2020-2021上海市兰生复旦中学九年级(上)期中数学仿真试卷-解析版
2020-2021上海上海中学九年级数学上期中第一次模拟试题带答案
2020-2021上海上海中学九年级数学上期中第一次模拟试题带答案一、选择题1.若关于x 的一元二次方程4x 2-4x+c=0有两个相等实数根,则c 的值是( ) A .-1 B .1 C .-4 D .42.若二次函数2y x bx =+的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程25x bx +=的解为( ).A .10x =,24x =B .11x =,25x =C .11x =,25x =-D .11x =-,25x =3.如图,BC 是半圆O 的直径,D ,E 是BC 上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果40DOE ∠=︒,那么A ∠的度数为( )A .35°B .40°C .60°D .70° 4.若x 1是方程ax 2+2x+c =0(a≠0)的一个根,设M =(ax 1+1)2,N =2﹣ac ,则M 与N 的大小关系为( )A .M >NB .M =NC .M <ND .不能确定 5.函数y =﹣x 2﹣4x ﹣3图象顶点坐标是( )A .(2,﹣1)B .(﹣2,1)C .(﹣2,﹣1)D .(2,1) 6.如图,抛物线y =ax 2+bx +c 经过点(-1,0),对称轴为直线l.则下列结论:①abc >0;②a -b +c =0;③2a +c <0;④a +b <0.其中所有正确的结论是( )A .①③B .②③C .②④D .②③④7.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20) 8.用配方法解方程2680x x --=时,配方结果正确的是( ) A .2(3)17x -=B .2(3)14-=xC .2(6)44x -=D .2(3)1x -= 9.用配方法解一元二次方程x 2﹣6x ﹣10=0时,下列变形正确的为( )A .(x+3)2=1B .(x ﹣3)2=1C .(x+3)2=19D .(x ﹣3)2=19 10.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为( )A .6B .7C .8D .9 11.在Rt ABC ∆中,90ABC ∠=︒,:BC 2:3=AB , 5AC =,则AB =( ). A .52B .10C .5D .15 12.设a b ,是方程220190x x +-=的两个实数根,则22a a b ++的值为( ) A .2017 B .2018 C .2019D .2020 二、填空题13.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.14.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .15.如图,四边形ABCD 是⊙O 的内接四边形,∠B=135°,则∠AOC 的度数为_____.16.小明同学测量一个光盘的直径,他只有一把直尺和一块三角尺,他将直尺、光盘和三角尺按图所示方法放置于桌面上,并量出AB =3 cm ,则此光盘的直径是________ cm .17.在一个不透明的口袋中装有3个红球,1个白球,他们除了颜色外,其余均相同,若把它们搅匀后从中任意摸一个球,则摸到白球的可能性是_________.18.Rt△ABC中,∠C=90°,若直角边AC=5,BC=12,则此三角形的内切圆半径为________.19.一元二次方程x2=3x的解是:________.20.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b <a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正确的结论有_____.(填序号)三、解答题21.某店铺经营某种品牌童装,购进时的单价是40元,根据市场调查,当销售单价是60元时,每天销售量是200件,销售单价每降低1元,就可多售出20件.(1)求出销售量y件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润W(元)与销售单价x元)之间的函数关系式;(3)若装厂规定该品牌童装的销售单价不低于56元且不高于60元,则此服装店销售该品牌童装获得的最大利润是多少?22.在2017年“KFC”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)23.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?24.关于x 的一元二次方程mx 2﹣(2m ﹣3)x+(m ﹣1)=0有两个实数根.(1)求m 的取值范围;(2)若m 为正整数,求此方程的根.25.如图,在平面直角坐标系中,二次函数21262y x x =-++的图象交x 轴于点A ,B (点A 在点B 的左侧).(1)求点A ,B 的坐标,并根据该函数图象写出y ≥0时x 的取值范围;(2)把点B 向上平移m 个单位得点B 1.若点B 1向左平移n 个单位,将与该二次函数图象上的点B 2重合;若点B 1向左平移(n +6)个单位,将与该二次函数图象上的点B 3重合.已知m >0,n >0,求m ,n 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据一元二次方程根的判别式可得:当△=0时,方程有两个相等的实数根;当△>0时,方程有两个不相等的实数根;当△<0时,方程没有实数根.【详解】解:根据题意可得:△=2(4)--4×4c=0,解得:c=1 故选:B .【点睛】本题考查一元二次方程根的判别式. 2.D解析:D【解析】【详解】∵二次函数y=x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,∴抛物线的对称轴为直线x=2,则−2b a =−2b =2, 解得:b=−4, ∴x 2+bx=5即为x 2−4x−5=0,则(x−5)(x+1)=0,解得:x 1=5,x 2=−1.故选D.【点睛】本题考查了抛物线与x 轴的交点:把二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与x 轴的交点坐标问题转化为关于x 的一元二次方程的问题.3.D解析:D【解析】【分析】连接CD ,由圆周角定理得出∠BDC =90°,求出∠DCE =20°,再由直角三角形两锐角互余求解即可,【详解】解:连接CD ,如图,∵BC 是半圆O 的直径,∴∠BDC =90°,∴∠ADC =90°,∵∠DOE =40°,∴∠DCE =20°,∴∠A =90°−∠DCE =70°,故选:D .【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.4.C解析:C【解析】【分析】把x 1代入方程ax 2+2x+c=0得ax 12+2x 1=-c ,作差法比较可得.【详解】∵x 1是方程ax 2+2x+c=0(a≠0)的一个根,∴ax 12+2x 1+c=0,即ax 12+2x 1=-c ,则M-N=(ax 1+1)2-(2-ac )=a 2x 12+2ax 1+1-2+ac=a (ax 12+2x 1)+ac-1=-ac+ac-1=-1,∵-1<0,∴M-N <0,∴M <N .故选C .【点睛】本题主要考查一元二次方程的解的概念及作差法比较大小,熟练掌握能使方程成立的未知数的值叫做方程的解是根本,利用作差法比较大小是解题的关键.5.B解析:B【解析】【分析】将函数解析式化为顶点式,即可得到顶点坐标.【详解】解:∵y =﹣x 2﹣4x ﹣3=﹣(x 2+4x+4﹣4+3)=﹣(x+2)2+1 ∴顶点坐标为(﹣2,1);故选:B .【点睛】本题考查了二次函数,解题关键是能将一般式化为顶点式.6.D解析:D【解析】【分析】【详解】试题分析:①∵二次函数图象的开口向下,∴a <0,∵二次函数图象的对称轴在y 轴右侧, ∴﹣2b a>0, ∴b >0,∵二次函数的图象与y 轴的交点在y 轴的正半轴上,∴c >0,∴abc <0,故①错误;②∵抛物线y=ax 2+bx+c 经过点(﹣1,0),∴a ﹣b+c=0,故②正确;③∵a ﹣b+c=0,∴b=a+c .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2(a+c )+c <0,∴6a+3c <0,∴2a+c <0,故③正确;④∵a ﹣b+c=0,∴c=b ﹣a .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2b+b ﹣a <0,∴3a+3b <0,∴a+b <0,故④正确.故选D .考点:二次函数图象与系数的关系.7.C解析:C【解析】【分析】【详解】解:22224=()4y x mx x m m =-----,∴点M (m ,﹣m 2﹣4),∴点M′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8). 故选C .【点睛】本题考查二次函数的性质. 8.A解析:A【解析】【分析】利用配方法把方程2680x x --=变形即可.【详解】用配方法解方程x 2﹣6x ﹣8=0时,配方结果为(x ﹣3)2=17,故选A .【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.9.D解析:D【解析】【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【详解】方程移项得:2610x x -=,配方得:26919x x -+=,即2(3)19x -=,故选D . 10.D解析:D【解析】【分析】由正方形的边长为3,可得弧BD 的弧长为6,然后利用扇形的面积公式:S 扇形DAB =1lr 2,计算即可.【详解】解:∵正方形的边长为3,∴弧BD 的弧长=6,∴S 扇形DAB =11lr =22×6×3=9. 故选D .【点睛】本题考查扇形面积的计算. 11.B解析:B【解析】【分析】依题意可设=AB ,BC ,根据勾股定理列出关于x 的方程,解方程求出x 的值,进而可得答案.【详解】解:如图,设=AB ,BC =,根据勾股定理,得:222325+=x x ,解得x =10AB. 故选B.【点睛】本题考查了勾股定理和简单的一元二次方程的解法,属于基础题型,熟练掌握勾股定理是解题的关键.12.B解析:B【解析】【分析】根据题意,把x a =代入方程,得22019a a +=,再由根与系数的关系,得到1a b +=-,即可得到答案.【详解】解:∵设a b ,是方程220190x x +-=的两个实数根,∴把x a =代入方程,得:22019a a +=,由根与系数的关系,得:1a b +=-,∴222()201912018a a b a a a b ++=+++=-=;故选:B .【点睛】本题考查了一元二次方程的解,以及根与系数的关系,解题的关键是熟练掌握根与系数的关系,正确求出代数式的值. 二、填空题13.5【解析】【分析】连接CC1根据M 是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC 1,根据M 是AC 、A 1C 1的中点,AC=A 1C 1,得出CM=A 1M=C 1M=12AC=5,再根据∠A 1=∠A 1CM=30°,得出∠CMC 1=60°,△MCC 1为等边三角形,从而证出CC 1=CM ,即可得出答案.【详解】解:如图,连接CC 1,∵两块三角板重叠在一起,较长直角边的中点为M ,∴M是AC、A1C1的中点,AC=A1C1,∴CM=A1M=C1M=12AC=5,∴∠A1=∠A1CM=30°,∴∠CMC1=60°,∴△CMC1为等边三角形,∴CC1=CM=5,∴CC1长为5.故答案为5.考点:等边三角形的判定与性质.14.【解析】【分析】【详解】∵将△ABC绕点B顺时针旋转60°得到△BDE∴△ABC≌△BDE∠CBD=60°∴BD=BC=12cm∴△BCD为等边三角形∴CD=BC=BD=12cm在Rt△ACB中AB解析:【解析】【分析】【详解】∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=BD=12cm,在Rt△ACB中,22AC BC+22512+=13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm),故答案为42.考点:旋转的性质.15.【解析】【分析】由圆内接四边形的性质先求得∠D的度数然后依据圆周角定理求解即可【详解】∵四边形ABCD是⊙O的内接四边形∴∠B+∠D=180°∴∠D=180°-135°=45°∴∠AOC=90°故答解析:90【解析】【分析】由圆内接四边形的性质先求得∠D的度数,然后依据圆周角定理求解即可.【详解】∵四边形ABCD是⊙O的内接四边形,∴∠B+∠D=180°,∴∠D=180°-135°=45°,∴∠AOC=90°,故答案为90°.【点睛】本题主要考查了圆内接四边形的基本性质以及圆周角定理.16.【解析】【分析】先画图根据题意求出∠OAB=60°再根据直角三角形的性质和勾股定理即可求得结果【详解】解:∵∠CAD=60°∴∠CAB=120°∵AB和AC 与⊙O相切∴∠OAB=∠OAC=∠CAB=解析:3【解析】【分析】先画图,根据题意求出∠OAB=60°,再根据直角三角形的性质和勾股定理即可求得结果.【详解】解:∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC=∠12CAB=60°,∴∠AOB=30°,∵AB=3cm,∴OA=6cm,∴2233cmOB OA AB=-=所以直径为2OB=63cm故答案为:63.【点睛】本题考查了切线长定理,勾股定理,解答本题的关键是熟练掌握切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.17.【解析】【分析】先求出袋子中球的总个数及白球的个数再根据概率公式解答即可【详解】∵在一个不透明的口袋中装有3个红球1个白球共4个球∴任意摸出1个球摸到白球的概率是【点睛】本题考查了概率公式解题的关键解析:1 4【解析】【分析】先求出袋子中球的总个数及白球的个数,再根据概率公式解答即可.【详解】∵在一个不透明的口袋中装有3个红球、1个白球,共4个球,∴任意摸出1个球,摸到白球的概率是1 4 .【点睛】本题考查了概率公式,解题的关键是熟练的掌握概率公式的知识点.18.2【解析】【分析】设ABBCAC与⊙O的切点分别为DFE;易证得四边形OECF是正方形;那么根据切线长定理可得:CE=CF=12(AC+BC-AB)由此可求出r的长【详解】解:如图;在Rt△ABC∠解析:2【解析】【分析】设AB、BC、AC与⊙O的切点分别为D、F、E;易证得四边形OECF是正方形;那么根据切线长定理可得:CE=CF=(AC+BC-AB),由此可求出r的长.【详解】解:如图;在Rt△ABC,∠C=90°,AC=5,BC=12;根据勾股定理AB=四边形OECF中,OE=OF,∠OEC=∠OFC=∠C=90°;∴四边形OECF是正方形;由切线长定理,得:AD=AE,BD=BF,CE=CF;∴CE=CF=(AC+BC-AB);即:r=(5+12-13)=2.故答案为2.19.x1=0x2=3【解析】【分析】先移项然后利用因式分解法求解【详解】x2=3xx2-3x=0x(x-3)=0x=0或x-3=0∴x1=0x2=3故答案为:x1=0x2=3【点睛】本题考查了解一元二次解析:x 1=0,x 2=3【解析】【分析】先移项,然后利用因式分解法求解.【详解】x 2=3xx 2-3x=0,x(x-3)=0,x=0或x-3=0,∴x 1=0,x 2=3.故答案为:x 1=0,x 2=3【点睛】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解20.③④【解析】【分析】【详解】由抛物线的开口向下可得a <0;由与y 轴的交点为在y 轴的正半轴上可得c >0;因对称轴为x==1得2a=-b 可得ab 异号即b >0即可得abc <0所以①错误;观察图象根据抛物线解析:③④【解析】【分析】【详解】由抛物线的开口向下,可得a <0;由与y 轴的交点为在y 轴的正半轴上,可得c >0;因对称轴为x=2b a-=1,得2a=-b ,可得a 、b 异号,即b >0,即可得abc <0,所以①错误; 观察图象,根据抛物线与x 轴的交点可得,当x=-1时,y <0,所以a-b+c <0,即b >a+c ,所以②错误;观察图象,抛物线与x 轴的一个交点的横坐标在-1和0之间,根据对称轴为x=2b a -=1可得抛物线与x 轴的一个交点的横坐标在2和3之间,由此可得当x=2时,函数值是4a+2b+c >0,所以③正确;由抛物线与x 轴有两个交点,可得b 2-4ac >0,所以④正确.综上,正确的结论有③④.【点睛】本题考查了二次函数y=ax 2+bx+c (a≠0)的图象与系数的关系:①二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;a 还可以决定开口大小,a 越大开口就越小.②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异) ③常数项c 决定抛物线与y 轴交点, 抛物线与y 轴交于(0,c ).④抛物线与x轴交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.三、解答题21.(1)y=﹣20x+1400(40≤x≤60);(2)W=﹣20x2+2200x﹣56000;(3)商场销售该品牌童装获得的最大利润是4480元.【解析】【分析】(1)销售量y件为200件加增加的件数(60-x)×20;(2)利润w等于单件利润×销售量y件,即W=(x-40)(-20x+1400),整理即可;(3)先利用二次函数的性质得到w=-20x2+2200x-56000=-20(x-55)2+4500,而56≤x≤60,根据二次函数的性质得到当56≤x≤60时,W随x的增大而减小,把x=56代入计算即可得到商场销售该品牌童装获得的最大利润.【详解】(1)根据题意得,y=200+(60﹣x)×20=﹣20x+1400,∴销售量y件与销售单价x元之间的函数关系式为: y=﹣20x+1400,(2)设该品牌童装获得的利润为W(元)根据题意得,W=(x﹣40)y=(x﹣40)(﹣20x+1400)=﹣20x2+2200x﹣56000,∴销售该品牌童装获得的利润W元与销售单价x元之间的函数关系式为:W=﹣20x2+2200x﹣56000;(3)根据题意得56≤x≤60,W=﹣20x2+2200x﹣56000=﹣20(x﹣55)2+4500∵a=﹣20<0,∴抛物线开口向下,当56≤x≤60时,W随x的増大而减小,∴当x=56时,W有最大值,W max=﹣20(56﹣55)2+4500=4480(元),∴商场销售该品牌童装获得的最大利润是4480元.【点睛】本题考查了二次函数的应用:根据实际问题列出二次函数关系式,然后利用二次函数的性质,特别是二次函数的最值问题解决实际中的最大或最小值问题.22.1 4【解析】【分析】根据甲队第1局胜画出第2局和第3局的树状图,然后根据概率公式列式计算即可得解.【详解】根据题意画出树状图如下:一共有4种情况,确保两局胜的有1种,所以,P=14.考点:列表法与树状图法.23.(1)作图见解析;裁掉的正方形的边长为2dm,底面积为12dm2;(2)当裁掉边长为2.5dm的正方形时,总费用最低,最低费用为25元.【解析】试题分析:(1)由题意可画出图形,设裁掉的正方形的边长为xdm,则题意可列出方程,可求得答案;(2)由条件可求得x的取值范围,用x可表示出总费用,利用二次函数的性质可求得其最小值,可求得答案.试题解析:(1)如图所示:设裁掉的正方形的边长为xdm,由题意可得(10﹣2x)(6﹣2x)=12,即x2﹣8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2;(2)∵长不大于宽的五倍,∴10﹣2x≤5(6﹣2x),解得0<x≤2.5,设总费用为w元,由题意可知w=0.5×2x(16﹣4x)+2(10﹣2x)(6﹣2x)=4x2﹣48x+120=4(x﹣6)2﹣24,∵对称轴为x=6,开口向上,∴当0<x≤2.5时,w随x的增大而减小,∴当x=2.5时,w有最小值,最小值为25元,答:当裁掉边长为2.5dm的正方形时,总费用最低,最低费用为25元.考点:1、二次函数的应用;2、一元二次方程的应用24.(1)98m且0m≠;(2)10x=,21x=-.【解析】【分析】(1)根据一元二次方程的定义和判别式的意义得到m≠0且()()22341m m m =----⎡⎤⎣⎦≥0,然后求出两个不等式的公共部分即可;(2)利用m 的范围可确定m=1,则原方程化为x 2+x=0,然后利用因式分解法解方程.【详解】(1)∵2=[(23)]4(1)m m m ∆---- =89m -+. 解得98m ≤且0m ≠. (2)∵m 为正整数,∴1m =.∴原方程为20x x +=.解得10x =,21x =-.【点睛】考查一元二次方程()200ax bx c a ++=≠根的判别式24b ac ∆=-,当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.25.(1)()()2060A B -,,,,26x -;(2)m n ,的值分别为72,1. 【解析】【分析】 (1)把y =0代入二次函数的解析式中,求得一元二次方程的解便可得A 、B 两点的坐标,再根据函数图象不在x 轴下方的x 的取值范围得y≥0时x 的取值范围; (2)根据题意写出B 2,B 3的坐标,再由对称轴方程列出n 的方程,求得n ,进而求得m 的值.【详解】解:(1)令0y =,则212602x x -++=, ∴1226x x =-=,, ∴()()2060A B -,,,. 由函数图象得,当0y 时,26x -.(2)由题意得()()236B n m B n m --,,,, 函数图象的对称轴为直线2622x -+==. ∵点23B B ,在二次函数图象上且纵坐标相同,∴()622n n -+-=,∴1n =,∴()()217121622m =-⨯-+⨯-+=, ∴m n ,的值分别为712,. 【点睛】本题主要考查了二次函数的图象与性质,求函数与坐标轴的交点坐标,由函数图象求出不等式的解集以及平移的性质,难度不大,关键是正确运用函数的性质解题.。
2020-2021学年最新沪科版九年级数学上学期期中模拟四校联考试题及答案解析-精编试题
