路由器原理及常用的路由协议、路由算法

合集下载

路由器_百度百科

路由器_百度百科
无线路由器与无线AP的区别 路由器是什么
路由器的原理
路由器的作用
路由器的类型
常用路由器名词解释 宽带路由器
模块化路由器
非模块化路由器
虚拟路由器
核心路由器
无线路由器
独臂路由器
路由器的体系结构
路由器的构成 无线网络路由器
2.动态路径表
动态(Dynamic)路径表是路由器根据网络系统的运行情况而自动调整的路径表。路由器根据路由选择协议(Routing
Protocol)提供的功能,自动学习和记忆网络运行情况,在需要时自动计算数据传输的最佳路径。
[编辑本段]路由器的类型
互联网各种级别的网络中随处都可见到路由器。接入网络使得家庭和小型企业可以连接到某个互联网服务提供商;企业网中的路由器连接一个校园或企业内成千上万的计算机;骨干网上的路由器终端系统通常是不能直接访问的,它们连接长距离骨干网上的ISP和企业网络。互联网的快速发展无论是对骨干网、企业网还是接入网都带来了不同的挑战。骨干网要求路由器能对少数链路进行高速路由转发。企业级路由器不但要求端口数目多、价格低廉,而且要求配置起来简单方便,并提供QoS。
Table),供路由选择时使用。路径表中保存着子网的标志信息、网上路由器的个数和下一个路由器的名字等内容。路径表可以是由系统管理员固定设置好的,也可以由系统动态修改,可以由路由器自动调整,也可以由主机控制。
1.静态路径表
由系统管理员事先设置好固定的路径表称之为静态(static)路径表,一般是在系统安装时就根据网络的配置情况预先设定的,它不会随未来网络结构的改变而改变。 路Fra bibliotek器的配置与调试
路由器的功能低端和高端路由器的区别路由器与交换机的区别无线路由器与无线AP的区别

路由器原理及常用的路由协议路由算法

路由器原理及常用的路由协议路由算法

路由器原理及常用的路由协议路由算法路由器是一种网络设备,用于在不同的网络之间转发数据包。

它通过查找目标地址来确定数据包的最佳路径,并将其发送到目标地址所在的网络。

一、路由器的原理路由器的原理基于IP(Internet Protocol)协议,它使用IP地址来标识网络中的每个设备。

当一个数据包通过路由器时,路由器会检查它的目标IP地址,并查找与该地址最匹配的路由条目。

接下来,路由器根据路由表中的信息,选择适当的接口将数据包发送到下一个路由器或目标设备。

路由器通过使用转发表或路由表来决定数据包的下一跳。

转发表记录了直接连接到路由器的网络和相应的接口信息,而路由表则记录了其他网络的路径信息和下一跳路由器的地址。

二、常用的路由协议1. 静态路由协议静态路由协议是手动配置的路由信息,管理员需要手动输入网络地址和下一跳路由器的信息。

静态路由适用于小型网络或需要精确控制路由路径的场景。

它的配置简单,不会产生额外的网络流量。

然而,静态路由缺乏自适应性,不能根据网络拓扑变化自动更新路由信息。

2. 动态路由协议动态路由协议可以自动学习和交换路由信息,以适应网络拓扑的变化。

常见的动态路由协议包括RIP(Routing Information Protocol)、OSPF(Open Shortest Path First)和BGP(Border Gateway Protocol)等。

RIP是一种基于跳数的距离矢量路由协议,它使用Hop Count(跳数)作为度量标准,通过交换路由信息选择最短路径。

RIP适用于小型网络,但在大型网络中由于其慢速收敛和有限的路由选择能力而不常使用。

OSPF是一种链路状态路由协议,它通过交换链路状态信息来计算最短路径。

OSPF适用于中大型网络,并支持可变长度子网掩码,具备快速收敛和灵活的路由选择能力。

BGP是一种边界网关协议,主要用于互联网中的自治系统之间的路由选择。

BGP具有较复杂的路由策略和路径选择能力,能够实现自治域之间的路由控制和流量优化。

常见的路由协议及工作原理

常见的路由协议及工作原理

常见的路由协议及工作原理如下:
1. RIP路由协议:RIP协议最初是为Xerox网络系统的Xeroxparc通用协议而设计的,是Internet中常用的路由协议。

