【奥数】复习:平面图形与几何基础知识

合集下载

六年级奥数平面几何部分

六年级奥数平面几何部分

平面几何部分教学目标:1. 熟练掌握五大面积模型 2. 掌握五大面积模型的各种变形 知识点拨一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如右图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACDBCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△EDCBAEDCBA图⑴ 图⑵三、蝴蝶定理ba S 2S 1DCBA S 4S 3S 2S 1O DCBA A BCDO ba S 3S 2S 1S 4任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +. 四、相似模型(一)金字塔模型 (二) 沙漏模型GF E ABCDAB CDEF G①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形. 五、燕尾定理在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么::ABO ACO S S BD DC ∆∆=.OFE DCBA上述定理给出了一个新的转化面积比与线段比的手段,因为ABO∆的形状很象燕子∆和ACO的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.典型例题【例 1】如图,正方形ABCD的边长为6,AE=,CF=2.长方形EFGH的面积为.【巩固】如图所示,正方形ABCD的边长为8厘米,长方形EBGF的长BG为10厘米,那么长方形的宽为几厘米【例 2】长方形ABCD的面积为362cm,E、F、G为各边中点,H为AD边上任意一点,问阴影部分面积是多少E【巩固】在边长为6厘米的正方形ABCD内任取一点P,将正方形的一组对边二等分,另一组对边三等分,分别与P点连接,求阴影部分面积.【例 3】如图所示,长方形ABCD内的阴影部分的面积之和为70,8AD=,四AB=,15边形EFGO的面积为.AB【巩固】如图,长方形ABCD的面积是36,E是AD的三等分点,2=,则阴影部分AE ED的面积为.B【例 4】已知ABC为等边三角形,面积为400,D、E、F分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形HBC)B【例 5】如图,已知5EF=,6FG=,线段AB将图形分成两部分,DE=,15CD=,7左边部分面积是38,右边部分面积是65,那么三角形ADG的面积是.GFE DC BA【例 6】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘米,求ABC △的面积.EDCBA【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那么三角形ABC 的面积是多少EDCBA【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面积是甲部分面积的几倍乙甲E DCBA【例 7】 如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =,:3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.EDCBA【例 8】 如图,平行四边形ABCD ,BE AB =,2CF CB =,3GD DC =,4HA AD =,平行四边形ABCD 的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比.HGAB CD EF【例 9】 如图所示的四边形的面积等于多少DC131213131212【例 10】 如图所示,ABC ∆中,90ABC ∠=︒,3AB =,5BC =,以AC 为一边向ABC ∆外作正方形ACDE ,中心为O ,求OBC ∆的面积.【例 11】 如图,以正方形的边AB 为斜边在正方形内作直角三角形ABE ,90AEB ∠=︒,AC 、BD 交于O .已知AE 、BE 的长分别为3cm 、5cm ,求三角形OBE 的面积.【例 12】 如下图,六边形ABCDEF 中,AB ED =,AF CD =,BC EF =,且有AB 平行于ED ,AF 平行于CD ,BC 平行于EF ,对角线FD 垂直于BD ,已知24FD =厘米,18BD =厘米,请问六边形ABCDEF 的面积是多少平方厘米FEABDC【例 13】 如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FED CBA【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米x xABFGE D CBA【例 14】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示).如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍.ABCDO【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵:AG GC =B【例 15】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE△的面积依次是2、4、4和6.求:⑴求OCF △的面积;⑵求GCE △的面积.OGFEDCBA【例 16】 如图,长方形ABCD 中,:2:3BE EC =,:1:2DF FC =,三角形DFG 的面积为2平方厘米,求长方形ABCD 的面积.ABCDEF G【例 17】 如图,正方形ABCD 面积为3平方厘米,M 是AD 边上的中点.求图中阴影部分的面积.CBA【巩固】在下图的正方形ABCD中,E是BC边的中点,AE与BD相交于F点,三角形BEF 的面积为1平方厘米,那么正方形ABCD面积是平方厘米.AB CDEF【例 18】已知ABCD是平行四边形,:3:2BC CE ,三角形ODE的面积为6平方厘米.则阴影部分的面积是平方厘米.B【巩固】右图中ABCD是梯形,ABED是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是平方厘米.B【巩固】右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是 平方厘米.B【例 19】 如图,长方形ABCD 被CE 、DF 分成四块,已知其中3块的面积分别为2、5、8平方厘米,那么余下的四边形OFBC 的面积为___________平方厘米.?852O A BCD EF【例 20】 如图,ABC ∆是等腰直角三角形,DEFG 是正方形,线段AB 与CD 相交于K 点.已知正方形DEFG 的面积48,:1:3AK KB =,则BKD ∆的面积是多少B【例 21】 下图中,四边形ABCD 都是边长为1的正方形,E 、F 、G 、H 分别是AB ,BC ,CD ,DA 的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数mn,那么,()m n +的值等于 .BEE【例 22】 如图, ABC △中,DE ,FG ,BC 互相平行,AD DF FB ==,则::ADEDEGF FGCB S S S =△四边形四边形 .EGF A D CB【巩固】如图,DE 平行BC ,且2AD =,5AB =,4AE =,求AC 的长.A ED CB【巩固】如图, ABC △中,DE ,FG ,MN ,PQ ,BC 互相平行,AD DF FM MP PB ====,则::::ADE DEGF FGNM MNQP PQCB S S S S S =△四边形四边形四边形四边形 .【例 23】 如图,已知正方形ABCD 的边长为4,F 是BC 边的中点,E 是DC 边上的点,且:1:3DE EC =,AF 与BE 相交于点G ,求ABG S △Q E GNMF PADCBGFAEDCB【例 24】 如图所示,已知平行四边形ABCD 的面积是1,E 、F 是AB 、AD 的中点, BF交EC 于M ,求BMG ∆的面积.MHGF E DCBA【例 25】 如图,ABCD 为正方形,1cm AM NB DE FC ====且2cm MN =,请问四边形PQRS 的面积为多少CA【例 26】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .O F EDCBA【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .O F EDCBA【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .O F EDCBA【例 27】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.I HGFEDCBA【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形ABC 的面积.IH G FEDCBA【巩固】如图,ABC ∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.B【巩固】如图在ABC △中,12DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. IHG FEDCBA【例 28】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少GFE D CBA【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少K JI HABC D EF G【例 29】 右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米N M GA BCD EF【例 30】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.GCB【例 31】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.GCBA课后练习:练习1. 已知DEF △的面积为7平方厘米,,2,3BE CE AD BD CF AF ===,求ABC △的面积.FED CBA练习2. 如图,四边形EFGH 的面积是66平方米,EA AB =,CB BF =,DC CG =,HD DA =,求四边形ABCD 的面积.H GFED CB A练习3. 正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是 平方厘米.H GFEDC BA练习4. 如图,已知4cm AB AE ==,BC DC =,90BAE BCD ∠=∠=︒,10cm AC =,则S ABC ACE CDE S S ∆∆∆++= 2cm .DCEBA练习5. 如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是_____平方厘米.ED练习6. 如图,ABC ∆中,点D 是边AC 的中点,点E 、F 是边BC 的三等分点,若ABC∆的面积为1,那么四边形CDMF 的面积是_________.FABCDE MN练习7. 如右图,三角形ABC 中,:::4:3AF FB BD DC CE AE ===,且三角形ABC 的面积是74,求角形GHI 的面积.IH G FEDCBA备选【备选1】 按照图中的样子,在一平行四边形纸片上割去了甲、乙两个直角三角形.已知甲三角形两条直角边分别为2cm 和4cm ,乙三角形两条直角边分别为3cm 和6cm ,求图中阴影部分的面积.【备选2】 如图所示,矩形ABCD 的面积为36平方厘米,四边形PMON 的面积是3平方厘米,则阴影部分的面积是 平方厘米.【备选3】 如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △ 面积的几分之几OE DCBA【备选4】 如图,在ABC △中,延长AB 至D ,使BD AB =,延长BC 至E ,使12CE BC =,F 是AC 的中点,若ABC △的面积是2,则DEF △的面积是多少A BCDEF【备选5】 如图,:2:3BD DC =,:5:3AE CE =,则:AF BF =GF EDCBA【备选6】 如图在ABC △中,13DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. IHG FEDCBA。

