完整的压力容器设计(储罐液氨)

合集下载

液氨储罐设计全(1)

液氨储罐设计全(1)

化工设备机械基础课程设计题目液氨储罐的设计系(院)专业班级学生姓名学号指导教师职称二〇一一年六月七日设计任务书一、设计时间安排从2011年05月16 日至2011年06月06日二、设计内容安排1.液氨储罐的结构设计2. 筒体及封头壁厚计算及其强度、稳定性校核(1)根据设计压力初定壁厚;(2)计算危险截面的重量载荷、风载荷、地震载荷;(3)计算危险截面的由各种载荷作用下的轴向应力;(4)计算危险截面的组合轴向拉应力和组合轴向压应力,并进行强度和稳定性校核。

3. 编写设计计算书一份三、设计条件表1接管表表2设计参数目录符号说明 (4)前言 (6)液氨储罐设计 (7)第一章设计参数的选择 (7)1.1、设计题目 (7)1.2、设计数据 (7)1.3、设计压力 (7)1.4、设计温度 (8)1.5、主要元件材料的选择 (8)1.5.1 筒体材料的选择 (8)1.5.2 鞍座材料的选择 (8)第二章设备的结构设计 (8)2.1、圆筒厚度的设计 (8)2.2、封头厚度的设计 (9)2.3、筒体和封头的结构设计 (10)2.3.1 封头的结构尺寸 (10)2.3.2 筒体的长度计算 (10)2.4、鞍座选型和结构设计 (10)第三章:容器强度的校核 (12)3.1水压试验应力校核 (12)3.2.筒体轴向弯矩计算 (12)3.3筒体轴向应力计算与校核 (13)3.3.1圆筒中间横截面上,由压力及轴向弯矩引起的轴向应力 (13)3.3.2由压力及轴向弯矩引起的轴向应力 (13)3.3.3筒体轴向应力校核 (14)3.4.筒体和封头中的切向剪应力计算与校核 ....................................................................... 14 3.5.无加强圈筒体的周向应力计算与校核 ........................................................................... 15 3.6鞍座应力计算与校核 . (15)3.6.1.腹板水平应力及强度校核 .................................................................................... 15 3.6.2 鞍座有效断面应力校核 (14)第四章 开孔补强设计 (16)4.1 补强设计方法判别 .......................................................................................................... 16 4.2有效补强范围 . (17)4.2.1有效宽度B 的确定 ............................................................................................... 17 4.2.2有效高度的确定 .................................................................................................... 17 4.3 有效补强面积 (17)4.3.1 筒体多余面积 ....................................................................................................... 18 4.3.2接管的多余面积 .................................................................................................... 18 4.3.3焊缝金属截面积 .................................................................................................... 18 4.4.补强面积 (18)结束语 ........................................................................................................................................ 19 主要参考资料 (19)符号说明:A----鞍座底板中心线至封头切线的距离,2mm ;B----设计温度下,按GB150外压设计方法确定的数值,MPa ;o B ----常温下,按GB150外压设计方法确定的数值,MPa ;i D ----筒体内直径,mm ; oD ----筒体外直径,mm ;F ----每个支座的反力,N ;19K K -----系数,查表71,79:;L ----封头切线间的距离;1M ----圆筒中间处的轴向弯矩,m N ⋅;2----支座处圆筒的轴向弯矩,;m N ⋅a R ----圆筒的平均半径,,2na i R R mmδ=+;iR ----圆筒的内半径,mm ;b----支座的轴向宽度,mm ;1b ----加强圈的宽度,mm ;2b -----圆筒的有效厚度,取2b b mm=+;4b -----支座垫板宽度;g -----重力加速度;ih ----封头曲面深度;k ----系数。

液氨(无水)储罐设计要点

液氨(无水)储罐设计要点

液氨(无水)储罐设计要点摘要:本文主要介绍了液氨储罐在设计过程中工作压力、设计压力、安全阀整定压力、最高允许工作压力的确定、设备选材原则及相应的技术条件要求等。

简介:液氨,又称为无水氨,呈无色液体状,有强烈刺激性气味。

氨作为一种重要的化工原料,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。

存储液氨的压力容器,主要应用的场合有医院、制冷业、气体生产厂等场合,它可以为这些企业提供存储的载体,在使用过程中安全可靠、降低成本。

1.设计数据:根据客户提供要求,本罐为常温储存液化气体储罐,无保冷措施,介质为无水液氨,最低设计金属温度-9℃,设计使用年限10年,固定卧式安装,设备公称直径DN1400,容积V=5m³。

2.液氨储罐过程设计要点2.1设计压力、温度确定常温储存液化气体的设计压力,应当以规定温度下的工作压力为基础来确定,根据TSG 21-2016《固定式压力容器安全技术监察规程》条款3.1.9.3规定,液氨临界温度≥50℃,无保冷措施,以液氨50℃饱和蒸气压设为工作压力,液氨50℃饱和蒸气压Pw=1.93MPa,设计压力确定Pc=(1.05~1.1)Pw ≈2.2MPa。

2.2设备材料选择原则根据液氨介质特性含水量不高于0.2%,且有可能受空气中O₂或CO₂污染,使用温度高于-5℃,属于液氨应力腐蚀环境。

对本设备根据设计压力、温度、介质特性,主体板材选用GB/T713-2017《锅炉和压力容器用钢板》低合金钢Q345R,供货状态正火;根据介质危害程度,最低设计金属温度,本设计选用符合GB/T9948的钢管,材料选择10#钢,供货状态正火;法兰锻件根据压力、介质不允许微量泄漏等特性,依照HG/T20592-2009《钢制管法兰、垫片、紧固件》选择带颈对焊法兰,公称压力等级PN40,材质为16MnⅡ锻件,密封面形式凹凸面。

2.3最高允许工作压力的引入及计算过程根据HG/T20660-2017《压力容器中化学介质毒性危害和爆炸危险程度分类标准》氨属于中毒危害介质,泄漏时易挥发可燃气体,爆炸极限为16%~25%,属于易爆介质,对于盛装不允许有微量泄漏的压力容器,应进行泄漏试验,该设备选择气密性试验,试验压力等于设计压力,并且试验时,需要将安全附件装配齐全,为了确保泄漏性试验顺利进行,所以引入最高允许工作压力,最高允许工作压力[PMAWP]是根据容器各受压元件有效厚度计算得到的,考虑了该元件承受的所有载荷,取各受压元件承受最高允许工作压力的最小值;综上各压力之间关系:工作压力Pw<设计压力Pc<安全阀整定压力Pz<最高允许工作压力。