RIP采用距离向量算法,即路由器根据距离选择路由,所以也称为距离向量协议。

路由器收集所有可到达目的地的不同路径,并且保存有关到达每个目的地的最少站点数的路径信息,除到达目的地的最佳路径外,任何其它信息均予以丢弃。

2. OSPF路由协议:OSPF协议是一种链路状态路由协议,主要应用于较大规模的网络环境中。

与RIP不同,OSPF协议通过路由设备间的链路状态交换,生成网络中所有设备的链路状态数据库。

OSPF协议使用Dijkstra的最短路径算法计算最短路径树,以得到到达目标地址的最短路径。

3. BGP路由协议:BGP协议是一种外部网关协议,主要用于不同自治系统之间的路由交换。

BGP协议通过建立和维护相邻节点间的连接关系,并交换路由信息来更新和维护路由表。

BGP协议具有支持大规模网络、路由收敛速度快、防止路由循环等特点。

以上是常见的路由协议及工作原理,不同的路由协议适用于不同的网络环境,需要根据实际情况选择合适的路由协议。

路由器与路由算法

路由器与路由算法

三类交换网络
内存交换(Switching Via Memory) 第一代路由器: 分组通过系统的(单个)CPU拷贝 速度受到内存带宽的限制 (每个分组需2次穿越 系统总线)
Input Port Memory Output Port
System Bus
总线交换(Switching Via Bus) 分组通过一条共享的总线从输入端口的内存传递 到输出端口的内存 总线竞争:交换速率受限于总线的带宽 1 Gb/s总线,Cisco 1900:对访问接入和企业级 的路由器已经足够 (但还不适应在区域或主干级 线路上使用)
5.2.9 链路状态算法(LS)和距离向量算法(DV) 的比较 算法复杂性 LS –路由信息向全网发送 –N节点,E个连接的情况下,每个节点发 送O(nE)的报文 DV –仅在邻居节点之间交换
收敛(Convergence)速度 LS 使用最短路径优先算法,算法复杂度为 O(n**2) n个结点(不包括源结点),需要 n*(n+1)/2 次比较 使用更有效的实现方法,算法复杂度可 以达到O(nlogn) 可能存在路由振荡(oscillations)(研究
路由器C的路由表
目的网络号 下一个转发路由器端口或IP地址 度量(转发次数)
128.1.0.0
128.2.0.0 128.3.0.0 128.4.0.0
128.3.0.2 (RB)
128.3.0.2 (RB) 直接端口1 直接端口2
2
1 0 0
Internet 路由表包含内容
目的或网络掩码 协议 优先级 优先权 下一跳地址 输出接口 影响路由权的属性, 如右图。越小,路径 越好。
热点问题)
DV 收敛时间不定 可能会出现路由循环 count-to-infinity问题

路由器原理 路由器的工作原理详细说明

路由器原理 路由器的工作原理详细说明

路由器原理路由器的工作原理详细说明路由器原理:路由器的工作原理详细说明一、引言在网络通信中,路由器是一种用于转发数据包的设备,它能够将数据包从源地址转发到目标地址。