图形与几何的知识点

图形与几何的知识点

图形与几何的知识点一、基本概念图形与几何是数学中的一个重要分支,研究物体的形状、大小、位置和运动等方面。

在这个领域里,有一些基本的概念和术语我们需要了解。

1. 点:在几何中,点是最基本的概念,没有形状和大小,只有位置。

2. 线段:线段是由两个点确定的一段连续的直线。

3. 直线:直线是由一条连续的线段无限延伸而成的。

4. 射线:射线是由一个端点和一条连续的直线段组成。

5. 角:角是由两条射线共享一个端点而形成的图形。

6. 边:多边形是由线段构成的,每个线段被称为一个边。

二、图形的分类图形可以根据各种属性进行分类,以下是几个常见的分类方式:1. 几何图形:几何图形是平面上的图形,包括点、线、面等。

2. 二维图形:二维图形是在平面上具有宽度和高度的图形,如长方形、正方形、三角形等。

3. 三维图形:三维图形是在空间中具有宽度、高度和深度的图形,如立方体、圆柱体、球体等。

4. 凸多边形和凹多边形:凸多边形是没有内角大于180度的多边形,凹多边形是至少有一个内角大于180度的多边形。

5. 等边图形:等边图形是指具有相等边长的图形,比如等边三角形。

三、图形的性质图形具有一些共同的性质,这些性质有助于我们理解和比较不同的图形。

1. 对称性:图形在某个轴线或点处可以被分成两个相等的部分。

2. 平行性:两条直线在平面上没有点重合,但始终保持相同的间距。

3. 垂直性:两条直线相交,且相交的角为直角(90度)。

4. 相似性:两个图形的形状相似,但大小可能不同。

5. 定理:几何学中有很多定理,如勾股定理、正弦定理、余弦定理等,它们可以用来解决各种几何问题。

四、常见图形的计算公式图形的计算涉及到面积、周长、体积等方面,以下是几个常见图形的计算公式:1. 矩形的面积公式:面积 = 长 ×宽2. 三角形的面积公式:面积 = 底边长 ×高 ÷ 23. 圆的面积公式:面积= π × 半径^24. 圆的周长公式:周长= 2 × π × 半径5. 立方体的体积公式:体积 = 长 ×宽 ×高五、实际应用图形与几何的知识点在实际生活中有许多应用。

数学奥赛教练员培训班讲义(平面几何)

数学奥赛教练员培训班讲义(平面几何)

数学奥赛教练员培训班讲义(1)第一讲 平面几何平面几何是数学竞赛中的一个基本内容。

它以严密的逻辑结构、灵活的证题方法,在发展学生的逻辑思维能力和空间想象能力等方面起着特殊的作用。

因此在数学竞赛中平面几何的内容占有十分突出的地位。

平面几何主要研究度量关系的证明、位置关系的证明、面积关系解题、几何量的计算、轨迹问题等。

一、与三角形有关的重要定理1.梅涅劳斯定理一直线分别截△ABC 的边BC 、CA 、AB (或其延长线)于D 、E 、F ,则1=∙∙FBAF EA CE DC BD 。

说明:(1)结论的图形应考虑直线与三角形三边交点的位置情况,因而本题图形应该有两个。

(2)结论的结构是三角形三边上的6条线段的比,首尾相连,组成一个比值为1的等式。

(3)其逆定理为:如果D 、E 、F 分别在△ABC 的边BC 、CA 、AB (或其延长线上),并且1=∙∙FBAF EA CE DC BD ,那么D 、E 、F 三点在同一条直线上。

(4)梅氏定理及其逆定理不仅可以用来证明点共线问题,而且是解决许多比例线段问题的有力工具。

用梅氏定理求某个比值的关键,在于恰当地选取梅氏三角形和梅氏线。

2.塞瓦定理设O 是△ABC 内任意一点,AO 、BO 、CO 分别交对边于D ,E ,F ,则1=∙∙FBAF EA CE DC BD 。

说明:(1)该定理可借助于梅氏定理来证明(也可用面积法来证明)。

如果O 点在三角形外,结论仍然是成立的。

(2)其逆定理为:分别在△ABC 三边(所在直线)BC 、CA 、AB 上各取一点D 、E 、F ,若有1=∙∙FBAF EA CE DC BD ,则AD 、BE 、CF 平行或共点。

(3)塞瓦定理及其逆定理是证明三直线交于一点(线共点)问题的重要定理,应用塞瓦定理很容易证明三角形中的主要线段的共点问题。

3.三角形的五心三角形的三条中线共点,三条角平分线共点,三条高线共点,三条中垂线共点。

平面几何基础

平面几何基础

平面几何基础平面几何是几何学的重要分支之一,研究了在平面上的点、线、角以及图形的性质和关系。

它是我们理解和解决实际问题中经常用到的一种数学工具。

本文将介绍平面几何的基础知识,包括点、线、角和图形的特征与性质。

一、点的性质与关系1. 点的定义与表示:在平面几何中,点是最基本的概念,通常用大写字母表示,如"A"、"B"、"C"等。

点没有大小和形状,只有位置。

2. 点的相对位置:在平面上,点的相对位置可以用坐标来表示。

我们可以用直角坐标系或极坐标系来确定点的位置,其中直角坐标系由x 轴和y轴组成,而极坐标系由原点、极径和极角组成。

3. 点的连线:两个点之间可以用线段连接起来,形成一个直线。

直线是经过两个点的最短路径。

4. 点的投影:当点在平面上与另一个物体重叠时,它的投影就是它在平面上的垂直投影点。

投影是判断物体位置和大小的重要工具。

二、线的性质与关系1. 线的定义与表示:线是通过两个点或多个点上的连续点组成的。

可以用小写字母表示线,如"l"、"m"、"n"等。

2. 线的分类:根据线的位置和形状,我们可以将线分为水平线、垂直线、直线、曲线等。

3. 线的相对位置:在平面上,两条线可以相交、平行或重合。

相交的两条线称为交线,平行的两条线永不相交,重合的两条线完全重合。

4. 线的性质:两条平行线上的任意两个点到另一条平行线的距离是相等的。

两条垂直线的斜率乘积为-1。

这些性质在解决实际问题中起着重要的作用。

三、角的性质与关系1. 角的定义与表示:角是由两条线或线段的端点共同确定的,通常用大写字母表示,如"A"、"B"、"C"等,其中顶点位于两条边的交点处。

2. 角的度量:角可以用度数或弧度表示。

度数是常用的度量单位,360度是一个完整的角。

小升初奥数--点招必备系列课程之三-第3讲-平面几何

小升初奥数--点招必备系列课程之三-第3讲-平面几何

4000-636-566
QQ:646615660
7 / 10
如图,在△ABC 中,M 为 AB 边的中点,MD、EC 平行。若△BDE 的面积是 3 平方 厘米,则△ ABC 的面积是多少?
如图,△ABC 的面积是 180 平方厘米,D 是 BC 的中点,AD=3AE,EF=3BF。那么△AEF 的面积是多少平方厘米?
1 正方形 ABCD 的边长为 4,E 是 BC 边的中点,F 是 DC 边上的点,且 DF= DC,AE 与 4
BF 相交于 G 点。那么三角形 ABG 的面积是多少?
4000-636-566
QQ:646615660
9 / 10
【答案】 例 1:1/7 例 2:22/45 例 3:5/12 例 4:4.8 例 5:59:24 例 6:10 例 7:略 例 8:略 例 9:24 例 10:8 例 11:5/24 例 12:5 例 13:1:4 思考题:6 练习 1:22.5 练习 2:1/4 练习 3:120 练习 4:6 练习 5:14 练习 6:32/11
◆长方形相关结论(三大面积关系)
S1 S 4 S 2 S3
S 上+S 下=S 左+S 右
在梯形中(如上右图) ,E、F 为 BC、AD 的中点, 则有 EF∥DC∥AB,2EF=AB+DC
(1) 锯齿定理(左下图): 阴影=空白面积=矩形 面积的一半。 (2)右下图的三个平等四边形面 积相等。
小升初奥数--点招必备系列课程之三 第 3 讲—平面几何
知识点概述
1、 定理一: 如图, ABC 中, D 是 BC 边上一点, E 在 AD 连接 (或其延长线上) , 那么
S ABE BD 。 S ACE CD

小学奥数之几何概念复习

小学奥数之几何概念复习

几何概念复习1、角(角的概念)(1)n边形内角和为(),其外角和为(),正n边型的内角为()。

(2)等角模型(3)聚角模型(请证明公式)∠A+∠B=∠ACD ∠A+∠B+∠C=∠D ∠A+∠B=∠C+∠D例题1、如图, ∠E=30°,AF∥ED,求∠A+∠B+∠C+∠D+∠E+∠+F=?例题2、求标有数字的12个角的度数之和?例题3、每个50分的硬币是一个正12边形,当两个硬币以这样角度竖立,则图中∠X=()。

