轴承的失效分析ppt课件
合集下载
《轴承失效分析》ppt课件
轨迹模式 实例4
外圈静止;内圈旋转;径向于轴向复合负荷作用
6/6/2020 ©SKF Slide 12 [Code] SKF [Organisation]
轨迹模式 实例5
外圈静止;内圈旋转;壳体倾斜;
6/6/2020 ©SKF Slide 13 [Code] SKF [Organisation]
3.2.1. 蠕动腐蚀 3.2.2. 伪布什压痕
疲劳-表面下疲劳
1. 疲劳 2. 磨损 3. 腐蚀 4. 电流腐蚀
1.1. 表面下疲劳
1.2. 表面疲劳
重复的应力变化 材料结构的变化 表面下的微裂纹 裂纹传播 成片, 散裂和剥下
5. 塑性变形
6. 断裂
6/6/2020 ©SKF Slide 17 [Code] SKF [Organisation]
表面下的疲劳
6/6/2020 ©SKF Slide 20 [Code] SKF [Organisation]
疲劳-表面疲劳
1. 疲劳 2. 磨损 3. 腐蚀 4. 电腐蚀
5. 塑性变形 6. 断裂
6/6/2020 ©SKF Slide 21 [Code] SKF [Organisation]
1.1. 表面下疲劳
轨迹模式 实例6
外圈静止;内圈旋转;壳体椭圆;
6/6/2020 ©SKF Slide 14 [Code] SKF [Organisation]
轨迹模式 实例7
外圈静止,内圈旋转;过大预负荷
6/6/2020 ©SKF Slide 15 [Code] SKF [Organisation]
失效模式分类-ISO
6/6/2020 ©SKF Slide 9 [Code] SKF [Organisation]
滚动轴承的故障诊断PPT演示课件
诊断
磨屑
好 有 无 好 好 好 有 好 有 有 不可
方法
轴承间隙
无 无 无 好 好 有 无 无 无 无 不可
油膜电阻
无 无 无 好 好 好 好 有 无 无 可
滚动轴承故障诊断
15
各种诊断方法的灵敏度
故
障
信
号 强 度
振
动
缺 陷 故 障 界
分 析 灵 敏 度
限
噪 声
灵 敏 度
测 温 分 析
分
缺
析
陷
灵
灾
轴承内部有锈蚀
滚动轴承故障诊断
7
轴承失效形式—点蚀
▪ 现象: 滚道面或滚动体表面 上有小坑和片状剥落
▪ 原因: 载荷过大 润滑不良 预载过大 间隙过小
滚动轴承故障诊断
8
轴承失效形式—压痕
▪ 现象: 滚道面上有滚动体的压痕
▪ 原因: 装配不当 静载荷过大 冲击载荷过大 异物侵入
滚动轴承故障诊断
9
轴承失效形式—烧伤、胶合
定义
Sf
xrm s x
Cf
xm ax xrm s
If
xm ax x
CL f
xm a x xr
Kv xr4ms
敏感性
差 一般 较好 好 好
稳定性
好 一般 一般 一般 差
表中:x -平均幅值, xr-方根幅值, -峭度
滚动轴承故障诊断
25
峰值指标用于轴承诊断
峰值指标Cf不受振动信号绝对大小的影响,适用于检测 滚动面剥落与裂纹等故障,但不适于检测磨损。
▪ 现象: 滚道面变色、软化、 熔合
▪ 原因: 转速过高 润滑不良 装配不当
滚动轴承故障诊断
轴承的失效分析ppt课件
36
2020/3/3
辗皮——金属表面由于疲劳而发生的极 薄的金属起皮现象。
37
2020/3/3
辗皮
形态特征——产生于滚动面的极薄的起皮或脱 落颗粒,强光下有光泽,手搓时有手感;辗皮 后的零件表面失去原有光泽。
产生原因——装配不当或润滑不良时,在滚动接 触应力和滑动摩擦的作用下,滚动面产生的极浅 的疲劳剥落。
38
2020/3/3
剥离——金属表面在高接触应力的循环 作用下产生的片状剥落现象。
39
2020/3/3
剥离
形貌特征——在滚动面有一定的面积和深度, 表面呈凸凹不平的鳞状,边角锐利。
产生原因——装配不当或润滑不良时,在过载 应力的作用下产生的严重剥落。
40
2020/3/3
偏载——轴承的内、外圈错位,只有一 列滚动体受力或滚道的一侧受力。
面的改进意见
9
2020/3/3
单一失效形式的多种因素
一种失效的形式,往往有多种可能导致的因素。 如:发热 1. 润滑不良 2. 游隙小 3. 转速过高 4.干涉
5. 配合不当 6. 不对中 必须根据现场的情况,对设备及轴承进行观察,
然后作出判断。
10
2020/3/3
擦伤— 金属表面因滑动摩擦而产生的 表面金属迁移现象。
净有无其他杂物) 轴承轴向紧固零件的松紧程度。(对角接触轴