本文将详细介绍路由器的工作原理,包括数据包转发、路由选择算法、路由表管理等方面。

二、路由器的基本功能1. 数据包转发:路由器通过接收数据包的源和目标IP地址,根据路由表中的信息,将数据包转发到下一跳的目标地址。

2. 路由选择:路由器根据网络拓扑和路由协议,选择最佳的路径将数据包转发到目标地址。

3. 路由表管理:路由器维护一张路由表,其中包含了网络地址和对应的下一跳地址,用于决定数据包的转发路径。

4. 数据包过滤:路由器可以根据预设的规则,对数据包进行过滤和阻止,提高网络的安全性。

三、路由器的工作原理1. 数据包转发过程:当路由器接收到一个数据包时,会首先检查数据包的目标IP地址。

然后,路由器会根据自己的路由表,查找与目标IP地址匹配的路由项。

如果找到匹配的路由项,路由器会将数据包发送到路由表中指定的下一跳地址。

如果找不到匹配的路由项,路由器会将数据包丢弃或发送到默认路由。

2. 路由选择算法:路由选择算法决定了路由器选择哪条路径来转发数据包。

常见的路由选择算法有以下几种:- 静态路由:管理员手动配置路由表,指定数据包的转发路径。

- 动态路由:路由器通过路由协议与相邻路由器交换网络信息,根据收到的信息更新路由表,选择最佳的路径转发数据包。

- 距离矢量路由算法:路由器根据到达目标网络的距离选择最佳路径。

- 链路状态路由算法:路由器根据网络链路的状态信息选择最佳路径。

3. 路由表管理:路由器的路由表包含了网络地址和对应的下一跳地址。

路由表的更新可以通过手动配置或者动态路由协议来实现。

当路由器接收到路由更新信息时,会根据一定的策略更新路由表,例如使用跳数、带宽等作为选择路径的依据。

4. 数据包过滤:路由器可以根据预设的规则对数据包进行过滤和阻止。

UTN技术原理主流协议及路由技术

UTN技术原理主流协议及路由技术

目录
第一部分 第二部分
城域综合承载传送网络概貌 城域综合承载传送技术原理
路由协议分析
Interface M
R1
(N,R1,M)
目标网络N 其它网络
路由协议分析
路由技术通常分为两大类:内部网关协议和外部网关 协议。内部网关协议是在一个自治系统内部使用的路由选择 协议;外部网关协议是在不同自治系统路由器之间使用的协 议。
路由协议分析
路由协议分析
BGP路由协议 边界网关协议(Border Gateway Protocol,BGP)是一种应用于自治系
统(Autonomous System,AS)之间的动态路由协议。BGP使用TCP(端 口号179)作为底层传送机制,提高了协议的可靠性。BGP是一种距离矢量 (Distance-Vector)路由协议,每一个BGP节点都依赖邻居进行路由传递: BGP节点基于下游邻居通告的路由完成路由计算,并将其通告给上游邻居。 区别于其他距离矢量路由协议,BGP使用数据包到达特定目的地所要经过的 一个AS号列表来量化距离。BGP通过携带AS路径信息来标记其途经的AS, 而将带有本地AS号的路由丢弃,从而避免了域间产生环路。BGP在AS内学习 到的路由将不再通告给其AS内部的BGP邻居,避免了域内环路。 与BGP路由器建立对等体关系的邻居既可以在不同的AS之中,也可以在同一个 AS之中。若邻居位于不同的AS之中,则该邻居为外部对等体,此时BGP称为 EBGP。若邻居位于同一AS之中,则邻居为内部对等体,此时BGP称为IBGP。
本地网络
汇聚层
核心层
骨干网络
铜线接入 光纤接入
光纤接入 微波接入
DSLAM OLT
2层 汇 聚网络
AG
MSTP网 络 边缘层