5.已知点A (1,n )在抛物线223y x x =+-上,则点A 关于抛物线对称轴的对称点坐 标为……………………………………………………………………………………… 【 】.(A ) ()0,3- (B ) ()2,3-- (C ) ()3,0- (D )()1,06.如图2,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于点D ,若AC=2,则AD 的长是………………………………………………………………【 】.(A )51- (B )51+ (C )51- (D )51+ 7.如图3,线段AB 两个端点的坐标分别为A (6,6),B (8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 的坐标为…………………………………………………………………………………【 】. (A )(3,3) (B )(4,3) (C )(3,1) (D )(4,1)8.已知二次函数2()y a x m n =-+的图象经过(0,5)、(10,8)两点.若0a <,010m <<,则m 的值可能是……………………………………………………………【 】.图3图2图1图4(A )2 (B )8 (C )3 (D )5 9.如图4,过点O 作直线与双曲线ky x=(k ≠0)交于A 、B 两点,过点B 作BC ⊥x 轴于点C ,作BD ⊥y 轴于点D .在x 轴上分别取点E 、F ,使点A 、E 、F 在同一条直线上,且AE=AF .设图中矩形ODBC 的面积为S 1,△EOF 的面积为S 2,则S 1、S 2的数量关系是……………………………………………………【 】. (A )S 1=S 2 (B )2S 1=S 2 (C )3S 1=S 2 (D )4S 1=S 2 10.如图5,△ABC 中,AB=AC=18,BC=12,正方形DEFG 的顶点E ,F 在△ABC 内,顶点D ,G 分别在AB ,AC 上,AD=AG ,DG=6,则点F 到BC 的距离为…………………………………………………………【 】. (A )1 (B )2 (C )1226- (D )626- 二、填空题(共5小题,每小题4分,共20分) 11.若12a b =,则a bb += . 12.如图6,A 是反比例函数图象上的一点,过点A 作AB ⊥y 轴于点B ,点P 在x 轴上,ABP ∆的面积为2,则这个反比例函数的关系式为 .13.已知二次函数y=ax 2+bx+c 中,函数y 与自变量x 的部分对应值如表:x…-1123…y … 10 5 2 1 2 …则当y <5时,x 的取值范围是 .图5图614.如图7,平行于BC 的直线DE 把△ABC 分成的两部分 面积相等,则ADAB= . 15.数学老师在小黑板上出道题目:已知二次函数132++-=k x x y ,试添加一个条件,使它与x 轴交点的横坐标之积为2.学生回答:①二次函数与x 轴交点是(1,0)和(2,0);②二次函数与x 轴交点是(-1,0)和(-2,0);③二次函数与y 轴交点是(0,2);④二次函数与y 轴交点是(0,3). 则你认为学生回答正确的是 (填序号). 三、解答题(本大题共7小题,共70分)16.(8分)已知:如图8,△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)以点B 为位似中心,在网格内画出△A 1B 1C 1,使△A 1B 1C 1与△ABC 位似,且位似比为2:1,点C 1的坐标是 ;(2)△A 1B 1C 1的面积是 平方单位.17.(8分)已知抛物线2(3)2y a x =-+经过点(1,-2).(1)求a 的值;图8图7(2)若点A (m ,y 1)、B (n ,y 2)(m <n <3)都在该抛物线上,试比较y 1与y 2的大小.18.(8分)如图9,D 是△ABC 的边AC 上的一点,连接BD ,已知∠ABD=∠C ,AB=6,AD=4,求线段CD 的长.19.(10分)如图10, 已知抛物线x x y 421+-=和直线x y 22=. 我们约定:当x 任取一值时,x 对应的函数值分别为1y 、2y ,若21y y ≠,取1y 、2y 中的较大值记为M ;若21y y =,记21y y M ==. (1)当x 取何值时,有21y y M ==; (2)当x 取何值时,有1y M =; (3)当x 取何值时,有2y M =.图10图920.(10分)如图11,矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF ,使得另一边EF 过原矩形的顶点C .(1)设Rt △CBD 的面积为S 1,Rt △BFC 的面积为S 2,Rt △DCE 的面积为S 3,则S 1 S 2+S 3(用“>”、“=”、“<”填空);(2)写出图中的三对相似三角形,并选择其中一对进行证明.21.(12分)在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一周内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x (x ≥60)元,销售量为y 套. (1)求出y 与x 的函数关系式.(2)当销售单价为多少元时,周销售额为14000元;(3)当销售单价为多少元时,才能在一周内获得最大利润?最大利润是多少?学校: 班级: 姓名: 第 考场 座位号:图1122.(14分)我们把使得函数值为零的自变量的值称为函数的零点. 例如,对于函数y=-x+1,令y=0,可得x=1,我们就说x=1是函数y=-x+1的零点.己知函数y=x 2-2(m+1)x-2(m+2) (m 为常数) .(1)当m=-1时,求该函数的零点; (2)证明:无论m 取何值,该函数总有两个零点; (3)设函数的两个零点分别为1x 和2x ,且321121-=+x x ,求此时的函数解析式,并判断点(n+2,n 2-10)是否在此函数的图象上.1.B 2.B 3.C 4.D 5.C 6.C 7.A 8.B 9.B 10.D 二、填空题(第小题4分,共20分)11y =三、解答题(共70分)16.(1)作图(略),(1,0)…………………………………………………………4分(2)10……………………………………………………………………………… 8分17.(1)∵抛物线2(3)2y a x =-+经过点(1,-2),∴ 22(13)2a -=-+,解得a=-1;………………………………………… 4分(2)∵ 函数2(3)2y x =--+的对称轴为x=3,∴ A (m ,y 1)、B (n ,y 2)(m <n <3)在对称轴左侧, 又∵ 抛物线开口向下,∴ 对称轴左侧y 随x 的增大而增大,∵ m <n <3,∴ y 1<y 2.…………………………………………………… 8分 18.在△ABD 和△ACB 中,∠ABD=∠C ,∠A=∠A ,4分8分 19.(1)由12y y =,可行,242x x x -+=,解得10x =,22x =所以当10x =或2时,有21y y M ==; …………………………………… 4分 (2)由图象可知,当02x <<时,1M y =;…………………………………… 7分 (3)由图象可知,当0x <或2x >时,2M y =…………………………………… 10分 20.(1)123S S S =+.……………………………………………………… 4分 (2)△BCD ∽△CFB ∽△DEC .………………………………………………7分 可任选一对,如:△BCD ∽△DEC ;证明:∵∠EDC+∠BDC=90°,∠CBD+∠BDC=90°,∴∠EDC=∠CBD , 又∵∠BCD=∠DEC=90°,∴△BCD ∽△DEC .……………………………10分21 4分 (2)根据题意可得,(4480)14000x x -+=,解得,x 1=70,x 2=50(不合题意舍去), ∴当销售价为70元时,周销售额为14000元.…………………………………8分 (3)设一周内获得的利润为w 元,根据题意,得w=(x-40)(-4x+480)=-4x 2+640x-19200=-4(x-80)2+6400, 当x=80时,w 的最大值为6400∴当销售单价为80元时,一周内获得最大利润,最大利润是6400元.……12分 22.(1)∵四边形ABCD 为矩形,D 为BC 中点,B (-4,6),∴D (-2,6).将4x =-代入反比例解析式得:3y =,则E (-4,3);……………6分(2)设F (0,y ),如图所示,连接DF ,AF , ∵∠OAF=∠DFC ,△AOF ∽△FDC ,∴OF CD OA CF=,即246y y =-, 解得:y 1=2,y 2=4,则F 坐标为(0,2)或(0,4).………………12分23.(1)当1m =-时,该函数为22y x =-,令0y =,可得2x =±.∴当1m =-时,该函数的零点为2x =和2x =-.………………4分(2)令0y =,得[][]222(1)42(2)4(2)10m m m ∆=-+--+=++>∴无论m 取何值时,方程22(1)2(2)0x m x m -+-+=总有两个不相等的实数根,即无论m取何值,该函数总有两个两个零点. ………………………………8分 (3)根据题意,得,122(1)x x m +=+,122(2)x x m =-+, ∵321121-=+x x ,∴121223x x x x +=,即2(1)22(2)3m m +=-+,解得1m =. ∴函数的解析式为246y x x =--.∴配方得,2(2)10y x =--,把2x n =+代入可得210y n =-.∴点)102(2-+n n ,在函数246y x x =--的图象上. …………………14分。
2020-2021上海市九年级数学上期中第一次模拟试题及答案
2020-2021上海市九年级数学上期中第一次模拟试题及答案一、选择题1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A . B .C .D .3.若x 1是方程ax 2+2x+c =0(a≠0)的一个根,设M =(ax 1+1)2,N =2﹣ac ,则M 与N 的大小关系为( )A .M >NB .M =NC .M <ND .不能确定4.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a-b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )A .1B .2C .3D .45.二次函数y =ax 2+bx+c (a≠0)的图象如图所示,那么下列说法正确的是( )A .a >0,b >0,c >0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c >06.抛物线y=﹣(x +2)2﹣3向右平移了3个单位,那么平移后抛物线的顶点坐标是( )A .(﹣5,﹣3)B .(﹣2,0)C .(﹣1,﹣3)D .(1,﹣3)7.用配方法解方程2680x x --=时,配方结果正确的是( )A .2(3)17x -=B .2(3)14-=xC .2(6)44x -=D .2(3)1x -=8.如果关于x 的方程240x x m -+=有两个不相等的实数根,那么在下列数值中,m 可以取的是( )A .3B .5C .6D .89.如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( )A .1B .22C .2D .210.如图所示,⊙O 是正方形ABCD 的外接圆,P 是⊙O 上不与A 、B 重合的任意一点,则∠APB 等于( )A .45°B .60°C .45° 或135°D .60° 或120°11.下列事件中,属于必然事件的是( )A .任意数的绝对值都是正数B .两直线被第三条直线所截,同位角相等C .如果a 、b 都是实数,那么a +b =b +aD .抛掷1个均匀的骰子,出现6点朝上12.如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为( )A .30πcm 2B .48πcm 2C .60πcm 2D .80πcm 2二、填空题13.用半径为30,圆周角为120°的扇形纸片围成一个圆锥的侧面,那么这个圆锥的底面圆半径是__.14.圆锥的底面半径为14cm ,母线长为21cm ,则该圆锥的侧面展开图的圆心角为_____ 度.15.关于x 的一元二次方程kx 2﹣4x+3=0有实数根,则k 应满足的条件是_____.16.已知1x =是关于x 的方程2230ax x -+=的一个根,则a =__________.17.一个正多边形的一个外角为30°,则它的内角和为_____.18.如图,把正方形铁片OABC 置于平面直角坐标系中,顶点A 的坐标为(3,0),点P (1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P 的坐标为____________________.19.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.20.如图,O e 的半径为2,切线AB 的长为23,点P 是O e 上的动点,则AP 的长的取值范围是_________.三、解答题21.因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018年五一长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客将达28.8万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.(1)求出2018至2020年五一长假期间游客人次的年平均增长率;(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?22.(2016内蒙古包头市)一幅长20cm 、宽12cm 的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm ,图案中三条彩条所占面积为ycm 2.(1)求y 与x 之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的25,求横、竖彩条的宽度.23.已知△ABC 是⊙O 的内接三角形,∠BAC 的平分线交⊙O 于点D .(I )如图①,若BC 是⊙O 的直径,BC =4,求BD 的长;(Ⅱ)如图②,若∠ABC 的平分线交AD 于点E ,求证:DE =DB .24.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,如表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m631241783024815991803摸到白球的频率mn0.630.620.5930.6040.6010.5990.601()1请估计:当实验次数为10000次时,摸到白球的频率将会接近________;(精确到0.1)()2假如你摸一次,你摸到白球的概率P(摸到白球)=________;()3如何通过增加或减少这个不透明盒子内球的具体数量,使得在这个盒子里每次摸到白球的概率为0.5?25.已知关于x的方程x2+4x+3-a=0.(1)若此方程有两个不相等的实数根,求a的取值范围;(2)在(1)的条件下,当a取满足条件的最小整数,求此时方程的解.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 2.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.3.C解析:C【解析】【分析】把x1代入方程ax2+2x+c=0得ax12+2x1=-c,作差法比较可得.【详解】∵x1是方程ax2+2x+c=0(a≠0)的一个根,∴ax12+2x1+c=0,即ax12+2x1=-c,则M-N=(ax1+1)2-(2-ac)=a2x12+2ax1+1-2+ac=a(ax12+2x1)+ac-1=-ac+ac-1=-1,∵-1<0,∴M-N<0,∴M<N.故选C.【点睛】本题主要考查一元二次方程的解的概念及作差法比较大小,熟练掌握能使方程成立的未知数的值叫做方程的解是根本,利用作差法比较大小是解题的关键.4.C解析:C【解析】【分析】利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2b a=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b a-=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断.【详解】∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y >0,即a-b+c >0,所以①正确;∵抛物线的对称轴为直线x=-2b a=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误;∵抛物线的顶点坐标为(1,n ), ∴244ac b a-=n , ∴b 2=4ac-4an=4a (c-n ),所以③正确;∵抛物线与直线y=n 有一个公共点,∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确.故选C .【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.5.B解析:B【解析】【分析】利用抛物线开口方向确定a 的符号,利用对称轴方程可确定b 的符号,利用抛物线与y 轴的交点位置可确定c 的符号.【详解】∵抛物线开口向下,∴a <0,∵抛物线的对称轴在y 轴的右侧,∴x =﹣2b a>0, ∴b >0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点. 6.D解析:D【解析】试题分析:原抛物线的顶点坐标为(-2,-3),向右平移三个单位后顶点纵坐标不变,横坐标加3,所以平移后抛物线的顶点坐标是(1,-3)。
2020-2021上海民办兰生复旦中学九年级数学上期中模拟试题(含答案)
2020-2021上海民办兰生复旦中学九年级数学上期中模拟试题(含答案)一、选择题1.二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么下列说法正确的是()A.a>0,b>0,c>0 B.a<0,b>0,c>0 C.a<0,b>0,c<0D.a<0,b<0,c>0 2.如图,抛物线y=ax2+bx+c经过点(-1,0),对称轴为直线l.则下列结论:①abc>0;②a-b+c=0;③2a+c<0;④a+b<0.其中所有正确的结论是()A.①③B.②③C.②④D.②③④3.已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,-5)B.(3,-13)C.(2,-8)D.(4,-20)4.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是 180°D.抛一枚硬币,落地后正面朝上5.下列交通标志是中心对称图形的为()A.B.C.D.6.如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()A .AB .BC .CD .D7.如图,从一张腰长为90cm ,顶角为120︒的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为( )A .15cmB .12cmC .10cmD .20cm 8.如图所示,⊙O 是正方形ABCD 的外接圆,P 是⊙O 上不与A 、B 重合的任意一点,则∠APB 等于( )A .45°B .60°C .45° 或135°D .60° 或120° 9.100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的编号是质数的概率是 ( )A .120B .19100C .14D .以上都不对10.如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为( )A .30πcm 2B .48πcm 2C .60πcm 2D .80πcm 211.有两个一元二次方程2:0M ax bx c ++=,2:0N cx bx a ++=,其中,0ac ≠,a c ≠,下列四个结论中错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数B .如果4是方程M 的一个根,那么14是方程N 的另一个根 C .如果方程M 有两根符号相同,那么方程N 的两符号也相同D .如果方程M 和方程N 有一个相同的根,那么这个根必是1x =12.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 二、填空题13.二次函数y =ax 2+bx +c 的图象如图11所示,且P =|2a +b|+|3b -2c|,Q =|2a -b|-|3b +2c|,则P ,Q 的大小关系是______.14.新园小区计划在一块长为20米,宽12米的矩形场地上修建三条互相垂直的长方形甬路(一条橫向、两条纵向,且横向、纵向的宽度比为3:2),其余部分种花草.若要使种花草的面积达到144米2.则横向的甬路宽为_____米.15.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,若∠D =20°,则∠CBA 的度数是__.16.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC =30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ =OQ ,则满足条件的∠OCP 的大小为_______.17.已知x 1,x 2是方程x 2﹣x ﹣3=0的两根,则1211+x x =_____. 18.女生小琳所在班级共有40名学生,其中女生占60%.现学校组织部分女生去市三女中参观,需要从小琳所在班级的女生当中随机抽取一名女生参加,那么小琳被抽到的概率是 .19.若关于 x 的一元二次方程2x 2-x+m=0 有两个相等的实数根,则 m 的值为__________.20.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.三、解答题21.某商场销售某种型号防护面罩,进货价为40元/个.经市场销售发现:售价为50元/个时,每周可以售出100个,若每涨价1元,就会少售出5个.供货厂家规定市场售价不得低于50元/个,且商场每周销售数量不得少于80个.(1)确定商场每周销售这种型号防护面罩所得的利润w (元)与售价x (元/个)之间的函数关系式.(2)当售价x (元/个)定为多少时,商场每周销售这种防护面罩所得的利润w (元)最大?最大利润是多少?22.如图,AB 是O e 的直径,点C D 、在O e 上,且四边形AOCD 是平行四边形,过点D 作O e 的切线,分别交OA 的延长线与OC 的延长线于点E F 、,连接BF 。
2020-2021上海兰生复旦初三数学上期中模拟试卷带答案
2020-2021上海兰生复旦初三数学上期中模拟试卷带答案一、选择题1.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.4.75 B.4.8 C.5 D.43.如图在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…若点A(32,0),B(0,2),则点B2018的坐标为()A.(6048,0)B.(6054,0)C.(6048,2)D.(6054,2)4.如图,抛物线y=ax2+bx+c经过点(-1,0),对称轴为直线l.则下列结论:①abc>0;②a-b+c=0;③2a+c<0;④a+b<0.其中所有正确的结论是()A.①③B.②③C.②④D.②③④5.下列交通标志是中心对称图形的为()A .B .C .D .6.如图所示的暗礁区,两灯塔A ,B 之间的距离恰好等于圆的半径,为了使航船(S )不进入暗礁区,那么S 对两灯塔A ,B 的视角∠ASB 必须( )A .大于60°B .小于60°C .大于30°D .小于30° 7.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( )A .k<4B .k≤4C .k<4且k≠3D .k≤4且k≠38.如图,从一张腰长为90cm ,顶角为120︒的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为( )A .15cmB .12cmC .10cmD .20cm9.在Rt ABC ∆中,90ABC ∠=︒,:BC 2:3=AB , 5AC =,则AB =( ). A .52 B .10 C .5D .15 10.下列事件中,属于必然事件的是( )A .任意数的绝对值都是正数B .两直线被第三条直线所截,同位角相等C .如果a 、b 都是实数,那么a +b =b +aD .抛掷1个均匀的骰子,出现6点朝上 11.100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的编号是质数的概率是 ( )A .120B .19100C .14D .以上都不对12.如图,在⊙O 中,AB 是⊙O 的直径,AB =10,»»»AC CDDB ==,点E 是点D 关于AB 的对称点,M 是AB 上的一动点,下列结论:①∠BOE =60°;②∠CED =12∠DOB ;③DM ⊥CE ;④CM +DM 的最小值是10,上述结论中正确的个数是( )A .1B .2C .3D .4二、填空题13.某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.14.用半径为30,圆周角为120°的扇形纸片围成一个圆锥的侧面,那么这个圆锥的底面圆半径是__.15.某药品原价是100元,经连续两次降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是 ;16.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.17.关于x 的方程的260xx m -+=有两个相等的实数根,则m 的值为________. 18.如图,正六边形ABCDEF 内接于⊙O,⊙O 的半径为6,则这个正六边形的边心距OM 的长为__.19.若关于 x 的一元二次方程2x 2-x+m=0 有两个相等的实数根,则 m 的值为__________.20.如图,O e 的半径为2,切线AB 的长为23,点P 是O e 上的动点,则AP 的长的取值范围是_________.三、解答题21.(2016内蒙古包头市)一幅长20cm 、宽12cm 的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm ,图案中三条彩条所占面积为ycm 2.(1)求y 与x 之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的25,求横、竖彩条的宽度.22.已知关于x 的一元二次方程222(1)20x a x a a --+--=有两个不相等的实数根1x ,2x .(1)若a 为正整数,求a 的值;(2)若1x ,2x 满足221212-16x x x x +=,求a 的值.23.如图,已知AB 为⊙O 的直径,点E 在⊙O 上,∠EAB 的平分线交⊙O 于点C ,过点C 作AE 的垂线,垂足为D ,直线DC 与AB 的延长线交于点P .(1)判断直线PC 与⊙O 的位置关系,并说明理由;(2)若tan∠P=34,AD=6,求线段AE 的长. 24.三辆汽车经过某收费站下高速时,在2个收费通道A ,B 中,可随机选择其中的一个通过.(1)三辆汽车经过此收费站时,都选择A 通道通过的概率是 ;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B 通道通过的概率.25.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A ,B ,C ,D 四个等级,并绘制了如下不完整的频数分布表和扇形统计图: 等级成绩(s ) 频数(人数) A90<s≤100 4 B80<s≤90 x C70<s≤80 16 D s≤70 6根据以上信息,解答以下问题:(1)表中的x= ;(2)扇形统计图中m= ,n= ,C 等级对应的扇形的圆心角为 度;(3)该校准备从上述获得A 等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a 1,a 2表示)和两名女生(用b 1,b 2表示),请用列表或画树状图的方法求恰好选取的是a 1和b 1的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.2.B解析:B【解析】【分析】设QP的中点为F,圆F与AB的切点为D,连接FD,连接CF,CD,则有FD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形,FC+FD=PQ,由三角形的三边关系知,FC+FD>CD;只有当点F在CD上时,FC+FD=PQ有最小值,最小值为CD的长,即当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,由直角三角形的面积公式知,此时CD=BC•AC÷AB=4.8.