2、求面积图形的若干一半模型(用阴影画出)3、求复杂图形的面积(1)、毕克定理正方形格点S=(N+L/2-1)·单三角形格点S=(2N+L-2)·单例1、例题1、正方形格点的面积为1,求⊿ACD的面积。

(2)平移和旋转(全等三角形)(3)空白和阴影对比法,结合和差公式。

(4)特殊四边形的面积例2、如图,如果长方形ABCD的面积为56 cm2,那么四边形MNPQ的面积为()cm2。

例3、如图,甲乙丙丁四个长方形拼成一个正方形EFGH,中间阴影为正方形。

已知甲乙丙丁四个长方形的面积和为54 cm2,四边形ABCD的面积为37 cm2,求正方形EFGH的面积及甲、乙、丙、丁四个长方形的周长总和。

2、三角形三角形的内角和为(),外角和为()。

等腰三角形的特点:(1)(2)(3)直角三角形:(1)、勾股定理:。

(2)、勾股定理逆定理:。

(3)、特殊直角三角形:【巩固1】、如图,RTΔABC,AB=AC,AD=BD,斜边AB=a,则ΔABC的面积为多少?【巩固2】如图,RTΔABC,∠A=30°, AD=BD,斜边AB=a,则ΔABC的面积为多少?【巩固3】已知一个直角三角形的两边长分别为5和12,则第三边长的平方是多少?巧求多边形的周长和面积【巩固3】正方形的边长为10,E、F、G、H分别是边长的中点,则阴影部分的面积为()。

【巩固4】一个正方形,边长增加8 cm,其面积就增加256 cm2,问原来这个正方形的面积是多少?【巩固5】如图,RT⊿ABC中,AB=3,AC=4,点D、E、F、G、N、I都在长方形KLMJ上,且ABED、ACNI、BCGF都是正方形,则KLMJ面积为( ).【巩固5】有一个正方形(如图),把它分成8个小长方形,它们的周长之和为120cm,那么这个正方形的面积是多少?【巩固6】3.用4个相同的等腰直角三角形相互交迭拼成下图,阴影正方形的面积是()平方厘米。

平面几何知识点总结大全

平面几何知识点总结大全

平面几何知识点总结大全一、基本图形。

1. 点。

- 点是平面几何中最基本的元素,没有大小、长度、宽度或厚度。

它通常用一个大写字母表示,如点A。

2. 线。

- 直线。

- 直线没有端点,可以向两端无限延伸。

直线可以用直线上的两个点表示,如直线AB;也可以用一个小写字母表示,如直线l。

- 经过两点有且只有一条直线(两点确定一条直线)。

- 射线。

- 射线有一个端点,它可以向一端无限延伸。

射线用表示端点的字母和射线上另一点的字母表示,端点字母写在前面,如射线OA。

- 线段。

- 线段有两个端点,有确定的长度。

线段用表示两个端点的字母表示,如线段AB;也可以用一个小写字母表示,如线段a。

- 两点之间,线段最短。

3. 角。

- 由公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。

角通常用三个大写字母表示(顶点字母写在中间),如∠AOB;也可以用一个大写字母表示(这个大写字母表示顶点,且以这个顶点为顶点的角只有一个时),如∠ O;还可以用一个数字或希腊字母表示,如∠1、∠α。