液氨贮罐的课程设计

液氨贮罐的课程设计

巢湖学院《化工设备机械基础》课程设计设计题目: 液氨贮罐设计姓名:鲁小乐学号:09007026专业:2009级化学工程与工艺指导教师:吴凤义2011年12月制附:设计任务书专业:化学工程与工艺班级:2009级姓名:鲁小乐学号:指导教师:吴凤义设计日期:2011年12月一、设计题目10.0m3液氨贮罐的设计二、设计参数与要求1、设计参数液氨压力:16Kg/cm²;温度:40℃;公称容积:10.0m³操作容积:9.0m³介质: 液氨设计使用年限:10年建议使用材料:16MnR2、设计要求根据设计参数, 对液氨贮罐的主要元件(筒体、封头)进行正确的强度、刚度和稳定性计算和结构设计;对贮罐的附件进行选型;熟悉贮罐质量的检验方法;绘制出贮罐的装配图;三、设计内容1、概述2、罐体的设计(1)罐体的PN、DN确定(2)筒体壁厚的设计(3)封头壁厚的设计(4)筒体长度的设计3、罐体的压力试验(1)罐体的水压试验(2)罐体的气压试验4、罐体附件的选型与尺寸设计(1)工艺接管的设计(2)支座的设计(3)人孔的设计(4)液面计的设计5、罐体的开孔与补强的计算(1)容许开孔的范围(2)开孔补强的设计计算(3)补强圈的设计5、设计结果汇总6、10.0m3液氨贮罐装配图7、设计评述四、图纸要求10.0m3液氨贮罐装配图,A1号图纸五、参考资料[1] 汤善甫、朱思明等编.化工设备机械基础[M] . 上海:华东理工大学出版社.1991.12[2] 化工设备设计手册.材料与零部件(上). 上海科学技术出版社.1981[3] 广西大学《实用机械零部件手册》编写组. 实用机械零件手册.广西科学技术出版社附:目录一、液氨储罐的工艺设计计算 (1)1、罐体的设计 (1)1.1、罐体的PN、DN确定 (1)1.1.1、罐体DN的确定 (1)1.1.2、釜体PN的确定 (1)1.2、筒体壁厚的设计 (1)1.2.1、设计参数的确定 (1)1.2.2、筒体壁厚的设计 (1)1.2.3、刚度条件设计筒体的最小壁厚 (1)1.3、罐体封头壁厚的设计 (2)2.3.1、设计参数的确定 (2)2.3.2、封头的壁厚设计 (2)2.3.3、封头的直边、体积与重量的确定 (2)1.4、筒体的长度设计与重量的确定 (2)1.5、贮罐的压力试验 (3)1.6、罐体的水压试验 (3)1.6.1、液压试验压力的确定 (3)1.6.2、液压试验的强度校核 (3)1.6.3、压力表的量程、水温的要求 (3)1.6.4、液压试验的操作过程 (3)1.7、罐体的气压试验 (3)1.7.1、气压试验压力的确定 (3)1.7.2、气压试验的强度校核 (3)1.7.3、压力表的量程、气温的要求 (4)1.7.4、气压试验的操作过程 (4)2、罐体的开孔与补强 (4)2.1、开孔补强的设计准则 (4)2.2、开孔补强的计算 (4)2.2.1、开孔补强的有关计算参数 (4)2.2.2、补强圈的设计 (5)3、罐体附件的选型与尺寸设计 (5)3.1、工艺接管的设计 (5)3.1.1、液氨进料管 (5)3.1.2、液氨出料管 (5)3.1.3、排污管 (6)3.1.4、安全阀接口管 (6)3.1.5、压力表接口管 (6)3.2、支座的设计 (6)3.3、鞍座的计算 (6)3.4、安装位置 (7)3.5、人孔的设计 (7)3.6、液面计的设计 (7)二、设计结果一览表 (9)三、课程设计总结 (10)四、参考资料 (11)一、液氨储罐的工艺设计计算1、罐体的设计1.1、罐体的PN、DN确定1.1.1、罐体DN的确定液氨贮罐的长径比L/D i一般取3~3.5,本设计取L/D i=3.3,由V=(πDi2/4) L=10和L/D i=3.3,得:D i=1.569m=1569mm。

20M3液氨储罐设计说明书

20M3液氨储罐设计说明书
人孔位置的确定:
:人孔的壁厚, :人孔的公称直径, :筒体壁厚, :筒体公称直径
故 =300mm
2.支座的设置
容器支座有鞍式支座,腿式支座,支承式支座,耳式支座和裙式支座,本次设计为卧式容器,所以采用鞍式支座。鞍式支座分为轻型(代号为A)和重型(代号为B),对于一般直径在1000 mm以上的容器,选用轻型鞍座就可满足要求,鞍座与基础的安装形式有固定式(代号F)和滑动式(代号S)两种,一般为满足容器的热胀冷缩的位移要求,固定式和滑动式应配对使用。故设计中选用轻型鞍座,采用固定式和滑动式,见下图。
本次设计为20 液氨储罐。
一 选择压力容器
1
化工设备的主体是压力容器,容器的强度决定着设备的安全性,为了加强压力容器的安全监察,保护任命生命和财产的安全,国家质量监督局颁布了«压力容器安全技术监察规程»这是一部对压力容器安全技术监督提出基本要求的法规,压力容器设计、安装、使用、检验、修理和改造等单位必须遵守的法规,为了有利于安全技术监督和管理,«压力容器安全技术监察规程»将其管辖范围内的压力容器划分为三类,分别为第一类压力容器、第二类压力容器和第三类压力容器。
取L=6900 mm,则 =34677.891N/m
而支座位置选择a=0.5 =0.48m
所以支座反力 =116170.935N
通过计算可得 =13824.2676N m
3)计算圆筒跨中截面最大拉应力和最大压应力,进行应力校核
最大拉应力由介质及弯矩M引起,位于该截面的最低点
即 =64.807Mpa
其强度条件为 =170 Mpa
八 焊接接头设计
容器各受压元件的组装通常采用焊接。焊接接头是焊缝,熔合线和热影响区的总称,焊缝是焊接接头的主要部分。焊接接头的型式直接影响到焊接的质量与容器的安全。焊接接头的型式及焊接材料应在化工设备的装配图及零部件图中以适当的方式表示出来。

