UASB的设计计算书

合集下载

uasb计算

uasb计算

原始数据进水流量Q(m3/d)240.00水温℃进水水质COD0BOD0(mg/l)7290.003500.00容积负荷率U 4.00kgCOD/(m3.d)COD去除率%0.70SS去除率% 0.60沼气表观产率0.50m3/(去除kgCOD)污泥表观产率0.05kgVSS/(去除kgCOD)VSS/SS0.601、处理后出水水质出水水质COD1BOD1(mg/l)2187.002、UASB反应器有效容积及长、宽、高尺寸的确定2.1、有效容积V R437.40m32.2、反应器数量 1.002.3、单个容积V R'437.40m32.4、有效高度H10.00m32.5、反应器面积S43.74m22.6、反应器尺寸设定反应器宽B8.00m反应器直径D7.467.003、反应器的外形尺寸长 5.00宽直径7.00高重新核算后的面积40.00或者圆形容积400.00或者圆形4、反应器的水力停留时间HRT40.00或者圆形5、三相分离器设计沉淀区的表面负荷0.13或者圆形沉淀区的水深h 1.00m停留时间 4.00或者圆形6、回流缝设计设集气罩的水平夹角55.00取保护高度h10.50m设下三角集气罩高度h30.80m上三角形顶水深h20.50m则有b10.56m设单元三相分离器宽b 2.50m则下部污泥回流缝宽度b2 1.38m下部污泥回流缝总面积a122.07或者圆形求得下三角形回流缝的上升流速v10.45或者圆形设上部三角形集气罩回流缝宽度b30.64m总面积a220.47或者圆形求得上部回流缝上升流速v20.24或者圆形7、三相分离器位置的确定上三角形集气罩底端到下三角形集气罩斜面的垂直距离CE上三角形集气罩底端到下三角形集气罩的竖直距离BC取上三角形集气罩与下三角形集气罩重叠的斜面长度AB求得上三角形集气罩底端与下三角形集气罩底端的高度h则确定上三角形集气罩底端到池顶的距离 1.80m下三角形集气罩底端到池顶的距离 3.11m8、气液分离设计沿下集气罩斜面方向的水流速度va0.60或者圆形气泡的直径dg设为0.01cm废水的动力粘滞系数μ=vρ10.01取(β*g/18μ)*(ρ1-ρg)*d²气泡在下集气罩边缘的上升速度vb=0.27cm/s9.59m/h9、核算设计结果BC/AB= 2.28vb/va=16.08或者圆形满足vb/va > BC/AB的要求,可以脱除直径等于或大于0.01cm的气泡。

污水UASB 反硝化 硝化计算书

污水UASB 反硝化 硝化计算书

某市生活垃圾填埋场渗沥液处理站工程计算书(200m3/d)二零一二年三月1 概况1.2 进水流量垃圾渗沥液进水流量为200(m3/d)。

1.3 设计计算进水水质1.4 设计计算出水水质1.5 各工艺单元去除效果2 UASB的设计计算UASB 反应器进水条件1)pH 值宜为6.5~7.8。

2)常温厌氧温度宜为20℃~25℃,中温厌氧温度宜为30℃~35℃,高温厌氧温度宜为50℃~55℃。

3)COD:N:P=200:5:1。

4)UASB 反应器进水中悬浮物的含量宜小于1500mg/L。

5)废水中氨氮浓度应小于800mg/L。

6)废水中硫酸盐浓度应小于1000mg/L、COD/SO42-比值应大于10。

7)废水中COD 浓度宜为2000mg/L~20000mg/L。

8)严格限制重金属、碱土金属、三氯甲烷、氰化物、酚类、硝酸盐和氯气等有毒物质进入厌氧反应器。

2.1 UASB 反应池的有效容积tQ AH NQC V V===有效式中:Q ——设计计算处理量,Q=200m 3/d=8.33 m 3/h ; C 0——进水COD 浓度,mg/L ;N V ——COD 容积负荷,kgCOD/(m 3·d),取4kg/m 3・d (中温负荷)。

A ——反应器横截面积,m2 H ——反应器有效高度,m t ——水力停留时间,h)(6000.410)800020000(20033m V =⨯-=-有效2.2 UASB 反应池的形状和尺寸升流式厌氧污泥床的池形有矩形、方形和圆形。

圆形反应池具有结构稳定的特点,因此本次设计计算选用圆形池。

圆形反应器具有结构稳定的优点,同时建造费用比具有相同面积的矩形反应器至少要低12%,但圆形反应器的这一优点仅仅在采用单个池子时才成立。

单个或小的反应器可以建成圆形的,高径比应在1~3 之间。

[1][1]《UASB 升流式厌氧污泥床污水处理工程技术规范(编制说明)》 反应池有效横截面积:h=S 有效有效V式中:S 有效——反应池的有效横截面积,m 2;h ——UASB 反应器的高度,一般为4~9m ,取8m 。

Uasb的设计

Uasb的设计

UASB的设计一、Uasb的设计水量Q=4000(m3/h)COD BOD5SS进水300015001000出水600225400去除率80%85%60%容积负荷取4kgCOD/(m3•;d)则,有效容积为设计为n=2个池子,则V1=1800/2=900(m3)有效高度4~6(m),取为6(m),则A1=900/6=150(m2)则取长L=20(m)。

宽B=8(m)1)三相分离器的设计:设倾角β=60°,γ=70°,集气罩以上的覆盖水深h2=0.5(m)(宜取0.5~1.0m),超高h1=0.5(m),斜面高度h3=1.0(m)(宜取0.5~1.0m).MN=0.225(m),b2=0.6(m)则缝隙宽度L1=MNsinβ=0.225sin60°=0.195(m)(---根据资料,0.7Q(m3/d)的废水通过进水缝进入沉淀区。

另有0.3Q(m3/d)的废水通过回流缝进入沉淀区,则---)设BC=0.5(m),MB=BC-MC,,则,MB=BC-MC=0.5-0.34=0.16(m)AB=2BCcos30°=2×0.5×0.87=0.87(m)CD=BCsin30°+BDsin20°=0.5×0.5+0.46×0.34=0.41(m);则:h5=CD+MN-MCcosβ=0.41+0.225-0.34cos60°=0.47(m)脱气校核:验证。