承、圆锥滚子轴承和内径带锥度的轴承要特别 重要,因为直接影响轴承的游隙变化 ) 检查与轴承配合零件的精度。(轴与壳体的形 位公差、轴的对中状况)
7
2020/3/3
轴承失效分析步骤(五)
四.拆卸后的观察 外观检查。(所有轴承零件的表面情况和损坏
轴承失效形式及原因分析
轴承失效形式及原因知识
轴承基本知识
轴承基本知识
轴承基本知识
轴承基本知识
我们车间目前使用的主轴承就是轧机轴承:粗中轧 轧辊和红圈辊箱均使用四列圆柱滚子轴承,CCR辊箱 使用为调心滚子轴承。 圆柱滚子轴承内径与辊颈采用紧配合,承受径向力 ,具有负荷容量大、极限转速高、精度高、内外圈可 分离且可以互换、加工容易、生产成本低廉、安装拆 卸方便等优点。 调心滚子轴承具有双列滚子,外圈有1条共用球面 滚道,内圈有2条滚道 并相对轴承轴线倾斜成一个角 度。这种巧妙的构造使它具有自动调心性能, 因而 不易受轴与轴承箱座角度对误差或轴弯曲的影响,适 用于安装误差或轴 挠曲而引起角度误差之场合。该 轴承除能承受径向负荷外,还能承受双向作用的轴向 负荷。
三、轴承失效原因
三、轴承失效原因
1、氧化渣、水等异物侵入引起的失效: 轧辊轴承的精密度很高,它对异物十分敏感,氧化渣、水等异物侵入轴承内部是使其过早失 效的最主要原因。氧化渣、水等异物与润滑油脂综合后很容易产生油污泥,油污泥的形成和 堆积能造成许多不良后果,其一是油污泥占据了原来润滑油脂的很大一部分空间,因而迟缓 了热量的传递和散发;其二是硬而胶性的堆积物在滚动体和滚道上形成时,在工作负荷下滚 动体滚过这些沉积物时,工作应力将大为增加,结果是轴承的正常疲劳寿命减少:其三是保 持架发生疲劳,随之而来使整个轴承彻底损坏。 2、过载和过热引起的失效: 在安装正确,密封良好的情况下,过载是引起轴承失效的另一原因。众所周知,轧辊辊颈轴 承运行时承受着巨大而又频繁的冲击力,长时间超负荷过载运行,会引起轴承材料的过早疲 劳,最终将体现在滚道表面层材料的碎裂剥离(麻面),这种损坏开始时发生在某些小面积上 ,但扩展极快。通常由于过载而引起的损坏总是先从内圈开始。过热而引起的失效情况多发 生在高线转速相对较快的10架~14架。轧辊轴承上,产生过热的原因可大致归结为:(1)润 滑油脂变质以及不足或过量;(2)过载:(3)装配不良:(4)外部热源传导进来的热量。轴承 长期过热会引起表面变色(暗蓝、蓝黑等)。过热不仅能使保持架严重氧化,同时也能使滚动 体、滚道退火软化,甚至咬死。
轴承基本知识
轴承基本知识
轴承基本知识
轴承基本知识
我们车间目前使用的主轴承就是轧机轴承:粗中轧 轧辊和红圈辊箱均使用四列圆柱滚子轴承,CCR辊箱 使用为调心滚子轴承。 圆柱滚子轴承内径与辊颈采用紧配合,承受径向力 ,具有负荷容量大、极限转速高、精度高、内外圈可 分离且可以互换、加工容易、生产成本低廉、安装拆 卸方便等优点。 调心滚子轴承具有双列滚子,外圈有1条共用球面 滚道,内圈有2条滚道 并相对轴承轴线倾斜成一个角 度。这种巧妙的构造使它具有自动调心性能, 因而 不易受轴与轴承箱座角度对误差或轴弯曲的影响,适 用于安装误差或轴 挠曲而引起角度误差之场合。该 轴承除能承受径向负荷外,还能承受双向作用的轴向 负荷。
三、轴承失效原因
三、轴承失效原因
1、氧化渣、水等异物侵入引起的失效: 轧辊轴承的精密度很高,它对异物十分敏感,氧化渣、水等异物侵入轴承内部是使其过早失 效的最主要原因。氧化渣、水等异物与润滑油脂综合后很容易产生油污泥,油污泥的形成和 堆积能造成许多不良后果,其一是油污泥占据了原来润滑油脂的很大一部分空间,因而迟缓 了热量的传递和散发;其二是硬而胶性的堆积物在滚动体和滚道上形成时,在工作负荷下滚 动体滚过这些沉积物时,工作应力将大为增加,结果是轴承的正常疲劳寿命减少:其三是保 持架发生疲劳,随之而来使整个轴承彻底损坏。 2、过载和过热引起的失效: 在安装正确,密封良好的情况下,过载是引起轴承失效的另一原因。众所周知,轧辊辊颈轴 承运行时承受着巨大而又频繁的冲击力,长时间超负荷过载运行,会引起轴承材料的过早疲 劳,最终将体现在滚道表面层材料的碎裂剥离(麻面),这种损坏开始时发生在某些小面积上 ,但扩展极快。通常由于过载而引起的损坏总是先从内圈开始。过热而引起的失效情况多发 生在高线转速相对较快的10架~14架。轧辊轴承上,产生过热的原因可大致归结为:(1)润 滑油脂变质以及不足或过量;(2)过载:(3)装配不良:(4)外部热源传导进来的热量。轴承 长期过热会引起表面变色(暗蓝、蓝黑等)。过热不仅能使保持架严重氧化,同时也能使滚动 体、滚道退火软化,甚至咬死。