- 角的度量单位是度、分、秒,1^∘=60',1' = 60''。

- 角的分类:- 锐角:大于0^∘而小于90^∘的角。

- 直角:等于90^∘的角。

- 钝角:大于90^∘而小于180^∘的角。

- 平角:等于180^∘的角。

- 周角:等于360^∘的角。

二、相交线与平行线。

1. 相交线。

- 对顶角。

- 两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角。

对顶角相等。

- 邻补角。

- 两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

邻补角互补,即和为180^∘。

- 垂直。

- 当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

- 在同一平面内,过一点有且只有一条直线与已知直线垂直。

平面几何知识点总结

平面几何知识点总结

平面几何知识点总结平面几何是数学中一个重要的分支,它研究的是平面内图形的性质和关系。

下面我们来详细总结一下平面几何的主要知识点。

一、点、线、面点是没有大小和形状的,是最基本的几何元素。

线是由无数个点组成的,直线没有端点,可以无限延伸;射线有一个端点,向一端无限延伸;线段有两个端点,有固定的长度。

面是由线围成的,平面没有边界,可以无限延展。

二、角角是由两条有公共端点的射线组成的几何图形。

角的度量单位是度,用“°”表示。

1、角的分类锐角:小于 90 度的角。

直角:等于 90 度的角。

钝角:大于 90 度小于 180 度的角。

平角:等于 180 度的角。

周角:等于 360 度的角。

2、角的性质同角或等角的余角相等,同角或等角的补角相等。

对顶角相等。

三、三角形三角形是由三条线段首尾顺次相接组成的封闭图形。

1、三角形的分类按角分类:锐角三角形、直角三角形、钝角三角形。

按边分类:等边三角形、等腰三角形、不等边三角形。

2、三角形的性质三角形内角和为 180 度。

三角形任意两边之和大于第三边,任意两边之差小于第三边。

3、三角形的特殊线段中线:连接三角形顶点和它对边中点的线段。

高线:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段。

角平分线:三角形一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段。

4、全等三角形全等三角形的性质:全等三角形的对应边相等,对应角相等。

全等三角形的判定:SSS(边边边)、SAS(边角边)、ASA(角边角)、AAS(角角边)、HL(斜边、直角边)。

四、四边形四边形是由不在同一直线上的四条线段首尾顺次相接组成的封闭图形。

1、平行四边形性质:对边平行且相等,对角相等,对角线互相平分。

判定:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。

2、矩形性质:四个角都是直角,对角线相等。

六年级奥数平面几何部分

六年级奥数平面几何部分

平面几何部分教学目标:1.熟练掌握五大面积模型2. 掌握五大面积模型的各种变形知识点拨一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;如右图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图⑴ 图⑵三、蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者132S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”): b a S 2S 1D C B A A B C D O b a S 3S 2S 1S 4①2213::S S a b =②221324::::::S S S S a b ab ab =;③S 的对应份数为()2a b +. 四、相似模型(一)金字塔模型 (二) 沙漏模型 ①AD AE DE AF AB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半.相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.五、燕尾定理在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么::ABO ACO S S BD DC ∆∆=. 上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.典型例题【例 1】 如图,正方形ABCD 的边长为6,AE =1.5,CF =2.长方形EFGH 的面积为 .【巩固】如图所示,正方形ABCD 的边长为8厘米,长方形EBGF 的长BG 为10厘米,那么长方形的宽为几厘米?【例 2】 长方形ABCD 的面积为362cm ,E 、F 、G 为各边中点,H 为AD 边上任意一点,问阴影部分面积是多少?【巩固】在边长为6厘米的正方形ABCD 内任取一点P ,将正方形的一组对边二等分,另一组对边三等分,分别与P 点连接,求阴影部分面积. _A _B_G _C _E_F _D _A _B _ G _C _E _F_DO F E D CB A【例 3】 如图所示,长方形ABCD 内的阴影部分的面积之和为70,8AB =,15AD =,四边形EFGO 的面积为 .【巩固】如图,长方形ABCD 的面积是36,E 是AD 的三等分点,2AE ED =,则阴影部分的面积为 .【例 4】 已知ABC 为等边三角形,面积为400,D 、E 、F 分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形HBC )【例 5】 如图,已知5CD =,7DE =,15EF =,6FG =,线段AB 将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG 的面积是 .【例 6】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘米,求ABC △的面积.【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE的面积等于1,那么三角形ABC 的面积是多少?【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面积是甲部分面积的几倍?【例 7】 如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =,:3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.【例 8】 如图,平行四边形ABCD ,BE AB =,2CF CB =,3GD DC =,4HA AD =,平行四边形ABCD 的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比.【例 9】 如图所示的四边形的面积等于多少?【例 10】 如图所示,ABC ∆中,90ABC ∠=︒,3AB =,5BC =,以AC 为一边向ABC ∆外作正方形ACDE ,中心为O ,求OBC ∆的面积.【例 11】 如图,以正方形的边AB 为斜边在正方形内作直角三角形ABE ,90AEB ∠=︒,AC 、BD 交于O .已知AE 、BE 的长分别为3cm 、5cm ,求三角形OBE 的面积.【例 12】 如下图,六边形ABCDEF 中,AB ED =,AF CD =,BC EF =,且有AB 平行于ED ,AF 平行于CD ,BC 平行于EF ,对角线FD 垂直于BD ,已知24FD =厘米,18BD =厘米,请问六边形ABCDEF 的面积是多少平方厘米?【例 13】 如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?【例 14】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示).如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍.【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC 的面积;⑵:AG GC =?【例 15】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE△的面积依次是2、4、4和6.求:⑴求OCF △的面积;⑵求GCE △的面积.【例 16】 如图,长方形ABCD 中,:2:3BE EC =,:1:2DF FC =,三角形DFG 的面积为2平方厘米,求长方形ABCD 的面积.【例 17】 如图,正方形ABCD 面积为3平方厘米,M 是AD 边上的中点.求图中阴影部分的面积.【巩固】在下图的正方形ABCD 中,E 是BC 边的中点,AE 与BD 相交于F 点,三角形BEF的面积为1平方厘米,那么正方形ABCD 面积是 平方厘米.【例 18】 已知ABCD 是平行四边形,:3:2BC CE =,三角形ODE 的面积为6平方厘米.则阴影部分的面积是 平方厘米.【巩固】右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是 平方厘米.【巩固】右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是 平方厘米.【例 19】 如图,长方形ABCD 被CE 、DF 分成四块,已知其中3块的面积分别为2、5、8平方厘米,那么余下的四边形OFBC 的面积为___________平方厘米.【例 20】 如图,ABC ∆是等腰直角三角形,DEFG 是正方形,线段AB 与CD 相交于K点.已知正方形DEFG 的面积48,:1:3AK KB =,则BKD ∆的面积是多少?【例 21】 下图中,四边形ABCD 都是边长为1的正方形,E 、F 、G 、H 分别是AB ,BC ,CD ,DA 的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数m n,那么,()m n +的值等于 . 【例 22】 如图, ABC △中,DE ,FG ,BC 互相平行,AD DF FB ==, 则::ADE DEGF FGCB S S S =△四边形四边形 .【巩固】如图,DE 平行BC ,且2AD =,5AB =,4AE =,求AC 的长.【巩固】如图, ABC △中,DE ,FG ,MN ,PQ ,BC 互相平行,AD DF FM MP PB ====,则::::ADE DEGF FGNM MNQP PQCB S S S S S =△四边形四边形四边形四边形 .【例 23】 如图,已知正方形ABCD 的边长为4,F 是BC 边的中点,E 是DC 边上的点,且:1:3DE EC =,AF 与BE 相交于点G ,求ABG S △【例 24】 如图所示,已知平行四边形ABCD 的面积是1,E 、F 是AB 、AD 的中点, BF交EC 于M ,求BMG ∆的面积.【例 25】 如图,ABCD 为正方形,1cm AM NB DE FC ====且2cm MN =,请问四边形PQRS 的面积为多少?【例 26】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .【例 27】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形ABC 的面积.【巩固】如图,ABC ∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.【巩固】如图在ABC △中,12DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. 【例 28】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?【例 29】 右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米?【例 30】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.【例 31】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.课后练习:练习1. 已知DEF △的面积为7平方厘米,,2,3BE CE AD BD CF AF ===,求ABC △的面积. 练习2. 如图,四边形EFGH 的面积是66平方米,EA AB =,CB BF =,DC CG =,HD DA =,求四边形ABCD 的面积.练习3. 正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是 平方厘米.练习4. 如图,已知4cm AB AE ==,BC DC =,90BAE BCD ∠=∠=︒,10cm AC =,则S ABC ACE CDE S S ∆∆∆++= 2cm .练习5. 如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是_____平方厘米.练习6. 如图,ABC ∆中,点D 是边AC 的中点,点E 、F 是边BC 的三等分点,若ABC∆的面积为1,那么四边形CDMF 的面积是_________. 练习7. 如右图,三角形ABC 中,:::4:3AF FB BD DC CE AE ===,且三角形ABC 的面积是74,求角形GHI 的面积.备选【备选1】 按照图中的样子,在一平行四边形纸片上割去了甲、乙两个直角三角形.已知甲三角形两条直角边分别为2cm 和4cm ,乙三角形两条直角边分别为3cm 和6cm ,求图中阴影部分的面积.【备选2】 如图所示,矩形ABCD 的面积为36平方厘米,四边形PMON 的面积是3平方厘米,则阴影部分的面积是 平方厘米.【备选3】 如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △ 面积的几分之几?【备选4】 如图,在ABC △中,延长AB 至D ,使BD AB =,延长BC 至E ,使12CE BC =,F 是AC 的中点,若ABC △的面积是2,则DEF △的面积是多少?【备选5】 如图,:2:3BD DC =,:5:3AE CE =,则:AF BF =【备选6】 如图在ABC △中,13DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. 【备选7】。

小学六年级奥数知识:几何初步认识(平面图形)

小学六年级奥数知识:几何初步认识(平面图形)

小学六年级奥数知识:几何初步认识(平面图形)这篇关于小学六年级奥数知识:几何初步认识(平面图形),是特地为大家整理的,希望对大家有所帮助!二、平面图形1、长方形(1)特征对边相等,4个角都是直角的四边形。

有两条对称轴。

(2)计算公式c=2(a+b)s=ab2、正方形(1)特征:四条边都相等,四个角都是直角的四边形。

有4条对称轴。

(2)计算公式c=4as=a23、三角形(1)特征由三条线段围成的图形。

内角和是180度。

三角形具有稳定性。

三角形有三条高。

(2)计算公式s=ah/2(3)分类按角分锐角三角形:三个角都是锐角。

直角三角形:有一个角是直角。

等腰三角形的两个锐角各为45度,它有一条对称轴。

钝角三角形:有一个角是钝角。

按边分不等边三角形:三条边长度不相等。

等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。

等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。

4、平行四边形(1)特征两组对边分别平行的四边形。

相对的边平行且相等。

对角相等,相邻的两个角的度数之和为180度。

平行四边形容易变形。

(2)计算公式s=ah5、梯形(1)特征只有一组对边平行的四边形。

中位线等于上下底和的一半。

等腰梯形有一条对称轴。

(2)公式s=(a+b)h/2=mh6、圆(1)圆的认识平面上的一种曲线图形。

圆中心的一点叫做圆心。

一般用字母o 表示。

半径:连接圆心和圆上任意一点的线段叫做半径。

一般用r表示。

在同一个圆里,有无数条半径,每条半径的长度都相等。

直径:通过圆心并且两端都在圆上的线段叫做直径。

一般用d表示。

同一个圆里有无数条直径,所有的直径都相等。

同一个圆里,直径等于两个半径的长度,即d=2r。

圆的大小由半径决定。

圆有无数条对称轴。

(2)圆的画法把圆规的两脚分开,定好两脚间的距离(即半径);把有针尖的一只脚固定在一点(即圆心)上;把装有铅笔尖的一只脚旋转一周,就画出一个圆。

(3)圆的周长围成圆的曲线的长叫做圆的周长。

1.8小学必学奥数几何图形的认识

1.8小学必学奥数几何图形的认识

本讲知识点属于几何模块的第一讲,属于起步内容,难度并不大.要求学生认识各种基本平面图形和立体图形;了解简单的几何图形简拼和立体图形展开;看懂立体图形的示意图,锻炼一定的空间想象能力.几何图形的定义:1、几何图形主要分为点、线、面、体等,他们是构成中最基本的要素.(1)点:用笔在纸上画一个点,可以画大些,也可以画小些.点在纸上占一个位置.(2)线段:沿着直尺把两点用笔连起来,就能画出一条线段.线段有两个端点.(3)射线:从一点出发,沿着直尺画出去,就能画出一条射线.射线有一个端点,另一端延伸的很远很远,没有尽头.(4)直线:沿着直尺用笔可以画出直线.直线没有端点,可以向两边无限延伸(5)两条直线相交: 两条直线相交,只有一个交点.(6)两条直线平行:两条直线平行,没有交点,无论延伸多远都不相交.(7)角:角是由从一点引出的两条射线构成的.这点叫角的顶点,射线叫点的边.(8)角分为锐角、直角和钝角三种:直角的两边互相垂直,三角板有一个角就是这样的直角.教室里天花板上的角都是直角. 锐角比直角小,钝角比直角大.(9)三角形:三角形有三条边,三个角,三个顶点.(10)直角三角形:直角三角形是一种特殊的三角形,它有一个角是直角.它的三条边中有两条叫直角边,一条叫斜边. 边边顶点直角锐角钝角顶角顶角边边角角角顶角边知识点拨(11)等腰三角形:等腰三角形也是一种特殊的三角形,它有两条边一样长(相等),相等的两条边叫”腰”,另外的一条边叫”底”.(12)等腰直角三角形:等腰直角三角形既是直角三角形,又是等腰三角形.(13)等边三角形:等边三角形的三条边一样长(相等),三个角也一样大(相等).(14)四边形:四边形有四条边,内部有四个角.(15)长方形:长方形的两组对边分别平行且相等,四个角也都是直角.(16)正方形:正方形的四条边都相等,四个角都是直角.(17)平行四边形:平行四边形的两组对边分别平行而且相等,两组对角分别相等.(18)等腰梯形:等腰梯形是一种特殊的四边形,它的上下两边平行,左右两边相等.平行的两边分别叫上底和下底,相等的两边叫腰.(19)菱形:菱形的四条边都相等,对角分别相等. 直角边斜边直角边腰腰底直角边直角边斜边腰腰底边边边角角角腰腰下底上底(20)圆:圆是个很美的图形.圆中心的一点叫圆心,圆心到圆上一点的连线叫圆的半径,过圆心连接圆上两点的连线叫圆的直径.直径把圆分成相等的两部分,每一部分都叫半圆.(21)扇形:(22)长方体:长方体有六个面,十二条棱,八个顶点.长方体的面一般是长方形,也可能有两个面是正方形.互相垂直的三条棱分别叫做长方体的长、宽、高.(23)正方体:正方体有六个面,十二条棱,八个顶点.正方体的每个面都是同样大的正方形,所以它的十二条棱长都相等.(24)圆柱:圆柱的两个底面是完全相同的圆.(25)圆锥:圆锥的底面是圆.(26)棱柱:这个棱柱的上下底面是三角形.它有三条互相平行的棱,叫三棱柱.(27)棱锥:这个棱锥的底面是四边形.它有四条棱斜着立起来,所以叫四棱锥.(28)三棱锥:因为三棱锥有四个面,所以通常又叫”四面体”.三棱锥的每一个面都是三角形.半径直径半圆直径弧半径半径高宽长底面底面底面(29)球体,简称球:球有球心,球心到球面上一点的连线叫球的半径.例题精讲模块一、几何图形的认识【例 1】请看下图,共有个圆圈。

