公务员行测数学方法及蒙题技巧篇
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行测数学方法及蒙题技巧篇
行测高手秒题,绝对是建立在对题目强大的理解和把握基础上的,看过很多关于这些方面的书籍,看的时候思路都懂,但实际到了考试,还是很难一时间反应得过来。对于这些所谓的秒题方法,可以把它练到形成条件反射,但绝对不能傻傻地把它变成自己的一种思维惯势,尤其是现在题目难度渐渐加大,而且呈现多变化的情况下,很容易就掉入出题人的陷阱。所以我这里也不多说那些,还是说一点自己以前做题的心得吧,太细的也不多说了,论坛上分门归类各种专项练习的大把,不是现在这种剩下两天的紧急情况下该去钻的东西。还是分题型来吧:
数推:5道题无非就是那几种一直在变来变去,做差、3项推理、幂次、长数列/分数列,表格或者什么变种的,如果这几种用上了还是不能在短时间内看出来,那就果断蒙吧,但蒙咱们也要有技巧地蒙,而绝对不是瞎蒙。一般来说,如果选项里面出现负数、小数,什么3奇1偶、3偶1奇的,特殊选项就要引起重视了,再结合整体的奇偶性和大体趋势进行判断,当然既然是蒙,就没办法保证100%的准确率,总会有偏差,如果都能100%蒙对,那就是买对彩票,而不是蒙了。
举个比较简单的例子:
2,7,23,47,119,()
A.125
B.167
C.168
D.170
像这种题就是根本不用想的,后面全奇,选项选偶数的概率几乎为0,在时间匆忙又不知道该怎么做的情况下,选择B.167无悬念。因为排掉两个偶数,125只比119大6,跟前面对比起来显然不可能。
其实这只是基本技巧,对于这5题,我一直的想法都是尽量保3争4冲5...
数算:还是重点讲这个大家都比较害怕的类型,包罗万象的各种应用题,现在真要完全说下来估计打到明天都打不完,所以我也只说一些适用于多数题目的方法。
首先是代入整除那种,很多人应该都懂,但像我开头所说的,懂是个好事,但有时如果不多注意就很容易掉陷阱里。
比如在论坛上看过那道很经典的题目:
甲乙丙丁四个队植树造林,已知甲队的植树亩数是其余三队植树总亩数的的四分之一,乙队的植树亩数是其余三队植树总亩数的三分之一,丙队的植树亩数是其余三队植树总亩数的一半,丁队植树3900亩。那么甲的植树亩数是多少?( )
我看到下面很多人都是这样回答:哥秒了,选能被3,4,5
最小公倍数整除的那一个。都是这样想当然,题目也不看清楚就直接代,直接就往出题人陷阱里面钻了...毕竟它问的不是总数有多少。
有意识地去注意这些分数的关系,并把它转化为倍数的形式去寻找可以整除的选项,这种思路还是必须的,如果碰上了的话可以减少很多计算量,但绝对不能死套,要多动一下脑子去认真看清楚题目。
第二个是特值法。主要是用来解决总工程量不明的工程问题还有总量未知(什么若干、一批之类的)的一些分配问题
最常见的是工程问题的设最小公倍数,其实主要是因为工程问题如果常规解法,同样是特值法,但却是设的1,那样会碰到很多分数的东西,那样计算起来繁琐得多。同样用几道题目来说下,我举的例子都是比较简单的,但也都是很具代表性的,而不是具体到某种类型的题目。细节我都会说,总体思路也就是那样,能吸收多少就看各位了,当然如果你连工程问题、路程问题、等差等比的那些公式都不懂,那我建议你最好现在赶快去翻翻课本...因为说实话这些可能对你没什么用;如果你是高手,对于这些已经再熟悉不过,觉得是小菜一碟了,也可以选择不看:
例1. 一项工程,甲单独完成需要2天,乙单独完成需要4天,如果甲做完一天后,剩下的工程由乙单独完成,则做完这项工程需要多少天?
A.3天
B.4天
C.5天
D.6天
解:设总工作量为8,则甲单独1天是做8/2=4的量,乙单独1天是做8/4=2的量,
这里为什么取个8,就是因为2,4的最小公倍数是4,但为了避免数值过小,我把它放大了一倍而已。
甲做掉一天,那剩下就是8-4=4,给乙做,那就是4/2=2天,合起来就是3天,选A
解这题全过程不超过20秒。
例2.有若干个苹果,甲拿了其中的1/3少4个,乙拿了余下的1/4多4个,请问剩下的苹果比甲乙拿走的总数少几个?
A. 1
B.2
C.3
D.4
解:取特值12(方便分数计算,取了3,4的最小公倍数)那么甲就是拿了12/3-4=0个,剩下的自然也还是12个,那么乙拿了12/4+4=7,再剩下的当然就是12-(0+7)=5了...明显就是比他们一起拿走的少了2个,选B。
例3.动物园饲养员给三群猴子分花生,如果只分给第一群,则每只猴子可得12个,如只分给第二群,则每只猴子可得15个,如只分给第三群,则每只猴子可得20个,那么如果平均分给三群猴子,每只可得多少个?
A.3
B.4
C.5
D.6
解:同样很简单的,设总数特值60(12,15,20的最小公倍数),那么第一群有60/12=5只猴子,第二群有60/15=4,第三群有60/15=4,则平均就为60/(5+4+3)=5个,选C。
第三种是比例法,比例法在数学题里面运用确实相当广泛第一道先拿跟这次省考一道差不多的题目:
例1小明从家到学校,先用每分钟50米的速度走了2分钟,如果这样一直走下去,那他会迟到8分钟;后来他改用每分60米的速度前进,结果早到学校5分钟,则小明家到学校的距离是多少米?
A.1000米
B.2000米
C.3000米
D.4000米
解:像这种工程问题、路程问题的比例法解题,一般都是先找速度比(效率比)或者时间比,要记得两个公式:路程比=速度比=时间比的反比(总工程量比=效率比=时间比反比),
比如这里前后速度比是50:60=5:6,那么时间比也就是反过来6:5,相差1个比例点,为什么?就是因为先走2分钟路程速度改变所造成的(等于说速度提高了,所以快了1个比例点)对应的就是那前后相差的8+5=13分钟,那么后来走的就是6个比例点的时间,即13*6=78分钟,所以走的路程就是78*50=3900米,加上前面100米,就是4000米了。也可以用后面5个比例点来计算,即13*5=65分钟,65*60同样=3900,加上100,等于4000,选D。
例2. 一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达.那么甲、乙两地相距多少千米?
解:跟第一题差不多,主要是百分数应该怎么转化的问题,这里车速提高20%,即前后速度比是5:6,则时间比是6:5,相差1个比例点,对应提前1小时,即1个比例点就是1小时,所以如果按原来速度走完全程要6小时;
“如果以原速行驶120千米后,再将速度提高25%”,速度比4:5,时间比就是5:4,同样差1个比例点,对应的是2/3小时,那么按原来速度走完后半程就是5*2/3=10/3小时,即前面那120千米用了6-10/3=8/3小时,
所以原来速度是120/(8/3)=45千米/小时,全程就是