18种常见轴承损坏原因分析ppt课件
运转检查与故障处理
(3) 轴承的温度 轴承的温度,一般由轴承室外面的温度就可推测出来,如果利用油孔能直接测量轴承外环温度,则更为合适。 通常,轴承的温度随着运转开始慢慢上升1-2小时后达到稳定状态。轴承的正常温度因机器的热容量、散热量、转速及负载而不同。如果润滑、安装不合适,则轴承温度会急骤上升,会出现异常高温。这时必须停止运转,采取必要的防范措施。
轴承的检查
(1)内外环、滚动体、保持架其中任何一个有裂纹和出现碎片的 (2)内外环、滚动体其中任何一个有剥离的。 (3)滚道面、挡边、滚动体有显著卡伤的。 (4)保持架的磨损显著或钢钉松动厉害的。 (5)滚道面、滚动体生锈和有伤痕的。 (6)滚动面、滚动体上有显著压痕和打痕的。 (7)内环内径面或外环外径上有蠕变的。 (8)过热变色厉害的。 (9)润滑脂密封轴承的密封板和屏蔽板破损严重的。
容许转速以上
ISO VG32,46,68 (轴承油、涡轮机油)
——
80~110℃
容许转速50%以下
ISO VG 320,460(轴承油)
ISபைடு நூலகம் VG 460,680(轴承油、涡轮机油)
容许转速 50~100%
ISO VG150,200(轴承油)
ISO VG220,320(轴承油)
容许转速以上
ISO VG68,100(轴承油、涡轮机油)
内圈旋转 径向载荷
内圈旋转 力矩载荷 (非直线性)
内圈旋转 径向载荷
内圈旋转 轴向载荷
内圈旋转 径向载荷及力矩载荷 (非直线性)
(i) (j) (k) (l) (m)
轴承的使用
运转检查 轴承安装结束以后,应马上进行运转检查,以确定安装是否正常。
轴承的诊断管理
(2016.6月)轴承失效分析报告
3
TWB
ISO9002
二、失效分析的意义
失效分析可以找出机械故障部位、失效原 因和机理,从而提供产品改进方向和防止问 题发生的意见,它为设计者、生产者、使用 者找出故障原因和预防措施。是提高产品质 量的重要手段,是一门跨学科的综合性技术。 失效分析结果需反馈到设计和生产中去,这 样是为了保证产品可靠性和提高产品质量的 一种重要手段。
26
TWB
配合不当
ISO9002
轴与内圈配合 不当
锥套的锥度不 当
27
TWB
ISO9002
配合不当
内圈与轴的配合 过松, 套圈端面 与轴肩的“爬 行”,产生热裂 纹。
28
TWB
ISO9002
4。润滑失效与杂质损坏
由于润滑的不良和杂质进 入轴承而造成的损坏
29
TWB
ISO9002
滑润失效
润滑不当,产 生很深的沟槽。
4
TWB
ISO9002
三、轴承失效的主要形式
1.疲劳损坏(正常损坏) 2.存储、运输损坏 3.安装不当 4.润滑失效 5.杂质、摩擦、腐蚀损坏
下面将详细介绍其产生的原因
5
TWB
ISO9002
1.疲劳损坏(正常损坏)
在交变接触应力下,钢材内 的杂质先发生破裂,形成微小 裂缝。裂缝不断扩展,导致金 属剥落。在滚道和滚动体表面 形成麻点。
பைடு நூலகம்15
TWB
ISO9002
疲劳剥落
典型的外圈疲劳剥落
16
TWB
ISO9002
2。存储不当产生锈蚀
A. 防锈油失效 B. 存放环境潮湿 C. 包装破损
17
TWB
ISO9002
轴承失效分析PPT课件
解决方案
优化减速机设计,减少瞬间冲击力 对轴承的影响;加强轴承热处理工 艺控制,提高材料韧性。
06 结论
轴承失效分析的意义和价值
轴承失效分析对于保障机械设备的安全稳定运行具有重要意义,通过分析轴承失 效的原因和机理,可以预防类似失效的再次发生,提高机械设备的使用寿命和可 靠性。
轴承失效分析的价值不仅体现在预防和减少机械故障上,还可以促进相关领域的 技术进步和产业升级,为新材料的研发和应用提供技术支持。
磨损失效
总结词
磨损失效是由于轴承在运转过程中,滚动体和套圈之间存在摩擦,导致轴承表面 磨损。
详细描述
磨损失效通常表现为轴承表面出现擦伤、剥落、胶合等现象,这可能是由于润滑 不良、异物进入、转速过高或负荷过大等因素引起的。磨损失效会影响轴承的旋 转精度和稳定性,严重时会导致轴承卡死或运转困难。
塑性形失效
断裂失效
总结词
断裂失效是由于轴承在受到过大的冲击载荷或应力集中时,其材料发生脆性断裂。
详细描述
断裂失效通常发生在轴承的滚动体、套圈或保持架上,由于过大的冲击载荷或应力集中,如材料缺陷 、热处理不良、装配不当等因素,使得轴承材料发生脆性断裂。断裂失效是一种突发性的失效方式, 对轴承和机械系统造成严重破坏。
轴承失效分析的重要性