[----假设分离气泡的最小直径为dg=0.01cm,在常温20摄氏度下的清水运动黏滞系数γ=1.01×10-3(cm2/s),废水密度ρ1=1.03(g/cm3),气体密度ρg=1.2×10-3(g/cm3),气泡碰撞系数β=0.95,则有清水动力黏度,μ’=γρ1=1.01×10-3×1.03=1.04×10-2(g/cm•;s),因为处理废水,一般μ>μ’,取μ=2×10-3(g/cm•;s).-----]2)分离板的设计b2=0.6(m),b=4-(4×1/4)=3(m),则:b3=1/2×(b-b2)=1.2(m).一般b=2b1,则:b1=b/2=3/2=1.5(m)气体受浮力作用,上升流速在进水缝中VN=9.58(m/h),则沿进水缝斜上的速度分量为VNsinα.则进水缝中的水流速度应满足V<VNsinα,否则水流把气泡带进沉淀区。

UASB设计计算书

UASB设计计算书

UASB设计计算书1.厌氧塔的设计计算 1.1反应器结构尺⼨设计计算(1)反应器的有效容积设计容积负荷为)//(0.53d m kgCOD N v = 进出⽔COD 浓度)/(20000L mg C = ,E=0.70 V=3084000.570.0203000m N E QC v =??= ,取为84003m 式中Q ——设计处理流量d m /3C 0——进出⽔COD 浓度kgCOD/3m E ——去除率 N V ——容积负荷(2)反应器的形状和尺⼨。

⼯程设计反应器3座,横截⾯积为圆形。

1)反应器有效⾼为m h 0.17=则横截⾯积:)(4950.1784002m hV S =有效==单池⾯积:)(16534952m n S S i ===2) 单池从布⽔均匀性和经济性考虑,⾼、直径⽐在1.2:1以下较合适。

设直径m D 15=,则⾼182.1*152.1*===m D h ,设计中取m h 18= 单池截⾯积:)(6.1765.714.3)2 (*14.3222'm h D S i =?== 设计反应器总⾼m H 18=,其中超⾼1.0m单池总容积:)(3000)0.10.18(6.176'3'm H S V i i =-?=?= 单个反应器实际尺⼨:m m H D 1815?=?φ反应器总池⾯积:)(8.52936.1762'm n S S i =?=?= 反应器总容积:)(900033000'3m n V V i =?=?=(3)⽔⼒停留时间(HRT )及⽔⼒负荷(r V )v Nh Q V t HRT 722430009000=?==)]./([24.036.176********h m m S Q V r =??==根据参考⽂献,对于颗粒污泥,⽔⼒负荷)./(9.01.023h m m V r -=故符合要求。

1.7.2 三相分离器构造设计计算(1)沉淀区设计根据⼀般设计要求,⽔流在沉淀室内表⾯负荷率)./(7.023'h m m q <沉淀室底部进⽔⼝表⾯负荷⼀般⼩于2.0)./(23h m m 。

UASB反应器设计计算书

UASB反应器设计计算书

UASB反应器设计计算书1. 符号说明 ..................................................................... .................. - 1 -2.设计参数 ..................................................................... .................... - 2 -2.1负荷 ..................................................................... .......... - 2 - COD2.2 厌氧产气...................................................................... ........ - 3 -2.3布水点布置规则 ................................................................... - 3 - 3.三相分离器的设计参数与设计要点 ............................................. - 4 -4设计计算 ..................................................................... .................... - 4 -4.1设计依据: ................................................................... ........ - 4 -4.2有效容积...................................................................... ......... - 5 -4.3反应器的截面积 ................................................................... - 5 -4.4有效反应液位高度 ............................................................... - 5 -4.5三相分离器设计 ................................................................... - 5 -4.6水力停留时间 ..................................................................... .. - 6 -4.7反应器污泥龄 ..................................................................... .. - 6 -4.8排水中可溶性............................................................... - 6- COD4.9SRT ............................................................. ............................ - 7 -4.10平均微生物浓度 ................................................................. - 7 -4.11甲烷气体产量 ..................................................................... - 7 -11. 符号说明流量— QP总剩余污泥量— X,TSS生化需氧量— BODP挥发性剩余污泥量— X,VSS可溶性生化需氧量— sBODP由微生物形成的挥发性剩余污泥量— X,bio化学需氧量— COD污泥龄— SRT可溶性化学需氧量— sCOD微生物产率系数— Y可生物降解化学需氧量— bCOD微生物增长比率— ,亦生物降解化学需氧量— rbCODk微生物内源呼吸常数— d总悬浮颗粒物— TSSf微生物衰亡形成的残渣比例— d挥发性总悬浮颗粒物— VSS总凯式氮— TKNNH,N氨氮— 4总磷— TP污泥体积指数— SVI- 1 -2.设计参数的选择2.1负荷的选择参数(见表1~4) COD1废水颗粒的比CODCOD3,1体积负荷/kgCOD,(m,d) mg/L 例絮状污颗粒污泥,TSS去除率颗粒污泥,TSS去除率泥高低 1000~0.1~0.3 2~4 2~4 8~12 2000 0.3~0.6 2~4 2~4 8~140.6~1.0 不适用不适用不适用 2000~0.1~0.3 3~5 3~5 12~18 6000 0.3~0.6 4~8 2~6 12~240.6~1.0 4~8 2~6 不适用 6000~0.1~0.3 4~6 3~7 15~20 9000 0.3~0.6 5~7 3~8 15~240.6~1.0 6~8 4~6 不适用 9000~0.1~0.3 5~8 4~6 15~24 18000 0.3~0.6 不适用 3~7 不适用0.6~1.0 不适用 3~7 不适用2温度 3,1体积负荷/kgCOD,(m,d) /?VFA废水典型值非VFA废水典型值 15 2~4 3 2~3 2 20 4~6 5 2~4 3 25 6~12 6 4~8 4 30 10~18 12 8~12 10 35 15~24 18 12~18 14 40 20~32 25 15~24 183 mUASB温度/? 平均水力停留时间, 4~6小时峰值复合的最大停留时间 16~19 10~14 7~9 22~26 7~9 5~7 >26 6~8 4~54废水类型上升流速m 反应器高度 m/h范围典型值范围典型值接近100%可溶 1~3 1.5 6~10 8 COD- 2 -部分可溶 1~1.25 1.0 3~7 6 COD生活污水 0.8~1 0.7 3~5 52.2 厌氧产生气体的参数(见表5,6)5COD参数单位范围典型值产率系数Y发酵 gVSS/gCOD0.06~0.12 0.10产甲烷 gVSS/gCOD0.02~0.06 0.04总过程 gVSS/gCOD0.05~0.10 0.08 衰亡速率系数发酵 g/g,d0.02~0.06 0.04产甲烷 g/g,d0.01~0.04 0.02总过程 g/g,d0.02~0.04 0.03 最大比增长速率35? g/g,d0.30~0.38 0.3530? g/g,d0.22~0.28 0.2525? g/g,d0.18~0.24 0.20 半饱和速率常数35? mg/L60~200 16030? mg/L300~500 36025? mg/L800~1100 9006参数单位范围典型值335?的产气量 m/kgCOD0.4 0.43 0?的产气量 m/kgCOD0.35 0.353 35?的密度 kg/m0.6346 0.6346 气体体积含量 % 60~70 65气体能量 KJ/g50.1 50.12.3 UASB反应器布水点布置规则(见表7)7 UASB污泥类型体积负荷每个部水点平均面积 3,12 kgCOD,(m,d) m<1.0 0.5~1 3浓稠絮状污泥 (,40kgTTS/)1.0~2.0 1~2>2.0 2~3 中等浓度絮状污泥 1.0~2.0 1~2>3.0 2~5 3 (20,40kgTTS/)- 3 -颗粒污泥 <2.0 0.5~12.0~4.0 0.5~2>4.0 >23.三相分离器的设计参数与设计要点n为流量,为三相分离器的长,B为三相分离器的宽,为单元级数。