几何平面图形知识总结

几何平面图形知识总结

几何平面图形知识总结几何是数学的一个重要分支,它主要研究空间形状、大小和位置关系等问题。

在几何学中,平面图形是一种基本的研究对象,它被广泛应用于现代数学、物理学等领域,因此掌握平面图形的知识对于我们的学习和工作都非常重要。

本文将总结几何中常见的平面图形知识,分为五个部分进行介绍,希望能对读者有所帮助。

一、点、线、面的基本概念在几何中,点、线、面是三种基本的几何对象。

点是最基本的几何对象,它没有长度、宽度和高度,只有位置。

用大写字母表示,如A、B、C等。

线是由无数个点组成的直线,它没有宽度和高度,但有长度和方向,用小写字母表示,如a、b、c等。

面是由无数个点和线组成的平面图形,它有长度、宽度,但没有高度,用大写字母表示,如ΔABC、△ABC等。

二、三角形的性质三角形是平面上最简单的图形之一,它由三条线段组成,共有很多重要的性质。

(1)三角形的内角和等于180度。

即∠A + ∠B + ∠C = 180度。

(2)三角形的外角等于与它不相邻的内角之和。

即∠D = ∠A + ∠B或∠D = ∠A + ∠C或∠D = ∠B + ∠C。

(3)等边三角形指三边长度相等的三角形,等腰三角形指两边长度相等的三角形。

等边三角形的三个内角和均为60度,等腰三角形有两个内角相等。

(4)垂心、重心、外心、内心是三角形的重要点。

垂心是三角形三个顶点到对边的垂线交点,重心是三角形三个中线交点,外心是三角形三个垂直平分线交点,内心是三角形三条角平分线交点。

三、四边形的性质四边形指有四个顶点、四条边和四个内角的平面图形,有很多重要的性质。

(1)矩形是指所有内角都是直角的四边形,它的对边长度分别相等,对角线长度相等。

(2)正方形是指所有内角都是直角且所有边长度相等的矩形,它的对角线长度等于边长的根号2。

(3)菱形是指所有边长度都相等的四边形,它的对角线长度相等,且垂直。

(4)梯形是指有两个平行边的四边形。

它的两边平行,两个非平行边夹角的和等于180度。

小学奥数几何平面图形知识整理

小学奥数几何平面图形知识整理

小学奥数几何平面图形知识整理奥数几何平面图形知识整理:1、长方形(1)特征对边相等,4个角都是直角的四边形。

有两条对称轴。

(2)计算公式c=2(a+b)s=ab2、正方形(1)特征:四条边都相等,四个角都是直角的四边形。

有4条对称轴。

(2)计算公式c=4as=a23、三角形(1)特征由三条线段围成的图形。

内角和是180度。

三角形具有稳定性。

三角形有三条高。

(2)计算公式s=ah/2(3) 分类按角分锐角三角形:三个角都是锐角。

直角三角形:有一个角是直角。

等腰三角形的两个锐角各为45度,它有一条对称轴。

钝角三角形:有一个角是钝角。

按边分不等边三角形:三条边长度不相等。

等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。

等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。

4、平行四边形(1) 特征两组对边分别平行的四边形。

相对的边平行且相等。

对角相等,相邻的两个角的度数之和为180度。

平行四边形容易变形。

(2) 计算公式s=ah5、梯形(1)特征只有一组对边平行的四边形。

中位线等于上下底和的一半。

等腰梯形有一条对称轴。

(2) 公式s=(a+b)h/2=mh6、圆(1) 圆的理解平面上的一种曲线图形。

圆中心的一点叫做圆心。

一般用字母o表示。

半径:连接圆心和圆上任意一点的线段叫做半径。

一般用r表示。

在同一个圆里,有无数条半径,每条半径的长度都相等。

直径:通过圆心并且两端都在圆上的线段叫做直径。

一般用d表示。

同一个圆里有无数条直径,所有的直径都相等。

同一个圆里,直径等于两个半径的长度,即d=2r。

圆的大小由半径决定。

圆有无数条对称轴。

(2)圆的画法把圆规的两脚分开,定好两脚间的距离(即半径);把有针尖的一只脚固定在一点(即圆心)上;把装有铅笔尖的一只脚旋转一周,就画出一个圆。

(3) 圆的周长围成圆的曲线的长叫做圆的周长。

把圆的周长和直径的比值叫做圆周率。

用字母∏表示。

(4) 圆的面积圆所占平面的大小叫做圆的面积。

高中数学竞赛——平面几何基础知识(基本定理、基本性质)

高中数学竞赛——平面几何基础知识(基本定理、基本性质)