随着工业的发展,机械设备向着高精度、高效率、高可靠性 的方向发展,轴承作为关键零部件,其失效分析对于保障设 备正常运行、提高生产效率和降低维修成本具有重要意义。
通过轴承失效分析,可以发现潜在的问题和故障隐患,预防 设备突发故障,减少生产损失。同时,失效分析还可以为轴 承设计和制造提供反馈,促进轴承性能的改进和优化。
05 案例分析
案例一:某机械设备的轴承失效分析
《滚动轴承故障分析及防治措施 》PPT
北京交通大学远程与继续教育学院
毕业设计
滚动轴承故障分析及防治措施
姓名:赵灿 学号:11649129
教学中心:
中文摘要
摘要:安全是铁路运输永恒的主题。随着客车速度不断提
高,重载列车开行数量增多,铁路运行车辆仍以客货共线 为主,列车密度高居世界第一,这些因素都对机车安全运 行提出了更高的要求。滚动轴承作为机车的重要部件,其 功能对安全运输起着举足轻重的作用。滚动轴承运行是否 正常直接影响到整台机车的性能及运行安全。提速重载是 世界各国铁路的发展方向,速度提升、运量加大的前提是 拥有牵引力十足的机车,而作为重载机车走行部重要部件 之一的牵引电机轴承,在此时此刻需要我们更多的关注。 本文对机车牵引电机常见的轴承进行了简要介绍,通过本 人在工作中接触、了解的滚动轴承故障多发的原因和情况 ,进行了分析并提出与实际情况相符的检查、预防的方法 和有效的解决措施,从而减少滚动轴承故障对铁路运输的 影响,确保铁路运输的安全畅通。
图2-3滚动轴承构成示意图
第二章
2.1. 4 原因分析
机车概论
轴承在正常的条件下使用, 套圈和滚动体的滚动面因不停地重复地受到压力,
亦会发生材料疲劳, 以致造成剥离而无法使用。滚动轴承一旦承受负荷, 其 滚动体与套圈接触面就会发生局部永久变形。该变形量随负荷增大而变大, 若超过某种限度, 则会影响正常运转。轴承烧伤、磨损、裂纹缺口、卡死、 生锈等都有可能使轴承无法使用,但这应称为轴承故障, 须与轴承寿命区分开 。轴承选型不当, 安装欠妥, 润滑不良及密封不好等都是发生轴承故障的原 因, 排除这些原因便可避免轴承发生故障。
车辆在运行中受速度交路重载和线路运行条件的影响滚动轴承一些零部件会发生磨损损耗松弛变形腐蚀裂损等故障给我们研究滚动轴承故障分析及防治措施提出了更高的标准和要求在运用机车发生的各类故障中滚动轴承的热轴故障呈上升趋势已成为防燃防切的主攻目标虽然红外线轴温探测是防范燃轴的重要手段但若能在列检早期的检查中发现滚动轴承故障将具有积极的意义
毕业设计
滚动轴承故障分析及防治措施
姓名:赵灿 学号:11649129
教学中心:
中文摘要
摘要:安全是铁路运输永恒的主题。随着客车速度不断提
高,重载列车开行数量增多,铁路运行车辆仍以客货共线 为主,列车密度高居世界第一,这些因素都对机车安全运 行提出了更高的要求。滚动轴承作为机车的重要部件,其 功能对安全运输起着举足轻重的作用。滚动轴承运行是否 正常直接影响到整台机车的性能及运行安全。提速重载是 世界各国铁路的发展方向,速度提升、运量加大的前提是 拥有牵引力十足的机车,而作为重载机车走行部重要部件 之一的牵引电机轴承,在此时此刻需要我们更多的关注。 本文对机车牵引电机常见的轴承进行了简要介绍,通过本 人在工作中接触、了解的滚动轴承故障多发的原因和情况 ,进行了分析并提出与实际情况相符的检查、预防的方法 和有效的解决措施,从而减少滚动轴承故障对铁路运输的 影响,确保铁路运输的安全畅通。
图2-3滚动轴承构成示意图
第二章
2.1. 4 原因分析
机车概论
轴承在正常的条件下使用, 套圈和滚动体的滚动面因不停地重复地受到压力,
亦会发生材料疲劳, 以致造成剥离而无法使用。滚动轴承一旦承受负荷, 其 滚动体与套圈接触面就会发生局部永久变形。该变形量随负荷增大而变大, 若超过某种限度, 则会影响正常运转。轴承烧伤、磨损、裂纹缺口、卡死、 生锈等都有可能使轴承无法使用,但这应称为轴承故障, 须与轴承寿命区分开 。轴承选型不当, 安装欠妥, 润滑不良及密封不好等都是发生轴承故障的原 因, 排除这些原因便可避免轴承发生故障。
车辆在运行中受速度交路重载和线路运行条件的影响滚动轴承一些零部件会发生磨损损耗松弛变形腐蚀裂损等故障给我们研究滚动轴承故障分析及防治措施提出了更高的标准和要求在运用机车发生的各类故障中滚动轴承的热轴故障呈上升趋势已成为防燃防切的主攻目标虽然红外线轴温探测是防范燃轴的重要手段但若能在列检早期的检查中发现滚动轴承故障将具有积极的意义
轴承失效分析PPT课件
轴承寿命周期
运转启动, 稳定阶段, 疲劳阶段.