UASB完整计算版

UASB完整计算版

UASB工艺设计计算一、UASB反应器设计说明(一)工艺简介:UA SB 是升流式厌氧污泥床反应器的简称, 是由荷兰W agen ingen 农业大学教授L et t inga 等人于1972~1978 年间开发研制的一项厌氧生物处理计术, 国内对UA SB 反应器的研究是从20 世纪80 年代开始的. 由于UA SB 反应器具有工艺结构紧凑,处理能力大, 无机械搅拌装置, 处理效果好及投资省等特点,UA SB 反应器是目前研究最多, 应用日趋广泛的新型污水厌氧处理工艺[ 1 ]1.UA SB 反应器基本构造如图12.UA SB 的工作原理:如图1 所示, 废水由反应器的底部进入后, 由于废水以一定的流速自下而上流动以及厌氧过程产生的大量沼气的搅拌作用, 废水与污泥充分混合, 有机质被吸附分解, 所产沼气经由反应器上部三相分离器的集气室排出, 含有悬浮污泥的废水进入三相分离器的沉降区, 由于沼气已从废水中分离, 沉降区不再受沼气搅拌作用的影响. 废水在平稳上升过程中,其中沉淀性能良好的污泥经沉降面返回反应器主体部分, 从而保证了反应器内高的污泥浓度. 含有少量较轻污泥的废水从反应器上方排出. UA SB 反应器中可以形成沉淀性能非常好的颗粒污泥, 能够允许较大的上流速度和很高的容积负荷. UA SB 反应器运行的 3 个重要的前提是: ①反应器内形成沉降性能良好的颗粒污泥或絮状污泥; ②出产气和进水的均匀分布所形成良好的自然搅拌作用; ③设计合理的三相分离器, 能使沉淀性能良好的污泥保留在反应器内(二)设计作用UASB,即上流式厌氧污泥床,集生物反应与沉淀于一体,是一种结构紧凑,效率高的厌氧反应器。

它的污泥床内生物量多,容积负荷率高,废水在反应器内的水力停留时间较短,因此所需池容大大缩小。

设备简单,运行方便,勿需设沉淀池和污泥回流装置,不需充填填料,也不需在反应区内设机械搅拌装置,造价相对较低,便于管理,且不存在堵塞问题。

UASB的设计计算

UASB的设计计算

UASB 的设计计算6.1 UASB 反应器的有效容积(包括沉淀区和反应区)设计容积负荷为)//(0.53d m kgCOD N v =进出水COD 浓度)/(112000L mg C = ,)/(1680L mg C e =(去除率85%)V=3028560.585.02.111500m N E QC v =⨯⨯=式中Q —设计处理流量dm /3C 0—进出水COD 浓度kgCOD/3mE —去除率N V —容积负荷,)//(0.53d m kgCOD N v =6.2 UASB 反应器的形状和尺寸工程设计反应器3座,横截面积为矩形。

(1) 反应器有效高为m h 0.6=则横截面积:)(4760.628562m hV S =有效==单池面积:)(7.15834762m n S S i ===(2) 单池从布氺均匀性和经济性考虑,矩形长宽比在2:1以下较合适。

设池长m l 16=,则宽m l S b i 9.9167.158===,设计中取m b 10=单池截面积:)(16010162'm lb S i =⨯==(3) 设计反应器总高m H 5.7=,其中超高0.5m单池总容积:)(1120)5.05.7(160'3'm H S V i i =-⨯=⨯=单池有效反应容积:)(96061603'm h S V i i =⨯=⨯=有效单个反应器实际尺寸:mm m H b l 5.71016⨯⨯=⨯⨯反应器总池面积:)(48031602'm n S S i =⨯=⨯=反应器总容积:)(336031120'3m n V V i =⨯=⨯=总有效反应容积:332856)(28803960m m n V V i >=⨯=⨯=有效有效符合有机负荷要求。

UASB 反应器体积有效系数:%7.8510033602880=⨯% 在70%-90%之间符合要求。

(4) 水力停留时间(HRT )及水力负荷(r V )h Q V t HRT 08.462415002880=⨯==)]./([13.048024150023h m m S Q V r =⨯==根据参考文献,对于颗粒污泥,水力负荷)./(9.01.023h m m V r -=故符合要求。

(完整版)UASB的设计计算

(完整版)UASB的设计计算

UASB 的设计计算6.1 UASB 反应器的有效容积(包括沉淀区和反应区)设计容积负荷为)//(0.53d m kgCOD N v =进出水COD 浓度)/(112000L mg C = ,)/(1680L mg C e =(去除率85%) V=3028560.585.02.111500m N E QC v =⨯⨯= 式中Q —设计处理流量d m /3C 0—进出水COD 浓度kgCOD/3mE —去除率N V —容积负荷,)//(0.53d m kgCOD N v = 6.2 UASB 反应器的形状和尺寸工程设计反应器3座,横截面积为矩形。

(1) 反应器有效高为m h 0.6=则 横截面积:)(4760.628562m h V S =有效== 单池面积:)(7.15834762m n S S i === (2) 单池从布氺均匀性和经济性考虑,矩形长宽比在2:1以下较合适。