压力容器设计说明书(储罐液氨)液态二氧化碳储罐设计

压力容器设计说明书(储罐液氨)液态二氧化碳储罐设计
1熟悉零件:讲授课程,熟悉零件2天
2查阅相关资料,提出可行方案3天
3上机画图6天
4书写说明书5天
5图纸及工艺的检测3天
6答辩2天
指导教师(签字):
年月日
学院院长(签字):
年月日
第一章.设计选材及结构
1.设计压力
设计压力:2.16MPa的压力合适。 属于中压容器[5]。
设计温度:为-40℃~40℃条件下工作属于低温容器。
——单个封头的质量:查标准JB/T4746-2002《钢制压力容器用封头》中表B.2 EHA椭圆形封头质量,可知,
——充液质量: ,故
——附件质量:人孔质量为300kg,其他接管质量总和估为100kg,即
综上所述,
G=mg=178.721kN,每个鞍座承受的重量为89.361kN
由此查JB4712.1-2007容器支座,选取轻型,焊制为BI,包角为120 ,有垫板的鞍座。查JB4712.1-2007表6得鞍座结构尺寸如下表3:
0.5864
323.4
封头取与筒体相同材料。
第二章. 设计计算
1.筒体壁厚及长度计算
(1)计算压力Pc:
液柱静压力: pa
故液柱静压力可以忽略,即Pc=P=2.16× Pa
查 《压力容器材料使用手册-碳钢及合金钢》得16MnDR的密度为7.85t/m3,熔点为1430℃,许用应力 列于下表:
圆筒的计算压力为2.16Mpa,容器筒体的纵向焊接接头和封头的拼接接头都采用双面焊或相当于双面焊的全焊透的焊接接头,取焊接接头系数为1.00,全部无损探伤。取许用应力为163 Mpa。
g1-2
液位计口
32
38B
140
100
18
4

“液氨贮罐的机械设计”完美版

“液氨贮罐的机械设计”完美版

设计任务书课题:液氨贮罐的机械设计设计内容:根据给定的工艺参数设计一个液氨贮罐相关工艺参数:最高使用温度:T=50℃公称直径:DN=2800mm筒体长度(不含封头):L0=4500mm 设计操作步骤:1.筒体材料的选择2.罐的结构及尺寸3.罐的制造施工4.零部件型号及位置、接口5.相关校核计算设计人: XXX学号:080801XXXX下达时间:2011年11月25日完成时间:2011年12月26日目录前言 (1)1设计方案 (2)1.1设计原则 (2)1.2材料的选择 (2)1.3结构的选择 (2)2设计参数 (4)3设计计算 (5)3.1壁厚的计算 (5)3.1.1筒体壁厚 (5)3.1.2封头壁厚 (5)3.2鞍座承载能力计算 (7)3.2.1罐体质量m1 (7)3.2.2 封头质量m2 (7)3.2.3液氨质量m3 (7)3.2.4附件质量m4 (7)3.3人孔补强计算 (8)4附件选择 (11)4.1人孔选择 (11)4.2接口管的选择 (11)4.2.1液氨进料管 (11)4.2.2液氨出料管 (11)4.2.3液面计接口管 (11)4.2.4安全阀接口管 (11)4.2.5放空阀接口管 (11)4.2.6排污管 (11)5参数校核 (12)5.1筒体轴向应力校核 (12)5.1.1筒体轴向弯矩计算 (12)5.1.2筒体轴向应力计算 (12)5.2筒体和封头切向应力校核 (14)5.2.1筒体切向应力计算 (14)5.2.2 封头切向应力计算 (14)5.3筒体环向应力校核 (14)5.3.1环向应力计算 (14)5.3.2环向应力校核 (15)5.4鞍座有效断面平均压力 (15)6设计汇总 (17)7小结 (21)参考文献 (22)前言本设计是针对《化工设备机械基础》这门课程所安排的一次课程设计,是对这门课程的一次总结,要综合运用所学的知识并查阅相关书籍完成设计。

液氨作为一种重要的化工原料,在工业上应用广泛。

完整的压力容器设计(储罐液氨)

完整的压力容器设计(储罐液氨)

XXXX大学课程设计题目: 液氨储罐设计院系: 化学工程学院专业: 化学工程与工艺班级:姓名:指导教师:完成日期: 2011年12月19日设计任务书设计题目: 液氨储罐设计设计任务:试设计一液氨储罐, 完成主体设备的工艺设计和附属设备的选型设计。

包括筒体、封头、零部件的材料的选择及结构的设计;罐的制造施工及焊接形式等;设计计算及相关校核;各设计的参考标准;附CAD图。

已知工艺参数如下:最高使用温度: T=50℃;公称直径: DN=3000㎜;筒体长度(不含封头): Lo=5900㎜。

任务下达时间: 2010年11月19日完成截止时间: 2010年12月30日目录设计任务书1 前言 (1)2 设计选材及结构 (2)2.1 工艺参数的设定 (2)2.1.1设计压力 (2)2.1.2筒体的选材及结构 (2)2.1.3封头的结构及选材 (2)3 设计计算 (3)3.1 筒体壁厚计算 (4)3.2封头壁厚计算 (4)3.3压力试验 (5)4 附件的选择 (6)4.1人孔的选择 (6)4.2人孔补强的计算 (7)4.3进出料接管的选择 (9)4.4液面计的设计 (10)4.5安全阀的选择 (10)4.6排污管的选择 (11)4.7 鞍座的选择 (11)4.7.1鞍座结构和材料的选取 (11)4.7.2容器载荷计算 (12)4.7.3鞍座选取标准 (12)4.7.4鞍座强度校核 (13)5 容器焊缝标准 (14)5.1压力容器焊接结构设计要求 (14)5.2筒体与椭圆封头的焊接接头 (14)5.3管法兰与接管的焊接接头 (14)5.4接管与壳体的焊接接头 (14)6 筒体和封头的校核计算 (16)6.1 筒体轴向应力校核 (16)6.1.1由弯矩引起的轴向应力 (16)6.1.2 由设计压力引起的轴向应力 (17)6.1.3 轴向应力组合与校核 (17)6.2筒体和封头切向应力校核 (18)7 总结 (19)参考文献 (20)1 前言本设计是针对《化工设备机械基础》这门课程所安排的一次课程设计, 是对这门课程的一次总结, 要综合运用所学的知识并查阅相关书籍完成设计。