轴承预期寿命
轴承的预期寿命的计算是建立在以下四点的基 础之上:
●始终给轴承施加适量的良好润滑 ●轴承安装时无损坏 ●与轴承相关的零件尺寸正确 ●轴承内部无缺陷
轴承失效
轴承中只有极小一部分提前失效,主要原因有: - 润滑不良 -轴或轴承座有缺陷 - 污染严重 - 安装有误 - 运送拿取太粗暴 - 疲劳过度 图中所示为安装错误造成轴承表面剥落。 安装力 通过球作用到滚道上,形成凹陷,造成表面剥落。
小箭头代表轴承中每个滚动 体所支持的那部分负荷
受力痕迹
情形 4
单向轴与径向负荷的组合 内圈旋转,外圈固定
大箭头代表应用负荷
小箭头代表轴承中每个滚动 体所支持的那部分负荷
受力痕迹
情形 5
外圈歪斜 不对称径向负荷 内圈旋转,外圈固定
大箭头代表应用负荷
小箭头代表轴承中每个滚动 体所支持的那部分负荷
受力痕迹
电腐蚀 - 电流泄漏
塑性变形 – 过载
塑性变形 – 凹痕(碎片)
外来较软的微粒
外来硬化钢制微粒 外来坚硬矿物微粒
塑性变形 - 凹痕(操作不当)
可能发生在制造,运输,振动或安装过程中
裂痕 – 敲打
敲打
过多的干涉配合
裂痕 – 疲劳断裂
腐蚀 – 湿气腐蚀
微动腐蚀
腐蚀 – 摩擦腐蚀
False brinelling
在轴承套圈与轴或轴承座孔之间有相对 在滚动体与滚道之间微动造成的 运动时才发生这种现象. (由太松的配合 或形状不佳的轴承座导致的)
电腐蚀 – 过高电压
电流通过轴承座圈和滚动部件,破坏接触表面和润滑剂。 这个 过程和电弧焊接相似,局部温度急剧升高,并导致损伤。在图中,左 边的一个球表面钝暗,因为被电流通过,形成许多细微电弧坑。 图的 右边是一个无损伤的球,可做对比。
运转启动, 稳定阶段, 疲劳阶段.