设池长m l 16=,则宽m l S b i 9.9167.158===,设计中取m b 10= 单池截面积:)(16010162'm lb S i =⨯==(3) 设计反应器总高m H 5.7=,其中超高0.5m单池总容积:)(1120)5.05.7(160'3'm H S V i i =-⨯=⨯=单池有效反应容积:)(96061603'm h S V i i =⨯=⨯=有效单个反应器实际尺寸:m m m H b l 5.71016⨯⨯=⨯⨯反应器总池面积:)(48031602'm n S S i =⨯=⨯=反应器总容积:)(336031120'3m n V V i =⨯=⨯=总有效反应容积:332856)(28803960m m n V V i >=⨯=⨯=有效有效符合有机负荷要求。

UASB 反应器体积有效系数:%7.8510033602880=⨯% 在70%-90%之间符合要求。

(完整版)UASB的设计计算

(完整版)UASB的设计计算

UASB 的设计计算6.1 UASB 反应器的有效容积(包括沉淀区和反应区)设计容积负荷为)//(0.53d m kgCOD N v =进出水COD 浓度)/(112000L mg C = ,)/(1680L mg C e =(去除率85%) V=3028560.585.02.111500m N E QC v =⨯⨯= 式中Q —设计处理流量d m /3C 0—进出水COD 浓度kgCOD/3mE —去除率N V —容积负荷,)//(0.53d m kgCOD N v = 6.2 UASB 反应器的形状和尺寸工程设计反应器3座,横截面积为矩形。

(1) 反应器有效高为m h 0.6=则 横截面积:)(4760.628562m h V S =有效== 单池面积:)(7.15834762m n S S i === (2) 单池从布氺均匀性和经济性考虑,矩形长宽比在2:1以下较合适。

设池长m l 16=,则宽m l S b i 9.9167.158===,设计中取m b 10= 单池截面积:)(16010162'm lb S i =⨯==(3) 设计反应器总高m H 5.7=,其中超高0.5m单池总容积:)(1120)5.05.7(160'3'm H S V i i =-⨯=⨯=单池有效反应容积:)(96061603'm h S V i i =⨯=⨯=有效单个反应器实际尺寸:m m m H b l 5.71016⨯⨯=⨯⨯反应器总池面积:)(48031602'm n S S i =⨯=⨯=反应器总容积:)(336031120'3m n V V i =⨯=⨯=总有效反应容积:332856)(28803960m m n V V i >=⨯=⨯=有效有效符合有机负荷要求。

UASB 反应器体积有效系数:%7.8510033602880=⨯% 在70%-90%之间符合要求。

UASB设计计算

UASB设计计算

UASB设计说明UASB一般包括进水配水区、反应区、三相分离区、气室等部分UASB 反应器的工艺基本出发点如下:1、为污泥絮凝提供有利得物理—化学条件,厌氧污泥即可获得并保持良好的沉淀性能。

2、良好的污泥床长可以形成一种相当稳定的生物相,能抵抗较强的冲击,较大的絮体具有良好的沉降性能,从而提高设备内污泥浓度。

3、通过在反应器内设置一个沉淀区,使污泥细颗粒在沉淀区的污泥层内进一千絮凝和沉淀,然后回流入反应器。

UASB设计计算3.5 UASB反应器的设计计算3.5.1 设计参数(1) 污泥参数设计温度T=25℃容积负荷NV=6.0kgCOD/(m3.d)产气率0.5m3/kgCOD(2) 设计水量Q=1150m3/d=47.92m3/h=0.013 m3/s。

(3) 水质指标表5 UASB反应器进出水水质指标采用4座相同的UASB反应器,则每个单池面积A1为:A1=A/4=73.72/4=18.43 m2取D=9m则实际横截面积A2=3.14D2/4=57.9 m2际表面水力负荷q1=Q/A2=47.92/257.9=0.83q1在0.5—1.5m/h之间,符合设计要求。

3.5.3 UASB进水配水系统设计(1) 设计原则①进水必须要反应器底部均匀分布,确保各单位面积进水量基本相等,防止短路和表面负荷不均;②应满足污泥床水力搅拌需要,要同时考虑水力搅拌和产生的沼气搅拌;③易于观察进水管的堵塞现象,如果发生堵塞易于清除。

本设计采用圆形布水器,每个UASB反应器设30个布水点。

(2) 设计参数每个池子的流量Q1=47.92/4=11.98m3/h(3) 设计计算查有关数据,对颗粒污泥来说,容积负荷大于4m3/(m2.h)时,每个进水口的负荷须大于2m2则布水孔个数n必须满足пD2/4/n>2即n<пD2/8=3.14*9*9/8=32取n=30个则每个进水口负荷a=пD2/4/n=3.14* 9* 9/4/30=2.12m2可设3个圆环,最里面的圆环设5个孔口,中间设10个,最外围设15个,其草图见图4①内圈5个孔口设计服务面积:S1=5 *2.12=10.6m2折合为服务圆的直径为:用此直径用一个虚圆,在该圆内等分虚圆面积处设一实圆环,其上布5个孔口则圆环的直径计算如下:3.14*d12/4=S1/2②中圈10个孔口设计服务面积:S1=10 *2.12=21.2m2折合为服务圆的直径为:则中间圆环的直径计算如下:3.14 *(6.36^2-d2^2)/4=S2/2则d2=5.2m③外圈15个孔口设计服务面积:S3=15 *2.12=31.8m2折合为服务圆的直径为则中间圆环的直径计算如下:3.14* (9^2-d3^2)=S3/2则d3=7.8m布水点距反应器池底120mm;孔口径15cm图4 UASB布水系统示意图3.5.4 三相分离器的设计(1) 设计说明 UASB的重要构造是指反应器内三相分离器的构造,三相分离器的设计直接影响气、液、固三相在反应器内的分离效果和反应器的处理效果。

环境工程UASB反应器概算设计说明书

环境工程UASB反应器概算设计说明书

环境工程概算设计说明书UASB厌氧反应器工程设计一.工程概述1.1工程背景厌氧生物处理过程能耗低:有机容积负荷高,一般为30-50kgCOD/(m3·d),最高可达30-50kgCOD/(m3·d):剩余污泥量少;厌氧菌对营养需求低、耐毒性强、可降解的有机物分子量高,耐冲击负荷能力强,产出的沼气是种清洁能源。

在全社会提倡循环经济,关注工业废弃物实施资源化再生利用的今天,厌氧生物处理显然是能够使污水资源化的优选工艺。

近年来,污水厌氧处理工艺发展十分迅速,各种新工艺、新方法不断出现,包括有厌氧接触法、升流式厌氧污泥床、档板式厌氧法、厌氧生物滤油、厌氧膨胀床和流化床,以及第三代厌氧工艺EGSB和IC 厌氧反应器,发展十分迅速。