平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a −+=. 4. 垂线定理:2222BD BC AD ACCD AB −=−⇔⊥. 高线长:C b B c A a bc c p b p a p p a h a sin sin sin ))()((2===−−−=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则ACAB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=−+=(其中p 为周长一半). 6. 正弦定理:R Cc B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222−+=.8. 张角定理:ABDAC AC BAD AD BAC ∠+∠=∠sin sin sin .9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)11. 弦切角定理:弦切角等于夹弧所对的圆周角.12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边.14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则P A·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD .16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM .17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE=BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙A 1 、⊙B 1的圆心构成的△——外拿破仑的三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半;(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC ACG BCG ABG S S S S ∆∆∆∆===31; (3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===AB KH CA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则①222222333GC AB GB CA GA BC+=+=+; ②)(31222222CA BC AB GC GB GA ++=++; ③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小; ⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心). 24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (Cc B b A a y C c y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I C B A C B A ++++++++ 内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;(2)设I 为△ABC 的内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190; (3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心;(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则ac b KD IK KI AK ID AI +===; (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE −==−==−==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等; )2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (C B A Cy By Ay C B A Cx Bx Ax O C B A C B A ++++++++ 外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠−︒=∠2360;(3)∆=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,. 旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠−︒=∠(对于顶角B ,C 也有类似的式子); (2))(21C A I I I C B A ∠+∠=∠; (3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论);(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .28. 三角形面积公式:C B A R R abc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++= ))()((c p b p a p p pr −−−==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=. 29. 三角形中内切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin4C B A R r C B A R r C B A R r C B A R r c b a ==== .1111;2tan 2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a =++=== 30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有 1=⋅⋅RBAR QA CQ PC BP .(逆定理也成立)31.梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q,∠C的平分线交边AB于R,∠B的平分线交边CA于Q,则P、Q、R三点共线.32.梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线.33.塞瓦(Ceva)定理:设X、Y、Z分别为△ABC的边BC、CA、AB上的一点,则AX、BY、CZ所在直线交于一点的充要条件是AZZB·BXXC·CYYA=1.34.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中点M.35.塞瓦定理的逆定理:(略)36.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.37.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点.38.西摩松(Simson)定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).39.西摩松定理的逆定理:(略)40.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.41.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.42.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心.43.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上.这条直线被叫做点P关于△ABC的镜象线.44.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.46.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.47.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.48.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .49.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.50.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.51.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点.52.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.53. 卡诺定理:通过△ABC 的外接圆的一点P ,引与△ABC 的三边BC 、CA 、AB 分别成同向的等角的直线PD 、PE 、PF ,与三边的交点分别是D 、E 、F ,则D 、E 、F 三点共线.54. 奥倍尔定理:通过△ABC 的三个顶点引互相平行的三条直线,设它们与△ABC 的外接圆的交点分别是L 、M 、N ,在△ABC 的外接圆上取一点P ,则PL 、PM 、PN 与△ABC 的三边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.55. 清宫定理:设P 、Q 为△ABC 的外接圆的异于A 、B 、C 的两点,P 点的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.56. 他拿定理:设P 、Q 为关于△ABC 的外接圆的一对反点,点P 的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,如果QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.(反点:P 、Q 分别为圆O 的半径OC 和其延长线的两点,如果OC 2=OQ ×OP 则称P 、Q 两点关于圆O 互为反点)57. 朗古来定理:在同一圆周上有A 1、B 1、C 1、D 1四点,以其中任三点作三角形,在圆周取一点P ,作P 点的关于这4个三角形的西摩松线,再从P 向这4条西摩松线引垂线,则四个垂足在同一条直线上.58. 从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.59. 一个圆周上有n 个点,从其中任意n -1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.60. 康托尔定理1:一个圆周上有n 个点,从其中任意n -2个点的重心向余下两点的连线所引的垂线共点.61. 康托尔定理2:一个圆周上有A 、B 、C 、D 四点及M 、N 两点,则M 和N 点关于四个三角形△BCD 、△CDA 、△DAB 、△ABC 中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M 、N 两点关于四边形ABCD 的康托尔线.62. 康托尔定理3:一个圆周上有A 、B 、C 、D 四点及M 、N 、L 三点,则M 、N 两点的关于四边形ABCD 的康托尔线、L 、N 两点的关于四边形ABCD 的康托尔线、M 、L 两点的关于四边形ABCD 的康托尔线交于一点.这个点叫做M 、N 、L 三点关于四边形ABCD 的康托尔点.63. 康托尔定理4:一个圆周上有A 、B 、C 、D 、E 五点及M 、N 、L 三点,则M 、N 、L 三点关于四边形BCDE 、CDEA 、DEAB 、EABC 中的每一个康托尔点在一条直线上.这条直线叫做M 、N 、L 三点关于五边形A 、B 、C 、D 、E 的康托尔线.64. 费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.65. 莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B 和E 、C 和F ,则这三线共点.67. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB 和DE 、BC 和EF 、CD 和F A 的(或延长线的)交点共线.68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222ABC D 4||R d R S S EF −=∆∆.。

平面几何基础学习平面几何的基本概念和定理

平面几何基础学习平面几何的基本概念和定理

平面几何基础学习平面几何的基本概念和定理在数学领域中,平面几何是研究平面上的图形、形状、大小、位置关系以及性质的一门学科。

通过学习平面几何的基本概念和定理,我们可以深入理解和掌握几何学的基础知识,为后续进一步的学习打下坚实的基础。

一、点、线、面的基本概念点、线、面是平面几何中最基本的概念。

点是没有大小和形状的,用字母表示,如A、B、C等;线是由一连串的点连在一起形成的,用两个点的字母表示,如AB、CD等;面是由一连串的线围成的平面,用大写字母表示,如面ABC。

二、线段、直线、射线的定义线段是由两个端点和两个端点之间的点组成,用字母表示,如AB;直线是一条没有端点的无限延伸的线段,在字母上加一个横杠表示,如AB;射线是由一个端点和这个端点向一个方向无限延伸的线段,用字母表示,如→AB。

三、平行线与垂直线的性质平行线指在同一个平面内永不相交的直线,用符号“∥”表示;垂直线指两条线段、直线或射线相交时,所成的角度为90度,用符号“⊥”表示。

平行线具有性质:1.平行关系具有传递性,即若AB∥CD,CD∥EF,则AB∥EF;2.任意一条直线与平行线横切时,所成的对应角相等。

四、三角形的性质三角形是由三条线段组成的多边形。

根据边的关系和角的关系,我们可以得出三角形的一些基本性质:1.三角形的内角和等于180度;2.等边三角形的三个边相等,三个角都是60度;3.等腰三角形的两条边相等,两个底角也相等;4.直角三角形的一个角是90度。

五、平面图形的面积计算矩形、正方形、三角形和梯形是我们常见的平面图形,根据其特点我们可以计算出它们的面积。

矩形的面积等于长乘以宽,正方形的面积等于边长的平方,三角形的面积等于底乘以高的一半,梯形的面积等于上底加下底乘以高的一半。

六、三角形的重心、外心、内心和垂心三角形有四个特殊的点,分别是重心、外心、内心和垂心。

重心是三条中线的交点,中线是由一个顶点与对应边的中点组成;外心是三角形外接圆的圆心,外接圆通过三个顶点;内心是三角形内切圆的圆心,内切圆与三条边都相切;垂心是三角形的三条高线的交点,高线是由一个顶点与对边垂直相交的线段组成。

小升初六年级奥数——几何(平面图形)

小升初六年级奥数——几何(平面图形)

⼩升初六年级奥数——⼏何(平⾯图形)⼀、分数百分数问题,⽐和⽐例这是六年级的重点内容,在历年各个学校测试中所占⽐例⾮常⾼,重点应该掌握好以下内容:对单位1的正确理解,知道甲⽐⼄多百分之⼏和⼄⽐甲少百分之⼏的区别;求单位1的正确⽅法,⽤具体的量去除以对应的分率,找到对应关系是重点;分数⽐和整数⽐的转化,了解正⽐和反⽐关系;通过对“份数”的理解结合⽐例解决和倍(按⽐例分配)和差倍问题;⼆、⾏程问题应⽤题⾥最重要的内容,因为综合考察了学⽣⽐例,⽅程的运⽤以及分析复杂问题的能⼒,所以常常作为压轴题出现,重点应该掌握以下内容:路程速度时间三个量之间的⽐例关系,即当路程⼀定时,速度与时间成反⽐;速度⼀定时,路程与时间成正⽐;时间⼀定时,速度与路程成正⽐。

特别需要强调的是在很多题⽬中⼀定要先去找到这个“⼀定”的量;当三个量均不相等时,学会通过其中两个量的⽐例关系求第三个量的⽐;学会⽤⽐例的⽅法分析解决⼀般的⾏程问题;有了以上基础,进⼀步加强多次相遇追及问题及⽕车过桥流⽔⾏船等特殊⾏程问题的理解,重点是学会如何去分析⼀个复杂的题⽬,⽽不是⼀味的做题;三、⼏何问题⼏何问题是各个学校考察的重点内容,分为平⾯⼏何和⽴体⼏何两⼤块,具体的平⾯⼏何⾥分为直线形问题和圆与扇形;⽴体⼏何⾥分为表⾯积和体积两⼤部分内容。

学⽣应重点掌握以下内容:等积变换及⾯积中⽐例的应⽤;与圆和扇形的周长⾯积相关的⼏何问题,处理不规则图形问题的相关⽅法;⽴体图形⾯积:染⾊问题、切⾯问题、投影法、切挖问题;⽴体图形体积:简单体积求解、体积变换、浸泡问题;四、数论问题常考内容,⽽且可以应⽤于策略问题,数字谜问题,计算问题等其他专题中,相当重要,应重点掌握以下内容:掌握被特殊整数整除的性质,如数字和能被9整除的整数⼀定是9的倍数等;最好了解其中的道理,因为这个⽅法可以⽤在许多题⽬中,包括⼀些数字谜问题;掌握约数倍数的性质,会⽤分解质因数法,短除法,辗转相除法求两个数的最⼤公因数和最⼩公倍数;学会求约数个数的⽅法,为了提⾼灵活运⽤的能⼒,需了解这个⽅法的原理;了解同余的概念,学会把余数问题转化成整除问题,下⾯的这个性质是⾮常有⽤的:两个数被第三个数去除,如果所得的余数相同,那么这两个数的差就能被这个数整除;能够解决求⼀个多位数除以⼀个较⼩的⾃然数所得的余数问题,例如求1011121314 (9)899除以11的余数,以及求20082008除以13的余数这类问题;五、计算问题计算问题通常在前⼏个题⽬中出现概率较⾼,主要考察两个⽅⾯,⼀个是基本的四则运算能⼒,同时,⼀些速算巧算及裂项换元等技巧也经常成为考察的重点。