【详解】如图,设QP的中点为F,圆F与AB的切点为D,连接FD、CF、CD,则FD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,FC+FD=PQ,∴FC+FD>CD,∵当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,∴CD=BC•AC÷AB=4.8.故选B .【点睛】本题利用了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解.3.D解析:D【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B 、B 2、B 4…每偶数之间的B 相差6个单位长度,根据这个规律可以求得B 2018的坐标.【详解】∵A (32,0),B (0,2), ∴OA =32,OB =2, ∴Rt △AOB 中,AB 22352()22+=, ∴OA +AB 1+B 1C 2=32+2+52=6, ∴B 2的横坐标为:6,且B 2C 2=2,即B 2(6,2),∴B 4的横坐标为:2×6=12, ∴点B 2018的横坐标为:2018÷2×6=6054,点B 2018的纵坐标为:2, 即B 2018的坐标是(6054,2).故选D .【点睛】此题考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B 点之间的关系是解决本题的关键.4.D解析:D【解析】【分析】【详解】试题分析:①∵二次函数图象的开口向下,∴a <0,∵二次函数图象的对称轴在y 轴右侧, ∴﹣2b a>0, ∴b >0, ∵二次函数的图象与y 轴的交点在y 轴的正半轴上,∴c >0,∴abc <0,故①错误;②∵抛物线y=ax 2+bx+c 经过点(﹣1,0),∴a ﹣b+c=0,故②正确;③∵a ﹣b+c=0,∴b=a+c .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2(a+c )+c <0,∴6a+3c <0,∴2a+c <0,故③正确;④∵a ﹣b+c=0,∴c=b ﹣a .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2b+b ﹣a <0,∴3a+3b <0,∴a+b <0,故④正确.故选D .考点:二次函数图象与系数的关系.5.C解析:C【解析】【分析】根据中心对称图形的定义即可解答.【详解】解:A 、属于轴对称图形,不是中心对称的图形,不合题意;B 、是中心对称的图形,但不是交通标志,不符合题意;C 、属于轴对称图形,属于中心对称的图形,符合题意;D 、不是中心对称的图形,不合题意.故选C .【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.6.D解析:D【解析】试题解析:连接OA ,OB ,AB ,BC ,如图:∵AB=OA=OB ,即△AOB 为等边三角形,∴∠AOB=60°,∵∠ACB 与∠AOB 所对的弧都为»AB ,∴∠ACB=12∠AOB=30°, 又∠ACB 为△SCB 的外角, ∴∠ACB >∠ASB ,即∠ASB <30°.故选D7.B解析:B【解析】试题分析:若此函数与x 轴有交点,则2(3)21=0k x x -++,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x 轴交点的特点. 8.A解析:A【解析】【分析】根据等腰三角形的性质得到OE 的长,再利用弧长公式计算出弧CD 的长,设圆锥的底面圆半径为r ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长可得到r .【详解】过O 作OE AB ⊥于E ,90120OA OB cm AOB ︒∠Q ==,=,30A B ︒∴∠∠==,1452OE OA cm ∴==, ∴弧CD 的长1204530180ππ⨯==,设圆锥的底面圆的半径为r ,则230r ππ=,解得15r =.故选:A .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9.B解析:B【解析】【分析】 依题意可设2=AB x ,3BC x =,根据勾股定理列出关于x 的方程,解方程求出x 的值,进而可得答案.【详解】解:如图,设2=AB x ,3BC x =,根据勾股定理,得:222325+=x x ,解得5x =,∴10AB =.故选B.【点睛】本题考查了勾股定理和简单的一元二次方程的解法,属于基础题型,熟练掌握勾股定理是解题的关键.10.C解析:C【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A. 任意数的绝对值都是正数是随机事件,错误;B. 两直线被第三条直线所截,内错角相等是随机事件,错误;C. 如果a 、b 都是实数,那么a +b =b +a 是必然事件,正确;D. 抛掷1个均匀的骰子,出现6点朝上是随机事件,错误;故选D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.C解析:C【解析】解答:在1到100这100个数中,是质数的是:2,3 ,5,7,11,13,17,19,23,29,31 ,37,41,43,47,53,59,61,67,71,73,79,83,89,97,共25个,所以摸出的编号是质数的概率是2511004,故选C.点睛: 本题关键是清楚1到100这一范围内有几个质数,特别注意的是1既不是质数,又不是合数.12.C解析:C【解析】【分析】【详解】解:∵弧AC=弧CD=弧DB,∴∠DOB=∠COD=∠BOE=60°,故①正确;∵AB为直径,且点E是点D关于AB的对称点∴∠E=∠ODE,AB⊥DE∴∠CED =30°=12∠DOB,故②正确;∵M和A重合时,∠MDE=60°,∴∠MDE+∠E=90°∴DM⊥CE故③不正确;根据轴对称的性质,可知D与E对称,连接CE,根据两点之间线段最短,可知这时的CM+DM最短,∵∠DOB=∠COD=∠BOE=60°∴CE为直径,即CE=10,故④正确.故选C.【点睛】本题考查了圆周角定理,圆中的有关计算问题和图形的轴对称的应用,关键是熟练地运用定理进行推理和计算,题型较好,综合性比较强,但难度不大.二、填空题13.20【解析】【分析】本题可设这两年平均每年的增长率为x因为经过两年时间让市区绿地面积增加44则有(1+x)2=1+44解这个方程即可求出答案【详解】解:设这两年平均每年的绿地增长率为x根据题意得(1解析:20%【解析】【分析】本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)2=1+44%,解这个方程即可求出答案.【详解】解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)2=1+44%,解得x1=-2.2(舍去),x2=0.2.答:这两年平均每年绿地面积的增长率为20%.故答案为20%【点睛】此题考查增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.14.10【解析】【分析】由扇形的弧长等于圆锥的底面周长列式计算【详解】设圆锥底面圆的半径为r则2πr=解得:r=10所以圆锥的底面半径为10故答案为:10【点睛】考查了圆锥的计算及扇形的弧长的计算的知识解析:10【解析】【分析】由扇形的弧长等于圆锥的底面周长列式计算.【详解】设圆锥底面圆的半径为r,则2πr=12030 180π⋅,解得:r=10,所以圆锥的底面半径为10.故答案为:10.【点睛】考查了圆锥的计算及扇形的弧长的计算的知识,解题关键是牢固掌握和弧长公式.15.20%【解析】【分析】此题可设每次降价的百分率为x第一次降价后价格变为100(1-x)元第二次在第一次降价后的基础上再降变为100(1-x)(1-x)即100(1-x)2元从而列出方程求出答案【详解解析:20%【分析】此题可设每次降价的百分率为x,第一次降价后价格变为100(1-x)元,第二次在第一次降价后的基础上再降,变为100(1-x)(1-x),即100(1-x)2元,从而列出方程,求出答案.【详解】设每次降价的百分率为x,第二次降价后价格变为100(1-x)2元.根据题意,得100(1-x)2=64,即(1-x)2=0.64,解得x1=1.8,x2=0.2.因为x=1.8不合题意,故舍去,所以x=0.2.即每次降价的百分率为0.2,即20%.故答案为20%.16.15【解析】试题分析:利用圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长扇形的半径等于圆锥的母线长和扇形的面积公式求解圆锥的侧面积=•2π•3•5=15π故答案为15π考点:圆锥的计算解析:15π【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=12•2π•3•5=15π.故答案为15π.考点:圆锥的计算.17.9【解析】【分析】因为一元二次方程有两个相等的实数根所以△=b2-4ac=0根据判别式列出方程求解即可【详解】∵关于x的方程x2-6x+m=0有两个相等的实数根∴△=b2-4ac=0即(-6)2-4解析:9【解析】【分析】因为一元二次方程有两个相等的实数根,所以△=b2-4ac=0,根据判别式列出方程求解即可.【详解】∵关于x的方程x2-6x+m=0有两个相等的实数根,∴△=b2-4ac=0,即(-6)2-4×1×m=0,解得m=9故答案为:9总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.18.3【解析】连接OB∵六边形ABCDEF是⊙O内接正六边形∴∠BOM==30°∴OM=OB•cos∠BOM=6×=3故答案为:3解析:33【解析】连接OB,∵六边形ABCDEF是⊙O内接正六边形,∴∠BOM=36062︒⨯=30°,∴OM=OB•cos∠BOM=6×32=33,故答案为:33.19.【解析】【分析】根据关于x的一元二次方程2x2-x+m=0有两个相等的实数根结合根的判别式公式得到关于m的一元一次方程解之即可【详解】根据题意得:△=1-4×2m=0整理得:1-8m=0解得:m=故解析:1 8【解析】【分析】根据“关于x的一元二次方程2x2-x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【详解】根据题意得:△=1-4×2m=0,整理得:1-8m=0,解得:m=18,故答案为:18.本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.20.【解析】【分析】连接OB 根据切线的性质得到∠OBA=90°根据勾股定理求出OA 根据题意计算即可【详解】连接OB∵AB 是⊙O 的切线∴∠OBA=90°∴OA==4当点P 在线段AO 上时AP 最小为2当点P 在解析:26AP ≤≤【解析】【分析】连接OB ,根据切线的性质得到∠OBA=90°,根据勾股定理求出OA ,根据题意计算即可.【详解】连接OB ,∵AB 是⊙O 的切线,∴∠OBA=90°,∴22AB OB +=4,当点P 在线段AO 上时,AP 最小为2,当点P 在线段AO 的延长线上时,AP 最大为6,∴AP 的长的取值范围是2≤AP≤6,故答案为:2≤AP≤6.【点睛】本题考查的是切线的性质、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.三、解答题21.(1)2354y x x =-+;(2)横彩条的宽度为3cm ,竖彩条的宽度为2cm .【解析】【分析】(1)由横、竖彩条的宽度比为3:2知横彩条的宽度为32xcm ,根据“三条彩条面积=横彩条面积+2条竖彩条面积﹣横竖彩条重叠矩形的面积”,列出函数关系式化简即可;(2)根据“三条彩条所占面积是图案面积的25”,可列出关于x 的一元二次方程,整理后求解即可.【详解】(1)根据题意可知,横彩条的宽度为32xcm , ∴y=20×32x+2×12•x ﹣2×32x•x=﹣3x 2+54x ,即y 与x 之间的函数关系式为y=﹣3x 2+54x ;(2)根据题意,得:﹣3x 2+54x=25×20×12, 整理,得:x 2﹣18x+32=0,解得:x 1=2,x 2=16(舍), ∴32x=3, 答:横彩条的宽度为3cm ,竖彩条的宽度为2cm .考点:根据实际问题列二次函数关系式;一元二次方程的应用.22.(1)1a =,2;(2)1a =-【解析】【分析】(1)根据关于x 的一元二次方程222(1)20x a x a a --+--=有两个不相等的实数根,得到()22[2(1)]420a a a ∆=----->,于是得到结论;(2)由根与系数的关系可得122(1)x x a +=-,2122x x a a =--,代入22121216x x x x +-=,解方程即可得到结论.【详解】(1)∵关于x 的一元二次方程222(1)20x a x a a --+--=有两个不相等的实数根, ∴()22[2(1)]420a a a ∆=----->,解得:3a <,∵a 为正整数,∴1a =,2;(2)∵122(1)x x a +=-,2122x x a a =--,∵22121216x x x x +-=, ∴()2121216x x x x +-=,∴()22[2(1)]2163a a a -----=,解得:11a =-,26a =,∵3a <,∴1a =-.【点睛】本题考查的是一元二次方程根与系数的关系及根的判别式,先判断出a 的取值范围,再由根与系数的关系得出方程组是解答此题的关键.23.(1)PC是⊙O的切线;(2)9 2【解析】试题分析:(1)结论:PC是⊙O的切线.只要证明OC∥AD,推出∠OCP=∠D=90°,即可.(2)由OC∥AD,推出OC OPAD AP=,即10610r r-=,解得r=154,由BE∥PD,AE=AB•sin∠ABE=AB•sin∠P,由此计算即可.试题解析:解:(1)结论:PC是⊙O的切线.理由如下:连接OC.∵AC平分∠EAB,∴∠EAC=∠CAB.又∵∠CAB=∠ACO,∴∠EAC=∠OCA,∴OC∥AD.∵AD⊥PD,∴∠OCP=∠D=90°,∴PC是⊙O的切线.(2)连接BE.在Rt△ADP中,∠ADP=90°,AD=6,tan∠P=34,∴PD=8,AP=10,设半径为r.∵OC∥AD,∴OC OPAD AP=,即10610r r-=,解得r=154.∵AB是直径,∴∠AEB=∠D=90°,∴BE∥PD,∴AE=AB•sin∠ABE=AB•sin∠P=152×35=92.点睛:本题考查了直线与圆的位置关系.解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.24.(1)18;(2)12【解析】【分析】(1)用树状图分3次实验列举出所有情况,再看3辆车都选择A通道通过的情况数占总情况数的多少即可;(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B通道通过的情况数占总情况数的多少即可.【详解】解:(1)画树状图得:共8种情况,甲、乙、丙三辆车都选择A通道通过的情况数有1种,所以都选择A通道通过的概率为18,故答案为:18;(2)∵共有8种等可能的情况,其中至少有两辆汽车选择B通道通过的有4种情况,∴至少有两辆汽车选择B通道通过的概率为41 82 .【点睛】考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.25.(1)14;(2)10、40、144;(3)恰好选取的是a1和b1的概率为16.【解析】【分析】(1)根据D组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x的值;(2)用A、C人数分别除以总人数求得A、C的百分比即可得m、n的值,再用360°乘以C等级百分比可得其度数;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a1和b1的情况,再利用概率公式即可求得答案.【详解】(1)∵被调查的学生总人数为6÷15%=40人,∴x=40﹣(4+16+6)=14,故答案为14;(2)∵m%=440×100%=10%,n%=1640×10%=40%,∴m=10、n=40,C等级对应的扇形的圆心角为360°×40%=144°,故答案为10、40、144;(3)列表如下:a1a2b1b2a1a2,a1b1,a1b2,a1a2a1,a2b1,a2b2,a2b1a1,b1a2,b1b2,b1a1和b1的有2种结果,∴恰好选取的是a1和b1的概率为21 126.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.。
2020-2021上海市初三数学上期中模拟试题含答案
2020-2021上海市初三数学上期中模拟试题含答案一、选择题1.下列四个图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个 2.方程x 2+x-12=0的两个根为( ) A .x 1=-2,x 2=6 B .x 1=-6,x 2=2 C .x 1=-3,x 2=4D .x 1=-4,x 2=3 3.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130°4.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是( ) A .16B .29C .13D .235.下列事件中,属于必然事件的是( ) A .三角形的外心到三边的距离相等 B .某射击运动员射击一次,命中靶心 C .任意画一个三角形,其内角和是 180° D .抛一枚硬币,落地后正面朝上6.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( ) A .k<4B .k≤4C .k<4且k≠3D .k≤4且k≠37.如图,P 是等腰直角△ABC 外一点,把BP 绕点B 顺时针旋转90°到BP′,已知∠AP′B =135°,P′A ∶P′C =1∶3,则P′A ∶PB =( )A .12B .1∶2C 32D .138.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49B .13C .29D .199.山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透空的感觉和艺术享受.下列四幅剪纸图案中,是中心对称图形的是( )A .B .C .D .10.100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的编号是质数的概率是 ( ) A .120B .19100C .14D .以上都不对11.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中涂色部分构成中心对称图形.该小正方形的序号是( )A .①B .②C .③D .④12.求二次函数2(0)y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x 轴的交点为()1,0x 、()2,0x ,其中101x <<,有下列结论:①0abc >;②232x -<<-;③421a b c -+<-;④()21a b am bm m ->+≠-;⑤13a >;其中,正确的结论有( )A .5B .4C .3D .2二、填空题13.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2. 14.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .15.写出一个二次函数的解析式,且它的图像开口向下,顶点在y 轴上______________ 16.如图,在扇形CAB 中,CD ⊥AB ,垂足为D ,⊙E 是△ACD 的内切圆,连接AE ,BE ,则∠AEB 的度数为__.17.如图,△ODC 是由△OAB 绕点O 顺时针旋转40°后得到的图形,若点D 恰好落在AB 上,且∠AOC =105°,则∠C = __.18.小明同学测量一个光盘的直径,他只有一把直尺和一块三角尺,他将直尺、光盘和三角尺按图所示方法放置于桌面上,并量出AB =3 cm ,则此光盘的直径是________ cm .19.母线长为2cm ,底面圆的半径为1cm 的圆锥的侧面积为__________ cm². 20.在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分,,,A B C D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是_______.三、解答题21.小明和小亮利用三张卡片做游戏,卡片上分别写有A ,B ,B .这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由. 22.如图,ABO V 与CDO V 关于O 点中心对称,点E 、F 在线段AC 上,且AF=CE .求证:FD=BE .23.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件.现在采取提高售价,减少售货量的方法增加利润,已知这种商品每涨价0.5元,其销量减少10件. (1)若涨价x 元,则每天的销量为____________件(用含x 的代数式表示); (2)要使每天获得700元的利润,请你帮忙确定售价. 24.如图,在平面直角坐标系中,二次函数21262y x x =-++的图象交x 轴于点A ,B (点A 在点B 的左侧).(1)求点A ,B 的坐标,并根据该函数图象写出y ≥0时x 的取值范围;(2)把点B 向上平移m 个单位得点B 1.若点B 1向左平移n 个单位,将与该二次函数图象上的点B 2重合;若点B 1向左平移(n +6)个单位,将与该二次函数图象上的点B 3重合.已知m >0,n >0,求m ,n 的值.25.我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x 元(0)x >时,平均每天可盈利y 元.()1写出y 与x 的函数关系式;()2当该专卖店每件童装降价多少元时,平均每天盈利400元? ()3该专卖店要想平均每天盈利600元,可能吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:A选项既是轴对称图形,也是中心对称图形;B选项中该图形是轴对称图形不是中心对称图形;C选项中既是中心对称图形又是轴对称图形;D选项中是中心对称图形又是轴对称图形.故选B.考点: 1.轴对称图形;2.中心对称图形.2.D解析:D【解析】试题分析:将x2+x﹣12分解因式成(x+4)(x﹣3),解x+4=0或x﹣3=0即可得出结论.x2+x﹣12=(x+4)(x﹣3)=0,则x+4=0,或x﹣3=0,解得:x1=﹣4,x2=3.考点:解一元二次方程-因式分解法3.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理4.C解析:C【解析】解:画树状图如下:一共有6种情况,“一红一黄”的情况有2种,∴P(一红一黄)=26=13.故选C.5.C解析:C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B 、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C 、三角形的内角和是180°,是必然事件,故本选项符合题意;D 、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意; 故选C .点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.B解析:B 【解析】试题分析:若此函数与x 轴有交点,则2(3)21=0k x x -++,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B. 考点:函数图像与x 轴交点的特点.7.B解析:B 【解析】 【分析】 【详解】解:如图,连接AP ,∵BP 绕点B 顺时针旋转90°到BP ′,∴BP =BP ′,∠ABP +∠ABP ′=90°,又∵△ABC 是等腰直角三角形,∴AB =BC ,∠CBP ′+∠ABP ′=90°,∴∠ABP =∠CBP ′,在△ABP 和△CBP ′中,∵BP =BP ′,∠ABP =∠CBP ′,AB =BC , ∴△ABP ≌△CBP ′(SAS ),∴AP =P ′C , ∵P ′A :P ′C =1:3,∴AP =3P ′A ,连接PP ′, 则△PBP ′是等腰直角三角形, ∴∠BP ′P =45°,PP ′=2PB ,∵∠AP ′B =135°,∴∠AP ′P =135°﹣45°=90°, ∴△APP ′是直角三角形,设P ′A =x ,则AP =3x ,根据勾股定理,PP ′=22'AP P A -=22(3)x x -=22x ,∴PP ′=2PB =22x ,解得PB =2x ,∴P ′A :PB =x :2x =1:2. 故选B .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理的应用,作辅助线构造出全等三角形以及直角三角形,把P′A、P′C以及P′B长度的2倍转化到同一个直角三角形中是解题的关键.8.A解析:A【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.9.B解析:B【解析】【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项不符合题意;B、是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意.