而升流式庆氧污泥床UASB( Up-flow Anaerobic Sludge Bed,注:以下简称UASB)工艺由于具有厌氧过滤及厌氧活性污泥法的双重特点,作为能够将污水中的污染物转化为再生清洁能源一沼气的一项技术。

对于不同含固量污水的适应性也强,且其结构、运行操作维护管理相对简单,造价也相对较低,技术己经成熟,正日益受到污水处理业界的重视,得到广泛的欢迎和应用。

1.2基本原理UASB由污泥反应区、气液固三相分离器(包括沉淀区〉和气室三部分组成。

在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。

要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。

沼气以微小气泡形式不断放出,微小气泡在上到过程中,不断合井,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离掘,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室的沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。

UASB工艺设计计算书

UASB工艺设计计算书

UASB工艺设计计算书UASB 工艺设计计算(一)适用性升流式厌氧污泥床(UASB)工艺设计进水水质一般CODcr 应在1000mg/L 以上。

UASB 反应器进水中悬浮物的含量一般不宜超过500mg/L,否则应设置混凝沉淀或混凝气浮进行处理。

当进水悬浮物过高或可生化性较差是,宜设置水解池进行预酸化。

(二)预处理要求预处理部分包括以下环节:格栅、调节池、营养盐和PH 值及温度调控系统。

预处理部分是UASB 及其艳阳设计的关键。

关系到系统能否正常运行,应充分考虑其运行的可靠性。

1.格栅UASB 废水处理工艺系统前应设置细格栅、粗格栅或水力筛。

最后一道格栅的格栅间隙宜在1--3mm 之间,宜采用旋转滤网等高效的固液分离设备代替普通格栅。

2.调节池(1)废水进入UASB 应设置调节池。

(2)调节池的有效时间宜为6--12h 。

(3)调节池应具备均质、均量、调节PH 值、防止不溶物沉淀的功能。

(4)调节池宜设置机械搅拌的方式实现均质,搅拌机的容积功率宜为4--8w/m 3;对小型废水处理站可采用曝气搅拌方式,气水比宜控制在(7:1)--(10:1)。

(5)调节池中应设置碱度补充和营养盐补充装置。

(6)调节池的出水端应设置去除浮渣装置。

(7)调节池的底部应易于沉淀物的清出。

3.PH 调节(1)UASB 反应器的进水PH 值应保证在6.5--7.8之间(2)酸碱的投加应采用计量泵自动投加装置,中和池出水应设置PH 自动检测系统,与前端计量泵联动。

4.温度调节(1)中温厌氧的温度应保持在35℃±2℃,如不能满足应设置加温装置。

(2)热源可采用锅炉蒸汽或沼气发电余热,管路上应设置电动阀和温度计,通过显示温度自动调接开关,实现自动控制。

(三)UASB 反应器设计计算1.UASB 反应器有效容积的计算UASB 反应器的设计参数是容积负荷或水力停留有时间。

这两个参数难以从理论上推导得到,往往是通过试验取得,而且颗粒污泥和絮状污泥反应器的设计负荷是不相同的。

UASB设计计算

UASB设计计算

U A S B设计计算(实例)(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--UASB设计计算一、设计参数(1) 污泥参数设计温度T=25℃容积负荷N V= 污泥为颗粒状污泥产率kgCOD,产气率kgCOD(2) 设计水量Q=2800m3/d=h= m3/s。

(3) 水质指标表1 UASB反应器进出水水质指标二、 UASB反应器容积及主要工艺尺寸的确定(1) UASB反应器容积的确定本设计采用容积负荷法确立其容积VV=QS0/N VV—反应器的有效容积(m3)S0—进水有机物浓度(kgCOD/L)V=3400×÷=1494m3取有效容积系数为,则实际体积为1868m3(2) 主要构造尺寸的确定UASB反应器采用圆形池子,布水均匀,处理效果好。

取水力负荷q1=(m2·d)反应器表面积 A=Q/q1==反应器高度 H=V/A=1868/= 取H=8m采用4座相同的UASB反应器,则每个单池面积A1为:A1=A/4=4=取D=9m则实际横截面积 A2=4= m2实际表面水力负荷 q1=Q/4A2=5 = m3/(m2·d)q1〈h,符合设计要求。

二、UASB进水配水系统设计(1) 设计原则①进水必须要反应器底部均匀分布,确保各单位面积进水量基本相等,防止短路和表面负荷不均;②应满足污泥床水力搅拌需要,要同时考虑水力搅拌和产生的沼气搅拌;③易于观察进水管的堵塞现象,如果发生堵塞易于清除。

本设计采用圆形布水器,每个UASB反应器设30个布水点。

(2) 设计参数每个池子的流量Q1=4=h(3) 设计计算查有关数据,对颗粒污泥来说,容积负荷大于4m3/时,每个进水口的负荷须大于2m2则布水孔个数n必须满足πD2/4/n>2即n<πD2/8=×9×9÷8=32 取n=30个则每个进水口负荷 a=πD2/4/n=×9× 9÷4÷30=可设3个圆环,最里面的圆环设5个孔口,中间设10个,最外围设15个,其草图见图1图1 UASB布水系统示意图①内圈5个孔口设计服务面积: S1=5 ×=折合为服务圆的直径为:用此直径作一个虚圆,在该圆内等分虚圆面积处设一实圆环,其上布5个孔口,则圆环的直径计算如下:*()/4=S1/2②中圈10个孔口设计服务面积: S2=10 ×=折合为服务圆的直径为:则中间圆环的直径计算如下:×-d22) /4=S2/2则 d2=③外圈15个孔口设计服务面积: S3=15 ×=折合为服务圆的直径为则中间圆环的直径计算如下:×(92-d32)/4=S3/2则 d3=布水点距反应器池底120mm;孔口径15cm 三、三相分离器的设计(1) 设计说明 UASB的重要构造是指反应器内三相分离器的构造,三相分离器的设计直接影响气、液、固三相在反应器内的分离效果和反应器的处理效果。

课程设计UASB计算小

课程设计UASB计算小

UASB 反应器设计说明(1)设计作用UASB 反应器是进行废水处理的主要构筑物之一,对高浓度的废水进行厌氧发酵,去除大部分的有机污染物。

(2)设计参数选用设计资料参数如下: ① 参数选取:容积负荷(Nv )为:6kgCOD/(m 3·d) ; 污泥产率为:0.1kgMLSS/kgCOD ; 产气率为:0.5m 3/kgCOD 。