(40m3)液氨储罐的设计压力容器课程设计说明书大学论文

(40m3)液氨储罐的设计压力容器课程设计说明书大学论文

化学化工学院课程设计说明书设计题目:压力容器课程设计(40m3)液氨储罐的设计学院、系:化学工程与工艺系专业班级:化工1203班学号: 2012002386 学生姓名:王美鑫指导教师:张铱鈖成绩:2015年1月21日目录第一章工艺设计1.1存储量1.2设备的选型及轮廓尺寸第二章机械设计2.1结构设计2.1.1筒体及封头设计材料的选择筒体壁厚的设计计算封头壁厚的设计计算2.1.2接管及接管法兰设计接管尺寸选择管口表及连接标准接管法兰的选择垫片的选择紧固件的选择2.1.3人孔的结构设计密封面的选择人孔的设计2.1.4 核算开孔补强2.1.5支座的设计支座的选择支座的位置2.1.6液面计及安全阀选择2.1.7总体布局2.1.8焊接接头设计2.2强度校核参考文献第一章工艺设计最高工作压力工作温度公称容积1.1 存储量盛装液化气体的压力容器设计存储量t fV W ρ=式中:W ——储存量,t ; f----装量系数 V ——压力容器容积;t ρ——设计温度下的饱和溶液的密度,3m t;根据设计条件t fV W ρ==t 142.19563.04085.0=⨯⨯t1.2 设备的选型及轮廓尺寸查表《容器参数》得:筒体计算体积:V 计=40.3m3公称直径D=2400mm 长度L=8000mm第二章 机械设计2.1 结构设计2.1.1筒体及封头设计.材料的选择常见的压力容器用碳素钢和低合金钢钢板有Q245,Q345R ,Q370R 等;无缝钢管材料有10,20, 16Mn 等。

考虑到该容器的内径为2400mm ,所以选用筒体由钢板卷制而成,由于低合金钢有较高的强度,良好的塑性,价格相对较低,所以选用Q345R 。

.筒体壁厚设计计算I .设计压力液氨储罐的工作温度-20℃——50℃,故选取设计温度t=50℃,由本次的《化工设备机械基础》课程设计指导书查得,该温度下液氨的绝对饱和蒸汽压为2.030MPa 。

由于通常的设计压力在没有说明的情况下,均指表压在本次设计中的液氨储罐上装有安全阀,通常认为设计压力为工作压力的1.05-1.10倍,所以安全阀的开启压力为p b =1.1×(2.03-0.10)=2.123MPa ,因为p>p b ,所以p=2.2MPa ,公称压力选2.2MPa 。

《课程设计液氨储罐设计》PPT课件

《课程设计液氨储罐设计》PPT课件

储罐基础施工和安装
基础施工:包 括土方开挖、 地基处理、基
础浇筑等
储罐安装:包 括储罐吊装、 就位、固定等
储罐焊接:包 括储罐焊接、
焊缝检测等
储罐防腐:包 括储罐防腐处 理、防腐层检
测等
储罐试压:包 括储罐试压、
压力检测等
储罐验收:包 括储罐验收、
验收报告等
储罐主体施工和安装
储罐基础施工:包括地基处理、基础浇筑等 储罐主体结构施工:包括罐体焊接、罐顶安装等 储罐附属设施施工:包括管道安装、阀门安装等 储罐防腐施工:包括防腐涂料涂装、防腐层施工等 储罐验收:包括外观检查、压力试验、泄漏试验等
和规范
环保设备的运 行:定期检查 环保设备的运 行情况,确保
其正常运行
环保设备的维 护:定期对环 保设备进行维 护和保养,确 保其使用寿命
和效果
06 液氨储罐的施工和验收
施工前的准备工作
熟悉施工图纸和规范要求 准备施工材料和设备 确定施工方案和进度计划
组织施工队伍和培训人员 办理相关手续和许可证 做好安全防护和环保措施
储罐附件施工和安装
储罐附件包括:安全阀、压力表、液位计、温度计等 施工前准备:检查附件质量、数量、规格等 施工步骤:按照图纸和规范进行安装,确保附件安装牢固、密封良好 验收标准:符合设计要求,满足安全、环保、节能等要求
储罐验收标准和程序
储罐验收标准:包括储罐的材质、尺寸、结构、焊接质量等
储罐验收程序:包括储罐的检查、测试、验收、记录等
检查储罐的液位计是否正常工作,确保 储罐内的液位在安全范围内
检查储罐的接地线是否连接良好,确保 储罐的安全性
储罐运行中的监控和维护
监控系统:实时监测储罐内的温度、压力、液位等参数 维护周期:定期检查储罐的腐蚀、泄漏等情况 维护措施:及时更换损坏的部件,确保储罐的正常运行 安全措施:设置报警系统,确保储罐的安全运行

液氨储罐的设计

液氨储罐的设计

设计任务书h DN65 HG/T20592 RF 液氨出口管前言本设计是针对《化工设备机械基础》这门课程所安排的一次课程设计,是对这门课程的一次总结,要综合运用所学的知识并查阅相关书籍完成设计。

本设计的液料为液氨,它是一种无色液体。

氨作为一种重要的化工原料,应用广泛。

分子式NH3,分子量17.03,相对密度0.7714g/L,熔点-77.7℃,沸点-33.35℃,自燃点651.11℃,蒸汽压1013.08kPa(25.7℃)。

蒸汽与空气混合物爆炸极限为16~25%(最易引燃浓度为17%)氨在20℃水中溶解度34%,25℃时,在无水乙醇中溶解度10%,在甲醇中溶解度16%,溶于氯仿、乙醚,它是许多元素和化合物的良好溶剂。

水溶液呈碱性。

液态氨将侵蚀某些塑料制品,橡胶和涂层。

遇热、明火,难以点燃而危险性极低,但氨和空气混合物达到上述浓度范围遇火和燃烧或爆炸,如有油类或其它可燃物存在则危险性极高。

设计基本思路:本设计综合考虑环境条件、介质的理化性质等因素,结合给定的工艺参数,机械按容器的选材、壁厚计算、强度核算、附件选择、焊缝标准的设计顺序,分别对储罐的筒体、封头、人孔接管、人孔补强、接管、管法兰、液位计、鞍座、焊接形式进行了设计和选择。

设备的选择大都有相应的执行标准,设计时可以直接选用符合设计条件的标准设备零部件,也有一些设备没有相应标准,则选择合适的非标设备。

各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。

第一章 设计选材及结构2.1 工艺参数的设定2.1.1存储量由要求可初步确定储罐需满足储存量 W=øνρ=0.85×20×0.5663×1000=9627㎏ 设计压力根据《化学化工物性数据手册》查得50℃蒸汽压为2032.5kpa ,可以判断设计的容器为储存内压压力容器,按《压力容器安全技术监察规程》规定,盛装液化气体无保冷设施的压力容器,其设计压力应不低于液化气50℃时的饱和蒸汽压力,而且查得当容器上装有安全阀时,取1.05~1.1倍的工作压力作为设计压力;所以2.13Mpa1.10.1)-0325.21.1=⨯⨯=(工作设P P ,pa 10p M 6.0M pa <≤属于中压容器[5]。