故选B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10.C解析:C 【解析】解答:在1到100这100个数中,是质数的是:2,3 ,5,7,11,13,17,19,23,29,31 ,37,41,43,47,53,59,61,67,71,73,79,83,89,97,共25个,所以摸出的编号是质数的概率是2511004=, 故选C . 点睛: 本题关键是清楚1到100这一范围内有几个质数,特别注意的是1既不是质数,又不是合数.11.D解析:D 【解析】 【分析】根据中心对称图形的概念,如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形.将④涂黑后,与图中阴影部分构成的图形绕第三个正方形的中心旋转180°后,这个图形能与自身重合,是中心对称图. 【详解】解:将④涂黑后,与图中阴影部分构成的图形绕第三个正方形的中心旋转180°后,这个图形能与自身重合,是中心对称图. 故选:D. 【点睛】本题考查的是利用旋转设计图案,中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.C解析:C 【解析】 【分析】由抛物线开口方向得a >0,由抛物线的对称轴为直线12bx a=-=-得2b a =>0,由抛物线与y 轴的交点位置得c <0,则abc <0;由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性得到抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2;抛物线的对称轴为直线1x =-,且c <-1,2x =-时,421a b c -+<-;抛物线开口向上,对称轴为直线1x =-,当1x =-时,y a b c =-+最小值,当x m =得:2y am bm c =++,且1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +;对称轴为直线12bx a=-=-得2b a =,由于1x =时,0y >,则a b c ++>0,所以2a a c ++>0,解得13a c >-,然后利用1c <-得到13a >-. 【详解】∵抛物线开口向上,∴a>0, ∵抛物线的对称轴为直线12bx a=-=-,∴b=2a>0, ∵抛物线与y 轴的交点在x 轴下方,∴c<0,∴abc<0, 所以①错误;∵抛物线2y ax bx c =++与x 轴一个交点在点(0,0)与点(1,0)之间,而对称轴为1x =-,由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性,∴抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2,所以②正确;∵抛物线的对称轴为直线1x =-,且c <-1,∴当2x =-时,421a b c -+<-, 所以③正确;∵抛物线开口向上,对称轴为直线1x =-,∴当1x =-时,y a b c =-+最小值, 当x m =代入2y ax bx c =++得:2y am bm c =++,∵1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +,所以④错误; ∵对称轴为直线12bx a=-=-,∴2b a =, ∵由于1x =时,0y >,∴a b c ++>0,所以2a a c ++>0,解得13a c >-, 根据图象得1c <-,∴13a >-,所以⑤正确. 所以②③⑤正确, 故选:C . 【点睛】本题考查了二次函数的图象与系数的关系,以及抛物线与x 轴、y 轴的交点,二次函数y=ax 2+bx+c (a≠0),a 决定抛物线开口方向;c 的符号由抛物线与y 轴的交点的位置确定;b 的符号由a 及对称轴的位置确定;当x =1时,y =a b c ++;当1x =-时,y a b c =-+.二、填空题13.15π【解析】【分析】设圆锥母线长为l 根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S 侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l ,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l ,∵r=3,h=4,∴母线5=,∴S 侧=12×2πr×5=12×2π×3×5=15π, 故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.14.【解析】【分析】【详解】∵将△ABC 绕点B 顺时针旋转60°得到△BDE ∴△ABC ≌△BDE ∠CBD=60°∴BD=BC=12cm ∴△BCD 为等边三角形∴CD=BC=BD=12cm 在Rt △ACB 中AB解析:【解析】 【分析】 【详解】∵将△ABC 绕点B 顺时针旋转60°,得到△BDE , ∴△ABC ≌△BDE ,∠CBD=60°, ∴BD=BC=12cm , ∴△BCD 为等边三角形, ∴CD=BC=BD=12cm ,在Rt △ACB 中,=13,△ACF 与△BDF 的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm ), 故答案为42. 考点:旋转的性质.15.【解析】【分析】由题意可知:写出的函数解析式满足由此举例得出答案即可【详解】解:设所求二次函数解析式为:∵图象开口向下∴∴可取∵顶点在轴上∴对称轴为∴∵顶点的纵坐标可取任意实数∴取任意实数∴可取∴二 解析:2y x =-【解析】 【分析】由题意可知:写出的函数解析式满足0a <、02ba-=,由此举例得出答案即可. 【详解】解:设所求二次函数解析式为:2y ax bx c =++ ∵图象开口向下∴0a <∴可取1a =-∵顶点在y 轴上 ∴对称轴为02b x a=-= ∴0b =∵顶点的纵坐标可取任意实数∴c 取任意实数∴c 可取0∴二次函数解析式可以为:2y x =-.故答案是:2y x =-【点睛】本题考查了二次函数图象的性质,涉及到的知识点有:二次函数2y ax bx c =++的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭;对称轴为2b x a =-;当0a >时,抛物线开口向上、当0a <时,抛物线开口向下;二次函数的图象与y 轴交于()0,c .16.135°【解析】分析:如图连接EC 首先证明∠AEC=135°再证明△EAC≌△EAB 即可解决问题详解:如图连接EC∵E 是△ADC 的内心∴∠AEC=90°+∠ADC=135°在△AEC 和△AEB 中∴△解析:135°.【解析】分析:如图,连接EC .首先证明∠AEC=135°,再证明△EAC ≌△EAB 即可解决问题. 详解:如图,连接EC .∵E 是△ADC 的内心,∴∠AEC=90°+12∠ADC=135°, 在△AEC 和△AEB 中, AE AE EAC EAB AC AB =⎧⎪∠=∠⎨⎪=⎩,∴△EAC≌△EAB,∴∠AEB=∠AEC=135°,故答案为135°.点睛:本题考查三角形的内心、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.17.【解析】【分析】先根据∠AOC的度数和∠BOC的度数可得∠AOB的度数再根据△AOD中AO=DO可得∠A的度数进而得出△ABO中∠B的度数可得∠C的度数【详解】解:∵∠AOC的度数为105°由旋转可解析:45【解析】【分析】先根据∠AOC的度数和∠BOC的度数,可得∠AOB的度数,再根据△AOD中,AO=DO,可得∠A的度数,进而得出△ABO中∠B的度数,可得∠C的度数.【详解】解:∵∠AOC的度数为105°,由旋转可得∠AOD=∠BOC=40°,∴∠AOB=105°-40°=65°,∵△AOD中,AO=DO,∴∠A=12(180°-40°)=70°,∴△ABO中,∠B=180°-70°-65°=45°,由旋转可得,∠C=∠B=45°,故答案为:45°.【点睛】本题考查旋转的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用旋转的性质解答.18.【解析】【分析】先画图根据题意求出∠OAB=60°再根据直角三角形的性质和勾股定理即可求得结果【详解】解:∵∠CAD=60°∴∠CAB=120°∵AB和AC与⊙O相切∴∠OAB=∠OAC=∠CAB=【解析】【分析】先画图,根据题意求出∠OAB=60°,再根据直角三角形的性质和勾股定理即可求得结果.【详解】解:∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC=∠12CAB=60°,∴∠AOB=30°,∵AB=3cm,∴OA=6cm,∴2233cmOB OA AB=-=所以直径为2OB=63cm故答案为:63.【点睛】本题考查了切线长定理,勾股定理,解答本题的关键是熟练掌握切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.19.2π【解析】【分析】【详解】解:∵圆锥的底面圆的半径为1∴圆锥的底面圆的周长=2π×1=2π∴圆锥的侧面积=×2π×2=2π故答案为2π【点睛】本题考查了圆锥的侧面积公式:S=l•R圆锥侧面展开图为解析:2π【解析】【分析】【详解】解:∵圆锥的底面圆的半径为1,∴圆锥的底面圆的周长=2π×1=2π,∴圆锥的侧面积=12×2π×2=2π.故答案为2π.【点睛】本题考查了圆锥的侧面积公式:S=12l•R.圆锥侧面展开图为扇形,底面圆的周长等于扇形的弧长,母线长为扇形的半径.20.【解析】【分析】根据题意可以画出相应的树状图从而可以求得甲乙两人恰好分在同一组的概率【详解】如下图所示小亮和大刚两人恰好分在同一组的情况有4种共有16种等可能的结果∴小亮和大刚两人恰好分在同一组的概解析:1 4【解析】【分析】根据题意可以画出相应的树状图,从而可以求得甲、乙两人恰好分在同一组的概率.【详解】如下图所示,小亮和大刚两人恰好分在同一组的情况有4种,共有16种等可能的结果,∴小亮和大刚两人恰好分在同一组的概率是41 164,故答案为:14.【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答三、解答题21.这个游戏对双方不公平,理由见解析.【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到卡片字母相同的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有9种等可能的结果,两次摸到卡片字母相同的有5种等可能的结果,∴两次摸到卡片字母相同的概率为:59;∴小明胜的概率为59,小亮胜的概率为49,∵59≠49,∴这个游戏对双方不公平.故答案为这个游戏对双方不公平,理由见解析.【点睛】本题考查了树状图法求概率,判断游戏的公平性.22.详见解析【解析】【分析】根据中心对称得出OB=OD ,OA=OC ,求出OF=OE ,根据SAS 推出△DOF ≌△BOE 即可.【详解】证明:∵△ABO 与△CDO 关于O 点中心对称,∴OB=OD ,OA=OC .∵AF=CE ,∴OF=OE .∵在△DOF 和△BOE 中,OB OD DOF BOE OF OE =⎧⎪∠=∠⎨⎪=⎩,∴△DOF ≌△BOE (SAS ).∴FD=BE .23.(1)200-20x ;(2)15元.【解析】试题分析:(1)如果设每件商品提高x 元,即可用x 表示出每天的销售量;(2)根据总利润=单价利润×销售量列出关于x 的方程,进而求出未知数的值. 试题解析:解:(1)200-20x ;(2)根据题意,得 (10-8+x )(200-20x )=700,整理得 x 2-8x +15=0,解得 x 1=5,x 2=3,因为要采取提高售价,减少售货量的方法增加利润,所以取x =5.所以售价为10+5=15(元),答:售价为15元.点睛:此题考查了一元二次方程在实际生活中的应用.解题的关键是理解题意,找到等量关系,列出方程.24.(1)()()2060A B -,,,,26x -剟;(2)m n ,的值分别为72,1. 【解析】【分析】 (1)把y =0代入二次函数的解析式中,求得一元二次方程的解便可得A 、B 两点的坐标,再根据函数图象不在x 轴下方的x 的取值范围得y≥0时x 的取值范围;(2)根据题意写出B 2,B 3的坐标,再由对称轴方程列出n 的方程,求得n ,进而求得m 的值.【详解】解:(1)令0y =,则212602x x -++=, ∴1226x x =-=,, ∴()()2060A B -,,,. 由函数图象得,当0y …时,26x -剟. (2)由题意得()()236B n m B n m --,,,, 函数图象的对称轴为直线2622x -+==. ∵点23B B ,在二次函数图象上且纵坐标相同,∴()622n n -+-=,∴1n =, ∴()()217121622m =-⨯-+⨯-+=, ∴m n ,的值分别为712,. 【点睛】本题主要考查了二次函数的图象与性质,求函数与坐标轴的交点坐标,由函数图象求出不等式的解集以及平移的性质,难度不大,关键是正确运用函数的性质解题.25.(1)2220400y x x =-++;(2)10元:(3)不可能,理由见解析【解析】【分析】 ()1根据总利润=每件利润⨯销售数量,可得y 与x 的函数关系式;()2根据()1中的函数关系列方程,解方程即可求解;()3根据()1中相等关系列方程,判断方程有无实数根即可得.【详解】解:()1根据题意得,y 与x 的函数关系式为()()22026040220400y x x x x =+--=-++; ()2当400y =时,2400220400x x =-++,解得110x =,20(x =不合题意舍去).答:当该专卖店每件童装降价10元时,平均每天盈利400元;()3该专卖店不可能平均每天盈利600元.当600y =时,2600220400x x =-++,整理得2101000x x -+=,2(10)411003000=--⨯⨯=-<Q V ,方程没有实数根,答:该专卖店不可能平均每天盈利600元.【点睛】本题主要考查二次函数的应用、一元二次方程的实际应用,理解题意找到题目蕴含的等量关系是列方程求解的关键.。
2020-2021上海复旦大学第二附属中学九年级数学上期中一模试卷(及答案)
2020-2021上海复旦大学第二附属中学九年级数学上期中一模试卷(及答案)一、选择题1.下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个 B.3个 C.2个 D.1个2.如图A,B,C是上的三个点,若,则等于()A.50°B.80°C.100°D.130°3.如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D,若∠A=25°,则∠D的度数是()A.25°B.40°C.50°D.65°4.如图所示的暗礁区,两灯塔A,B之间的距离恰好等于圆的半径,为了使航船(S)不进入暗礁区,那么S对两灯塔A,B的视角∠ASB必须()A.大于60°B.小于60°C.大于30°D.小于30°5.如图,△ABC内接于⊙O,∠C=45°,AB=2,则⊙O的半径为()A .1B .22C .2D .26.如图,已知圆心角∠AOB=110°,则圆周角∠ACB=( )A .55°B .110°C .120°D .125°7.若关于x 的方程240kx x -+=有实数根,则k 的取值范围是( )A .k 16≤B .1k 16≤ C .k 16≤且k 0≠ D .1k 16≤且k 0≠ 8.如图,△DEF 是由△ABC 绕着某点旋转得到的,则这点的坐标是( )A .(1,1)B .(0,1)C .(﹣1,1)D .(2,0)9.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中涂色部分构成中心对称图形.该小正方形的序号是( )A .①B .②C .③D .④10.在一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机地从袋子中摸出4个球,下列事件是必然事件的是( ).A .摸出的4个球中至少有一个球是白球B .摸出的4个球中至少有一个球是黑球C .摸出的4个球中至少有两个球是黑球D .摸出的4个球中至少有两个球是白球 11.函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0. 其中正确的个数为A .1B .2C .3D .412.如果反比例函数2a y x -=(a 是常数)的图象在第一、三象限,那么a 的取值范围是( )A .a<0B .a>0C .a<2D .a>2 二、填空题13.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________14.圆锥的底面半径为14cm ,母线长为21cm ,则该圆锥的侧面展开图的圆心角为_____ 度.15.如图,将正六边形ABCDEF 放置在直角坐标系内,A(﹣2,0),点B 在原点,把正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转,每次翻转60°,经过2020次翻转之后,点C 的坐标是_____.16.关于x 的方程ax²-(3a+1)x+2(a+1)=0有两个不相等的实数根x 1,x 2,且x 1-x 1x 2+x 2=1-a ,则a=17.已知点C 在以AB 为直径的半圆上,连结AC 、BC ,AB =10,BC :AC =3:4,阴影部分的面积为_____.18.两个全等的三角尺重叠放在△ACB 的位置,将其中一个三角尺绕着点C 按逆时针方向旋转至△DCE 的位置,使点A 恰好落在边DE 上,AB 与CE 相交于点F .已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm ,则CF=______cm .19.已知圆锥的母线长为5cm ,高为4cm ,则该圆锥的侧面积为_____ cm ²(结果保留π).20.如图,将ABC V 绕点A 逆时针旋转150 ,得到ADE V ,这时点B C D 、、恰好在同一直线上,则B Ð的度数为______.三、解答题21.在平面直角坐标系xOy 中,抛物线G :y =mx 2+2mx +m ﹣1(m ≠0)与y 轴交于点C ,抛物线G 的顶点为D ,直线:y =mx +m ﹣1(m ≠0).(1)当m =1时,画出直线和抛物线G ,并直接写出直线被抛物线G 截得的线段长. (2)随着m 取值的变化,判断点C ,D 是否都在直线上并说明理由.(3)若直线被抛物线G 截得的线段长不小于2,结合函数的图象,直接写出m 的取值范围.22.某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现,该种健身球每天的销售量y (个)与销售单价x (元)有如下关系:y=﹣2x+80(20≤x≤40),设这种健身球每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种健身球的销售单价不高于28元,该商店销售这种健身球每天要获得150元的销售利润,销售单价应定为多少元?23.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B,(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=12,求⊙O 的半径.24.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,如表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m631241783024815991803摸到白球的频率mn0.630.620.5930.6040.6010.5990.601()1请估计:当实验次数为10000次时,摸到白球的频率将会接近________;(精确到0.1)()2假如你摸一次,你摸到白球的概率P(摸到白球)=________;()3如何通过增加或减少这个不透明盒子内球的具体数量,使得在这个盒子里每次摸到白球的概率为0.5?25.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:等级成绩(s)频数(人数)A90<s≤1004B80<s≤90xC70<s≤8016D s≤706根据以上信息,解答以下问题:(1)表中的x= ;(2)扇形统计图中m= ,n=,C等级对应的扇形的圆心角为度;(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:A选项既是轴对称图形,也是中心对称图形;B选项中该图形是轴对称图形不是中心对称图形;C选项中既是中心对称图形又是轴对称图形;D选项中是中心对称图形又是轴对称图形.故选B.考点: 1.轴对称图形;2.中心对称图形.2.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理3.B解析:B连接OC,∵CD是切线,∴∠OCD=90°,∵OA=OC,∴∠ACO=∠BAC=25°,∴∠COD=∠ACO+∠BAC=50°,∴∠D=90°-∠COD=40°,故选B.4.D解析:D【解析】试题解析:连接OA,OB,AB,BC,如图:∵AB=OA=OB,即△AOB为等边三角形,∴∠AOB=60°,∵∠ACB与∠AOB所对的弧都为»AB,∴∠ACB=12∠AOB=30°,又∠ACB为△SCB的外角,∴∠ACB>∠ASB,即∠ASB<30°.故选D5.D解析:D【解析】【分析】【详解】解:连接AO,并延长交⊙O于点D,连接BD,∵∠C=45°,∴∠D=45°,∵AD为⊙O的直径,∴∠ABD=90°,∴∠DAB=∠D=45°,∴BD=2,∴==∴⊙O 的半径AO=2AD =. 故选D .【点睛】 本题考查圆周角定理;勾股定理.6.D解析:D【解析】分析:根据圆周角定理进行求解.一条弧所对的圆周角等于它所对的圆心角的一半. 详解:根据圆周角定理,得∠ACB=12(360°-∠AOB )=12×250°=125°. 故选D . 点睛:此题考查了圆周角定理.注意:必须是一条弧所对的圆周角和圆心角之间才有一半的关系.7.B解析:B【解析】【分析】当0k =时,代入方程验证即可,当0k ≠时,根据方程的判别式△≥0可得关于k 的不等式,解不等式即得k 的取值范围,问题即得解决.【详解】解:当0k =时,40x -+=,此时4x =,有实数根;当0k ≠时,∵方程240kx x -+=有实数根,∴△2(1)440k =--⨯⨯…,解得:116k …,此时116k …且0k ≠; 综上,116k ….故选B. 【点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程的根的判别式与根的关系是解题的关键.8.B解析:B【解析】根据旋转的性质:对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心.解:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′.其坐标是(0,1).故选B..9.D解析:D【解析】【分析】根据中心对称图形的概念,如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形.将④涂黑后,与图中阴影部分构成的图形绕第三个正方形的中心旋转180°后,这个图形能与自身重合,是中心对称图.【详解】解:将④涂黑后,与图中阴影部分构成的图形绕第三个正方形的中心旋转180°后,这个图形能与自身重合,是中心对称图.故选:D.【点睛】本题考查的是利用旋转设计图案,中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.B解析:B【解析】【分析】必然事件就是一定发生的事件,依据定义即可作出判断.【详解】解:A、是随机事件,故A选项错误;B、是必然事件,故B选项正确;C、是随机事件,故C选项错误;D、是随机事件,故D选项错误.故选B.【点睛】本题考查随机事件.11.B解析:B【解析】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误。
2020-2021上海兰生复旦初三数学上期末模拟试卷带答案
解析:D
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是轴对称图形,不是中心对称图形,故此选项错误;
B、不是轴对称图形,是中心对称图形,故此选项错误;
C、是轴对称图形,不是中心对称图形,故此选项错误;
D、既是轴对称图形,又是中心对称图形,故此选项正确.
故选D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
A.确定事件B.必然事件C.不可能事件D.不确定事件
11.二次函数 的图像如图所示,下列结论正确是( )
A. B. C. D. 有两个不相等的实数根
12.与y=2(x﹣1)2+3形状相同的抛物线解析式为()
A.y=1+ x2B.y=(2x+1)2C.y=(x﹣1)2D.y=2x2
二、填空题
13.小明把如图所示的3×3的正方形网格纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是______________.
5.B
解析:B
【解析】
【分析】
根据平均年增长率即可解题.
【详解】
解:设这两年的年净利润平均增长率为x,依题意得:
故选B.
【点睛】
本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键.
6.A
解析:A
【解析】
【分析】
直接把已知数据代入进而得出c的值,再解方程根据根的判别式分析即可.