② 设计水质:UASB 反应器进出水水质指标如表3-4:表2-1UASB 反应器进出水水质指标水质指标 进水水质(mg/l)去除率(%)出水水质(mg/l)COD8000752000③ 设计水量:Q = 14000m 3/d = 583m 3/h = 0.126m 3/s(3)工作原理 (4)设计计算 ①反应器容积计算: UASB 有效容积为:V 有效 =()V0N S Q e S -⋅式中:V 有效 ———— 反应器有效容积,m 3;S 0、S e ———— 进出水COD 的浓度,kgCOD/m 3; Q ———— 设计流量,m 3/d ; N v ———— 容积负荷,kgCOD/(m 3·d)。

V 有效 =()82814000-⨯= 10500m 3采用20座相同的UASB 反应器, 则每座反应器的有效容积为:10500/20 =525 m 3。

根据经验,UASB 最经济的高度一般在3~6m 之间,并且大多数情况下,这也是系统最优的运行范围。

取有效水深h = 6m , 则:87.56525==‘A m 2 采用公壁建造矩形池比圆形池较经济。

有关资料显示,当长宽比在2:1左右时,基建投资最省。

取长L = 15m ,宽B = 6m ,则实际横截面积为:A 1 = L×B = 15×6 = 90m 2实际总横截面积为:A = 90×20 = 1800m 2本工程设计中反应器总高取H = 6.2m(超高h 1=0.2m),则单个反应池的容积为:V = L×B×H = 15×6×6 = 540m 3 反应池的总容积为V 总 = 540×20 = 10800m 3。

UASB工艺设计计算(全)

UASB工艺设计计算(全)

UASB工艺设计计算(全)原始数据进水流量Q(m3/d)240.00水温℃进水水质COD0BOD0(mg/l)7290.003500.00容积负荷率U 4.00kgCOD/(m3.d)COD去除率%0.70SS去除率% 0.60沼气表观产率0.50m3/(去除kgCOD)污泥表观产率0.05kgVSS/(去除kgCOD)VSS/SS0.601、处理后出水水质出水水质COD1BOD1(mg/l)2187.002、UASB反应器有效容积及长、宽、高尺寸的确定2.1、有效容积V R437.40m32.2、反应器数量 1.002.3、单个容积V R'437.40m32.4、有效高度H10.00m32.5、反应器面积S43.74m22.6、反应器尺寸设定反应器宽B8.00m反应器直径D7.467.003、反应器的外形尺寸长 5.00宽直径7.00高重新核算后的面积40.00或者圆形容积400.00或者圆形4、反应器的水力停留时间HRT40.00或者圆形5、三相分离器设计沉淀区的表面负荷0.13或者圆形沉淀区的水深h 1.00m停留时间 4.00或者圆形6、回流缝设计设集气罩的水平夹角55.00取保护高度h10.50m设下三角集气罩高度h30.80m上三角形顶水深h20.50m则有b10.56m设单元三相分离器宽b 2.50m则下部污泥回流缝宽度b2 1.38m下部污泥回流缝总面积a122.07或者圆形求得下三角形回流缝的上升流速v10.45或者圆形设上部三角形集气罩回流缝宽度b30.64m总面积a220.47或者圆形求得上部回流缝上升流速v20.24或者圆形7、三相分离器位置的确定上三角形集气罩底端到下三角形集气罩斜面的垂直距离CE上三角形集气罩底端到下三角形集气罩的竖直距离BC取上三角形集气罩与下三角形集气罩重叠的斜面长度AB求得上三角形集气罩底端与下三角形集气罩底端的高度h则确定上三角形集气罩底端到池顶的距离 1.80m下三角形集气罩底端到池顶的距离 3.11m8、气液分离设计沿下集气罩斜面方向的水流速度va0.60或者圆形气泡的直径dg设为0.01cm废水的动力粘滞系数μ=vρ10.01取(β*g/18μ)*(ρ1-ρg)*d2气泡在下集气罩边缘的上升速度vb=0.27cm/s9.59m/h9、核算设计结果BC/AB= 2.28vb/va=16.08或者圆形满足vb/va > BC/AB的要求,可以脱除直径等于或大于0.01cm 的气泡。

uasb计算

uasb计算

uasb计算原始数据进水流量Q(m3/d)240.00水温℃进水水质COD0BOD0(mg/l)7290.003500.00容积负荷率U 4.00kgCOD/(m3.d)COD去除率%0.70SS去除率%0.60沼气表观产率0.50m3/(去除kgCOD)污泥表观产率0.05kgVSS/(去除kgCOD)VSS/SS0.601、处理后出水水质出水水质COD1BOD1(mg/l)2187.002、UASB反应器有效容积2.1、有效容积V R437.40m32.2、反应器数量 1.002.3、单个容积V R'437.40m32.4、有效高度H10.00m32.5、反应器面积S43.74m22.6、反应器尺寸设定反应器宽B8.00m反应器直径D7.467.00 3、反应器的外形尺寸长 5.00宽直径7.00高重新核算后的面积40.00或者圆形容积400.00或者圆形4、反应器的水力停留时HRT40.00或者圆形5、三相分离器设计沉淀区的表面负荷0.13或者圆形沉淀区的水深h 1.00m停留时间 4.00或者圆形6、回流缝设计设集气罩的水平夹角55.00取保护高度h10.50m 设下三角集气罩高度h30.80m 上三角形顶水深h20.50m 则有b10.56m 设单元三相分离器宽b2.50m 则下部污泥回流缝宽度b2 1.38m 下部污泥回流缝总面积a122.07或者圆形求得下三角形回流缝的上升流速v10.45或者圆形设上部三角形集气罩回流缝宽度b30.64m 总面积a220.47或者圆形求得上部回流缝上升流速v20.24或者圆形7、三相分离器位置的确上三角形集气罩底端到下三角形集气罩斜面的垂直距离CE 上三角形集气罩底端到下三角形集气罩的竖直距离BC 取上三角形集气罩与下三角形集气罩重叠的斜面长度AB 求得上三角形集气罩底端与下三角形集气罩底端的高度h 则确定上三角形集气罩底端到池顶的距离 1.80m 下三角形集气罩底端到池顶的距离3.11m 8、气液分离设计沿下集气罩斜面方向的水流速度va 0.60或者圆形气泡的直径dg 设为0.01cm 废水的动力粘滞系数μ=vρ10.01取(β*g/18μ)*(ρ1-ρg )*d2气泡在下集气罩边缘的上升速度vb=0.27cm/s9.59m/h9、核算设计结果BC/AB= 2.28vb/va=16.08或者圆形满足vb/va > BC/AB的要求,可以脱除直径等于或大于0.01cm的气泡。