路由器分组转发算法

路由器分组转发算法

路由器分组转发算法1. 背景介绍在计算机网络中,路由器是负责将数据包从源节点传输到目标节点的重要设备。

在数据包传输过程中,路由器需要根据一定的算法来选择最佳的路径进行转发。

这个算法被称为路由器分组转发算法。

路由器分组转发算法的目标是实现高效、可靠和快速的数据包传输。

它需要考虑网络拓扑结构、链路负载、网络流量等多个因素,以选择最佳路径进行数据包转发。

本文将介绍几种常见的路由器分组转发算法,并对它们的原理、特点和应用进行详细讨论。

2. 静态路由算法静态路由算法是最简单且最常用的一种路由器分组转发算法。

它基于事先配置好的静态路由表来进行转发决策。

静态路由表是一张记录了网络中各个节点之间最佳路径信息的表格。

每个节点都会根据这张表格来选择下一跳节点,并将数据包发送到该节点。

静态路由算法具有以下特点: - 配置简单:只需要手动配置静态路由表,不需要复杂的计算和协议交互。

- 稳定可靠:静态路由表不会自动更新,只有手动修改才会改变路由选择。

这种稳定性可以确保网络的可靠性,但也意味着无法适应网络拓扑的变化。

- 适用范围广:静态路由算法适用于小型网络或网络结构稳定的情况,如企业内部网络。

然而,静态路由算法也存在一些问题。

因为它无法动态地适应网络环境的变化,所以在面对大规模、复杂的网络时效果较差。

随着网络规模的扩大,手动配置静态路由表也会变得非常繁琐和容易出错。

3. 动态路由算法为了解决静态路由算法的局限性,人们提出了动态路由算法。

动态路由算法可以根据网络状态和拓扑结构自动调整路由选择。

常见的动态路由算法有以下几种:3.1 距离矢量算法距离矢量算法是一种分布式计算的路由选择算法。

每个节点维护一个距离向量表,记录到达其他节点的最低距离。

距离矢量算法的原理是通过交换距离向量表来更新路由信息。

每个节点将自己的距离向量发送给相邻节点,并根据收到的距离向量更新自己的表格。

这个过程会一直进行,直到所有节点的距离向量表收敛。

距离矢量算法具有以下特点: - 分布式计算:每个节点只需要与相邻节点交换信息,不需要全局计算。

路由协议RIP和OSPF

路由协议RIP和OSPF

路由协议RIP和OSPF路由协议是计算机网络中用于决定数据包从源主机到目的主机的路径的一种机制。

RIP(Routing Information Protocol)和OSPF(Open Shortest Path First)是两种常用的路由协议。

本文将详细介绍RIP和OSPF协议的特点、工作原理以及各自的优缺点。

RIP是一种距离矢量路由协议,其最初用于IPv4网络,后来扩展到支持IPv6、RIP协议通过交换路由表信息来决定数据包的传输路径。

RIP使用Hop Count(跃点数)作为度量标准,即每个路由器将数据包发送到目标网络所需经过的路由器数量。

RIP用于小型网络,其操作简单,实施容易。

RIP的最大跳数默认为15,超过这个跳数的路由将被认为无效。

RIP协议采用分散式的路由算法,每个路由器都独立地计算路径和更新路由表,然后将更新的路由表信息广播给邻居。

RIP协议使用了刷新时间(30秒)和失效时间(180秒)来更新和删除路由表项。

RIP协议的优点是实施简单、开销低,并且适用于小型网络。

然而,RIP协议也有一些缺点。

首先,RIP协议的最大跳数限制导致其适用范围受限,不能应用于大型网络。

其次,RIP的收敛时间较长,当网络拓扑发生变化时,RIP需要较长的时间来更新路由信息,可能会造成数据包丢失或延迟。

此外,RIP协议只考虑跳数作为路由度量标准,忽略了其他因素,如带宽和延迟,导致不够灵活。

相比之下,OSPF是一种链路状态路由协议,用于在大型复杂网络中找到最短路径。

OSPF使用Dijkstra算法来计算最短路径,并将其存储在一个链路状态数据库中。

OSPF协议需要大量的计算和内存资源来维护链路状态数据库,并使用Hello消息来检测邻居路由器。