20m3液氨储罐的设计

20m3液氨储罐的设计

20m3液氨储罐的设计摘要储罐按其形式可分为方形和矩形容器、球形容器、圆筒形容器(立式、卧式)。

按其承压性质和能力可分为内压和外压,内压容器又可分为常压、低压、中压、高压、超高压等五类。

根据使用时候的壁温,可分为常温容器、高温容器、中温容器和低温容器。

按其结构材料分类,容器有金属制的和非金属制的两类。

按其反应情况可分为反应压力容器(R)、换热压力容器(E)、分离压力容器(S)、储存压力容器(C)等。

本次设计,我选用的是卧式圆筒形、中压常温的内压容器。

经计算,筒体规格为:公称直径DN 1800mm,1m高的容积V12.545m3,1m高的内表面积F1 5.66m2,1m高筒节质量536kg。

封头选用椭圆形标准封头,其规格为:公称直径DN 1800mm,曲面高度h1 450mm,直边高度h0 40mm,内表面积F i, 3.73m2,,容积V 0.866m3。

筒体外伸端到支座的距离a = 1.8m。

目录1 引言 (1)2 设计任务书 (1)3 设计参数及材料的选择 (1)3.1 设备的选型与轮廓尺寸 (1)3.2 设计压力 (2)3.3 筒体及封头材料的选择 (2)3.4 许用应力 (3)4 结构设计 (3)4.1 筒体壁厚计算 (3)4.2 封头设计 (4)4.2.1 半球形封头 (4)4.2.2 标准椭圆形封头 (4)4.2.3 标准碟形封头 (5)4.2.4 圆形平板封头 (6)4.2.5 不同形状封头比较 (6)4.3 压力试验 (7)4.4鞍座 (8)4.4.1鞍座的选择 (8)4.4.2 鞍座的位置 (9)5 结果 (11)参考文献 (13)1 引言液氨,是一种无色液体,有强烈刺激性气味。

氨作为一种重要的化工原料,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。

氨易溶于水,溶于水后形成氢氧化铵的碱性溶液。

液氨多储于耐压钢瓶或钢槽中,且不能与乙醛、丙烯醛、硼等物质共存。

液氨在工业上应用广泛,具有腐蚀性且容易挥发,所以其化学事故发生率很高。

液氨贮罐的设计及计算

液氨贮罐的设计及计算

液氨贮罐的设计及计算第一章贮罐筒体与封头的设计一、罐体DN、PN的确定1、罐体DN 的确定液氨贮罐的长径比L/Di一般取3~3.5,本设计取L/Di=3.2,由V=(πDi2/4) ·L=10L/Di=3.2得:Di =( 40/ 3.2π)1/3 =1.585 m= 1585 mm因圆筒的内径已系列化,由Di=1585 mm可知: DN=1600 mm2、釜体PN 的确定因操作压力P=16 Kgf/cm2,由文献 [1]可知:PN=1.6 MPa二、筒体壁厚的设计1、设计参数的确定p=(1.05-1.1) pw ,p =1.1×1.6MPa=1.76MPa,pc=p+p∵ p液< 5 % P ,∴可以忽略p液p c =p=1.76 MPa , t = 100 ℃,Ф=1(双面焊,100%无损探伤), c2=2 mm(微弱腐蚀)2、筒体壁厚的设计设筒体的壁厚Sn ′=14 mm,[σ]t=170MPa ,c1=0.8 mm由公式Sd =pcDi/(2 [σ]tФ-P c)+c 可得:S d =1.76×1600/(2×170×1-1.76)+ 2 +0.8=11.13(mm) 圆整Sn=12 mm∵Sn ≠ Sn′∴假设Sn= 14mm是不合理的. 故筒体壁厚取Sn=12 mm3、刚度条件设计筒体的最小壁厚∵ Di=1600 mm < 3800 mm ,Smin =2 Di /1000且不小于3 mm 另加 C2,∴ Sn=5.2 mm按强度条件设计的筒体壁厚Sn =12 mm >Sn=5.2 mm,满足刚度条件的要求.三、罐体封头壁厚的设计1、设计参数的确定p=(1.05-1.1) pw ,p =1.1×1.6MPa=1.76MPa,pc=p+p液,∵ p液< 5 % p ,∴可以忽略p液p c =p=1.76 MPa , t=40 ℃,Ф=1(双面焊,100%无损探伤), c2=2mm(微弱腐蚀)2、封头的壁厚的设计采用标准椭圆形封头,设封头的壁厚Sn ′=14 mm,[σ]t=170 MPa ,c1=0.8 mm由公式Sd =PcDi/(2 [σ]tФ-0.5Pc)+c 可得:Sd=1.76×1600/(2×170×1-0.5×1. 76)+ 2 +0.8=11.10 mm 圆整Sn=12 mm∵S n ≠ S n ′ ∴ 假设S n = 14mm 是不合理的. 故封头的壁厚取S n =12 mm3、封头的直边、体积及重量的确定因为是标准椭球形封头,由文献[2]可知:封头的壁厚S n =12 mm ,直边高度h =40 mm ,由Di =1600 mm 、 S n =12 mm ,由文献[2]可知:封头的体积V 封=0.616 m 3 、封头的深度h 1=400mm封头的重量: 269.2×2=538.4 kg四、筒体的长度设计及重量的确定由V =2V 封+V 筒 可得:V 筒=10-2×0.616=8.768 m 3V 筒=πDi 2L/4=8.768 m 3 可得:L =4363 mm 圆整:L =4360 mm筒体的重量: Di =1600 mm 、S n =12 mm 的筒体1 m 高筒节的重量为0.476(T) ∴ 4.36×0.476=2.08(T)第二章 贮罐的压力试验一、罐体的水压试验1、液压试验压力的确定液压试验的压力:p T =1.25p[σ]/[σ]t 且不小于(p+0.1) MPa ,当[σ]/[σ]t<1.8时 取其为1 则p T =1.25×1.76×1= 2.2 (MPa)2、 液压试验的强度校核由σmax =p T (Di +S n -c )/[2(S n -c)] =2.2(1600+12-2.8)/[2(12-2.8)]=192.4 (MPa)∵ σmax =192.4 (MPa)<0.9σs Φ=0.9×345×1=310.5 MPa ∴ 液压强度足够3、压力表的量程、水温的要求压力表的量程:2p T =2×2.2=4.4 (MPa) 或3.3MPa -8.8MPa ,水温≥15℃ 4、液压试验的操作过程在保持罐体表面干燥的条件下,首先用液体将罐体内的空气排空,再将液体的压力缓慢升至22Kgf/cm 2,保压10-30分钟,然后将压力缓慢降至17.6Kgf/cm 2,保压足够长时间(不低于30分钟),检查所有焊缝和连接部位,若无泄漏和明显的残留变形。

