的结构及其正、负调控机制答:A、乳糖操纵子的组成:大肠杆菌乳糖操纵子含Z、Y、A三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵序列O,一个启动子P和一个调节基因I。
B、阻遏蛋白的负性调节:没有乳糖存在时,I 基因编码的阻遏蛋白结合于操纵序列O处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。
所以,乳糖操纵子的这种调控机制为可诱导的负调控。
C、CAP的正性调节:在启动子上游有CAP结合位点,当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP浓度升高,与CAP结合,使CAP发生变构,CAP结合于乳糖操纵子启动序列附近的CAP结合位点,激活RNA聚合酶活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。
D、协调调节:乳糖操纵子中的I基因编码的阻遏蛋白的负调控与CAP的正调控两种机制,互相协调、互相制约。
3、基因调控的水平有哪些?基因调控的意义?答:a、DNA水平的调控。
b、转录水平上的调控。
c、转录后的调控。
d、翻译水平的调控。
e、细胞质与基因调控。
意义:适应物理,化学等环境因素变化,调节代谢,维持细胞生长与分裂。
4、简述乳糖操纵子的结构及其正负调控机制。
答:结构:A、Y和Z,以及启动子、控制子和阻遏子。
正调控机制:CAP分解代谢产物激活蛋白质,直接作用于操纵子区上与cAMP结合形成CAP-cAMP复合物,转录进行。
负调控机制:a、无诱导物时结构基因不转录。
b、有诱导物时与阻遏基因相结合,形成无活性阻遏物,RNA聚合酶可与启动子区相结合,起始基因转录。
5、简述Trp操纵子的结构及其调控机制。
答:Trp操纵子由5个结构基因TrpE、TrpD、TrpC、TrpB、TrpA组成一个多顺因子的基因簇,在5'端是启动子、操纵子、前导顺序和弱化子区域。
分子生物学简答题(整理)

1阐述操纵子(operon)学说:见课本2、乳糖操纵子的作用机制?/简述乳糖操纵子的结构及其正、负调控机制答:A、乳糖操纵子的组成:大肠杆菌乳糖操纵子含Z、Y、A三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵序列O,一个启动子P和一个调节基因I。
B、阻遏蛋白的负性调节:没有乳糖存在时,I 基因编码的阻遏蛋白结合于操纵序列O处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。
所以,乳糖操纵子的这种调控机制为可诱导的负调控。
C、CAP的正性调节:在启动子上游有CAP结合位点,当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP浓度升高,与CAP结合,使CAP发生变构,CAP结合于乳糖操纵子启动序列附近的CAP结合位点,激活RNA聚合酶活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。
D、协调调节:乳糖操纵子中的I基因编码的阻遏蛋白的负调控与CAP的正调控两种机制,互相协调、互相制约。
3、基因调控的水平有哪些?基因调控的意义?答:a、DNA水平的调控。
b、转录水平上的调控。
c、转录后的调控。
d、翻译水平的调控。
e、细胞质与基因调控。
意义:适应物理,化学等环境因素变化,调节代谢,维持细胞生长与分裂。
4、简述乳糖操纵子的结构及其正负调控机制。
答:结构:A、Y和Z,以及启动子、控制子和阻遏子。
正调控机制:CAP分解代谢产物激活蛋白质,直接作用于操纵子区上与cAMP结合形成CAP-cAMP复合物,转录进行。