2020-2021上海市初三数学上期中模拟试题(附答案)
2020-2021上海市初三数学上期中模拟试题(附答案)一、选择题1.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130° 2.抛物线y=﹣(x +2)2﹣3向右平移了3个单位,那么平移后抛物线的顶点坐标是( ) A .(﹣5,﹣3) B .(﹣2,0) C .(﹣1,﹣3) D .(1,﹣3)3.用配方法解方程2680x x --=时,配方结果正确的是( )A .2(3)17x -=B .2(3)14-=xC .2(6)44x -=D .2(3)1x -=4.下列事件中,属于必然事件的是( )A .三角形的外心到三边的距离相等B .某射击运动员射击一次,命中靶心C .任意画一个三角形,其内角和是 180°D .抛一枚硬币,落地后正面朝上5.下列图形中,既是轴对称图形又是中心对称图形的是( ) A . B . C . D .6.抛物线y =2(x -3)2+4的顶点坐标是( )A .(3,4)B .(-3,4)C .(3,-4)D .(2,4)7.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为( )A .6B .7C .8D .9 8.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )A .49B .13C .29D .199.函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0. 其中正确的个数为A .1B .2C .3D .4 10.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是( )A .B .C .D .11.如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为( )A .30πcm 2B .48πcm 2C .60πcm 2D .80πcm 212.有两个一元二次方程2:0M ax bx c ++=,2:0N cx bx a ++=,其中,0ac ≠,a c ≠,下列四个结论中错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数B .如果4是方程M 的一个根,那么14是方程N 的另一个根 C .如果方程M 有两根符号相同,那么方程N 的两符号也相同 D .如果方程M 和方程N 有一个相同的根,那么这个根必是1x =二、填空题13.如图,菱形OABC 的顶点O 在坐标原点,顶点A 在x 轴上,∠B =120°,OA =1,将菱形OABC 绕原点顺时针旋转105°至OA 'B ′C '的位置,则点B '的坐标为_____.14.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.15.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.16.一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转(090)αα<<o o,使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为______.17.已知点C 在以AB 为直径的半圆上,连结AC 、BC ,AB =10,BC :AC =3:4,阴影部分的面积为_____.18.如图,从一个直径为1m 的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为_____m .19.已知一个直角三角形的两条直角边长分别为3cm 和4cm ,则这个直角三角形的内切圆的半径为 cm20.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.三、解答题21.列方程解应用题:某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个,已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?22.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (﹣5,1),B (﹣2,2),C (﹣1,4),请按下列要求画图:(1)将△ABC 先向右平移4个单位长度、再向下平移1个单位长度,得到△A 1B 1C 1,画出△A 1B 1C 1;(2)画出与△ABC 关于原点O 成中心对称的△A 2B 2C 2,并直接写出点A 2的坐标.23.工人师傅用一块长为10dm ,宽为6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm 2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?24.关于x 的一元二次方程2210x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)当k 为正整数时,求此时方程的根.25.为满足市场需求,新生活超市在端午节前夕购进价格为 3 元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价 4 元时,每天能出售 500 个,并且售价每上涨 0.1 元,其销售量将减少 10 个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价 的 200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为 800 元.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC 的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.D解析:D【解析】试题分析:原抛物线的顶点坐标为(-2,-3),向右平移三个单位后顶点纵坐标不变,横坐标加3,所以平移后抛物线的顶点坐标是(1,-3)。
2020~2021九年级第一学期中期模拟试卷(数学)
2020~2021九年级第一学期中期模拟试卷(数学)一、选择题(每小题3分,共24分)1.下列图形绕某点旋转180°后,不能与原来图形重合的是( )A .B .C .D .2.方程x x 322=的解为( ).A . 0B . 32C . 32-D . 0,323.抛物线2(1)2y x =-+的顶点坐标是( )A . (﹣1,2)B . (﹣1,﹣2)C . (1,﹣2)D . (1,2) 4.关于x 的一元二次方程0262=+-k x x 有两个不相等的实数根,则实数k 的取值范围是( )A . k ≤92B . k<92C . k ≥92D . k>92 5.已知22(2)m y m x -=+是二次函数,则m 的值为( ))A . 2B . ﹣2C . ±2D . 不能确定 6.把抛物线y=3x 2先向上平移2个单位,再向右平移3个单位,所得的抛物线是( ) A . y=3(x+3)2﹣2B . y=3(x+3)2+2C . y=3(x ﹣3)2﹣2D . y=3(x ﹣3)2+27.学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛.根据题意,下面所列方程正确的是( ) A . 221x = B . 1(1)212x x -= C . 21212x = D . (1)21x x -= 8.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是( ) A . B . C . D .二、填空题(每题3分,共24分)9.方程2x x-的二次项系数是______,一次项系数是_______,常数项是______.213m+=____.10.已知1是关于x的一元二次方程02=x的一个根,那么n++nmx11.在平面直角坐标系中,点(-2,3)关于原点对称点的坐标是_____.12.抛物线y=2x2﹣3x+4与y轴的交点坐标是______.的13.已知抛物线20=++≠()与x轴交于,A B两点,若点A的坐标为(-2,0),抛y ax bx c ax=,则点B的坐标为__________.物线的对称轴为直线214.用一条长40cm的绳子围成一个面积为64cm2的矩形.设矩形的一边长为cm,则可列方程为_____________.15.如图,有正方形ABCD,把)ADE顺时针旋转到)ABF的位置.其中AD=4,AE=5,则BF=_____.16.如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是_____.三、解答题(共72分)17.解方程)1)x2)2x)8=0(用因式分解法))2))x)2))x)5)=)2)18.等腰三角形底边长为8,腰长是方程29200-+=的一个根,求这个等腰三角形的腰长.x x19.一商店1月份的利润是2500元,3月份的利润达到3025元,这两个月的利润平均月增长的百分率是多少?20.认真观察图①中的四个图中阴影部分构成的图案,其中每个小正方形的边长为1,回答下列问题:(1)请写出这四个图案都具有的两个特征:特征1: 特征2:(2)请在图②中设计一个你心中最美丽的图案,使它也具备你所写出的上述特征.21.如图,在平面直角坐标系中,A(0,1),B(﹣3,5),C(﹣3,1).(1)在图中画出△ABC以A为旋转中心,沿顺时针方向旋转90o后的图形△AB1C1,并写出B1、C1两点的坐标;(2)在图中画出与△ABC关于原点对称的图形△A2B2C2,并写出B2、C2两点的坐标.22.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为)ABC三边的长.若方程有两个相等的实数根,试判断)ABC的形状,并说明理由.23.某水果批发商场经销一种高档水果,若每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,求:的(1)每千克应涨价多少元?(2)该水果月销售(按每月30天)是多少千克?24.已知抛物线y=﹣1x2﹣x+4.2(1)用配方法确定它的顶点坐标和对称轴;(2)x取何值时,y随x的增大而减小?25.小区要用篱笆围成一个四边形花坛、花坛的一边利用足够长的墙,另三边所用的篱笆之和恰好为18米.围成的花坛是如图所示的四边形ABCD,其中△ABC=△BCD=90°,且BC=2AB.设AB边的长为x米.四边形ABCD面积为S平方米.(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围).(2)当x是多少时,四边形ABCD面积S最大?最大面积是多少?26.如图,抛物线2y x bx c =-++交x 轴于点A (﹣3,0)和点B ,交y 轴于点C (0,3).(1)求抛物线函数表达式;(2)若点P 在抛物线上,且ΔAOP ΔBOC 4S S =,求点P 的坐标;(3)如图b ,设点Q 是线段AC 上一动点,作DQ)x 轴,交抛物线于点D ,求线段DQ 长度的最大值.的的C。
2020-2021学年上海市杨浦区兰生复旦中学九年级上学期期中数学仿真试卷 (Word版 含解析)
2020-2021学年上海市杨浦区兰生复旦中学九年级(上)期中数学仿真试卷一、选择题(共6小题).1.已知线段a、b、c,求作第四比例线段x,则以下正确的作图是()A.B.C.D.2.如图,在梯形ABCD中,AB∥CD,过O的直线MN∥CD,则=()A.B.C.D.3.如图,在△ABC中,D、E分别在AB、AC上,DE∥BC,EF∥CD交AB于F,那么下列比例式中正确的是()A.B.C.D.4.已知点E、F分别在△ABC的AB、AC边上,则下列判断正确的是()A.若△AEF与△ABC相似,则EF∥BCB.若AE×BE=AF×FC,则△AEF与△ABC相似C.若,则△AEF与△ABC相似D.若AF•BE=AE•FC,则△AEF与△ABC相似5.下列正确的是()A.B.为单位向量,则C.平面内向量、,总存在实数m使得向量D.若,,,则、就是在、方向上的分向量6.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则的值是()A.B.C.D.二.填空题(共12小题).7.若,那么的值为.8.计算:tan15°•tan45°•tan75°=.9.若是与非零向量反向的单位向量,那么=.10.如图,在△ABC中,BC=6,G是△ABC的重心,过G作边BC的平行线交AC于点H,则GH的长为.11.二次函数y=ax2﹣3x+a2﹣a的图象经过原点,则a=.12.若过⊙O内一点M的最长弦为10,最短弦为6,则OM的长为.13.已知⊙O的半径为13,弦AB=24,CD=10,且AB∥CD,则弦AB与CD之间的距离为.14.如图,一桥拱呈抛物线状,桥的最大高度是16米,跨度是40米,在线段AB上离中心M处5米的地方,桥的高度是m(π取3.14).15.小亮的身高为1.8米,他在路灯下的影子长为2米;小亮距路灯杆底部为3米,则路灯灯泡距离地面的高度为米.16.如图,△ABC中,BC=5,AC=3,△ABC绕着C点旋转到△A′B′C的位置,那么△BB′C与△AA′C的面积之比为.17.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,O为AC边中点,=2,连接BO交AD于F,作OE⊥OB交BC边于点E,则的值=.18.将一个无盖正方体纸盒展开(如图①),沿虚线剪开,用得到的5张纸片(其中4张是全等的直角三角形纸片)拼成一个正方形(如图②).则所剪得的直角三角形较短的与较长的直角边的比是.三.解答题(本大题共7小题,19-22题每题10分,23-24题每题12分,25题14分,共78分)19.计算:3tan30°+cos60°﹣+2sin245°20.已知在直角坐标系中,点A的坐标是(﹣3,1),将线段OA绕着点O顺时针旋转90°得到OB.(1)求点B的坐标;(2)求过A、B、O三点的抛物线的解析式;(3)设点B关于抛物线的对称轴L的对称点为C,求△ABC的面积.21.如图,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AD=3,∠BAE=30°,求BF的长.(计算结果保留根号)22.已知:如图,△ABC中,点E在中线AD上,∠DEB=∠ABC.求证:(1)DB2=DE•DA;(2)∠DCE=∠DAC.23.如图,△ABC中,D为BC边上的一点,E在AD上,过点E作直线l分别和AB、AC 两边交于点P和点Q,且EP=EQ.(1)当点P和点B重合的时候,求证:;(2)当P、Q不与A、B、C三点重合时,求证:.24.如图,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴和负半轴和x轴的正半轴上,抛物线y=ax2+bx+c(a≠0)经过的A、B,且12a+5c=0.(1)求抛物线的解析式;(2)若点P由点A开始边以2cm/s的速度向点B移动,同时点Q由点B开始沿BC边以1cm/s的速度向点C移动.当一点到达终点时,另一点也停止运动.①当移动开始后第t秒时,设S=PQ2(cm),试写出s与t之间的函数关系式,并写出t的取值范围.②当t取何值时,S取得最小值?此时在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标,若不存在,请说明理由.25.已知:在Rt△ABC中,∠C=90°,AC=4,∠A=60°,CD是边AB上的中线,直线BM∥AC,E是边CA延长线上一点,ED交直线BM于点F,将△EDC沿CD翻折得△E′DC,射线DE′交直线BM于点G.(1)如图1,当CD⊥EF时,求BF的值;(2)如图2,当点G在点F的右侧时;①求证:△BDF∽△BGD;②设AE=x,△DFG的面积为y,求y关于x的函数解析式,并写出x的取值范围;(3)如果△DFG的面积为,求AE的长.参考答案一.选择题(本大题共有6题,每题4分,共24分)1.已知线段a、b、c,求作第四比例线段x,则以下正确的作图是()A.B.C.D.【分析】根据第四比例线段的定义列出比例式,再根据平行线分线段成比例定理对各选项图形列出比例式即可得解.解:∵线段x为线段a、b、c的第四比例线段,∴=,∴正确的作图是B;故选:B.2.如图,在梯形ABCD中,AB∥CD,过O的直线MN∥CD,则=()A.B.C.D.【分析】先得到MN∥AB,利用平行线分线段成比例定理得到=,=,=,则可判断ON=OM,再证明△AON∽△ACD得到=①,证明△COM∽△CAB得到=②,把两式相加后利用等式的性质可得到+=.解:∵AB∥CD,MN∥CD,∴MN∥AB,∵ON∥AB,OM∥AB,∴=,=,∵=,∴=,∴ON=OM,∵ON∥CD,∴△AON∽△ACD,∴=①,∵OM∥AB,∴△COM∽△CAB,∴=②,①+②得+=1,即+=1,∴+=.故选:B.3.如图,在△ABC中,D、E分别在AB、AC上,DE∥BC,EF∥CD交AB于F,那么下列比例式中正确的是()A.B.C.D.【分析】根据平行线分线段成比例定理和相似三角形的性质找准线段的对应关系,对各选项分析判断后利用排除法求解.解:A、∵EF∥CD,DE∥BC,∴,,∵CE≠AC,∴.故本答案错误;B、∵DE∥BC,EF∥CD,∴,,∴,∵AD≠DF,∴,故本答案错误;C、∵EF∥CD,DE∥BC,∴,,∴.∵AD≠DF,∴,故本答案错误;D、∵DE∥BC,EF∥CD,∴,,∴,故本答案正确.故选:D.4.已知点E、F分别在△ABC的AB、AC边上,则下列判断正确的是()A.若△AEF与△ABC相似,则EF∥BCB.若AE×BE=AF×FC,则△AEF与△ABC相似C.若,则△AEF与△ABC相似D.若AF•BE=AE•FC,则△AEF与△ABC相似【分析】根据三角形相似的判定定理一一判断即可.解:选项A错误,∵△AEF与△ABC相似,可能是∠AEF=∠C,推不出EF∥BC.选项B错误,由AE×BE=AF×FC,推不出△AEF与△ABC相似.选项C错误,由,推不出△AEF与△ABC相似.选项D正确.理由:∵AF•BE=AE•FC,∴=,∴EF∥BC,∴△AEF∽△ABC.故选:D.5.下列正确的是()A.B.为单位向量,则C.平面内向量、,总存在实数m使得向量D.若,,,则、就是在、方向上的分向量【分析】根据平面向量的性质一一判断即可.解:A、|k|=k•|,正确.B、为单位向量,则=||•,错误,应该是=±||•.C、平面内向量、,总存在实数m使得向量=m,错误,因为与不一定是平行向量.D、若,,,则、就是在、方向上的分向量,错误,也可能是在、反方向上的分向量.故选:A.6.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则的值是()A.B.C.D.【分析】作FG⊥AB于点G,由AE∥FG,得出=,求出Rt△BGF≌Rt△BCF,再由AB=BC求解.解:作FG⊥AB于点G,∵∠DAB=90°,∴AE∥FG,∴=,∵AC⊥BC,∴∠ACB=90°,又∵BE是∠ABC的平分线,∴FG=FC,在Rt△BGF和Rt△BCF中,∴Rt△BGF≌Rt△BCF(HL),∴CB=GB,∵AC=BC,∴∠CBA=45°,∴AB=BC,∴====+1.故选:C.二.填空题(本大题共有12题,每题4分,共48分)7.若,那么的值为.【分析】根据已知得出b=a,再代入要求的式子进行计算即可得出答案.解:∵,∴b=a,∴==;故答案为:.8.计算:tan15°•tan45°•tan75°=1.【分析】直接利用锐角三角函数关系以及特殊角的三角函数值代入得出答案.解:原式=tan15°•tan75°•tan45°=1×1=1.故答案为:1.9.若是与非零向量反向的单位向量,那么=﹣||.【分析】根据向量的几何意义填空即可.解:若是与非零向量反向的单位向量,那么=﹣|•,故答案为﹣||.10.如图,在△ABC中,BC=6,G是△ABC的重心,过G作边BC的平行线交AC于点H,则GH的长为2.【分析】连接AG,并延长AG交BC于D;根据重心的性质知:D是BC中点,且AG:AD=2:3;可根据平行线分线段成比例定理得出的线段比例关系式及CD的长求出GH 的值.解:如图,连接AG,并延长AG交BC于D;∵G是△ABC的重心,∴AG:GD=2:3,且D是BC的中点;∵GH∥BC,∴==;∵CD=BC=3,∴GH=2.11.二次函数y=ax2﹣3x+a2﹣a的图象经过原点,则a=1.【分析】将(0,0)代入二次函数的解析式即可求出a的值.解:将(0,0)代入y=ax2﹣3x+a2﹣a,∴0=a2﹣a,∴a=0(舍去)或a=1,故答案为:1.12.若过⊙O内一点M的最长弦为10,最短弦为6,则OM的长为4.【分析】根据垂径定理及勾股定理即可求出.解:由已知可知,最长的弦是过M的直径AB,最短的是垂直平分直径的弦CD,已知AB=10,CD=6,则OD=5,MD=3,由勾股定理得OM=4.故答案为:4.13.已知⊙O的半径为13,弦AB=24,CD=10,且AB∥CD,则弦AB与CD之间的距离为7或17.【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.解:①当弦AB和CD在圆心同侧时,如图1,∵AB=24,CD=10,∴AE=12,CF=5,∵OA=OC=13,∴EO=5,OF=12,∴EF=12﹣5=7;②当弦AB和CD在圆心异侧时,如图2,∵AB=24,CD=10,∴AE=12,CF=5,∵OA=OC=13,∴EO=5,OF=12,∴EF=OF+OE=17.∴AB与CD之间的距离为7或17.故答案为7或17.14.如图,一桥拱呈抛物线状,桥的最大高度是16米,跨度是40米,在线段AB上离中心M处5米的地方,桥的高度是15m(π取3.14).【分析】根据题意假设解析式为y=ax2+bx+c,用待定系数法求出解析式.然后把自变量的值代入求解对应函数值即可.解:设抛物线的方程为y=ax2+bx+c已知抛物线经过(0,16),(﹣20,0),(20,0),故可得,可得a=﹣,b=0,c=16,故解析式为y=﹣x2+16,当x=5时,y=15m.15.小亮的身高为1.8米,他在路灯下的影子长为2米;小亮距路灯杆底部为3米,则路灯灯泡距离地面的高度为 4.5米.【分析】根据已知得出图形,进而利用相似三角形的判定与性质求出即可.解:结合题意画出图形得:∴△ADC∽△AEB,∴=,∵小亮的身高为1.8米,他在路灯下的影子长为2米;小亮距路灯杆底部为3米,∴AC=2,BC=3,CD=1.8,∴=,解得:BE=4.5,故答案为:4.5.16.如图,△ABC中,BC=5,AC=3,△ABC绕着C点旋转到△A′B′C的位置,那么△BB′C与△AA′C的面积之比为.【分析】由旋转的性质可得AC=CA',BC=CB',∠BCB'=∠ACA',可证△ACA'∽△BCB',由相似三角形的面积比等于相似比的平方可求解.解:∵△ABC绕着C点旋转到△A′B′C的位置,∴AC=CA',BC=CB',∠BCB'=∠ACA',∴,∴△ACA'∽△BCB',∴=()2=,故答案为:.17.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,O为AC边中点,=2,连接BO交AD于F,作OE⊥OB交BC边于点E,则的值=2.【分析】先证明∠BAF=∠C,∠ABF=∠COE,作OH⊥AC,交BC于H,易证:△OEH 和△OFA相似,可得,由三角形中位线定理可得OH=AB,OA=OC=AC,即可求解.解:∵AD⊥BC,∴∠DAC+∠C=90°.∵∠BAC=90°,∴∠BAF=∠C.∵OE⊥OB,∴∠BOA+∠COE=90°,∵∠BOA+∠ABF=90°,∴∠ABF=∠COE.过O作AC的垂线交BC于H,则OH∥AB,∵∠ABF=∠COE,∠BAF=∠C.∴∠AFB=∠OEC,∴∠AFO=∠HEO,而∠BAF=∠C,∴∠FAO=∠EHO,∴△OEH∽△OFA,∴,又∵O为AC的中点,OH∥AB.∴OH为△ABC的中位线,∴OH=AB,OA=OC=AC,而,∴,即,故答案为:2.18.将一个无盖正方体纸盒展开(如图①),沿虚线剪开,用得到的5张纸片(其中4张是全等的直角三角形纸片)拼成一个正方形(如图②).则所剪得的直角三角形较短的与较长的直角边的比是1:2.【分析】本题考查了拼摆的问题,仔细观察图形的特点作答.解:由图可得,所剪得的直角三角形较短的边是原正方体棱长的一半,而较长的直角边正好是原正方体的棱长,所以所剪得的直角三角形较短的与较长的直角边的比是1:2.