液氨储罐设计

液氨储罐设计

4. 鞍座
首先粗略计算鞍座负荷
罐体总质量m=m1+m2+m3+m4 式中:m1—罐体质量;m2—封头质量;m3—液氨质量;m4—附件质 量 ①罐体质量m1 DN=2200mm, δ n=18mm的筒节,L=4500mm,质量q1=1290kg/m 所以m1=q1×L=5805kg ②封头质量m2 DN=2200mm, δ n=18mm ,质变高度h=40mm的标准椭圆形封头质 量m2′=1230kg,所以
4. 鞍座
故贮罐总质量=21968kg 总负荷F=mg/2=107.8kN 每个鞍座只承受107.8kN负荷,根据附录16,可以选用轻型带 垫板,包角为120°的鞍座,即
JB/T4712-92
JB/T4712-92
鞍座A2200-F
鞍座A2200-S
5.人孔
根据贮罐的设计温度,最高工作压力、材质、介质及使用要求 等条件,选用公称压力为PN=2.5MPa水平吊盖带颈对焊法兰人孔 (HG21524—95).人孔公称直径选定为DN=450mm。采用榫槽面密封 面(TG型)和石棉橡胶板垫片。人孔结构如图6—45所示,人孔各零 件名称、材质及尺寸见表6—19。
接触途径及中毒症状
2.皮肤和眼睛接触 低浓度的氨对眼和潮湿的皮肤能迅速产生刺激作用。潮湿的皮肤 或眼睛接触高浓度的氨气能引起严重的化学烧伤。 皮肤接触可引起严重疼痛和烧伤,并能发生咖啡样着色。被腐蚀 部位呈胶状并发软,可发生深度组织破坏。 高浓度蒸气对眼睛有强刺激性,可引起疼痛和烧伤,导致明显的 炎症并可能发生水肿、上皮组织破坏、角膜混浊和虹膜发炎。轻度病 例一般会缓解,严重病例可能会长期持续,并发生持续性水肿、疤痕 、永久性混浊、眼睛膨出、白内障、眼睑和眼球粘连及失明等并发症 。多次或持续接触氨会导致结膜炎。

液氨贮罐

液氨贮罐

设计题目:液氨贮罐第一章:筒体的设计和校核1.1设计条件设计一液氨贮罐,内径为2.4,罐体(不包括封头)长度为4.6米,使用地点: 山东。

1.2罐体设计及校核选用16Mn 制作罐体与封头,计算壁厚δ 根据公式δ=c icP D 122[]P C C σϕ++-c P :本贮罐在夏季最高气温可达到40℃,这时候氨的饱和蒸汽压力为1.585MPa ,故取P=1.6 3MPa D 内: 已知为2800mm 查表可得:/[]σ=170 MPa C1=0mm C2=2mmϕ=0.9(双面对接焊,全部探伤)δ=1.63240013.4921700.9 1.6⨯=⨯⨯-mm所以选用16mm 厚的钢板制作罐体强度校核://c P Di e []2eδσφδ=≤∂(+)其中e δ=n δ-C1-C2=16-0-2=14mm所以/ 1.63140.53212σ⨯==⨯(2400+14)</[]σϕ=153MPa 所以n δ=16mm ,/[]σ没有变化,故取名义厚度16mm 合适。

罐体最大允许工作压力/2e[][Pw]Di eδφδ∂=+所以2141700.9[Pw] 1.775240014⨯⨯⨯==+MPa第二章:封头的设计和校核2.1封头的设计和校核罐内需要承受162公斤厘米压力,封头采用椭圆形,材料为16Mn 钢板最大宽度为3米,直径2.4米的封头需拼焊厚冲压 封头计算厚度的计算公式:c i/ckP D 2[]0.5P δσϕ=-, (k=1.0 , ϕ=0.9)则2400 1.6312.8221700.90.5 1.63mm δ⨯==⨯⨯-⨯,C3=2mm所以封头名义厚度n C1+C2=12.820216δδ=+++=mm ,由钢材标准规定,可取名义厚度为16mm 。

强度校核://Pc i e []2eδσφδ=≤∂(D +)e n C1-C2=16214δδ=--=mm//240014140.53[]214σσ+⨯==≤⨯()1.63 =153n 16mm δ=时,/[]σ没有变化,所以取n 16mm δ=合适。

3.5MPa液氨贮罐压力容器设计

3.5MPa液氨贮罐压力容器设计

化学工程与工艺(卓越计划)专业化工设备机械基础课程设计设计题目液氨贮罐的机械设计姓名学院专业班级学号指导教师设计日期评定成绩:评阅人:二〇二五年十二月二十一日目录课程设计任务书 (1)第一章前言 (3)第二章主要内容 (6)2.1选择符合要求的材料 (6)2.2确定设计参数 (7)2.3罐体壁厚设计 (7)2.4封头壁厚设计 (8)2.5校核水压实验强度 (9)2.5.1罐体水压实验强度 (9)2.5.1封头水压实验强度 (10)2.6应力的计算 (10)2.6.1罐体应力的计算 (10)2.6.2封头应力及应力分布计算 (11)2.7鞍座的设计 (13)2.8人孔的设计 (15)2.9人孔的补强 (16)2.9.1补强圈的设计 (16)2.9.2补强圈的强度验算 (16)2.10接管口的设计 (17)2.11设备装配图及有关明细表 (17)第三章心得体会 (19)参考文献 (23)图纸 (24)课程设计任务书23卓越班化工设备机械基础课程设计-设计任务书设计题目:液氨贮罐的机械设计一、设计时间:2025年12月6日~2025年12月17日二、设计条件:1.按夏季最高温度50℃考虑2.贮罐筒体为圆柱形,封头为标准椭圆封头3.容器设计压力P c (单位MPa ):1-10序号:2.5MPa11-20序号:3.5MPa>20序号:4MPa注:序号为学生名单中第一列,以下相同。

4.贮罐内直径i D (单位mm ):1-15号:()[]10011000⨯-+=序号i D >15号:()[]100161000⨯-+=序号i D 5.不包括封头的罐体长度L (单位mm ):序号1-56-1011-1516-2021-25>25L220028003200240030003400三、设计内容:1.选择符合要求的材料2.确定设计参数3.罐体壁厚设计4.封头壁厚设计5.校核水压实验强度5.1罐体水压实验强度5.2封头水压实验强度6.应力的计算6.1罐体应力的计算6.2封头应力及应力分布的计算7.鞍座的设计8.人孔的设计9.人孔的补强9.1补强圈的设计10.接口管的设计11.设备装配图及有关明细表四、设计成果提交形式及时间:1.提交设计说明书的电子档、打印纸质档;提交CAD图纸(A2图纸)电子档、打印纸质档;2.提交时间:2025年12月21日下午2:00;3.务必严格按照化工系规范排版、撰写。