OSPF协议将网络划分为区域,其中每个区域中的路由器都有一个完整的链路状态数据库,而不需要了解区域外的网络拓扑。

OSPF协议使用开销(Cost)作为路径选择的度量标准,开销通常与链路带宽相关。

路由算法简介

路由算法简介

上述路径环路会通过R1、R2之间不断的路 由更新报文交换而解除,但是解除过程是 非常缓慢的。在出现路径环路之后,在下 一轮路由广播中,R1将向R2广播 (net1,R2,2)表项,R2收到此表项后,将 去往net1的路径改为(net1,R1,3);
然后R2向R1通告(net1,R1,3)表项, R1将去往net1的路由项改为(net1,R2, 4)…
➢ 适应范围:支持较大规模的网络,最多可 支持几百台路由器。
➢ 快速收敛:在网络拓扑结构发生变化后立 即发送更新报文,使变化在自治系统中同 步
➢ 无自环:由于OSPF根据收集到的链路状态 用最短路径树算法(Dijkstra)计算路由, 从算法本身保证了不会生成自环路由。
➢ 区域划分:允许自制系统的网络被划分成 区域来管理。
快 65536 可进行区域划分
Dijkstra算法
➢ 在路由选择算法中都要用到求最短路径的 算法,最出名的就是Bellman-Ford算法和 Dijkstra算法。他们的主要思想:黑板分析。
DSR 路由协议简介
➢ 动态源路由协议(DSR,Dynamic Source Routing)是一种按需路由协议,它允许节点 动态地发现到达目的节点的多跳路由。
图2 OSPF中AS、主干和区域间的关系
OSPF协议的基本特点
➢ 向本自治系统中的所有路由器发送信息。 使用洪泛法(flooding):路由器通过所有 输出端口向所有相邻的路由器发送信息, 这些相邻路由器又将此信息发给相邻路由 器(但不回传)。这样,最终整个路由器 都得到这个消息的一个副本。
➢ 发送的信息:与本路由器相邻的所有路由 器的链路状态。
➢ 当跳数超过15,RIP协议会认为目的地不可 达。因此,它只适应于中小型网络。

路由器知识大全

路由器知识大全

路由器知识大全在这个互联网的大时代里,使用路由器的人越来越多,也有越来越多的路由器知识需要我们去学习,那么你了解路由器知识吗?下面是店铺整理的一些关于路由器知识的相关资料,供你参考。

路由器知识点一、管理距离管理距离是指一种路由协议的路由可信度。

每一种路由协议按可靠性从高到低,依次分配一个信任等级,这个信任等级就叫管理距离。

对于两种不同的路由协议到一个目的地的路由信息,路由器首先根据管理距离决定相信哪一个协议。

路由器知识点二、路由再分配路由再分配通常在那些负责从一个自治系统学习路由,然后向另一个自治系统广播的路由器上进行配置。

如果你在使用IGRP或EIGRP,路由再分配通常是自动执行的。

路由器知识点三、支持哪些类型的访问表一个访问表可以由它的编号来确定。

具体的协议及其对应的访问表编号如下:◎IP标准访问表编号:1~99◎IP扩展访问表编号:100~199◎IPX标准访问表编号:800~899◎IPX扩展访问表编号:1000~1099◎AppleTa l k访问表编号:600~699提示在Cisco IOS Release11.2或以上版本中,可以用有名访问表确定编号在1~199的访问表。

路由器知识点四、访问表访问表能够允许或禁止数据包进入或输出到目的地。

访问表是管理者加入的一系列控制数据包在路由器中输入、输出的规则。

它不是由路由器自己产生的。

访问表的表项是顺序执行的,即数据包到来时,首先看它是否是受第一条表项约束的,若不是,再顺序向下执行;如果它与第一条表项匹配,无论是被允许还是被禁止,都不必再执行下面表项的检查了。

每一个接口的每一种协议只能有一个访问表。

路由器知识点五、多路由协议当两种不同的路由协议要交换路由信息时,就要用到多路由协议。

当然,路由再分配也可以交换路由信息。

下列情况不必使用多路由协议:从老版本的内部网关协议( Interior Gateway Protocol,IGP)升级到新版本的IGP.你想使用另一种路由协议但又必须保留原来的协议。