UASB反应器设计计算

UASB反应器设计计算

UASB反应器设计计算UASB反应器(1) 设计说明本工程所处理工业废水属高浓度有机废水,生物降解性好,UASB 反器作为处理工艺的主体,拟按下列参数设计。

设计流量1200 m3/d =50m3/h进水浓度CODcr=5000mg/L COD去除率为87.5%容积负荷Nv=6.5kgCOD/(m3?d)产气率r=0.4m3/kgCOD污泥产率X=0.15kg/kgCOD(2)UASB反应器工艺构造设计计算①UASB总容积计算UASB总容积:V = QSr/Nv = 1200×5×87.5%/6.5 = 807.7 m3 (3-1)选用两座反应器,则每座反应器的容积Viˊ= V/2 = 404 m3 设UASB的体积有效系数为87%,则每座反应器的实需容积Vi = 404/87%= 464m3若选用截面为8m×8m 的反应器两座,则水力负荷约为0.3m3/(m2?h)&lt;1.0m3/(m2?h) 符合要求求得反应器高为8m,其中有效高度7.5m,保护高0.5m.②三相分离器的设计UASB的重要构造是指反应器内三相分离器的构造,三相分离器的设计直接影响气、液、固三相在反应器内的分离效果和反应器的处理效果。

对污泥床的正常运行和获得良好的出水水质起十分重要的作用,根据已有的研究和工程经验,三相分离器应满足以下几点要求:a.液进入沉淀区之前,必须将其中的气泡予以脱出,防止气泡进入沉淀区影响沉淀效果。

b. 沉淀区的表面水力负荷应在0.7m3/(m2?h)以下,进入沉淀区前,通过沉淀槽底缝隙的流速不大于2.0m/h。

c. 沉淀斜板倾角不小于50°,使沉泥不在斜板积累,尽快回落入反应区内。

d.出水堰前设置挡板以防止上浮污泥流失,某些情况下应设置浮渣清除装置。

三相分离器设计需确定三相分离器数量,大小斜板尺寸、倾角和相互关系。

三相分离器由上下两组重叠的高度不同的三角形集气罩组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两相厌氧工艺的研究进展摘要:传统的厌氧消化工艺中,产酸菌和产甲烷菌在单相反应器内完成厌氧消化的全过程,由于二菌种的特性有较大的差异,对环境条件的要求不同,无法使二者都处于最佳的生理状态,影响了反应器的效率。

1971年Ghosh和Poland提出了两相厌氧生物处理工艺[1],它的本质特征是实现了生物相的分离,即通过调控产酸相和产甲烷相反应器的运行控制参数,使产酸相和产甲烷相成为两个独立的处理单元,各自形成产酸发酵微生物和产甲烷发酵微生物的最佳生态条件,实现完整的厌氧发酵过程,从而大幅度提高废水处理能力和反应器的运行稳定性。

(1) 两相厌氧消化工艺将产酸菌和产甲烷菌分别置于两个反应器内,并为它们提供了最佳的生长和代谢条件,使它们能够发挥各自最大的活性,较单相厌氧消化工艺的处理能力和效率大大提高。

Yeoh对两相厌氧消化工艺和单相厌氧消化工艺进行了对比实验研究。

结果表明:两相厌氧消化系统的产甲烷率为0.168m3CH4/(KgCOD Cr?d)明显高于单相厌氧消化系统的产甲烷率0.055m3CH4/(KgCOD cr?d)。

(2) 反应器的分工明确,产酸反应器对污水进行预处理,不仅为产甲烷反应器提供了更适宜的基质,还能够解除或降低水中的有毒物质如硫酸根、重金属离子的毒性,改变难降解有机物的结构,减少对产甲烷菌的毒害作用和影响,增强了系统运行的稳定性。

(3) 产酸相的有机负荷率高,缓冲能力较强,因而冲击负荷造成的酸积累不会对产酸相有明显的影响,也不会对后续的产甲烷相造成危害,提高了系统的抗冲击能力。

(4) 产酸菌的世代时间远远短于产甲烷菌,产酸菌的产酸速度高于产甲烷菌降解酸的速率[4,5],产酸反应器的体积总是小于产甲烷反应器的体积。

(5) 两相厌氧工艺适于处理高浓度有机污水、悬浮物浓度很高的污水、含有毒物质及难降解物质的工业废水和污泥。

2两相厌氧工艺的研究现状2. 1反应器类型从国内外的两相厌氧系统研究所采用的工艺形式看,主要有两种:第一种是两相均采用同一类型的反应器,如UASB反应器,UBF反应器,ASBR反应器,其中UASB 反应器较常用。

第二种是称作Anodek的工艺,其特点是产酸相为接触式反应器(即完全式反应器后设沉淀池,同时进行污泥回流),产甲烷相则采用其它类型的反应器⑹。

王子波、封克、张键采用两相UASB反应器处理含高浓度硫酸盐黑液,酸化相为8.87L的普通升流式反应器,甲烷相为28.75L的UASB反应器,系统温度(35 ±)C。

当酸化相进水COD 为(6.771 〜11.057)g/ L ,SO42-为(5.648〜8.669) g/L,pH值为5.5时,整个系统COD去除率平均值为74.42 %,系统对负荷的冲击有较强的耐受能力⑺。

SHI-YILUN等采用两相UASB处理葡萄糖配水,OLR可达到54gCOD/ (L d), CH4占沼气的90%, COD去除率为85%8。

张振家、王太平、谷成采用两相UASB反应器处理糖蜜酒精糟液,试验结果表明:系统对废水中有机物及硫酸盐均有良好的去除效果,酸化反应器对SO42-去除率达到70%以上9。

胡锋平在常温25T采用两相UBF反应器对养鸡场离心废水进行处理,结果表明:进水CODcr为18300mg/L ,系统容积负荷17.26 kgCOD/ (m3 d),水力停留时间25.47 h, CODcr去除率为76.13% ,BOD5去除率为87.76% ,产气率为O.41Om3/kgCODcr10。