液氨储罐设计

液氨储罐设计

D2 D1
760 484
故补强圈取30mm厚。
6.接口管
(1)液氨进料管: 用f57×5mm无缝钢管 (强度验算略)。一端切成45°。 配用具有突面密封的平焊管法兰, 法兰标记: HG20592 法兰SO50-2.5 RF 16MnR。 设计压力<=2.5MPa,接管公称直径 <= 89mm,且壁厚>=5mm,不用 补强。
4.人孔
常温及最高工作压力2.1MPa,按 公称压力2.5MPa的等级选取。 考虑人孔盖直径较大较重,水平 吊盖人孔。
人孔标记: HG21523-95 人孔RF Ⅳ(A· G)450-2.5 RF指突面密封,Ⅳ指接管与法兰 的材料为20R, A· G是指用普通石棉橡胶板垫片, 450-2.5是指公称直径为450mm、 公称压力为2.5 MPa。
本贮罐技术要求
1.本设备按GBl50-1998《钢制压力 容器》进行制造、试验和验收 2.焊接材料,对接焊接接头型式及 尺寸可按GB985-80中规定(设计焊 接接头系数=1.0) 3.焊接采用电弧焊,焊条型号为 E4303
本贮罐技术要求
4.壳体焊缝应进行无损探伤检查, 探伤长度为100% 5.设备制造完毕后,以2.6MPa表压 进行水压试验 6.管口方位按接管表
(5)放空管接管
用f32×3.5mm无缝钢管, 法兰 HG20592 法兰SO25-2.5RF 16MnR。
(6)安全阀接管
安全阀接管尺寸由安全阀泄放量决 定。 本贮罐选用f32×2.5mm的无缝钢管, 法兰为 HG20592 法兰 SO25-2.5 RF 16MnR。
7.设备总装配图
附有贮罐的总装配图,技术特性表, 接管表,各零部件的名称、规格、 尺寸、材料等见明细表。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设计任务书设计题目:液氨储罐设计设计任务:试设计一液氨储罐,完成主体设备的工艺设计和附属设备的选型设计。

包括筒体、封头、零部件的材料的选择及结构的设计;罐的制造施工及焊接形式等;设计计算及相关校核;各设计的参考标准;附CAD图。

已知工艺参数如下:最高使用温度:T=50℃;公称直径:DN=3000㎜;筒体长度(不含封头):Lo=5900㎜。

目录1 前言本设计是针对《化工设备机械基础》这门课程所安排的一次课程设计,是对这门课程的一次总结,要综合运用所学的知识并查阅相关书籍完成设计。

本设计的液料为液氨,它是一种无色液体。

氨作为一种重要的化工原料,应用广,分子量17.03,相对密度0.7714g/L,熔点-77.7℃,沸点-33.35℃,泛。

分子式NH3自燃点651.11℃,蒸汽压1013.08kPa(25.7℃)。

蒸汽与空气混合物爆炸极限16~25%(最易引燃浓度17%)。

氨在20℃水中溶解度34%,25℃时,在无水乙醇中溶解度10%,在甲醇中溶解度16%,溶于氯仿、乙醚,它是许多元素和化合物的良好溶剂。

水溶液呈碱性。

液态氨将侵蚀某些塑料制品,橡胶和涂层。

遇热、明火,难以点燃而危险性较低; 但氨和空气混合物达到上述浓度范围遇明火会燃烧和爆炸,如有油类或其它可燃性物质存在,则危险性更高。

设计基本思路:本设计综合考虑环境条件、介质的理化性质等因素,结合给定的工艺参数,机械按容器的选材、壁厚计算、强度核算、附件选择、焊缝标准的设计顺序,分别对储罐的筒体、封头、人孔接管、人孔补强、接管、管法兰、液位计、鞍座、焊接形式进行了设计和选择。

设备的选择大都有相应的执行标准,设计时可以直接选用符合设计条件的标准设备零部件,也有一些设备没有相应标准,则选择合适的非标设备。

各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。

2 设计选材及结构2.1 工艺参数的设定2.1.1设计压力根据《化学化工物性数据手册》查得50℃蒸汽压为2032.5kpa,可以判断设计的容器为储存内压压力容器,按《压力容器安全技术监察规程》规定,盛装液化气体无保冷设施的压力容器,其设计压力应不低于液化气50℃时的饱和蒸汽压力,可取液氨容器的设计压力为 2.16 Mpa,属于中压容器。

而且查得当容器上装有安全阀时,取1.05~1.3倍的最高工作压力作为设计压力;所以取 2.16 Mpa的压力合适。

pa<6.0M≤属于中压容器[5]。

paM10p设计温度为50摄氏度,在-20~200℃条件下工作属于常温容器。

2.1.2筒体的选材及结构根据液氨的物性选择罐体材料,碳钢对液氨有良好的耐蚀性腐蚀率在0.1㎜/年以下,且又属于中压储罐,可以考虑20R和16MnR这两种钢材。

如果纯粹从技术角度看,建议选用20R类的低碳钢板, 16MnR钢板的价格虽比20R贵,但在制造费用方面,同等重量设备的计价,16MnR钢板为比较经济。

所以在此选择16MnR钢板作为制造筒体和封头材料。

钢板标准号为GB6654-1996。

筒体结构设计为圆筒形。

因为作为容器主体的圆柱形筒体,制造容易,安装内件方便,而且承压能力较好,这类容器应用最广[1,5]。

2.1.3封头的结构及选材封头有多种形式,半球形封头就单位容积的表面积来说为最小,需要的厚度是同样直径圆筒的二分之一,从受力来看,球形封头是最理想的结构形式,但缺点是深度大,直径小时,整体冲压困难,大直径采用分瓣冲压其拼焊工作量也较大。

椭圆形封头的应力情况不如半球形封头均匀,但对于标准椭圆形封头与厚度相等的筒体连接时,可以达到与筒体等强度。

它吸取了蝶形封头深度浅的优点,用冲压法易于成形,制造比球形封头容易,所以选择椭圆形封头,结构由半个椭球面和一圆柱直边段组成。

查椭圆形封头标准(JB/T4737-95)表2.1 椭圆封头标准公称直径DN 曲面高度h1 直边高度h2 内表面积Fi/m2 容积V/m3 3000 750 50 10.2 3.89封头取与筒体相同材料[1,5]。

3 设计计算3.1 筒体壁厚计算查 《压力容器材料使用手册-碳钢及合金钢》得16MnR 的密度为7.85t/m 3,熔点为1430℃,许用应力[]tσ列于下表:表3.1 16MnR 许用应力钢号板厚/㎜ 在下列温度(℃)下的许用应力/ Mpa≤20 100 150 200 250 300 16MnR6~16170 170 170 170 156 144 16~36 163 163 163 159 147 134 36~60 157 157 157 150 138 125 >60~100153153150141128116圆筒的计算压力为2.16 Mpa,容器筒体的纵向焊接接头和封头的拼接接头都采用双面焊或相当于双面焊的全焊透的焊接接头,取焊接接头系数为1.00,全部无损探伤。