三.解答题(本大题共7小题,19-22题每题10分,23-24题每题12分,25题14分,共78分)19.计算:3tan30°+cos60°﹣+2sin245°【分析】直接利用特殊角的三角函数值和二次根式的性质分别化简得出答案.解:原式=3×+﹣+2×()2=+﹣+1=.20.已知在直角坐标系中,点A的坐标是(﹣3,1),将线段OA绕着点O顺时针旋转90°得到OB.(1)求点B的坐标;(2)求过A、B、O三点的抛物线的解析式;(3)设点B关于抛物线的对称轴L的对称点为C,求△ABC的面积.【分析】(1)本题可通过构建全等三角形来求解.过点A作AH⊥x轴,过点B作BM ⊥y轴,根据旋转的性质可知:OA=OB,而∠MOB与∠AOH都是∠AOM的余角,因此两角相等,因此这两个直角三角形就全等,那么OH=OM,AH=BM,由此可得出B点坐标.(2)根据求出的B点坐标以及已知的A、O的坐标即可用待定系数法求抛物线的解析式.(3)先根据抛物线的解析式求出抛物线的对称轴及C点坐标,即可得出BC的长,求三角形ABC的面积时,可以BC为底,以A、B纵坐标差的绝对值为高来求解.解:(1)过点A作AH⊥x轴,过点B作BM⊥y轴,由题意得OA=OB,∠AOH=∠BOM,∴△AOH≌△BOM∵A的坐标是(﹣3,1),∴AH=BM=1,OH=OM=3∴B点坐标为(1,3)(2)设抛物线的解析式为y=ax2+bx+c则.得∴抛物线的解析式为y=x2+x(3)对称轴为x=﹣∴C的坐标为(﹣,3)∴S△ABC=BC•h BC=×(1+)×2=.21.如图,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AD=3,∠BAE=30°,求BF的长.(计算结果保留根号)【分析】(1)可通过证明∠BAF=∠AED,∠AFB=∠D,证得△ABF∽△EAD;(2)根据平行线的性质得到BE⊥AB,根据三角函数的定义得到tan∠BAE=,根据相似三角形的性质即可得到结论.【解答】(1)证明:在平行四边形ABCD中,∵∠D+∠C=180°,AB∥CD,∴∠BAF=∠AED.∵∠AFB+∠BFE=180°,∠D+∠C=180°,∠BFE=∠C,∴∠AFB=∠D,∴△ABF∽△EAD;(2)解:∵BE⊥CD,AB∥CD,∴BE⊥AB.∴∠ABE=90°.在Rt△ABE中,∠BAE=30°,∴tan∠BAE=,∵由(1)知,△ABF∽△EAD,∴,∵AD=3,∴BF=.22.已知:如图,△ABC中,点E在中线AD上,∠DEB=∠ABC.求证:(1)DB2=DE•DA;(2)∠DCE=∠DAC.【分析】(1)根据已知可证△BDE∽△DAB,得到,即证BD2=AD•DE.(2)在(1)的基础上,因为CD=BD,可证,即可证△DEC∽△DCA,得到∠DCE=∠DAC.【解答】证明:(1)在△BDE和△DAB中∵∠DEB=∠ABC,∠BDE=∠ADB,(1分)∴△BDE∽△ADB,(1分)∴,(1分)∴BD2=AD•DE.(1分)(2)∵AD是中线,∴CD=BD,∴CD2=AD•DE,∴,(1分)又∠ADC=∠CDE,(1分)∴△DEC∽△DCA,(1分)∴∠DCE=∠DAC.(1分)23.如图,△ABC中,D为BC边上的一点,E在AD上,过点E作直线l分别和AB、AC两边交于点P和点Q,且EP=EQ.(1)当点P和点B重合的时候,求证:;(2)当P、Q不与A、B、C三点重合时,求证:.【分析】(1)过点Q作QF∥BC交AD于F,由相似三角形的性质可得=,可得BD=FQ,EF=DE,通过证明△AFQ∽△ADC,可得,即可得结论;(2)过点Q作QF∥BC交AD于F,过点P作PH∥BC交AD于H,由相似三角形的性质可得,可得PH=FQ,EF=HE,由相似三角形的性质可得,,即可得结论.【解答】证明:(1)如图,过点Q作QF∥BC交AD于F,∴△FQE∽△DPE,∴=,又∵QE=EP,∴BD=FQ,EF=DE,∵QF∥CD,∴△AFQ∽△ADC,∴,∴,∴;(2)如图,过点Q作QF∥BC交AD于F,过点P作PH∥BC交AD于H,∴QF∥PH,∴△FQE∽△HPE,∴,又∵QE=EP,∴PH=FQ,EF=HE,∵FQ∥BC,∴△AQF∽△ACD,∴,∵PH∥BC,∴△APH∽△ABD,∴,∴===.24.如图,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴和负半轴和x轴的正半轴上,抛物线y=ax2+bx+c(a≠0)经过的A、B,且12a+5c=0.(1)求抛物线的解析式;(2)若点P由点A开始边以2cm/s的速度向点B移动,同时点Q由点B开始沿BC边以1cm/s的速度向点C移动.当一点到达终点时,另一点也停止运动.①当移动开始后第t秒时,设S=PQ2(cm),试写出s与t之间的函数关系式,并写出t的取值范围.②当t取何值时,S取得最小值?此时在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标,若不存在,请说明理由.【分析】(1)根据已知条件,结合正方形的性质求出A、B点的坐标,利用待定系数法可求解;(2)①用t表示出PB、BQ的长,利用勾股定理建立起它们之间的关系;②利用①中关系式,根据二次函数的性质求出S取最小值时的t的取值,计算出PB、BQ的长,然后分三种情况讨论利用平行四边形的性质可求解.解:(1)据题意知:A(0,﹣2),B(2,﹣2),∵A点在抛物线上,∴c=﹣2,∵12a+5c=0,∴a=,由AB=2知抛物线的对称轴为:x=1,即:﹣=1,∴b=﹣,∴抛物线的解析式为:y=x2﹣x﹣2;(2)①由图象知:PB=2﹣2t,BQ=t,∴S=PQ2=PB2+BQ2=(2﹣2t)2+t2,即S=5t2﹣8t+4(0≤t≤1);②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形,∵S=5t2﹣8t+4(0≤t≤1),∴S=5(t﹣)2+(0≤t≤1),∴当t=时,S取得最小值;这时PB=2﹣=0.4,BQ=0.8,P(1.6,﹣2),Q(2,﹣1.2),分情况讨论:若PB与PQ为边,这时QR=PB=0.4,QR∥PB,则:R的坐标为(2.4,﹣1.2),代入y=x2﹣x﹣2,左右两边相等,∴这时存在R(2.4,﹣1.2)满足题意;若PB与QB为边,这时PR=QB,PR=QB=0.8,则:R的坐标为(1.6,﹣1.2),代入y=x2﹣x﹣2,左右两边不相等,R不在抛物线上;若PQ与QB为边,这时PR=QB,PR∥QB,则:R的坐标为(1.6,﹣2.8),代入y=x2﹣x﹣2,左右不相等,R不在抛物线上.综上所述,存在一点R(2.4,﹣1.2)满足题意.25.已知:在Rt△ABC中,∠C=90°,AC=4,∠A=60°,CD是边AB上的中线,直线BM∥AC,E是边CA延长线上一点,ED交直线BM于点F,将△EDC沿CD翻折得△E′DC,射线DE′交直线BM于点G.(1)如图1,当CD⊥EF时,求BF的值;(2)如图2,当点G在点F的右侧时;①求证:△BDF∽△BGD;②设AE=x,△DFG的面积为y,求y关于x的函数解析式,并写出x的取值范围;(3)如果△DFG的面积为,求AE的长.【分析】(1)由∠ACB=90°,AD=BD,利用斜边上的中线等于斜边的一半得到CD =AD=BD,再由∠BAC=60°,得到三角形ADC为等边三角形,由AC的长求出AD与BD的长,同时求出∠ABC=30°,由BM与AC平行,利用两直线平行内错角相等得到∠MBC=∠ACB=90°,再由CD垂直于EF,得到∠CDE和∠CDF都为直角,在直角三角形EDC中,求出∠DEC为30°,利用两直线平行内错角相等可得出∠BFD也为30°,而由∠CDE﹣∠CDA求出∠EDA为30°,利用对顶角相等得到∠BDF为30°,即∠BFD =∠BDF,利用等角对等边可得出BD=BF,由BD的长即可求出BF的长;(2)当点G在点F的右侧时,如图2所示,①由翻折,得∠E′CD=∠ACD=60°,得到一对内错角相等,利用内错角相等两直线平行,得到CE′∥AB,再由两直线平行得到一对内错角相等,利用等量代换得到∠BDG=∠BFD,再由一对公共角,利用两对应角相等的两三角形相似可得出△BDF∽△BGD;②由△BDF∽△BGD得比例,将各自的值代入即可列出y与x的函数关系式,求出x的范围即可;(3)分两种情况考虑:(i)当点G在点F的右侧时,在y与x的关系式中,令y=6列出关于x的方程,求出方程的解得到x的值,即为AE的长;(ii)当点G在点F的左侧时,如图3所示,列出此时y与x的关系式,令y=6列出关于x的方程,求出方程的解得到x的值,即为AE的长,综上,得到所有满足题意的AE的长.解:(1)∵∠ACB=90°,AD=BD,∴CD=AD=BD,∵∠BAC=60°,∴∠ADC=∠ACD=60°,∠ABC=30°,AD=BD=AC,∵AC=4,∴AD=BD=AC=4,∵BM∥AC,∴∠MBC=∠ACB=90°,又∵CD⊥EF,∴∠CDF=90°,∴∠BDF=30°,∴∠BFD=30°,∴∠BDF=∠BFD,∴BF=BD=4;(2)①证明:由翻折,得∠E′CD=∠ACD=60°,∴∠ADC=∠E′CD,∴CE′∥AB,∴∠CE′D=∠BDG,∵BM∥AC,∴∠CED=∠BFD,又∵∠CE′D=∠CED,∴∠BDG=∠BFD,∵∠DBF=∠GBD,∴△BDF∽△BGD;②由△BDF∽△BGD,得=,∵D为AB的中点,∴BD=AD,又∵BM∥AC,∴∠DBF=∠DAE,∠BFD=∠DEA,在△BFD和△AED中,∵,∴△BFD≌△AED(AAS),∴BF=AE=x,∴=,∴BG=,在Rt△ABC中,AB=8,AC=4,根据勾股定理得:BC==4,∵点D到直线BM的距离d=BC=2,∴S△DFG=FG•d=(BG﹣BF)•d,即y=×(﹣x)×2=﹣x(0<x<4);(3)(i)当点G在点F的右侧时,由题意,得6=﹣x,整理,得x2+6x﹣16=0,解得x1=2,x2=﹣8(不合题意,舍去);(ii)当点G在点F的左侧时,如图3所示:同理得到S△DFG=FG•d=(BF﹣BG)•d,即y=x﹣(x>4),由题意,得6=x﹣,整理,得x2﹣6x﹣16=0,解得x3=8,x4=﹣2(不合题意,舍去),综上所述,AE的值为2或8.。
2020-2021上海复旦实验中学九年级数学上期中试题(含答案)
2020-2021上海复旦实验中学九年级数学上期中试题(含答案)一、选择题1.方程x 2+x-12=0的两个根为( ) A .x 1=-2,x 2=6B .x 1=-6,x 2=2C .x 1=-3,x 2=4D .x 1=-4,x 2=32.方程2(2)9x -=的解是( ) A .1251x x ==-,B .1251x x =-=,C .12117x x ==-, D .12117x x =-=,3.用配方法解方程2410x x -+=,配方后的方程是 ( )A .2(2)3x +=B .2(2)3x -=C .2(2)5x -=D .2(2)5x +=4.抛物线y=﹣(x +2)2﹣3向右平移了3个单位,那么平移后抛物线的顶点坐标是( )A .(﹣5,﹣3)B .(﹣2,0)C .(﹣1,﹣3)D .(1,﹣3) 5.下列事件中,属于必然事件的是( ) A .三角形的外心到三边的距离相等 B .某射击运动员射击一次,命中靶心 C .任意画一个三角形,其内角和是 180° D .抛一枚硬币,落地后正面朝上6.下列交通标志是中心对称图形的为( ) A .B .C .D .7.如图,AD 、BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发,沿O→C→D→O 的路线匀速运动.设∠APB=y (单位:度),那么y 与点P 运动的时间x (单位:秒)的关系图是( )A .AB .BC .CD .D8.若α,β是一元二次方程x 2﹣x ﹣2018=0的两个实数根,则α2﹣3α﹣2β+3的值为( ) A .2020 B .2019 C .2018 D .2017 9.若2245a a x -+-=,则不论取何值,一定有( )A .5x >B .5x <-C .3x ≥-D .3x ≤-10.如图,是两条互相垂直的街道,且A 到B ,C 的距离都是7 km ,现甲从B 地走向A 地,乙从A 地走向C 地,若两人同时出发且速度都是4km /h ,则两人之间的距离为5km时,是甲出发后( )A .1hB .0.75hC .1.2h 或0.75hD .1h 或0.75h11.如图,△ABC 绕点A 旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是( )A .DE=3B .AE=4C .∠ACB 是旋转角D .∠CAE 是旋转角12.如图,已知二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于点A (﹣1,0),对称轴为直线x=1,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论:①当x >3时,y <0; ②3a+b <0; ③213a -≤≤-; ④248ac b a ->; 其中正确的结论是( )A .①③④B .①②③C .①②④D .①②③④二、填空题13.已知x 1,x 2是一元二次方程x 2+2(m +1)x +m 2﹣1=0的两实数根,且满足(x 1﹣x 2)2=16﹣x 1x 2,实数m 的值为________.14.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.15.新园小区计划在一块长为20米,宽12米的矩形场地上修建三条互相垂直的长方形甬路(一条橫向、两条纵向,且横向、纵向的宽度比为3:2),其余部分种花草.若要使种花草的面积达到144米2.则横向的甬路宽为_____米.16.如图,从一个直径为1m 的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为_____m .17.如图,把正方形铁片OABC 置于平面直角坐标系中,顶点A 的坐标为(3,0),点P (1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P 的坐标为____________________.18.小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是____________.19.如图,O e 的半径为2,切线AB 的长为23,点P 是O e 上的动点,则AP 的长的取值范围是_________.20.两个全等的三角尺重叠放在△ACB 的位置,将其中一个三角尺绕着点C 按逆时针方向旋转至△DCE 的位置,使点A 恰好落在边DE 上,AB 与CE 相交于点F .已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm ,则CF=______cm .三、解答题21.若关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根. (1)求a 的取值范围;(2)当a 为符合条件的最大整数,求此时方程的解.22.如图,已知△ABC 中,AB =AC ,把△ABC 绕A 点沿顺时针方向旋转得到△ADE ,连接BD ,CE 交于点F .(1)求证:△AEC ≌△ADB ;(2)若AB =2,∠BAC =45°,当四边形ADFC 是菱形时,求BF 的长.23.如图,已知抛物线y=﹣x 2+bx +c 与x 轴交于点A (﹣1,0)和点B (3,0),与y 轴交于点C ,连接BC 交抛物线的对称轴于点E ,D 是抛物线的顶点. (1)求此抛物线的解析式; (2)求点C 和点D 的坐标;(3)若点P 在第一象限内的抛物线上,且S △ABP =4S △COE ,求P 点坐标.24.已知关于x 的一元二次方程225x x m --=()() (1)求证:对于任意实数m ,方程总有两个不相等的实数根;(2)若此方程的两实数根12,x x 满足221233x x +=,求实数m 的值.25.已知抛物线y=-x 2-2x+c 与x 轴的一个交点是(1,0). (1)C 的值为_______;(2)选取适当的数据补填下表,并在平面直角坐标系内描点画出该抛物线的图像;x•••1-1•••y•••0•••(3)根据所画图像,写出y>0时x的取值范围是_____.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:将x2+x﹣12分解因式成(x+4)(x﹣3),解x+4=0或x﹣3=0即可得出结论.x2+x﹣12=(x+4)(x﹣3)=0,则x+4=0,或x﹣3=0,解得:x1=﹣4,x2=3.考点:解一元二次方程-因式分解法2.A解析:A【解析】【分析】此方程已经配方,根据解一元二次方程的步骤解方程即可.【详解】()229x-=,故x-2=3或x-2=-3,解得:x1=5,x2=-1,故答案选A.【点睛】本题主要考查了解一元二次方程的基本解法,这是很简单的解方程,难度不大.3.B解析:B【解析】【分析】根据配方法可以解答本题.【详解】x2−4x+1=0,(x−2)2−4+1=0,(x−2)2=3,故选:B.【点睛】本题考查解一元二次方程−配方法,解答本题的关键是解一元二次方程的方法.4.D解析:D【解析】试题分析:原抛物线的顶点坐标为(-2,-3),向右平移三个单位后顶点纵坐标不变,横坐标加3,所以平移后抛物线的顶点坐标是(1,-3)。
2020-2021上海复旦初级中学九年级数学上期中一模试卷(带答案)
2020-2021上海复旦初级中学九年级数学上期中一模试卷(带答案)一、选择题1.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果40DOE ∠=︒,那么A ∠的度数为( )A .35°B .40°C .60°D .70°2.﹣3的绝对值是( )A .﹣3B .3C .-13D .133.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A . B .C .D .4.下列事件中,属于必然事件的是( )A .随时打开电视机,正在播新闻B .优秀射击运动员射击一次,命中靶心C .抛掷一枚质地均匀的骰子,出现4点朝上D .长度分别是3cm ,5cm ,6cm 的三根木条首尾相接,组成一个三角形5.如图是二次函数2y ax bx c =++图象的一部分,图象过点A (﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c >0;②若点B (32-,1y )、C (52-,2y )为函数图象上的两点,则12y y <; ③2a ﹣b=0; ④244ac b a-<0,其中,正确结论的个数是( )A .1B .2C .3D .46.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪.若草坪的面积为570m 2,道路的宽为xm ,则可列方程为( )A .32×20﹣2x 2=570 B .32×20﹣3x 2=570 C .(32﹣x )(20﹣2x )=570D .(32﹣2x )(20﹣x )=570 7.已知关于x 的方程()211230mm x x +-+-=是一元二次方程,则m 的值为( ) A .1B .-1C .±1D .2 8.若关于x 的一元二次方程(m ﹣1)x 2+5x+m 2﹣5m+4=0有一个根为0,则m 的值等于( )A .1B .1或4C .4D .09.若关于x 的方程240kx x -+=有实数根,则k 的取值范围是( )A .k 16≤B .1k 16≤C .k 16≤且k 0≠D .1k 16≤且k 0≠ 10.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .11.山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透空的感觉和艺术享受.下列四幅剪纸图案中,是中心对称图形的是( )A .B .C .D .12.用1、2、3三个数字组成一个三位数,则组成的数是偶数的概率是( ) A .13 B .14 C .15 D .16二、填空题13.用半径为30,圆周角为120°的扇形纸片围成一个圆锥的侧面,那么这个圆锥的底面圆半径是__.14.如图,五边形ABCD 内接于⊙O ,若AC=AD ,∠B+∠E=230°,则∠ACD 的度数是__________.15.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC =30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ =OQ ,则满足条件的∠OCP 的大小为_______.16.如图,将边长为12的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.17.如图,四边形ABCD 是⊙O 的内接四边形,∠B=135°,则∠AOC 的度数为_____.18.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得10AD cm ,点D 在量角器上的读数为60o ,则该直尺的宽度为____________cm .19.要为一幅矩形照片配一个镜框,如图,要求镜框的四条边宽度都相等,且镜框所占面积是照片本身面积的四分之一,已知照片的长为21cm ,宽为10cm ,求镜框的宽度.设镜框的宽度为xcm ,依题意列方程,化成一般式为_____.20.两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=______cm.三、解答题21.如图,△DEF是△ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3,4﹣b)与点Q(2a,2b﹣3)也是通过上述变换得到的对应点,求a,b 的值.(3)求图中△ABC的面积.22.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?23.关于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有两个实数根.(1)求m的取值范围;(2)若m为正整数,求此方程的根.24.三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.(1)三辆汽车经过此收费站时,都选择A通道通过的概率是;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.25.如图,△ABC的顶点坐标分别为A(0,1)、B(3,3)、C(1,3).(1) 画出△ABC关于点O的中心对称图形△A1B1C1(2) 画出△ABC绕原点O逆时针旋转90°的△A2B2C2,直接写出点C2的坐标为______.(3) 若△ABC内一点P(m,n)绕原点O逆时针旋转90°的对应点为Q,则Q的坐标为______.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】连接CD,由圆周角定理得出∠BDC=90°,求出∠DCE=20°,再由直角三角形两锐角互余求解即可,【详解】解:连接CD,如图,∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∵∠DOE=40°,∴∠DCE=20°,∴∠A=90°−∠DCE=70°,故选:D.【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.2.B解析:B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 3.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.4.D解析:D【解析】分析:根据事件发生的可能性大小判断相应事件的类型即可.详解:A.是随机事件,故A不符合题意;B.是随机事件,故B不符合题意;C.是随机事件,故C不符合题意;D.是必然事件,故D符合题意.故选D .