轴承预期寿命
轴承的预期寿命的计算是建立在以下四点的基 础之上:
●始终给轴承施加适量的良好润滑 ●轴承安装时无损坏 ●与轴承相关的零件尺寸正确 ●轴承内部无缺陷
轴承失效
轴承中只有极小一部分提前失效,主要原因有: - 润滑不良 -轴或轴承座有缺陷 - 污染严重 - 安装有误 - 运送拿取太粗暴 - 疲劳过度 图中所示为安装错误造成轴承表面剥落。 安装力 通过球作用到滚道上,形成凹陷,造成表面剥落。
小箭头代表轴承中每个滚动 体所支持的那部分负荷
受力痕迹
情形 4
单向轴与径向负荷的组合 内圈旋转,外圈固定
大箭头代表应用负荷
小箭头代表轴承中每个滚动 体所支持的那部分负荷
受力痕迹
情形 5
外圈歪斜 不对称径向负荷 内圈旋转,外圈固定
大箭头代表应用负荷
小箭头代表轴承中每个滚动 体所支持的那部分负荷
受力痕迹
电腐蚀 - 电流泄漏
塑性变形 – 过载
塑性变形 – 凹痕(碎片)
外来较软的微粒
外来硬化钢制微粒 外来坚硬矿物微粒
塑性变形 - 凹痕(操作不当)
可能发生在制造,运输,振动或安装过程中
裂痕 – 敲打
敲打
过多的干涉配合
裂痕 – 疲劳断裂
腐蚀 – 湿气腐蚀
微动腐蚀
腐蚀 – 摩擦腐蚀
False brinelling
在轴承套圈与轴或轴承座孔之间有相对 在滚动体与滚道之间微动造成的 运动时才发生这种现象. (由太松的配合 或形状不佳的轴承座导致的)
电腐蚀 – 过高电压
电流通过轴承座圈和滚动部件,破坏接触表面和润滑剂。 这个 过程和电弧焊接相似,局部温度急剧升高,并导致损伤。在图中,左 边的一个球表面钝暗,因为被电流通过,形成许多细微电弧坑。 图的 右边是一个无损伤的球,可做对比。
滚动轴承的状态检测与故障诊断ppt课件
1)滚动轴承的运行状态是否正常往往直接影响到整台机器的性能,如精度、可 靠性、寿命等。统计表明,旋转类机械大约有30%的机械故障都是滚动轴承引起 的,采用故障诊断技术后,事故发生率可降低75%,维修费用可减少25%~50%。 2)状态故障诊断技术可了解轴承的性能状态并及早发现潜在故障。对可能出现 的故障提出预测、估计、判断,可以有效提高机械设备的运行管理水平及维修效 能,具有显著的经济效益。
当轴承某一元件表面出现局部损伤时,在受载运行过程中要撞击与 它接触的表面而产生冲击脉冲力。由于冲击脉冲力的频带很宽,包含轴承组件、 轴承座、 机器结构及传感器的固有频率, 所以必然激起测振系统的共振。因 此,测得的振动加速度信号包含着多个载波共振频率, 以及调制于其上的故 障特征频率和其谐波成分。
精品课件
7
4)断裂
当轴承所受载荷、振动过大时,内外圈的缺陷位置在滚动体的反复冲 击下,缺陷逐步扩展而断裂。
精品课件
8
5)锈蚀
水分或酸、碱性物质直接侵入会引起轴承锈蚀。当轴承内部有轴电流 通过时,在滚道和滚动体的接触点处引起电火花而产生电蚀,在表面上形成搓
板状的凹凸不平。
精品课件
9
2.滚动轴承的失效过程
精品课件
5
2)磨损
由于滚道和滚动体的相对运动和尘埃异物引起表面磨损,润滑不良会加剧磨 损,结果使轴承游隙增大,表面粗糙度增加,降低了轴承运转精度,因而也 降低了机器的运动精度,表现为振动水平及噪声的增大。
精品课件
6
3)擦伤
由于轴承内外滚道和滚动体接触表面上的微观凸起或硬质颗粒使接 触面受力不均,在润滑不良、高速重载工况下,因局部摩擦产生的热量造成 接触面局部变形和摩擦焊合,严重时表面金属可能局部熔化,接触面上作用 力将局部摩擦焊接点从基体上撕裂。
当轴承某一元件表面出现局部损伤时,在受载运行过程中要撞击与 它接触的表面而产生冲击脉冲力。由于冲击脉冲力的频带很宽,包含轴承组件、 轴承座、 机器结构及传感器的固有频率, 所以必然激起测振系统的共振。因 此,测得的振动加速度信号包含着多个载波共振频率, 以及调制于其上的故 障特征频率和其谐波成分。
精品课件
7
4)断裂
当轴承所受载荷、振动过大时,内外圈的缺陷位置在滚动体的反复冲 击下,缺陷逐步扩展而断裂。
精品课件
8
5)锈蚀
水分或酸、碱性物质直接侵入会引起轴承锈蚀。当轴承内部有轴电流 通过时,在滚道和滚动体的接触点处引起电火花而产生电蚀,在表面上形成搓
板状的凹凸不平。
精品课件
9
2.滚动轴承的失效过程
精品课件
5
2)磨损
由于滚道和滚动体的相对运动和尘埃异物引起表面磨损,润滑不良会加剧磨 损,结果使轴承游隙增大,表面粗糙度增加,降低了轴承运转精度,因而也 降低了机器的运动精度,表现为振动水平及噪声的增大。
精品课件
6
3)擦伤
由于轴承内外滚道和滚动体接触表面上的微观凸起或硬质颗粒使接 触面受力不均,在润滑不良、高速重载工况下,因局部摩擦产生的热量造成 接触面局部变形和摩擦焊合,严重时表面金属可能局部熔化,接触面上作用 力将局部摩擦焊接点从基体上撕裂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
52
2020/4/11
保持架破损(二)
3. 润滑不良。