H. Bouallagui等采用两相ASBR反应器处理果蔬废水(FVW), COD去除率达96%,出水COD小于1500mg/L,可溶性SCOD小于400 mg/L,产烷产率为每320L/ KgCOD11。

孙剑辉、倪利晓采用的工艺为Anodek,他们将铁屑为填料的UBF反应器作酸化相、以UASB反应器作甲烷相,处理Zn5 - ASA医药废水。

实验结果表明:此系统在UBF与USAB的HRT分别控制在5.95 h和11.43 h时,UBF与UASB 的OLR(以COD 计)分别高达58.44 和17.01 kg/ (m3 d),对SCOD 和BOD5的总去除率分别达90 %和95 %左右,具有系统运行稳定、处理效率高等优占2。

八、、°2. 2相分离的方法(1)物理化学法在产酸相中投加甲烷菌的选择性抑制剂(如氯仿,四氯化碳等) 来抑制产甲烷细菌的生长,或向产酸反应器中供给一定量的氧气,调整反应器内的氧化还原电位,利用产甲烷菌对溶解氧和氧化还原电位比较敏感的特点来抑制其在产酸相反应器中生长;或将产酸反应器pH调在较低水平(5.5-6.5之间),利用甲烷要求中性偏碱的的条件来保证产酸菌在产酸反应器占主导地位;或采用通透有机酸的半透膜,使产酸相的末端产物只有有机酸才能进入后续的产甲烷反应器,从而实现产酸相与产甲烷相分离。

(2)动力学控制法产酸菌和产甲烷菌在生长速率上存在很大的差异12,产酸菌的生长速率快,其世代时间短,一般在10~30min,而产甲烷菌的世代时间在4~6d,因此控制反应的水力停留时间在一个较两相厌氧消化工艺为产酸菌和产甲烷菌提供了最佳的生理环境[18],发挥了它们各自最大的活性,因而具有比单相厌氧消化工艺更高的处理能力和处理效率,有深入研究和推广应用的价值。

Progressi on and Prospects on the Research of Two-Phase An aerobic Wang Kehao 1 Li Don gwei 1,2 Li Dou 1 Yua n Xue 1 Xu Zho nghui 1短的范围内,可以使产甲烷菌来不及在产酸相反应器停留就被水流带入产甲烷反应器。

通过动力参数(如有机负荷率、停留时间等)13的调控实现产酸菌和产甲烷菌的有效分离。

实验中最广范的应用就是将第一种方法的调pH与第二种方法结合起来,这样使较低的pH对产甲烷菌产生一定的抑制性,同时该反应器的HRT很短,相应的SRT也较短,使得世代时间较长的甲烷菌难以在其中生长起来。

3两相厌氧工艺的发展方向(1)针对不同的水质并结合各种新型高效厌氧反应器的特点进行产酸相和产甲烷相的组合成为新的研究方向。

进入90年代,如文献14 15 16 17 18 * * * * 19 * * 20中所用的产酸反应器就是一种专利产品,处理效果很好;文献21中用填充床酸化反应器+UASB甲烷化反应器有效地处理了啤酒废水和抗生素废水;针对水解反应器HUSB和颗粒污泥膨胀床EGSB优缺点的互补,文献22中将二者组成两相工艺成功地处理了悬浮性固体含量高的城市污水。

(2)温度两相厌氧工艺⑴,是最近IOWA大学正在研究的一种新的两相厌氧工艺,它将高温厌氧消化和中温厌氧消化组合成一个处理工艺,可以充分发挥高温发酵速率快和去除致病菌能力强以及中温发酵所具有的能量需求低和出水水质好的优势。

KAISER等人研究的温度两相厌氧生物滤池(TPAB)工艺是一种新的高速厌氧处理系统,它由一个高温厌氧生物滤池和一个中温厌氧滤池串联而成,能够形成一个具有两个温度段和两相的厌氧生物处理系统。

在相同的HRT 和有机负荷下温度两相系统的运行效果要比单级的厌氧滤池好。

LUGBA等人也研究了温度两相厌氧工艺处理乳制品废水的可行性。

(1. College of Resource and Environmental Scienee ,Chongqing14 —体化两相厌氧反应器的研究也是两相厌氧反应器的一个研究方向,通过反应器内部结构的精密设计,在同一反应器内形成产酸相、产甲烷相的合理搭配,在实现两相分离,消除二者之间制约作用的基础上,增强二者之间的互补、协同作用。

反应器一体化的设计使得设备投资减少,节省工程占地。

4结语Digesti on (TPAD)University,Chongqing 400030 ;2. The Key Laboratory of the Exploitataionof Southwest Resources & the En vir onmen tal Hazards Con trol Engin eeri ng ,Ministry of Education ,Chongqing 400030)Abstract: The article firstly summaries the prin ciple of two-phase an aerobic digesti on (TPAD), methods of phase-separatio n, affecti ng factors and evaluati ng in dexes Then the situati on of inv estigati on and applicati on in in ternal and external TPAD are in troduced. Fin ally, the research directi ons and the prospects in two-phase an aerobic digesti on processes are forecasted.Keywords : two-phase an aerobic digesti on; phase separati on;acidoge nesis; methoge nesis; evaluati ng in dexes两相厌氧消化系统(Two-Phase An aerobic Digesti on ,简称TPAD)是20世纪70年代初美国戈什(Ghosh)和波兰特(Pohland)开发的厌氧生物处理新工艺⑴, 并于1977年在比利时首次应用于生产。

该技术与其他新型厌氧反应器不同的是,它并不着重于反应器结构的改造,而是着重于工艺的变革。

两相厌氧技术的研究将促进国内厌氧技术的发展,同时解决目前对高浓度有机废水进行厌氧生物处理时易酸化、靠稀释废水的技术局面,是废水厌氧生物处理的一个技术飞跃。

1两相厌氧消化的原理传统的应用中,产酸菌和产甲烷菌在单个反应器中,这两类菌群之间的平衡是脆弱的。

这是由于两种微生物在生理学、营养需求、生长速度及对周围环境的敏感程度等方面存在较大的差异。

在传统设计应用中所遇到的稳定性和控制问题迫使研究人员寻找新的解决途径。

一般情况下,产甲烷阶段是整个厌氧消化的控制阶段。

为了使厌氧消化过程完整的进行就必须首先满足产甲烷相细菌的生长条件,如维持一定的温度、增加反应时间,特别是对难降解或有毒废水需要长时间的驯化才能适应。

二相厌氧消化工艺把酸化和甲烷化两个阶段分离在两个串联反应器中,使产酸菌和产甲烷菌各自在最佳环境条件下生长,这样不仅有利于充分发挥其各自的活性,而且提高了处理效果,达到了提高容积负荷率,减少反应容积,增加运行稳定性的目的。

相关文档
最新文档