点睛:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.5.B解析:B【解析】【分析】【详解】∵抛物线与y 轴交于正半轴,∴c >0,①正确;∵对称轴为直线x=﹣1,∴x <﹣1时,y 随x 的增大而增大,∴y 1>y 2②错误;∵对称轴为直线x=﹣1, ∴﹣2b a=﹣1, 则2a ﹣b=0,③正确;∵抛物线的顶点在x 轴的上方, ∴244ac b a>0,④错误; 故选B.6.D解析:D【解析】【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm ,根据草坪的面积是570m 2,即可列出方程.【详解】解:设道路的宽为xm ,根据题意得:(32-2x )(20-x )=570,故选D .【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题关键是利用平移把不规则的图形变为规则图形,进而即可列出方程.7.B解析:B【解析】【分析】根据一元二次方程的定义得出m-1≠0,m 2+1=2,求出m 的值即可.【详解】∵关于x 的方程()211230mm x x +-+-=是一元二次方程,∴m 2+1=2且m-1≠0,解得:m=-1,故选:B .【点睛】 本题考查了对一元二次方程的定义的理解和运用,注意:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2,且二次项系数不为0.8.C解析:C【解析】【分析】先把x =0代入方程求出m 的值,然后根据一元二次方程的定义确定满足条件的m 的值.【详解】解:把x =0代入方程得m²−5m +4=0,解得m ₁=4,m ₂=1,而a−1≠0,所以m =4.故选C .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.注意一元二次方程的定义.9.B解析:B【解析】【分析】当0k =时,代入方程验证即可,当0k ≠时,根据方程的判别式△≥0可得关于k 的不等式,解不等式即得k 的取值范围,问题即得解决.【详解】解:当0k =时,40x -+=,此时4x =,有实数根;当0k ≠时,∵方程240kx x -+=有实数根,∴△2(1)440k =--⨯⨯…,解得:116k …,此时116k …且0k ≠; 综上,116k ….故选B. 【点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程的根的判别式与根的关系是解题的关键.10.C解析:C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、既是轴对称图形,也是中心对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11.B解析:B【解析】【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项不符合题意;B、是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意.故选B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12.A解析:A【解析】【分析】【详解】解:用1,2,3三个数字组成一个三位数的所有组合是:123,132,213,231,312,321,是偶数只有2个,所以组成的三位数是偶数的概率是13;故选A.二、填空题13.10【解析】【分析】由扇形的弧长等于圆锥的底面周长列式计算【详解】设圆锥底面圆的半径为r 则2πr=解得:r=10所以圆锥的底面半径为10故答案为:10【点睛】考查了圆锥的计算及扇形的弧长的计算的知识解析:10【解析】【分析】由扇形的弧长等于圆锥的底面周长列式计算.【详解】设圆锥底面圆的半径为r ,则2πr=12030180π⋅, 解得:r=10, 所以圆锥的底面半径为10.故答案为:10.【点睛】考查了圆锥的计算及扇形的弧长的计算的知识,解题关键是牢固掌握和弧长公式.14.65°【解析】【分析】连接OAOCOD 利用同弧所对的圆心角等于圆周角得2倍求出所求的角即可【详解】解:如图解:连接OAOCOD 在圆的内接五边形ABCDE 中∠B+∠E=230°∠B=(∠AOD+∠CO解析:65°【解析】【分析】 连接OA,OC,OD,利用同弧所对的圆心角等于圆周角得2倍求出所求的角即可.【详解】解:如图解:连接OA,OC,OD,Q 在圆的内接五边形ABCDE 中, ∠B+∠E=230°,Q ∠B=12(∠AOD+∠COD), ∠E=12(∠AOC+∠COD),(圆周角定理) ∴12(∠AOD+∠COD)+ 12(∠AOC+∠COD)= 230°, 即: 12(∠AOD+∠COD+∠AOC+∠COD )= 230°, 可得:∠C0D=o o 2230360⨯-=0100,可得:∠CAD=050,50,在△ACD中,AC=AD,∠CAD=065,可得∠ACD=065.故答案:0【点睛】此题考查了圆心角、弧、弦的关系,以及圆周角定理,熟练掌握定理及法则是解本题的关键. 15.40°【解析】:在△QOC中OC=OQ∴∠OQC=∠OCQ在△OPQ中QP=QO∴∠Q OP=∠QPO又∵∠QPO=∠OCQ+∠AOC∠AOC=30°∠QOP+∠QPO+∠OQC=180°∴3∠OCP解析:40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°16.4或8【解析】【分析】由平移的性质可知阴影部分为平行四边形设A′D=x 根据题意阴影部分的面积为(12−x)×x即x(12−x)当x(12−x)=32时解得:x=4或x=8所以AA′=8或AA′=4【解析:4或8【解析】【分析】由平移的性质可知阴影部分为平行四边形,设A′D=x,根据题意阴影部分的面积为(12−x)×x,即x(12−x),当x(12−x)=32时,解得:x=4或x=8,所以AA′=8或AA′=4.【详解】设AA′=x,AC与A′B′相交于点E,∵△ACD是正方形ABCD剪开得到的,∴△ACD是等腰直角三角形,∴∠A=45∘,∴△AA′E是等腰直角三角形,∴A′E=AA′=x,A′D=AD−AA′=12−x,∵两个三角形重叠部分的面积为32,∴x(12−x)=32,整理得,x2−12x+32=0,=4,x2=8,解得x1即移动的距离AA′等4或8.【点睛】本题考查正方形和图形的平移,熟练掌握计算法则是解题关键·. 17.【解析】【分析】由圆内接四边形的性质先求得∠D 的度数然后依据圆周角定理求解即可【详解】∵四边形ABCD 是⊙O 的内接四边形∴∠B +∠D =180°∴∠D =180°-135°=45°∴∠AOC =90°故答解析:90o【解析】【分析】由圆内接四边形的性质先求得∠D 的度数,然后依据圆周角定理求解即可.【详解】∵四边形ABCD 是⊙O 的内接四边形,∴∠B +∠D =180°,∴∠D =180°-135°=45°,∴∠AOC =90°,故答案为90°.【点睛】本题主要考查了圆内接四边形的基本性质以及圆周角定理.18.【解析】【分析】连接OCODOC 与AD 交于点E 根据圆周角定理有根据垂径定理有:解直角即可【详解】连接OCODOC 与AD 交于点E 直尺的宽度:故答案为【点睛】考查垂径定理熟记垂径定理是解题的关键 解析:533【解析】【分析】连接OC ,OD ,OC 与AD 交于点E ,根据圆周角定理有130,2BAD BOD ∠=∠=︒根据垂径定理有:15,2AE AD == 解直角OAE △即可. 【详解】连接OC ,OD ,OC 与AD 交于点E ,130,2BAD BOD ∠=∠=︒ 10 3.cos303AE OA ==︒ 5tan 303,3OE AE =⋅︒==-==直尺的宽度:CE OC OE【点睛】考查垂径定理,熟记垂径定理是解题的关键.19.8x2+124x﹣105=0【解析】【分析】镜框所占的面积为照片面积的四分之一为了不出差错最好表示出照片的面积=4(镜框面积-照片面积)【详解】解:设镜框的宽度为xcm依题意得:21×10=4(21解析:8x2+124x﹣105=0【解析】【分析】镜框所占的面积为照片面积的四分之一,为了不出差错,最好表示出照片的面积=4(镜框面积-照片面积).【详解】解:设镜框的宽度为xcm,依题意,得:21×10=4[(21+2x)(10+2x)﹣21×10],整理,得:8x2+124x﹣105=0.故答案为:8x2+124x﹣105=0.【点睛】本题考查了一元二次方程的应用,解题的难点在于把给出的关键描述语进行整理,解决本题的关键是要正确分析题目中等量关系.20.【解析】试题解析∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置使点A恰好落在边DE上∴DC=AC∠D=∠CAB∴∠D=∠DAC∵∠ACB=∠DCE=90°∠B=30°∴∠D=∠C AB=6解析:【解析】试题解析∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,∴DC=AC,∠D=∠CAB,∴∠D=∠DAC,∵∠ACB=∠DCE=90°,∠B=30°,∴∠D=∠CAB=60°,∴∠DCA=60°,∴∠ACF=30°,可得∠AFC=90°,∵AB=8cm,∴AC=4cm,∴FC=4cos30°=23cm.【点睛】此题主要考查了旋转的性质以及直角三角形的性质,正确得出∠AFC的度数是解题关键.三、解答题21.见解析【解析】【分析】(1)利用坐标格可读出各点坐标,观察坐标数值即可发现两个对应点关于原点O对称;(2)由(1)中得到的对应点之间关于原点O对称的关系即可求解;(3)通过观察坐标格,将△ABC的面积转化为几个面积的差即可.【详解】解:(1)A(2,3)与D(﹣2,﹣3);B(1,2)与E(﹣1,﹣2);C(3,1)与F (﹣3,﹣1).对应点的坐标的特征:横坐标互为相反数,纵坐标互为相反数;(2)由(1)可得a+3=﹣2a,4﹣b=﹣(2b﹣3).解得a=﹣1,b=﹣1;(3)三角形ABC的面积=2×2﹣×2×1﹣×2×1﹣×1×1=.【点睛】本题结合了平面直角坐标系考察了中心对称的知识.22.(1)作图见解析;裁掉的正方形的边长为2dm,底面积为12dm2;(2)当裁掉边长为2.5dm的正方形时,总费用最低,最低费用为25元.【解析】试题分析:(1)由题意可画出图形,设裁掉的正方形的边长为xdm,则题意可列出方程,可求得答案;(2)由条件可求得x的取值范围,用x可表示出总费用,利用二次函数的性质可求得其最小值,可求得答案.试题解析:(1)如图所示:设裁掉的正方形的边长为xdm,由题意可得(10﹣2x)(6﹣2x)=12,即x2﹣8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2;(2)∵长不大于宽的五倍,∴10﹣2x≤5(6﹣2x ),解得0<x≤2.5,设总费用为w 元,由题意可知w=0.5×2x (16﹣4x )+2(10﹣2x )(6﹣2x )=4x 2﹣48x+120=4(x ﹣6)2﹣24,∵对称轴为x=6,开口向上,∴当0<x≤2.5时,w 随x 的增大而减小,∴当x=2.5时,w 有最小值,最小值为25元,答:当裁掉边长为2.5dm 的正方形时,总费用最低,最低费用为25元.考点:1、二次函数的应用;2、一元二次方程的应用23.(1)98m £且0m ≠;(2)10x =,21x =-. 【解析】【分析】(1)根据一元二次方程的定义和判别式的意义得到m≠0且()()22341m m m =----⎡⎤⎣⎦V ≥0,然后求出两个不等式的公共部分即可;(2)利用m 的范围可确定m=1,则原方程化为x 2+x=0,然后利用因式分解法解方程.【详解】(1)∵2=[(23)]4(1)m m m ∆---- =89m -+. 解得98m ≤且0m ≠. (2)∵m 为正整数,∴1m =.∴原方程为20x x +=.解得10x =,21x =-.【点睛】考查一元二次方程()200ax bx c a ++=≠根的判别式24b ac ∆=-,当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.24.(1)18;(2)12【解析】【分析】(1)用树状图分3次实验列举出所有情况,再看3辆车都选择A 通道通过的情况数占总情况数的多少即可;(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B 通道通过的情况数占总情况数的多少即可.解:(1)画树状图得:共8种情况,甲、乙、丙三辆车都选择A通道通过的情况数有1种,所以都选择A通道通过的概率为18,故答案为:18;(2)∵共有8种等可能的情况,其中至少有两辆汽车选择B通道通过的有4种情况,∴至少有两辆汽车选择B通道通过的概率为41 82 .【点睛】考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.25.(1)作图见解析;(2)作图见解析,(﹣3,1);(3)(﹣n,m).【解析】【分析】(1)根据关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点连线即可;(2)利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到点C2的坐标;(3)利用(2)中对应点的规律写出Q的坐标.【详解】(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,点C2的坐标为(﹣3,1);(3)若△ABC内一点P(m,n)绕原点O逆时针旋转90°的对应点为Q,则Q的坐标为(﹣n,m).故答案为:(﹣3,1),(﹣n,m).本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.。
2020-2021九年级数学上期中模拟试卷带答案(3)
2020-2021九年级数学上期中模拟试卷带答案(3)一、选择题1.若二次函数2y x bx =+的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程25x bx +=的解为( ).A .10x =,24x =B .11x =,25x =C .11x =,25x =-D .11x =-,25x =2.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A .68°B .20°C .28°D .22°3.二次函数y =ax 2+bx+c (a≠0)的图象如图所示,那么下列说法正确的是( )A .a >0,b >0,c >0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c >04.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20) 5.用配方法解方程2680x x --=时,配方结果正确的是( ) A .2(3)17x -=B .2(3)14-=xC .2(6)44x -=D .2(3)1x -=6.下列事件中,属于必然事件的是( )A .三角形的外心到三边的距离相等B .某射击运动员射击一次,命中靶心C .任意画一个三角形,其内角和是 180°D .抛一枚硬币,落地后正面朝上7.下列图形中,既是轴对称图形又是中心对称图形的是( ) A . B . C . D .8.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是( )A .310B .925C .425D .1109.已知实数0a <,则下列事件是随机事件的是( )A .0a ≥B .10a +>C .10a -<D .210a +<10.如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( )A .1B .22C .2D .211.如图,图案由三个叶片组成,且其绕点O 旋转120°后可以和自身重合,若三个叶片的总面积为12平方厘米,∠AOB=120°,则图中阴影部分的面积之和为()平方厘米.A .2B .4C .6D .8 12.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=- B .()247x +=- C .()2425x +=D .()247x += 二、填空题13.若关于x 的方程x 2+2x +m =0没有实数根,则m 的取值范围是_______.14.如图,五边形ABCD 内接于⊙O ,若AC=AD ,∠B+∠E=230°,则∠ACD 的度数是__________.15.如图,AD 为ABC V 的外接圆O e 的直径,如果50BAD ∠=︒,那么ACB =∠__________.16.如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA 中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:_____.17.a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c的大小关系是b____c(用“>”或“<”号填空)18.已知关于x的二次函数y=ax2+(a2-1)x-a的图象与轴的一个交点的坐标为(m,0),若2<m<3,则a的取值范围是_________.19.如图,已知△ABC内接于⊙O,∠C=45°,AB=4,则⊙O的半径为_____.20.已知圆锥的母线长为5cm,高为4cm,则该圆锥的侧面积为_____ cm²(结果保留π).三、解答题21.已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求点A旋转到点A′所经过的路线长(结果保留π).22.现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是 ; (2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)23.某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?24.我国古代数学著作《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长十二步,问长阔各几何?”其大意是:“一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽的各是多少步?”试用列方程解应用题的方法求出问题的解。
2020-2021上海市南中学九年级数学上期中试题及答案
2020-2021上海市南中学九年级数学上期中试题及答案一、选择题1.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果40DOE ∠=︒,那么A ∠的度数为( )A .35°B .40°C .60°D .70° 2.如图是二次函数2y ax bx c =++图象的一部分,图象过点A (﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c >0;②若点B (32-,1y )、C (52-,2y )为函数图象上的两点,则12y y <; ③2a ﹣b=0; ④244ac b a-<0,其中,正确结论的个数是( )A .1B .2C .3D .43.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 4.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( ) A .k<4B .k≤4C .k<4且k≠3D .k≤4且k≠3 5.抛物线y =2(x -3)2+4的顶点坐标是( ) A .(3,4)B .(-3,4)C .(3,-4)D .(2,4) 6.在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则( )A .m =3,n =2B .m =﹣3,n =2C .m =2,n =3D .m =﹣2,n =﹣3 7.如图,是两条互相垂直的街道,且A 到B ,C 的距离都是7 km ,现甲从B 地走向A 地,乙从A 地走向C 地,若两人同时出发且速度都是4km /h ,则两人之间的距离为5km 时,是甲出发后( )A .1hB .0.75hC .1.2h 或0.75hD .1h 或0.75h8.解一元二次方程 x 2﹣8x ﹣5=0,用配方法可变形为( )A .(x +4)2=11B .(x ﹣4)2=11C .(x +4)2=21D .(x ﹣4)2=219.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中涂色部分构成中心对称图形.该小正方形的序号是( )A .①B .②C .③D .④10.一元二次方程x 2+2x +2=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根 11.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是( )A .B .C .D .12.如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为( )A .30πcm 2B .48πcm 2C .60πcm 2D .80πcm 2二、填空题13.我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.”如果设矩形田地的长为x 步,那么根据题意列出的方程为_____.14.如图,Rt △ABC 中,∠A =90°,AB =4,AC =6,D 、E 分别是AB 、AC 边上的动点,且CE =3BD ,则△BDE 面积的最大值为_____.15.要为一幅矩形照片配一个镜框,如图,要求镜框的四条边宽度都相等,且镜框所占面积是照片本身面积的四分之一,已知照片的长为21cm ,宽为10cm ,求镜框的宽度.设镜框的宽度为xcm ,依题意列方程,化成一般式为_____.16.已知一个直角三角形的两条直角边长分别为3cm 和4cm ,则这个直角三角形的内切圆的半径为 cm17.如图,正六边形ABCDEF 内接于⊙O,⊙O 的半径为6,则这个正六边形的边心距OM 的长为__.18.已知关于x 的二次函数y=ax 2+(a 2-1)x-a 的图象与轴的一个交点的坐标为(m ,0),若2<m<3,则a 的取值范围是_________.19.如图所示过原点的抛物线是二次函数2231y ax ax a =-+-的图象,那么a 的值是_____.20.如图,在△ABC 中,AB =6,将△ABC 绕点B 按逆时针方向旋转30°后得到△A 1BC 1,则阴影部分的面积为________.三、解答题21.若关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根.(1)求a 的取值范围;(2)当a 为符合条件的最大整数,求此时方程的解.22.如图,AB 是O e 的直径,点C D 、在O e 上,且四边形AOCD 是平行四边形,过点D 作O e 的切线,分别交OA 的延长线与OC 的延长线于点E F 、,连接BF 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年上海市杨浦区兰生复旦中学九年级(上)期中数学仿真试卷一、选择题(本大题共6小题,共24.0分)1.已知线段a、b、c,求作第四比例线段x,则以下正确的作图是()A. B.C. D.2.如图,在梯形ABCD中,AB//CD,过O的直线MN//CD,则1AB +1CD=()A. 1MN B. 2MNC. 3MND. 4MN3.如图,在△ABC中,D、E分别在AB、AC上,DE//BC,EF//CD交AB于F,那么下列比例式中正确的是()A. AFDF =DEBCB. AFBD=ADABC. DFDB=AFDFD. EFCD=DEBC4.已知点E、F分别在△ABC的AB、AC边上,则下列判断正确的是()A. 若△AEF与△ABC相似,则EF//BCB. 若AE×BE=AF×FC,则△AEF与△ABC相似C. 若AEAB =EFBC,则△AEF与△ABC相似D. 若AF⋅BE=AE⋅FC,则△AEF与△ABC相似5.下列正确的是()A. |k a⃗|=k|a⃗|B. a0⃗⃗⃗⃗ 为单位向量,则b⃗ =|b⃗ |⋅a0⃗⃗⃗⃗C. 平面内向量a⃗、c⃗,总存在实数m使得向量c⃗=m a⃗D. 若a⃗=m⃗⃗⃗ +n⃗,m⃗⃗⃗ //a1⃗⃗⃗⃗ ,n⃗//a2⃗⃗⃗⃗ ,则m⃗⃗⃗ 、n⃗就是a⃗在a1⃗⃗⃗⃗ 、a2⃗⃗⃗⃗ 方向上的分向量6.