负调控机制:a、无诱导物时结构基因不转录。
b、有诱导物时与阻遏基因相结合,形成无活性阻遏物,RNA聚合酶可与启动子区相结合,起始基因转录。
5、简述Trp操纵子的结构及其调控机制。
答:Trp操纵子由5个结构基因TrpE、TrpD、TrpC、TrpB、TrpA组成一个多顺因子的基因簇,在5'端是启动子、操纵子、前导顺序和弱化子区域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简答题6.为什么利用RNAi抑制一个基因的表达较利用反义RNA技术更为彻底。
答:RNAi是外源或内源性的双链RNA 进入细胞后引起与其同源的mRNA特异性降解.dsRNA进入细胞后,在Dicer作用下,分解为21-22bp的SiRNA.SiRNA结合相关酶,形成RNA介导的沉默复合物RISC.RISC在ATP作用下,将双链SiRNA变成单链SiRNA,进而成为有活性的RISC,又称为slicer.slicer与靶mRNA结合,导致其断裂,进而导致其彻底降解。
反义RNA是与靶mRNA互补的RNA,它通过与靶mRNA特异结合而抑制其翻译表达,反义RNA是与靶mRNA是随机碰撞并通过碱基互补配对,所以,mRNA不一定完全被抑制。
8.简述真核基因表达的调控机制。
答:(1)DNA和染色质结构对转录的调控:①DNA甲基化,②组蛋白对基因表达的抑制,③染色质结构对基因表达的调控作用,④基因重排,⑤染色质的丢失,⑥基因扩增;(2)转录起始调控:①反式作用因子活性调节,包括表达调节、共价调节,配体调节等蛋白质相互作用调节),②反式作用因子与顺式作用原件结合对转录过程进行调控;(3)转录后调控:①5’端加帽和3’端多核苷酸化调控,②选择剪接调控,③mRNA运输调控,④mRNA稳定性调控;(4)翻译起始的调控:①阻遏蛋白的调控,②对翻译因子的调控,③对AUG的调控,④mRNA 5’端非编码区的调控,⑤小分子RNA;(5)翻译后加工调控:①新生肽链的水解,②肽链中氨基酸的共价修饰,③信号肽调控。
9.简述mRNA加工过程。
答:(1)5′端加帽(由加帽酶催化5′端加入7-甲苷乌苷酸,形成帽子结构m7GpppmNP-)。
(2)3′端加入Poly(A)尾(A、组蛋白的成熟mRNA无需加polyA尾;B、加尾信号包括AAUAAA和富含GU的序列;C、加尾不需模板;D剪切过程需要多种蛋白质因子的辅助)。
(3)mRNA前体的剪接(剪接加工以除去内含子序列,并将外显子序列连接成为成熟的有功能的mRNA分子。
内含子两端的结构通常是5′-GU……AG-3′。
选择性剪接的作用机制包括;A使用不同的剪接位点,B选择使用外显子,C、反式剪接,D、使用不同的启动子,E、使用不同的多腺苷酸化位点)。
(4)RNA的编辑(发生于转录后水平,改编mRNA序列,C→U或A→G,增加遗传信息容量)。
10.简述生物的中心法则。
答:中心法则(genetic central dogma),是指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质,即完成遗传信息的转录和翻译的过程。
也可以从DNA传递给DNA,即完成DNA的复制过程。
11.简述真核生物基因结构及特点。
答:真核细胞的基因也是由编码区和非编码区两部分组成的;(1)编码区:外显子——能编码蛋白质的序列。
特点:间隔的、不连续的。
即能编码蛋白质的序列被不能编码蛋白质的序列分隔开来,成为一种断裂的形式不能编码蛋白质的序。
内含子——列。
(2)非编码区:有调控作用的核苷酸序列。
启动子——是基因结构中位于编码区上游的核苷酸序列,是RNA聚合酶结合点,能准确地识别转录的起点并开始转录,有调控遗传信息表达的作用。
