太阳能电池计算
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
������ ������
∞ ������ 2 ������������ ������ ������ ������ ������ −1 ∞ ������ 3 ������������ 0 ������ ������ −1
=
2.21×1.2889 6.494
= 43.86%
������ = 1.38 × 10−23 ,������ = 300K,Jr,S=2.8 x 1021 photons m-2 s-1,e=1.6 × 10−19 ������ 未知������������ ,0 ,依题, ������������ ,0 =
E ∩emit − G kT × [E 2 + 2EG kT + 2(kT)2 ] × kTe G 4π3 h3 c 2
c=3× 108 ������/������,h = 1.05 × 10−34 ������������,EG=1.1 eV 代人②式: ������������ ,0 = 所以 ������������������ =
������������������������ (
������ ������ ,������ +1) ������ ������ ,0
������ ������ − 1
Байду номын сангаас
������������
1.1
该式用 matlab 计算: m.文件函数如下:
运行 y=ftest,得到:y =(15*((221*limit(2*x*polylog(2, exp(x)) + x^2*log(1 - exp(x)) 2*polylog(3, exp(x)) - x^3/3, x = Inf))/100 - (10793861*log(1 - exp(221/100)))/1000000 - (48841*polylog(2, exp(221/100)))/5000 + (221*polylog(3, exp(221/100)))/50 + 2385443281/300000000))/pi^4 将其化简,则 ηmax=
������
Voc 0.8222 = = 31.79 kT 8.62 × 10−5 × 300
31.79−ln (31.79+0.72) 31.79+1
× 100% = 86.3% 。
������������
2 ∞ ������ ������������ ������ ������ ������ ������ − 1 ∞ ������ 3 ������������ 0
附加题:由 Shockley-Queisser 模型,我们知道
① 计算理想晶体 Si 太阳电池的开路电压 Uoc,短路电流 Jsc,填充因子 FF 以及极限效率 ηmax, 其中 EG=1.1 eV@T=300 K,Jr,S=2.8 x 1021 photons m-2 s-1.
② 解:(1)计算 Uoc 令 J=0,由①式化简得: ������������������������( ������������������ = ������������ ,������ + 1) ������������ ,0 ������
E ∩emit − G kT × E 2 + 2EG kT + 2 kT × kTe G 4π3 h3 c 2
2
= 4.36 × 107
������
=
1.38×10 −23 ×300ln (
2.8 x 10 21 +1) 4.36×10 7 1.6×10 −19
= 0.8222������
(2)计算 Jsc 令 V=0,代入①式: ������������������ = ������������������������ = 1.6 × 10−19 × 2.8 × 1021 = 448������/������2 (3)计算 FF 由书本 P6 公式 1-3 近似式 ������������������ − ln ������������������ + 0.72 FF0 = ������������������ + 1 ������������������ = 代入公式,可得 FF0 = (4)计算 ηmax 由书本 P46 公式 3-8 ������������������������ = 其中������������ = ������������ = 8.62×10−5 ×6000 = 2.21
∞ ������ 2 ������������ ������ ������ ������ ������ −1 ∞ ������ 3 ������������ 0 ������ ������ −1
=
2.21×1.2889 6.494
= 43.86%
������ = 1.38 × 10−23 ,������ = 300K,Jr,S=2.8 x 1021 photons m-2 s-1,e=1.6 × 10−19 ������ 未知������������ ,0 ,依题, ������������ ,0 =
E ∩emit − G kT × [E 2 + 2EG kT + 2(kT)2 ] × kTe G 4π3 h3 c 2
c=3× 108 ������/������,h = 1.05 × 10−34 ������������,EG=1.1 eV 代人②式: ������������ ,0 = 所以 ������������������ =
������������������������ (
������ ������ ,������ +1) ������ ������ ,0
������ ������ − 1
Байду номын сангаас
������������
1.1
该式用 matlab 计算: m.文件函数如下:
运行 y=ftest,得到:y =(15*((221*limit(2*x*polylog(2, exp(x)) + x^2*log(1 - exp(x)) 2*polylog(3, exp(x)) - x^3/3, x = Inf))/100 - (10793861*log(1 - exp(221/100)))/1000000 - (48841*polylog(2, exp(221/100)))/5000 + (221*polylog(3, exp(221/100)))/50 + 2385443281/300000000))/pi^4 将其化简,则 ηmax=
������
Voc 0.8222 = = 31.79 kT 8.62 × 10−5 × 300
31.79−ln (31.79+0.72) 31.79+1
× 100% = 86.3% 。
������������
2 ∞ ������ ������������ ������ ������ ������ ������ − 1 ∞ ������ 3 ������������ 0
附加题:由 Shockley-Queisser 模型,我们知道
① 计算理想晶体 Si 太阳电池的开路电压 Uoc,短路电流 Jsc,填充因子 FF 以及极限效率 ηmax, 其中 EG=1.1 eV@T=300 K,Jr,S=2.8 x 1021 photons m-2 s-1.
② 解:(1)计算 Uoc 令 J=0,由①式化简得: ������������������������( ������������������ = ������������ ,������ + 1) ������������ ,0 ������
E ∩emit − G kT × E 2 + 2EG kT + 2 kT × kTe G 4π3 h3 c 2
2
= 4.36 × 107
������
=
1.38×10 −23 ×300ln (
2.8 x 10 21 +1) 4.36×10 7 1.6×10 −19
= 0.8222������
(2)计算 Jsc 令 V=0,代入①式: ������������������ = ������������������������ = 1.6 × 10−19 × 2.8 × 1021 = 448������/������2 (3)计算 FF 由书本 P6 公式 1-3 近似式 ������������������ − ln ������������������ + 0.72 FF0 = ������������������ + 1 ������������������ = 代入公式,可得 FF0 = (4)计算 ηmax 由书本 P46 公式 3-8 ������������������������ = 其中������������ = ������������ = 8.62×10−5 ×6000 = 2.21