如图,在直角梯形ABCD中,DC//AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则BFEF的值是()A. √2−1B. 2+√2C. √2+1D. √2二、填空题(本大题共12小题,共48.0分)7.若ba =23,那么aa+b的值为______.8.计算:tan15°⋅tan45°⋅tan75°=______.9.若a0⃗⃗⃗⃗ 是与非零向量a⃗反向的单位向量,那么a⃗=______a0⃗⃗⃗⃗ .10.如图,在△ABC中,BC=6,G是△ABC的重心,过G作边BC的平行线交AC于点H,则GH的长为______.11.二次函数y=ax2−3x+a2−a的图象经过原点,则a=______.12.若过⊙O内一点M的最长弦为10,最短弦为6,则OM的长为______.13.已知⊙O的半径为13,弦AB=24,CD=10,且AB//CD,则弦AB与CD之间的距离为______.14.如图,一桥拱呈抛物线状,桥的最大高度是16米,跨度是40米,在线段AB上离中心M处5米的地方,桥的高度是______ m(π取3.14).15.小亮的身高为1.8米,他在路灯下的影子长为2米;小亮距路灯杆底部为3米,则路灯灯泡距离地面的高度为______ 米.16.如图,△ABC中,BC=5,AC=3,△ABC绕着C点旋转到△A′B′C的位置,那么△BB′C与△AA′C的面积之比为______.17.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,O为AC边中点,ACAB=2,连接BO交AD于F,作OE⊥OB交BC边于点E,则OF的值=______.OE18.将一个无盖正方体纸盒展开(如图①),沿虚线剪开,用得到的5张纸片(其中4张是全等的直角三角形纸片)拼成一个正方形(如图②).则所剪得的直角三角形较短的与较长的直角边的比是______.三、解答题(本大题共7小题,共73.0分)19.计算:3tan30°+cos60°−√3+2sin245°20.已知在直角坐标系中,点A的坐标是(−3,1),将线段OA绕着点O顺时针旋转90°得到OB.(1)求点B的坐标;(2)求过A、B、O三点的抛物线的解析式;(3)设点B关于抛物线的对称轴L的对称点为C,求△ABC的面积.21.如图,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AD=3,∠BAE=30°,求BF的长.(计算结果保留根号)22.已知:如图,△ABC中,点E在中线AD上,∠DEB=∠ABC.求证:(1)DB2=DE⋅DA;(2)∠DCE=∠DAC.23.如图,△ABC中,D为BC边上的一点,E在AD上,过点E作直线l分别和AB、AC两边交于点P和点Q,且EP=EQ.(1)当点P和点B重合的时候,求证:BCCD =2AEAD;(2)当P、Q不与A、B、C三点重合时,求证:APAB +AQAC=2AEAD.24.如图,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴和负半轴和x轴的正半轴上,抛物线y=ax2+bx+c(a≠0)经过的A、B,且12a+5c=0.(1)求抛物线的解析式;(2)若点P由点A开始边以2cm/s的速度向点B移动,同时点Q由点B开始沿BC边以1cm/s的速度向点C移动.当一点到达终点时,另一点也停止运动.①当移动开始后第t秒时,设S=PQ2(cm),试写出s与t之间的函数关系式,并写出t的取值范围.②当t取何值时,S取得最小值?此时在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标,若不存在,请说明理由.25.已知:在Rt△ABC中,∠C=90°,AC=4,∠A=60°,CD是边AB上的中线,直线BM//AC,E是边CA延长线上一点,ED交直线BM于点F,将△EDC沿CD翻折得△E′DC,射线DE′交直线BM于点G.(1)如图1,当CD⊥EF时,求BF的值;(2)如图2,当点G在点F的右侧时;①求证:△BDF∽△BGD;②设AE=x,△DFG的面积为y,求y关于x的函数解析式,并写出x的取值范围;(3)如果△DFG的面积为6√3,求AE的长.答案和解析1.【答案】B【解析】解:∵线段x为线段a、b、c的第四比例线段,∴ab =cx,∴正确的作图是B;故选:B.根据第四比例线段的定义列出比例式,再根据平行线分线段成比例定理对各选项图形列出比例式即可得解.本题考查了平行线分线段成比例定理,主要考查了第四比例线段的作法,要熟练掌握并灵活运用.2.【答案】B【解析】解:∵AB//CD,MN//CD,∴MN//AB,∵ON//AB,OM//AB,∴ONAB =DNDA,OMAB=CMCB,∵DNDA =CMCB,∴ONAB =OMAB,∴ON=OM,∵ON//CD,∴△AON∽△ACD,∴ONCD =AOAC①,∵OM//AB,∴△COM∽△CAB,∴OMAB =OCCA②,①+②得ONCD +OMAB=1,即12MN CD +12MN AB=1,∴1AB+1CD=2MN.故选:B .先得到MN//AB ,利用平行线分线段成比例定理得到ONAB =DNDA ,OMAB =CMCB,DN DA =CM CB,则可判断ON =OM ,再证明△AON∽△ACD 得到ONCD =AO AC ①,证明△COM∽△CAB 得到OMAB =OCCA ②,把两式相加后利用等式的性质可得到1AB +1CD =2MN.本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系.3.【答案】D【解析】解:A 、∵EF//CD ,DE//BC , ∴AFDF =AEEC ,AEAC =DEBC , ∵CE ≠AC , ∴AF DF ≠DE BC.故本答案错误;B 、∵DE//BC ,EF//CD , ∴AE AC =ADAB ,AE AC=AFAD , ∴AF AD=AD AB,∵AD ≠DF ,∴AFBD ≠ADAB ,故本答案错误; C 、∵EF//CD ,DE//BC , ∴AFDF =AEEC ,AEEC =ADBD , ∴AF DF =AD BD.∵AD ≠DF ,∴DFDB ≠AFDF ,故本答案错误; D 、∵DE//BC ,EF//CD , ∴DEBC =AEAC ,EFCD =AEAC ,∴EFCD =DEBC,故本答案正确.故选:D.根据平行线分线段成比例定理和相似三角形的性质找准线段的对应关系,对各选项分析判断后利用排除法求解.本题考查了平行线分线段成比例的运用及平行于三角形一边的直线截其他两边,所得的新三角形与原三角形相似的定理的运用,在解答时寻找找对应线段是关健.4.【答案】D【解析】解:选项A错误,∵△AEF与△ABC相似,可能是∠AEF=∠C,推不出EF//BC.选项B错误,由AE×BE=AF×FC,推不出△AEF与△ABC相似.选项C错误,由AEAB =EFBC,推不出△AEF与△ABC相似.选项D正确.理由:∵AF⋅BE=AE⋅FC,∴AEBE =AFFC,∴EF//BC,∴△AEF∽△ABC.故选:D.根据三角形相似的判定定理一一判断即可.本题考查相似三角形的判定,平行线的判定等知识,解题的关键是熟练掌握相似三角形的判定定理,属于中考常考题型.5.【答案】A【解析】解:A、|k a⃗|=k⋅a⃗|,正确.B、a0⃗⃗⃗⃗ 为单位向量,则b⃗ =|b⃗ |⋅a0⃗⃗⃗⃗ ,错误,应该是b⃗ =±|b⃗ |⋅a0⃗⃗⃗⃗ .C、平面内向量a⃗、c⃗,总存在实数m使得向量c⃗=m a⃗,错误,因为a⃗与c⃗不一定是平行向量.D、若a⃗=m⃗⃗⃗ +n⃗,m⃗⃗⃗ //a1⃗⃗⃗⃗ ,n⃗//a2⃗⃗⃗⃗ ,则m⃗⃗⃗ 、n⃗就是a⃗在a1⃗⃗⃗⃗ 、a2⃗⃗⃗⃗ 方向上的分向量,错误,也可能是a⃗在a1⃗⃗⃗⃗ 、a2⃗⃗⃗⃗ 反方向上的分向量.故选:A.根据平面向量的性质一一判断即可.本题考查平面向量,平行向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.【答案】C【解析】【分析】作FG⊥AB于点G,由AE//FG,得出BFEF =BGGA,求出Rt△BGF≌Rt△BCF,再由AB=√2BC求解.本题主要考查了平行线分线段成比例,全等三角形及角平分线的知识,解题的关键是找出线段之间的关系,CB=GB,AB=√2BC再利用比例式求解.【解答】解:作FG⊥AB于点G,∵∠DAB=90°,∴AE//FG,∴BFEF =BGGA,∵AC⊥BC,∴∠ACB=90°,又∵BE是∠ABC的平分线,∴FG=FC,在Rt△BGF和Rt△BCF中,{BF=BFCF=GF ∴Rt△BGF≌Rt△BCF(HL),∴CB=GB,∵AC=BC,∴∠CBA=45°,∴AB=√2BC,∴BFEF =BGGA=BC√2BC−BC=1√2−1=√2+1.故选:C.7.【答案】35【解析】解:∵ba =23,∴b=23a,∴aa+b =aa+23a=35;故答案为:35.根据已知得出b=23a,再代入要求的式子进行计算即可得出答案.此题考查了比例的性质,熟练掌握比例的性质是解题的关键.8.【答案】1【解析】解:原式=tan15°⋅tan75°⋅tan45°=1×1=1.故答案为:1.直接利用锐角三角函数关系以及特殊角的三角函数值代入得出答案.此题主要考查了特殊角的三角函数值,正确记忆公式变形是解题关键.9.【答案】−|a⃗|【解析】解:若a0⃗⃗⃗⃗ 是与非零向量a⃗反向的单位向量,那么a⃗=−|a|⃗⃗⃗ ⋅a0⃗⃗⃗⃗ ,故答案为−|a⃗|.根据向量的几何意义填空即可.本题考查平面向量,平行向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】2【解析】解:如图,连接AG,并延长AG交BC于D;∵G是△ABC的重心,∴AG:GD=2:3,且D是BC的中点;∵GH//BC,∴GHCD =AGAD=23;∵CD=12BC=3,∴GH=2.连接AG,并延长AG交BC于D;根据重心的性质知:D是BC中点,且AG:AD=2:3;可根据平行线分线段成比例定理得出的线段比例关系式及CD的长求出GH的值.此题考查了平行线分线段成比例定理以及重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.11.【答案】1【解析】解:将(0,0)代入y=ax2−3x+a2−a,∴0=a2−a,∴a=0(舍去)或a=1,故答案为:1.将(0,0)代入二次函数的解析式即可求出a的值.本题考查二次函数,解题的关键是正确理解待定系数法,本题属于基础题型.12.【答案】4【解析】解:由已知可知,最长的弦是过M的直径AB,最短的是垂直平分直径的弦CD,已知AB=10,CD=6,则OD=5,MD=3,由勾股定理得OM=4.故答案为:4.根据垂径定理及勾股定理即可求出.此题考查了垂径定理,勾股定理,熟练掌握垂径定理是解本题的关键.13.【答案】7或17【解析】解:①当弦AB和CD在圆心同侧时,如图1,∵AB=24,CD=10,∴AE=12,CF=5,∵OA=OC=13,∴EO=5,OF=12,∴EF=12−5=7;②当弦AB和CD在圆心异侧时,如图2,∵AB=24,CD=10,∴AE=12,CF=5,∵OA=OC=13,∴EO =5,OF =12,∴EF =OF +OE =17.∴AB 与CD 之间的距离为7或17.故答案为7或17.分两种情况进行讨论:①弦AB 和CD 在圆心同侧;②弦AB 和CD 在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.14.【答案】15【解析】解:设抛物线的方程为y =ax 2+bx +c已知抛物线经过(0,16),(−20,0),(20,0),故可得{16=c0=400a −20b +c 0=400a +20b +c,可得a =−125,b =0,c =16,故解析式为y =−125x 2+16,当x =5时,y =15m .根据题意假设解析式为y =ax 2+bx +c ,用待定系数法求出解析式.然后把自变量的值代入求解对应函数值即可.本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题. 15.【答案】4.5【解析】【分析】此题主要考查了相似三角形的应用,属于基础题.根据已知得出图形,进而利用相似三角形的性质求出即可.【解答】解:结合题意画出图形:易得△ADC∽△AEB,∴ACAB =CDBE,∴ACCD =ABBE,∵小亮的身高为1.8米,他在路灯下的影子长为2米;小亮距路灯杆底部为3米,∴AC=2,BC=3,CD=1.8,∴21.8=5BE,解得:BE=4.5,故答案为4.5.16.【答案】259【解析】解:∵△ABC绕着C点旋转到△A′B′C的位置,∴AC=CA′,BC=CB′,∠BCB′=∠ACA′,∴BCAC =B′CA′C,∴△ACA′∽△BCB′,∴S△BB′CS△AA′C =(BCAC)2=259,故答案为:259.由旋转的性质可得AC=CA′,BC=CB′,∠BCB′=∠ACA′,可证△ACA′∽△BCB′,由相似三角形的面积比等于相似比的平方可求解.本题考查了相似三角形的判定和性质,旋转的性质,证明△ACA′∽△BCB′是本题的关键.17.【答案】2【解析】解:∵AD⊥BC,∴∠DAC+∠C=90°.∵∠BAC=90°,∴∠BAF=∠C.∵OE⊥OB,∴∠BOA+∠COE=90°,∵∠BOA+∠ABF=90°,∴∠ABF=∠COE.过O作AC的垂线交BC于H,则OH//AB,∵∠ABF=∠COE,∠BAF=∠C.∴∠AFB=∠OEC,∴∠AFO=∠HEO,而∠BAF=∠C,∴∠FAO=∠EHO,∴△OEH∽△OFA,∴OFOE =OAOH,又∵O为AC的中点,OH//AB.∴OH为△ABC的中位线,∴OH=12AB,OA=OC=12AC,而ACAB=2,∴OAOH=2,即OFOE=2,故答案为:2.先证明∠BAF=∠C,∠ABF=∠COE,作OH⊥AC,交BC于H,易证:△OEH和△OFA相似,可得OFOE =OAOH,由三角形中位线定理可得OH=12AB,OA=OC=12AC,即可求解.本题考查了相似三角形的判定和性质,直角三角形的性质,灵活运用这些性质解决问题是本题的关键.18.【答案】1:2【解析】解:由图可得,所剪得的直角三角形较短的边是原正方体棱长的一半,而较长的直角边正好是原正方体的棱长,所以所剪得的直角三角形较短的与较长的直角边的比是1:2.本题考查了拼摆的问题,仔细观察图形的特点作答.本题必须以不变应万变,透过现象把握本质,才能将问题转化为熟悉的知识去解决.19.【答案】解:原式=3×√33+12−√3+2×(√22)2 =√3+12−√3+1 =32.【解析】直接利用特殊角的三角函数值和二次根式的性质分别化简得出答案. 此题主要考查了实数运算,正确化简各数是解题关键. 20.【答案】解:(1)过点A 作AH ⊥x 轴,过点B 作BM ⊥y轴,由题意得OA =OB ,∠AOH =∠BOM ,∴△AOH≌△BOM∵A 的坐标是(−3,1),∴AH =BM =1,OH =OM =3∴B 点坐标为(1,3)(2)设抛物线的解析式为y =ax 2+bx +c则{a +b +c =39a −3b +c =1c =0.得{a =56b =136c =0∴抛物线的解析式为y =56x 2+136x(3)对称轴为x =−1310∴C 的坐标为(−185,3) ∴S △ABC =12BC ⋅ℎBC =12×(1+185)×2=235.【解析】(1)本题可通过构建全等三角形来求解.过点A 作AH ⊥x 轴,过点B 作BM ⊥y 轴,根据旋转的性质可知:OA =OB ,而∠MOB 与∠AOH 都是∠AOM 的余角,因此两角相等,因此这两个直角三角形就全等,那么OH=OM,AH=BM,由此可得出B点坐标.(2)根据求出的B点坐标以及已知的A、O的坐标即可用待定系数法求抛物线的解析式.(3)先根据抛物线的解析式求出抛物线的对称轴及C点坐标,即可得出BC的长,求三角形ABC的面积时,可以BC为底,以A、B纵坐标差的绝对值为高来求解.本题考查了全等三角形的判定和性质、二次函数解析式的确定、图形面积的求法等知识.21.【答案】(1)证明:在平行四边形ABCD中,∵∠D+∠C=180°,AB//CD,∴∠BAF=∠AED.∵∠AFB+∠BFE=180°,∠D+∠C=180°,∠BFE=∠C,∴∠AFB=∠D,∴△ABF∽△EAD;(2)解:∵BE⊥CD,AB//CD,∴BE⊥AB.∴∠ABE=90°.在Rt△ABE中,∠BAE=30°,∴tan∠BAE=ABEA =√32,∵由(1)知,△ABF∽△EAD,∴ABEA =BFAD,∵AD=3,∴BF=3√32.【解析】(1)可通过证明∠BAF=∠AED,∠AFB=∠D,证得△ABF∽△EAD;(2)根据平行线的性质得到BE⊥AB,根据三角函数的定义得到tan∠BAE=ABEA =√32,根据相似三角形的性质即可得到结论.本题主要考查了相似三角形的判定和性质,同时也用到了平行四边形的性质和等角的补角相等等知识点.22.【答案】证明:(1)在△BDE和△DAB中∵∠DEB=∠ABC,∠BDE=∠ADB,(1分)∴△BDE∽△ADB,(1分)∴BD2=AD⋅DE.(1分)(2)∵AD是中线,∴CD=BD,∴CD2=AD⋅DE,∴CDDE =ADCD,(1分)又∠ADC=∠CDE,(1分)∴△DEC∽△DCA,(1分)∴∠DCE=∠DAC.(1分)【解析】(1)根据已知可证△BDE∽△DAB,得到DEBD =BDAD,即证BD2=AD⋅DE.(2)在(1)的基础上,因为CD=BD,可证CDDE =ADCD,即可证△DEC∽△DCA,得到∠DCE=∠DAC.本题考查相似三角形的判定和性质.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边成比例、对应角相等.23.【答案】证明:(1)如图,过点Q作QF//BC交AD于F,∴△FQE∽△DPE,∴QFBD =QEEP=EFDE,又∵QE=EP,∴BD=FQ,EF=DE,∵QF//CD,∴△AFQ∽△ADC,∴FQCD =AFAD,∴BCCD =2AEAD;(2)如图,过点Q作QF//BC交AD于F,过点P作PH//BC交AD于H,∴QF//PH,∴△FQE∽△HPE,∴FQPH =EFEH=EQPE,又∵QE=EP,∴PH=FQ,EF=HE,∵FQ//BC,∴△AQF∽△ACD,∴AQAC =AFAD,∵PH//BC,∴△APH∽△ABD,∴APAB =AHAD,∴APAB +AQAC=AFAD+AHAD=AF+AF+2EFAD=2AEAD.【解析】(1)过点Q作QF//BC交AD于F,由相似三角形的性质可得QFBD =QEEP=EFDE,可得BD=FQ,EF=DE,通过证明△AFQ∽△ADC,可得FQCD =AFAD,即可得结论;(2)过点Q作QF//BC交AD于F,过点P作PH//BC交AD于H,由相似三角形的性质可得FQPH =EFEH=EQPE,可得PH=FQ,EF=HE,由相似三角形的性质可得AQAC=AFAD,APAB=AHAD,即可得结论.本题考查了相似三角形的判定和性质,利用平行线分线段成比例解决问题是本题的关键.24.【答案】解:(1)据题意知:A(0,−2),B(2,−2),∵A点在抛物线上,∴c =−2,∵12a +5c =0,∴a =56,由AB =2知抛物线的对称轴为:x =1,即:−b 2a =1,∴b =−53, ∴抛物线的解析式为:y =56x 2−53x −2;(2)①由图象知:PB =2−2t ,BQ =t ,∴S =PQ 2=PB 2+BQ 2=(2−2t)2+t 2,即S =5t 2−8t +4(0≤t ≤1);②假设存在点R ,可构成以P 、B 、R 、Q 为顶点的平行四边形,∵S =5t 2−8t +4(0≤t ≤1),∴S =5(t −45)2+45(0≤t ≤1),∴当t =45时,S 取得最小值45;这时PB =2−85=0.4,BQ =0.8,P(1.6,−2),Q(2,−1.2),分情况讨论:若PB 与PQ 为边,这时QR =PB =0.4,QR//PB ,则:R 的坐标为(2.4,−1.2), 代入y =56x 2−53x −2,左右两边相等,∴这时存在R(2.4,−1.2)满足题意;若PB 与QB 为边,这时PR =QB ,PR =QB =0.8,则:R 的坐标为(1.6,−1.2), 代入y =56x 2−53x −2,左右两边不相等,R 不在抛物线上;若PQ 与QB 为边,这时PR =QB ,PR//QB ,则:R 的坐标为(1.6,−2.8), 代入y =56x 2−53x −2,左右不相等,R 不在抛物线上.综上所述,存在一点R(2.4,−1.2)满足题意.【解析】(1)根据已知条件,结合正方形的性质求出A 、B 点的坐标,利用待定系数法可求解;(2)①用t 表示出PB 、BQ 的长,利用勾股定理建立起它们之间的关系;②利用①中关系式,根据二次函数的性质求出S 取最小值时的t 的取值,计算出PB 、BQ的长,然后分三种情况讨论利用平行四边形的性质可求解.本题是二次函数综合题,考查二次函数的有关知识,平行四边形的性质,是一个典型的动点问题,运用分类讨论思想解决问题是本题的关键.25.【答案】解:(1)∵∠ACB=90°,AD=BD,∴CD=AD=BD,∵∠BAC=60°,∴∠ADC=∠ACD=60°,∠ABC=30°,AD=BD=AC,∵AC=4,∴AD=BD=AC=4,∵BM//AC,∴∠MBC=∠ACB=90°,又∵CD⊥EF,∴∠CDF=90°,∴∠BDF=30°,∴∠BFD=30°,∴∠BDF=∠BFD,∴BF=BD=4;(2)①证明:由翻折,得∠E′CD=∠ACD=60°,∴∠ADC=∠E′CD,∴CE′//AB,∴∠CE′D=∠BDG,∵BM//AC,∴∠CED=∠BFD,又∵∠CE′D=∠CED,∴∠BDG=∠BFD,∵∠DBF=∠GBD,∴△BDF∽△BGD;②由△BDF∽△BGD,得BFBD =BDBG,∵D为AB的中点,∴BD=AD,又∵BM//AC,∴∠DBF=∠DAE,∠BFD=∠DEA,在△BFD和△AED中,∵{∠DBF=∠DAE ∠BFD=∠DEA BD=AD,∴△BFD≌△AED(AAS),∴BF=AE=x,∴x4=4BG,∴BG=16x,在Rt△ABC中,AB=8,AC=4,根据勾股定理得:BC=√AB2−AC2=4√3,∵点D到直线BM的距离d=12BC=2√3,∴S△DFG=12FG⋅d=12(BG−BF)⋅d,即y=12×(16x−x)×2√3=16√3x−√3x(0<x<4);(3)(i)当点G在点F的右侧时,由题意,得6√3=16√3x−√3x,整理,得x2+6x−16=0,解得x1=2,x2=−8(不合题意,舍去);(ii)当点G在点F的左侧时,如图3所示:同理得到S△DFG=12FG⋅d=12(BF−BG)⋅d,即y=√3x−16√3x(x>4),由题意,得6√3=√3x−16√3x,整理,得x2−6x−16=0,解得x3=8,x4=−2(不合题意,舍去),综上所述,AE的值为2或8.【解析】(1)由∠ACB=90°,AD=BD,利用斜边上的中线等于斜边的一半得到CD= AD=BD,再由∠BAC=60°,得到三角形ADC为等边三角形,由AC的长求出AD与BD的长,同时求出∠ABC=30°,由BM与AC平行,利用两直线平行内错角相等得到∠MBC=∠ACB=90°,再由CD垂直于EF,得到∠CDE和∠CDF都为直角,在直角三角形EDC中,求出∠DEC为30°,利用两直线平行内错角相等可得出∠BFD也为30°,而由∠CDE−∠CDA求出∠EDA为30°,利用对顶角相等得到∠BDF为30°,即∠BFD=∠BDF,利用等角对等边可得出BD=BF,由BD的长即可求出BF的长;(2)当点G在点F的右侧时,如图2所示,①由翻折,得∠E′CD=∠ACD=60°,得到一对内错角相等,利用内错角相等两直线平行,得到CE′//AB,再由两直线平行得到一对内错角相等,利用等量代换得到∠BDG=∠BFD,再由一对公共角,利用两对应角相等的两三角形相似可得出△BDF∽△BGD;②由△BDF∽△BGD得比例,将各自的值代入即可列出y与x的函数关系式,求出x的范围即可;(3)分两种情况考虑:(i)当点G在点F的右侧时,在y与x的关系式中,令y=6√3列出关于x的方程,求出方程的解得到x的值,即为AE的长;(ii)当点G在点F的左侧时,如图3所示,列出此时y与x的关系式,令y=6√3列出关于x的方程,求出方程的解得到x的值,即为AE的长,综上,得到所有满足题意的AE的长.此题考查了相似形综合题,涉及的知识有:相似三角形的判定与性质,直角三角形斜边上的中线性质,折叠的性质,平行线的判定与性质,以及等腰三角形的判定与性质,利用了数形结合及分类讨论的思想,熟练掌握判定与性质是解本题的关键.。