12.简述SNP的特点,SNP如何发挥生物学作用的及研究SNP的意义。
答:特点:(1)数量多,遍布基因组,分布相对平均,据统计,人类群体中大概有1100万个SNP,约每300bp就有1个SNP位点,方便挑选位点。
(2)虽有A/C/G/T四种核苷酸,但SNP位点大多是双态,即每个位点在群体中只存在2种核苷酸形式,因此A/C、A/G、A/T、C/G、C/T、G/T、Indel等几种形态,适合开展大规模、高通量、自动分化的检测。
(3)人类基因组90%的变异形式为SNP,SNP的遗传很稳定——每一代之间不会有太大变化。
SNP的研究意义:虽然人类99%以上的DNA序列是相同的,但DNA序列的变化能对人类对疾病、环境攻击(比如细菌、病毒、毒素和化学物质)、药物和治疗的反应产生重大影响。
这就使得SNP对生物医学的研究和药物开发、医学诊断的发展有重要意义。
SNPs可作为遗传作图研究中的遗传标记,帮助定位和鉴定功能基因。
研究者相信SNP图谱将帮助他们认识复杂的多基因疾病,如癌症,糖尿病,血管性疾病和某些精神性疾病。
13.简述miRNA的结构特点和生物功能。
答:广泛存在于真核生物中,是一组不编码蛋白质的短序列RNA,它本身不具有开放阅读框架(ORF);通常的长度为20~24nt,但在3′端可以有1~2个碱基的长度变化;成熟的miRNA5′端有一磷酸基团,3′端为羟基,这一特点使它与大多数寡核苷酸和功能RNA的降解片段区别开来;多数miRNA还具有高度保守性、时序性和组织特异性。
miRNA执行一定的生物学功能:对与其互补的mRNA表达水平具有调节作用;一些偏大的miRNA可能参与了基因组的重组装(27nt)。
14.什么是DNA甲基化? 简要说明甲基化的检测方法及其生物学效应。
答:胞嘧啶和甲基在甲基化酶的作用下形成5’-甲基胞嘧啶的过程叫做DNA的甲基化。
DNA 甲基化抑制或降低转录水平,在基因转录起始点附近,有高度密集的CpG重复序列,被称为CpG岛,或HTF岛。
推测该序列与基因转录活性有关。
检测方法:①酶切鉴定:HpaⅡ只能切割未甲基化的-CCGG-,HpaⅡ如果第二个C被甲基化了就不能切割。
MspⅠ能够识别和切割甲基化或未甲基化-CCGG-。
比较这两种酶切割DNA产生的DNA片段的差异,可知DNA片段甲基化的程度与有无。
②限制性内切酶+Southernbloting;③甲基化特异性PCR(MSP);④亚硫酸盐变性后测序;⑤甲基化敏感性单核苷酸引物扩增(Ms-SnuPE);⑥甲基化荧光检测;⑦亚硫酸氢钠变性后限制酶分析(COBRA);⑧差异甲基化杂交(DMN);⑨酶的区域性甲基化分析(ERMA)。
15.何为顺式作用元件?请举出三种真核生物基因的顺式作用元件。
答:影响自身基因表达活性的非编码DNA序列,组成基因转录的调控区。
例:启动子:转录调节蛋白和RNA聚合酶的结合位点;增强子:是一个有增强转录的顺式作用元件,能够提高一些真核生物启动子的效率,并能能在启动子的任何方向和任何位置(上游或下游)作用。
沉默子:负性调节元件,当其结合特意蛋白因子时,对基因转录起阻遏作用。
16.以trp操纵元为例简述衰减子的调控机制。
答:当细胞中有色氨酸存在时,核糖体能够顺利翻译出整个前导肽而在终止密码子处停下来。
这时,核糖体占据了序列1和部分序列2,使序列2和序列3不能产生有效的配对,因而序列3和序列4配对产生终止子的发夹结构,于是实现转录的终止。
当出现Trp饥饿时,核糖体停顿在两个Trp密码子上,这时,核糖体占据了序列1而留下完整的序列2以便与转录出的或即将转录出的序列3形成二级结构。
这样,当序列4转录出来后仍然是单链状态,即终止子不能形成,于是转录继续进行下去。
23.在基因转录水平的表达调控方式上,真核生物往往采用正控制系统,而原核生物却往往采用负控制系统,请简要阐明其原因。