平面图形与几何基础知识梳理

平面图形与几何基础知识梳理

平面图形与几何知识汇总梳理1.四边形:(1)四边形的特征:有4条直的边,有4个角,是封闭图形。

(2)长方形和正方形的特征:长方形特征:4个角都是直角,对边相等,较长的边叫做长,较短的边叫做宽。

正方形的特征:4个角都是直角,每条边都相等,每条边的长叫做边长。

图形的周长:封闭图形一周的长度,是它的周长。

2.周长的求法:(1)测直边物体和图形的周长:用直尺分别测量出每条边的长度,再计算长度之和。

(2)测量圆形物体的周长:①绕绳法:用一根绳绕圆的边缘一周,剪去多余的部分,再拉直,量出它的长度即得到圆的周长。

②滚动法:把圆放在直尺上滚动一周,直接量出圆的周长。

(3)测量不规则物体的周长:用细线绕树叶周围一圈,拉直后测量细线的长度。

3. 长方形的周长=长+宽+长+宽长方形周长的计算方法长方形的周长=长×2+宽×2长方形的周长=(长+宽)×2正方形周长的计算方法正方形的周长=边长+边长+边长+边长正方形的周长=边长×44.用相同的小正方形拼长方形和正方形,拼成正方形时周长最短,摆成一排拼成长方形时周长最长。

5.面积:物体的表面或封闭图形的大小,就是它们的面积。

周长与面积的区别:周长是指封闭图形一周的长度,面积是指物体所占平面大小。

6.常用面积单位:(1)平方厘米(cm2):边长1厘米的正方形,面积是1平方厘米。

(2)平方分米(dm2):边长1分米的正方形,面积是1平方分米。

(3)平方米(m2):边长1米的正方形,面积是1平方米。

7.面积公式:长方形面积 = 长×宽正方形面积 = 边长×边长8.平行与垂直:同一个平面内的两条直线的位置关系只有两种不相交——平行相交垂直不垂直平行:在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

垂直:两条直线相交成直角,就说这两条直线互相垂直。

其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

平面图形知识点总结

平面图形知识点总结

平面图形知识点总结一、基本概念1.平面图形的定义平面图形是指在平面上用点、线段、直线和其他图形基本元素构成的图形,是二维的图形。

平面图形包括:点、线段、直线、封闭图形(如多边形、圆等)以及特殊图形(如梯形、平行四边形等)。

2.平面图形的分类根据性质和形状,平面图形可分为几何图形和非几何图形。

几何图形包括:点、线段、直线、封闭图形(如三角形、四边形、多边形、圆等)以及特殊图形(如梯形、平行四边形等)。

非几何图形包括:曲线、不封闭图形等。

3.平面图形的性质平面图形有很多性质,比如:面积、周长、直角、等边、相似等。

4.平面图形的运动平面图形有平移、旋转、倒影等运动,这些运动可以使图形产生对称、相似等关系。

二、常见几何图形1.点点是最简单的几何图形,没有长度、宽度、面积等概念。

2.线段线段是由两个端点和连接这两个端点的线段组成的,是有限长的直线。

3.直线直线是一条没有端点的直线,是无限延伸的。

4.封闭图形封闭图形是由若干条线段所组成的平面图形,这些线段首尾相接,围成一个封闭的图形。

5.三角形三角形是一种封闭图形,由三条线段组成的图形,三条线段两两相交,围成一个封闭图形。

6.四边形四边形是一种封闭图形,由四条线段组成的图形,四条线段两两相邻,围成一个封闭图形。

7.多边形多边形是一种封闭图形,由若干条线段组成的图形,所有的线段首尾相接,围成一个封闭图形。

8.圆圆是一个平面上所有到圆心的距离都相等的点的集合,它由一个固定的点(圆心)和到这个固定点的距离(半径)确定。

9.特殊图形特殊图形包括:梯形、平行四边形等,它们都有特定的性质和特点。

三、几何图形的性质1.面积平面图形的面积是指该图形所占有的面积大小,是一个表示二维图形大小的量。

2.周长平面图形的周长是指该图形外部边界的长度之和,是一个表示二维图形边界长度的量。

3.直角直角是指两条线段或两条直线相互垂直相交的位置关系。

4.等边等边是指具有相等边长的图形,比如等边三角形、正方形等。

五年级奥数专题 几何图形的认识(学生版)

五年级奥数专题 几何图形的认识(学生版)

学科培优 数学“几何图形的认识”学生姓名 授课日期 教师姓名授课时长知识定位本讲知识点属于几何板块的部分,是学生学习几何的第一讲内容,属于起步内容,难度并不大。

要求学生认识各种基本平面图形和立体图形;了解简单的几何图形简拼和立体图形展开;看懂立体图形的示意图,锻炼一定的空间想象能力。

知识梳理一、几何图形的定义:几何图形主要分为点、线、面、体等,他们是构成中最基本的要素。

点:用笔在纸上画一个点,可以画大些,也可以画小些。

点在纸上占一个位置。

线段:沿着直尺把两点用笔连起来,就能画出一条线段。

线段有两个端点。

射线:从一点出发,沿着直尺画出去,就能画出一条射线。

射线有一个端点,另一端延伸的很远很远,没有尽头。

直线:沿着直尺用笔可以画出直线。

直线没有端点,可以向两边无限延伸。

两条直线相交:两条直线相交,只有一个交点。

两条直线平行:两条直线平行,没有交点,无论延伸多远都不相交。

角:角是由从一点引出的两条射线构成的。

这点叫角的顶点,射线叫点的边。

角分为锐角、直角和钝角三种。

直角的两边互相垂直,三角板有一个角就是这样的直角。

教室里天花板上的角都是直角。

锐角比直角小,钝角比直角大。

三角形:三角形有三条边,三个角,三个顶点。

直角三角形:直角三角形是一种特殊的三角形,它有一个角是直角。

它的三条边中有两条叫直角边,一条叫斜边。

等腰三角形:等腰三角形也是一种特殊的三角形,它有两条边一样长(相等),相等的两条边叫“腰”,另外的一条边叫“底”。

等腰直角三角形:等腰直角三角形既是直角三角形,又是等腰三角形。

等边三角形:等边三角形的三条边一样长(相等),三个角也一样大(相等)。

四边形:四边形有四条边,内部有四个角。

等腰梯形:等腰梯形是一种特殊的四边形,它的上下两边平行,左右两边相等。

平行的两边分别叫上底和下底,相等的两边叫腰。

平行四边形:平行四边形的两组对边分别平行而且相等,两组对角分别相等。

长方形:长方形的两组对边分别平行且相等,四个角也都是直角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面图形与几何知识汇总1.四边形:(1)四边形的特征:有4条直的边,有4个角,是封闭图形。

(2)长方形和正方形的特征:长方形特征:4个角都是直角,对边相等,较长的边叫做长,较短的边叫做宽。

正方形的特征:4个角都是直角,每条边都相等,每条边的长叫做边长。

图形的周长:封闭图形一周的长度,是它的周长。

2.周长的求法:(1)测直边物体和图形的周长:用直尺分别测量出每条边的长度,再计算长度之和。

(2)测量圆形物体的周长:①绕绳法:用一根绳绕圆的边缘一周,剪去多余的部分,再拉直,量出它的长度即得到圆的周长。

②滚动法:把圆放在直尺上滚动一周,直接量出圆的周长。

(3)测量不规则物体的周长:用细线绕树叶周围一圈,拉直后测量细线的长度。

3. 长方形的周长=长+宽+长+宽长方形周长的计算方法长方形的周长=长×2+宽×2长方形的周长=(长+宽)×2正方形周长的计算方法正方形的周长=边长+边长+边长+边长正方形的周长=边长×44.用相同的小正方形拼长方形和正方形,拼成正方形时周长最短,摆成一排拼成长方形时周长最长。

5.面积:物体的表面或封闭图形的大小,就是它们的面积。

周长与面积的区别:周长是指封闭图形一周的长度,面积是指物体所占平面大小。

6.常用面积单位:(1)平方厘米(cm2):边长1厘米的正方形,面积是1平方厘米。

(2)平方分米(dm2):边长1分米的正方形,面积是1平方分米。

(3)平方米(m2):边长1米的正方形,面积是1平方米。

7.面积公式:长方形面积 = 长×宽正方形面积 = 边长×边长8.平行与垂直:同一个平面内的两条直线的位置关系只有两种不相交——平行相交垂直不垂直平行:在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