轴承在运转时因润滑不良,造成滚动体与保持架 产生干涉。
4.卡入异物。 异物进入轴承造成滚动体与保持架产生干涉。
5。振动大
轴承在运转过程中振动大,滚动体与保持架发生 碰撞,造成铆钉松动或断裂。
53
2020/4/11
保持架破损(三)
6.安装不当
承、圆锥滚子轴承和内径带锥度的轴承要特别 重要,因为直接影响轴承的游隙变化 ) 检查与轴承配合零件的精度。(轴与壳体的形 位公差、轴的对中状况)
7
2020/4/11
轴承失效分析步骤(五)
四.拆卸后的观察 外观检查。(所有轴承零件的表面情况和损坏
件的失效特征) 精度检测。(尺寸、旋转精度及表面粗糙度的
28
2020/4/11
烧附——金属表面的热熔性材料粘着现 象。
29
2020/4/11
烧附
形貌特征——在零件相互接触的表面上,金属 表面粘附有被迁移的熔融性材料。
产生原因——预紧力过大、轴承游隙过小,润滑 不良,轴承高速运转产生温升,使滚动体受热膨 胀后接触表面摩擦产生的急剧温升形成。
30
2020/4/11
13
2020/4/11
划伤
形貌特征—呈线状、光亮、无方向性,有手感 产生原因—粗鲁作业,润滑剂含杂质,密封不良。
14
2020/4/11
点蚀—金属表面呈分散或群集状的细小 坑点。
有关该主题的详细内容 支持信息和示例 该主题与听众的联系
15
2020/4/11
点蚀
形貌特征——产生于滚动接触面上,呈黑色针 孔状凹坑,有一定深度,个别存在或密集分布。
34
2020/4/11
配合面拉伤——轴承材料装配表面受 到极大的摩擦力时产生的机械性损伤。
35
2020/4/11
配合面拉伤
形貌特征——伤痕与摩擦力方向一致,严重时 有金属表面材料位移或表面附着物。
产生原因——轴承安装或退卸时,装配倒角过 渡不圆滑,过盈量大;可分离套圈在轴承合套 时偏斜,滚道与滚子摩擦产生的机械性损伤。
产生原因——细微颗粒物进入轴承或润滑不良, 在滑动摩擦的作用下,零件接触处金属表面材料 被磨掉。
18
2020/4/11
电蚀——电流通过轴承时,击穿油膜, 产生高温,使金属表面局部熔融形成不
规则凹坑或沟蚀。
19
2020/4/11
电蚀
形貌特征——电蚀凹坑呈斑点状,有金属熔融 现象,深处蓝黑色,呈火山喷口状;轴承运行 中形成的电蚀沟蚀呈洗衣板状。
发 热(三)
6. 安装 轴承在安装时不到位或安装倾斜,使轴承非正常
运转。 7. 承受非正常负荷 向心轴承承受过大的轴向力,使轴承非正常运转。 8. 密封失效 有异物进入轴承,轴承在运转时受卡阻。
45
2020/4/11
剥落(一)
现象:滚动面有材料剥离,呈现明显的凸凹形 状
原因:
1.轴承在工作中承受的负荷过大。 轴承在工作中承受的负荷超过极限负荷。
裂纹(三)
6.热处理裂纹 轴承在热处理时出现的淬火裂纹。 7.磨削裂纹 轴承零件在机加工时由于增大磨削量而产生的
烧伤。
51
2020/4/11
保持架破损(一)
现象:保持架破损、铆钉松动或断裂。 原因: 1.力矩负荷过大。 轴承在工作中承受的负荷过大 2. 高速旋转或转速变动频繁。 轴承在运转时转速过高,频繁变换旋转速度。
产生原因——电流通过轴承(电击伤)。
20
2020/4/11
滚动体卡伤——轴承运行过程中,滚 动体在异物或其他零件的作用下自转或 公转受阻时,产生的磨损、裂损。
21
2020/4/11
滚动体卡伤
形态特征——滚动体的工作表面与其他零件干 涉所出现的磨损痕迹
产生原因——游隙过大或有异物进入轴承使滚动 体运转卡阻。
2
2020/4/11
失效分析的方法
滚动轴承的失效原因比较复杂,涉及到多方面的 专业知识,需要对轴承的结构特性、加工方法、 各个零件的加工工艺及设备有一定的了解。现在 所涉及的只是常见失效形式,根据轴承的结构特 性,结合轴承的使用工况,通过对轴承的安装、 配合及调整的分析,对运行速度、温升,受力分 析,包括对轴承使用过程中维护、保养的分析等, 归纳总结出轴承早期失效过程和失效原因(常规
2. 润滑不良 润滑剂加入的过多或过少。或加入的润滑剂错误。
43
2020/4/11
发 热(二)
3. 轴承对中不良 由于两轴线不对中,造成轴承非正常运转。 4. 轴承负荷过大 轴承承受的负荷超出极限负荷。 5. 轴承与相邻的其他零件发生干涉 轴承与相邻的其他零件发生干涉产生摩擦
44
2020/4/11
腐蚀和锈蚀——金属表面与周围环境介 质发生化学反应产生的表面损伤现象。
25
2020/4/11
腐蚀和锈蚀
形貌特征——腐蚀按不同程度分为色斑、蚀刻和蚀坑。
色斑——呈点状或条状,颜色呈浅灰色或红褐色, 无深度。
蚀刻——呈点状、条状或片状,颜色呈灰黑色,稍 有手感。
蚀坑——呈点状、条状或片状,颜色呈红褐色或黑 色,手感明显。
轴承在安装时位置倾斜,滚动体不在正常的轨迹 上运行。
7.异常温升
产生原因—— 润滑不良时,在滚动接触应力的 循环作用下,金属亚表层夹杂物或炭化物形成应 力集中,进而产生微观裂纹,并逐渐发展成凹坑 状的微小剥离。润滑剂含杂质,密封不良.