答:这两种调控方式是长期自然选择的结果,也是生物体采用的经济有效的原则选择的。
原核生物基因组小,基因少而简单,生命繁殖快,多采用负控制的保险机制,即使调节蛋白质失活,酶系统照样合成,只不过有时浪费一点罢了,绝不会使细胞因缺乏该酶系统而造成致命的后果。
另外,采用负控制具有一开俱开,一关俱关的特点,减少不必要的环节;而真核生物基因组大,基因多且复杂,采用正控制具有更大的优越性,转录因子相互作用缺一不可,可以保证真核生物基因表达调控的严谨性和灵活性以及经济性原则。
24.根据你的理解说明利用”酵母双杂交系统”研究蛋白质间相互作用的原理。
答:真核生物的转录因子可以分为两部分,BindingDomain和ActivatedDomain。
BindingDomain负责结合在DNA上,ActivatedDomain负责激活转录。
二者都是相互独立的区域,但二者单独时都不能有转录活性,必须结合在一起或相互靠近在一起才有活性。
在研究蛋白质相互作用中,将一种蛋白质的基因连接在BindingDomain上,将另一种蛋白质的基因结合在BindingDomain上,蛋白质基因表达后就与转录因子的两个Domain分别结合,两个蛋白质因相互作用而结合在一起,进而使BindingDomain和ActivatedDomain 相互靠近在一起,从而形成具有转录活性的转录因子。
在欲表达的基因区域连上报告基因,通过报告基因的表达与否,就可判断蛋白质之间是否发生了相互作用。
25.举三例RNA的研究成就及其在推动分子生物学发展中的重要意义。
答:Ribozyme:拓展了酶的概念、内含子自我剪切、生命起源和分子进化。
Antisense-RNA:基因表达调控、基因工程。
RNAi:基因表达调控、功能基因组学。
26.简要阐明中心法则的提出对分子生物学研究的理论意义和指导作用。
答:中心法则体现了遗传信息的唯一性、遗传物质的自决性、信息表达的单程性、序列转换的共线性,为分子生物学研究提供了一个理论框架,分子生物学是一部从DNA到蛋白质的中心法则的演绎。
中心法则面临的挑战:反转录酶、内含子、不连续转录、非翻译序列、伴刀豆球蛋白A肽链一级结构的重排、RNA变通性剪切、RNA编辑、以蛋白质为模板的肽链合成、朊病毒的发现。
中心法则的修正:从DNA到RNA到肽链不断有新的遗传信息的加入:DNA:重排RNA:反转录、不连续转录、多种方式剪切、编辑mRNA:跳跃翻译、折叠肽链:氨基酸重排、蛋白质内含子剪切朊病毒复制27.比较两种mRNA的剪切方式的异同。
答:Cis-splicing与Trans-splicing的比较29.4种基因表达调控类型的区分:答:正、负调控:调节蛋白缺乏时对操纵子的影响;可诱导、阻遏:操纵子对调节基因表达的小分子所作出反应的特点;有或无Glu调节cAMP-CAP活性的分子生物学机制:Glu代谢物抑制腺苷环化酶、促进磷酸二酯酶调节细胞中cAMP的水平。
当缺乏Glu时,生物体内ATP环化酶会使ATP变成cAMP,cAMP与CAP蛋白结合,进入操纵元上CAP位点,此时RNA聚合酶才能进入结合位点开始转录。
如果不缺乏Glu的情况下,无法生成cAMP,也就无法形成复合物,也不能使RNA聚合酶进入结合位点,开始转录。
32.何谓RNA剪接,何谓RNA编辑?答:RNA剪接:从DNA模板链转录出的最初转录产物中除去内含子,并将外显子连接起来形成一个连续的RNA分子的过程。
RNA编辑(RNAediting):RNA编辑是指在mRNA水平上改变遗传信息的过程。
RNA编辑是通过比较成熟的mRNA与相应基因的编码信息时发现的,成熟的mRNA序列中有几种意想不到的变化,包括U→C,C→U;U的插入或缺失、多个G或C的插入等。