垂直:两条直线相交成直角,就说这两条直线互相垂直。

其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

拓展:①“在同一个平面内”是确定两条直线是不是平行关系的前提。

如果不在同一个平面内,有些直线虽然不相交,但也不能称为互相平行。

②在同一个平面内,如果两条直线都和第三条直线平行,这两条直线也互相平行。

如果a∥b,b∥c,那么a∥c。

③在同一个平面内,如果两条直线都和第三条直线垂直,那么这两条直线互相平行。

如果a⊥b,b⊥c,那么a∥c。

9.垂直的画法:(1)在画互相垂直的两条直线时,可以借助三角尺或量角器来画。

(2)过直线上一点画已知直线的垂线的方法:①把三角尺的一条直角边与已知直线重合。

②沿着直线移动三角尺,使三角尺的直角顶点和直线上的已知点重合。

③沿着三角尺的另一条直角边画一条直线(三角尺的直角顶点是垂足),这条直线就是已知直线的垂线。

④标出直角符号。

(3)过直线外一点画已知直线的垂线的方法:①把三角尺的一条直角边与已知直线重合。

②沿着直线移动三角尺,使三角尺的另一条直角边过直线外的一点。

③沿着三角尺的另一条直角边画一条直线(三角尺的直角顶点是垂足),这条直线就是已知直线的垂线。

④标出直角符号。

10.点到直线的距离:(1)从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。

(2)平行线间的距离处处都相等。

11.画长方形的方法:(1)先画出长方形的长;(2)再以这条长的两个端点为垂足,向同一个方向画两条长度相等且与这条长垂直的线段作为长方形的两条宽;(3)最后把这两条宽的另外两个端点连接起来,画出长方形的另一条长。

12.平行四边形:两组对边分别平行的四边形,叫做平行四边形。

特征:两组对边分别平行且相等。

平行四边形的底和高:从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。

平行四边形特性:易变形,具有不稳定性。

13.梯形:只有一组对边平行的四边形,叫做梯形。

梯形各部分的名称:特殊梯形:①等腰梯形:两腰相等的梯形叫做等腰梯形。

(如图1)②直角梯形:有一个角是直角的梯形叫做直角梯形。

(如图2)画梯形高的方法:在梯形的底上选一点向对边画一条垂线,这点和垂足之间的线段就是梯形的高。

(通常从上底的一个端点向它的对边画高。

)14.补充:(1).平行四边形和梯形画高的注意事项:①要用虚线表示。

②一定要画直角符号。

③一般把高画在图形内。

(2).四边形之间的关系(3).比较各种四边形的特征:四边形 边数对边是否平行对边是否相等对角是否相等正方形长方形平行四边形梯形15.平行四边形的面积平行四边形 长方形转化的数学思想长方形的面积= 长 × 宽 平行四边形的面积 = 底 × 高平行四边形的面积=底×高S =ah注意:①求平行四边形的面积,要先找到底和其相对应的高,再计算。

②平行四边形底不变,高扩大到原来的n 倍,则面积扩大到原来的n 倍;平行四边形底不变,高缩小到原来的1n ,则面积缩小到原来的1n 。

平行四边形高不变,底扩大到原来的n 倍,则面积扩大到原来的n 倍; 平行四边形高不变,底缩小到原来的1n,则面积缩小到原来的1n。

平行四边形的底扩大到原来的n 倍,高缩小到原来的1n,面积不变。

16.三角形的面积三角形 平行四边形 或 长方形两个完全相同的三角形可以拼成一个平行四边形,拼成一个平行四边形的两个三底a高h 底=平行四边形的面积÷高高=平行四边形的面积÷底 a =S ÷hh =S ÷a底高 底高 底高底高底高底底角形完全相同。

三角形的底 = 平行四边形的底 三角形的高 = 平行四边形的高 每个三角形的面积 = 平行四边形的面积÷2= 平行四边形的底×平行四边形的高÷2= 三角形的底×三角形的高÷ 2 (相对应的底和高)三角形的面积 = 底×高÷2S = ah ÷217.梯形的面积梯形 平行四边形两个完全相同的梯形可以拼成一个平行四边形。

梯形的(上底+下底)= 平行四边形的底梯形的高 = 平行四边形的高 每个梯形的面积 = 平行四边形的面积÷2= 平行四边形的底×平行四边形的高÷2 = (梯形的上底+梯形的下底)×梯形的高÷2梯形的面积 = (上底+下底)×高÷2 S =(a +b )×h ÷2底 = 三角形的面积×2÷高高 = 三角形的面积×2÷底 a =2S ÷h h =2S ÷a 底a高h上底 +下底 = 梯形的面积×2÷高高 = 梯形的面积×2÷(上底+下底)a +b = 2S ÷h h = 2S ÷(a +b )下底b高h 上底a18.圆的认识(1)圆:一条线段绕着它固定的一端在平面上旋转一周时,它的另一端就会画出一条封闭的曲线,这条封闭曲线叫做圆。

(2)圆规画圆的方法。

①把圆规的两脚分开,定好两脚之间的距离;→定半径②把带有针尖的角固定在一点上;→定圆心③把装有铅笔的脚旋转一周,就画出了一个圆。

→画圆(3)圆的认识。

①圆心:用圆规画圆时,针尖所在的点叫圆心。

用字母O表示。

→决定圆的位置②半径:连接圆心和圆上任意一点的线段叫半径。

用字母r表示。

③直径:通过圆心,并且两端都在圆上的线段叫做直径。

用字母d表示。

半径(直径)越长,圆越大;半径(直径)越短,圆越小。

④等圆:半径相等的两个圆叫做等圆。

等圆经过平移可以完全重合。

⑤同心圆:圆心重合,半径不相等的两个圆叫做同心圆。

⑥在同圆或等圆中:2dr=或2d r=半径扩大到原来的几倍,直径也扩大到原来的几倍;半径缩小到原来的几分之一,直径也缩小到原来的几分之一。

⑦圆是轴对称图形,直径所在的直线都是圆的对称轴,圆有无数条对称轴。

19.圆的周长圆的周长。

(1)圆的周长:围成圆的曲线的长是圆的周长。

(2)测量方法:滚动法、绕绳法、直接测量法。

(3)圆周率是任意一个圆的周长和它直径的比值。

这个比值是一个固定数,用π表示。

决定圆的大小等圆同心圆它是一个无限不循环小数,π=3.1415926535……通常取π≈3.14。

(4)圆的周长圆周率直径圆的周长=圆周率直径圆的周长⨯=圆周率直径圆的周长⨯=半径×2 拓展:圆的半径或直径扩大到原来的几倍,它的周长也扩大到原来的几倍。

圆的半径或直径缩小到原来的几分之一,它的周长也缩小到原来的几分之一。

② 111222r d C r d C ==③ C 圆周长的一半12r d ππ==;C 半圆=C 圆周长的一半+直径122r r d d ππ=+=+20.圆的面积公式推导 (1)圆的面积定义:圆所占平面的大小叫做圆的面积。

圆的面积的大小与半径(直径)的长短有关。

(2)圆的面积公式:把圆等分成若干份,用这些接近于等腰三角形的小图形拼成学过的图形来进行推导。

3.14圆周率(π)直径圆的周长≈=⋯⋯=1415926535.3无限不循环小数,π圆周率半径圆的周长⨯⨯=2C dπ=2C rπ=发现:把圆平均分成的份数越多,每一份就会越小,拼成的图形就会越接近于一个长方形。

圆的面积=长方形的面积=长×宽=2C×r=rπ×r=2 r π梯形的(上底+下底)→圆的三角形的底→圆的梯形的高→圆的三角形的高→圆的21.圆的半径、直径、周长、面积之间的关系。

①圆的半径扩大到原来的a倍,则它的直径扩大到原来的a倍,它的周长扩大到原来的a倍,它的面积扩大到原来的a2倍。

例如:圆的半径扩大到原来的3倍,则它的直径扩大到原来的()倍,周长扩大到原来的()倍,面积扩大到原来的()倍。

②圆的半径缩小到原来的1a,则它的直径缩小到原来的1a,它的周长缩小到原来的1a,长方形的宽近似于圆的半径长方形宽长长方形的长近似于圆的周长的一半2S rπ=2()2dSπ=2()2CSππ=它的面积缩小到原来的2211()a a=。

例如:圆的半径缩小到原来的13,则它的直径缩小到原来的( ),周长缩小到原来的( ),面积缩小到原来的( )。

③ 111222C r d C r d == 2222111112222222()()S r r d d S r r d d ====22.圆环的面积圆环(环形):两个半径不相等的同心圆之间的部分叫做圆环,也叫做环形。

外圆:圆环中较大的圆。

外圆的半径用字母“R ”表示。

内圆:圆环中较小的圆。

内圆的半径用字母“r ”表示。

环宽:两个圆之间的宽度。

环宽=外圆半径-内圆半径,用字母“L ”表示,即L =R -r 。

相关文档
最新文档