16
2020/4/11
磨耗——零件在摩擦作用下,金属表面 材料被去除的现象。
17
2020/4/11
磨耗
形貌特征——产生于滚动接触面上或引导面上, 呈磨合状的浅沟槽,表面光亮。随着滚动接触 表面的磨耗发展,轴承游隙增大。
二.拆卸前的观察 工作环境及污染情况。(周围的环境条件,是
否有异物进入轴承) 润滑剂流失的情况。(检查润滑系统) 轴承损坏的过程。(首次出现异常的时间和现
象,如噪音、温升、振动)
6
2020/4/11
轴承失效分析步骤(四)
三.拆卸中的观察 润滑情况。(对润滑剂取样观察、化验是否洁
净有无其他杂物) 轴承轴向紧固零件的松紧程度。(对角接触轴
分析)。
3
2020/4/11
轴承失效分析步骤(一)
一.收集轴承使用数据—这是进行分析的重要依 据,数据应尽可能全面。包括以下方面:
概述轴承使用情况。(现场人员的叙述及记录) 安装和拆卸轴承的方法。 轴承所承受的负荷。(负荷的类型、极限) 轴承工作时的转速。(恒定、变化、极限) 轴承润滑情况。(方式、润滑剂类型) 轴承工作时的温度。 (恒定、变化)
2. 安装不当。 轴承在安装时不到位时敲击力过大。
49
2020/4/11
裂纹(二)
3.轴的精度达不到要求。 轴的尺寸过大,与轴承内径过盈量超差造成。 4.轴承在工作中受到较大的冲击负荷。 轴的精度达不到要求,尺寸超差与轴承内径的
过盈过大造成。 5。材料裂纹 材质不合格存在裂纹。
50
2020/4/11
32
2020/4/11
压痕——在强大挤压力作用下,金属 表面产生的塑性凹陷。
33
2020/4/11
压痕
形貌特征——凹陷形状与挤压体的形状吻合, 有深度,边沿材料凸起光滑。
产生原因——在过载冲击力或过载压力的作用下, 滚道面受滚动体挤压而产生的凹陷痕迹。轴承受 到振动、颠簸,滚动体与滚道发生碰撞形成。
4
2020/4/11
轴承失效分析步骤(二)
轴承与轴和轴承座的配合情况。(配合种类) 轴承的旋转方式。(内、外圈旋转,变向) 轴承的密封情况。(采用的密封方式) 可能产生的的振动源 周围的的灰尘和温度 可能通过轴承的电流 可能产生的水和其他流体污染源
5
2020/4/11
轴承失效分析步骤(三)
2. 安装不当。 轴承在安装时不到位或安装倾斜,使轴承非正常
运转。
46
2020/4/11
剥落(二)
3.轴或轴承箱的精度达不到要求。
轴或轴承箱的精度达不到要求,造成与轴承接 触不良(接触面少、过盈量超差、形位公差超 差)。
4。游隙过小
游隙过小,滚动体运转卡阻,不能实现自转与 公转。
5.异物进入 有异物进入轴承,轴承在运转时受卡阻。
一种失效的形式,往往有多种可能导致的因素。 如:发热 1. 润滑不良 2. 游隙小 3. 转速过高 4.干涉
5. 配合不当 6. 不对中 必须根据现场的情况,对设备及轴承进行观察,
然后作出判断。
10
2020/4/11
擦伤— 金属表面因滑动摩擦而产生的 表面金属迁移现象。
11
2020/4/11
36
2020/4/11
辗皮——金属表面由于疲劳而发生的极 薄的金属起皮现象。
37
2020/4/11
辗皮
形态特征——产生于滚动面的极薄的起皮或脱 落颗粒,强光下有光泽,手搓时有手感;辗皮 后的零件表面失去原有光泽。
产生原因——装配不当或润滑不良时,在滚动接 触应力和滑动摩擦的作用下,滚动面产生的极浅 的疲劳剥落。
22
2020/4/11
裂损——材料破坏性损伤。
23
2020/4/11
裂损
形貌特征——裂损按损伤程度分为裂纹和缺损。 裂纹——呈线状,无方向性,有一定长度和
深度。 缺损——零件有局部掉块。 产生原因——由其他损伤诱发,如:轴承承受
非正常冲击力,材料缺陷或材料疲劳,零件局 部温升等。
24
2020/4/11
磕碰伤——轴承零件之间或与其他硬物 之间相互碰撞产生的零件表面机械性损
伤。
31
2020/4/11