取许用应力为163 Mpa 。

壁厚:[]1.0206.121163230006.122D =-⨯⨯⨯=-=cti c p p φσδ㎜(3.1) 钢板厚度负偏差0.8C 1=,查材料腐蚀手册得50℃下液氨对钢板的腐蚀速率小于0.05㎜/年,所以双面腐蚀取腐蚀裕量2C 2=㎜。

所以设计厚度为:81.2212=++=C C d δδ㎜圆整后取名义厚度24㎜。

3.2 封头壁厚计算标准椭圆形封头a:b=2:1封头计算公式 :[]ctic p p 5.02D -=φσδ (3.2)可见封头厚度近似等于筒体厚度,则取同样厚度。

因为封头壁厚≥20㎜则标准椭圆形封头的直边高度50h 0=㎜[1,4].3.3 压力试验水压试验,液体的温度不得低于5℃;试验方法:试验时容器顶部应设排气口,充液时应将容器内的空气排尽,试验过程中,应保持容器外表面的干燥。

试验时压力应缓慢上升,达到规定试验压力后,保压时间一般不少于30min 。

然后将压力降至规定试验压力的80%,并保持足够长的时间以便对所有焊接接头和连接部位进行检查。

如有渗漏,修补后重新试验。

水压试验时的压力[][]Mpa pt7.216.225.125.1p T =⨯==σσ (3.3)水压试验的应力校核: 水压试验时的应力()()[]()44.177124212430007.22D T T =-⨯-+⨯=+=e e i p δδσMpa (3.4)水压试验时的许用应力为S T 0.9φσσ<故筒体满足水压试验时的强度要求[1]。

4 附件选择4.1人孔选择人孔的作用:为了检查压力容器在使用过程中是否产生裂纹、变形、腐蚀等缺陷。

人孔的结构:既有承受压力的筒节、端盖、法兰、密封垫片、紧固件等受压元件,也有安置与启闭端盖所需要的轴、销、耳、把手等非受压件。

人孔类型:从是否承压来看有常压人孔和承压人孔。

从人孔所用法兰类型来看,承压人孔有板式平焊法兰人孔、带颈平焊法兰人孔和带颈对焊法兰人孔,在人孔法兰与人孔盖之间的密封面,根据人孔承压的高低、介质的性质,可以采用突面、凹凸面、榫槽面或环连接面。

从人孔盖的开启方式及开启后人孔盖的所处位置看,人孔又可分为回转盖人孔、垂直吊盖人孔和水平吊盖人孔三种。

人孔标准HG21524-95规定PN≥1.0Mpa时只能用带颈平焊法兰人孔或带颈对焊法兰人孔。

容器上开设人孔规定当Di>1000时至少设一个人孔,压力容器上的开孔最好是圆形的,人孔公称直径最小尺寸为φ400㎜。

综合考虑选择水平吊盖带颈对焊法兰人孔(HG21524-95),公称压力PN2.5、公称直径DN450、H1=320、RF型密封面、采用Ⅵ类20R材料、垫片采用外环材料为低碳钢、金属带为0Cr19Ni9、非金属带为柔性石墨、C型缠绕垫。

标记为:人孔RFⅥ(W·C-1220)450-2.5HG21524-95总质量为256kg.法兰标准号为HGJ50~53-91,垫片标准号为HGJ69~72-91,法兰盖标准HGJ61~65-91材料为20R,螺柱螺母标准HGJ75-91螺柱材料40Cr螺母材料45,吊环转臂和材料Q235-A·F,垫圈标准为GB95-85材料100HV,螺母标准GB41-86,吊钩和环材料Q235-A·F,无缝钢管材料为20,支承板材料为20R[2,3,5]。

尺寸表如下表4.1 人孔标准尺寸表密封面型式PN/MpaDN dw×s d D D1 H1 H2总质量kg突面 2.5 450 480×12450 670 600 320 214 2564.2人孔补强的计算开孔补强结构:压力容器开孔补强常用的形式可分为补强圈补强、厚壁管补强、整体锻件补强三种。

补强圈补强是使用最为广泛的结构形式,它具有结构简单、制造方便、原材料易解决、安全、可靠等优点。

在一般用途、条件不苛刻的条件下,可采用补强圈补强形式。

但必须满足规定的条件。

压力容器开孔补强的计算方法有多种,为了计算方便,采用等面积补强法,即壳体截面因开孔被削弱的承载面积,必须由补强材料予以等面积的补偿。

当补强材料与被削弱壳体的材料相同时,则补强面积等于削弱的面积。

补强材料采用16MnR 。

1、 内压容器开孔后所需的补强面积()r et f d -+=12A δδδ (4.1)式中 开孔直径:6.4618.224562=⨯+=+=C d d i ㎜;强度削弱系数:壳体开孔处的计算厚度1.020=δ㎜ 接管有效厚度:2.98.212=-=-=C nt et δδ㎜则 ()38.930416313312.901.20201.206.461A =-⨯⨯⨯+⨯=㎜2 2、有效补强面积即已有的加强面积壳体开孔后,在有效补强范围内,可作为补强的截面积(包括来自壳体、接管、焊缝金属、补强元件)321A A A A e ++= (4.2)筒体上多余金属面积:()()()()r e et e f ----=12d -B A 1δδδδδ (4.3)有效补强宽度 B=2d筒体的有效厚度 2.218.224=-=e δ㎜ 所以()()()27.545163133101.202.212.9201.202.216.4611=-⨯-⨯⨯--⨯=A ㎜2人孔接管上多余的面积:()()r et r t et f C h f h 221222A -+-=δδδ (4.4)外侧有效高度:43.746.461121=⨯==d h nt δ㎜内侧有效高度即实际内伸高度 02=h 接管计算厚度:[]()73.316.2113322448016.22=-⨯⨯-⨯=-=ctn i c t p d p φσδ㎜ 所以()36.66416313373.32.96.4611222=⨯-⨯⨯⨯=A ㎜2焊缝金属截面积:1441212212A 3=⨯⨯⨯=㎜2则 63.135314436.66427.545A 321=++=++=A A A e ㎜2 比较的 e A A >满足以下条件的可选用补强圈补强:刚材的标准常温抗拉强度540≤b σMpa ;补强圈厚度应小于或等于壳体壁厚的 1.5倍;壳体名义厚度38≤n δ㎜;设计压力Mpa 4<;设计温度350≤℃。

相关文档
最新文档