计算机网络路由基础知识介绍路由器的工作原理和路由算法

计算机网络路由基础知识介绍路由器的工作原理和路由算法

计算机网络路由基础知识介绍路由器的工作原理和路由算法计算机网络是指通过通信线路将分布在不同地理位置的计算机互相连接起来,实现信息传输和资源共享。

而路由是计算机网络中至关重要的一个概念,它涉及到数据的传输路径选择和网络的拓扑结构。

本文将介绍路由器的工作原理和常见的路由算法。

一、路由器的工作原理路由器是计算机网络中用于实现分组交换的设备,其主要功能是根据网络层的地址信息,将数据包从源主机传输到目标主机。

路由器的工作原理可以分为以下几个步骤:1. 数据包接收:路由器通过其接口从网络中接收到达的数据包。

2. 数据包解封:路由器将数据包的首部信息解封,获得源主机地址和目标主机地址等信息。

3. 路由选择:根据路由表中的路由信息,路由器选择最佳的路径将数据包发送到目标主机。

4. 数据包转发:路由器根据路由选择的结果,将数据包发送到下一个路由器或目标主机。

5. 数据包封装:路由器将数据包进行封装,添加新的首部信息,以便下一个路由器或目标主机进行正确的解析。

二、路由算法路由算法是指路由器根据一定的规则和算法来选择最佳的传输路径。

常见的路由算法有以下几种:1. 静态路由算法:静态路由算法是指管理员手动配置路由器的路由表,不会根据网络拓扑结构和流量变化进行动态调整。

这种算法适用于网络稳定且不会频繁变化的情况。

2. 动态路由算法:动态路由算法是指路由器根据网络拓扑结构和流量变化动态调整路由表。

常见的动态路由算法有距离向量路由算法(Distance Vector Routing)和链路状态路由算法(Link State Routing)等。

- 距离向量路由算法:距离向量路由算法是一种分布式的路由选择算法,它通过互相交换邻居节点的路由表,通过比较和更新距离信息来选择最佳路径。

常见的距离向量路由协议有RIP(Routing Information Protocol)和IGRP(Interior Gateway Routing Protocol)等。

路由知识点总结

路由知识点总结

路由知识点总结一、路由的基本概念1. 路由是指将数据从源地址传输到目的地址的过程。

在计算机网络中,路由是指在不同网络之间传输数据包的过程。

路由器是实现路由功能的网络设备,它可以将数据包从一个网络转发到另一个网络。

2. 路由器工作在OSI模型的第三层,也就是网络层。

在传输数据时,路由器根据目的地址选择合适的路径将数据包传输到目的地址。

3. 路由的基本原理是根据目的地址选择合适的路径来传输数据。

路由器根据目的地址查询路由表,然后选择合适的路径将数据包传输到目的地址。

4. 路由算法是指路由器在选择路径时所采用的算法。

常见的路由算法包括距离向量算法、链路状态算法、路径矢量算法等。

5. 路由表是路由器用来存储路由信息的数据结构。

路由表中包含了网络地址、子网掩码、下一跳地址等信息。

6. 路由器之间通信时会更新路由信息,以便选择最佳路径传输数据。

路由信息的更新可以通过路由协议实现。

7. 路由协议是路由器之间用来交换路由信息的协议,常见的路由协议包括RIP、OSPF、BGP等。

二、静态路由和动态路由1. 静态路由是指由网络管理员手动配置的路由信息。

静态路由的优点是配置简单、管理方便,但是不适应网络环境的动态变化。

2. 动态路由是指路由器根据路由协议自动学习并更新路由信息的过程。

动态路由的优点是适应网络环境的动态变化,但是配置较为复杂,管理相对困难。

3. 静态路由和动态路由各有优缺点,网络管理员在选择时需要根据实际情况进行权衡。

4. 在设计网络时,通常会将静态路由和动态路由结合使用,以充分发挥它们各自的优势。

5. 静态路由和动态路由的选择取决于网络规模、网络拓扑、带宽要求、安全策略等多种因素。

三、路由的工作过程1. 路由的工作过程包括路由信息的学习、路由信息的选择、路径的传输等多个阶段。

2. 路由器通过路由协议学习其他路由器的路由信息,路由器将收到的路由信息添加到路由表中。

3. 当需要传输数据时,路由器会根据目的地址查询路由表,选择合适的路径将数据包传输到目的地址。

主流路由器协议的介绍和总结

主流路由器协议的介绍和总结

主流路由器协议的介绍和总结一、前言随着互联网的普及,家庭或者办公场所中网络设备越来越普遍。

路由器作为网络中的关键设备之一,充当了非常重要的角色。

而路由器的核心协议也就成了人们需要了解和掌握的重点。

本篇文章将介绍主流路由器协议,以及其相关概念。

二、什么是路由协议路由协议是一种网络协议,可以使不同的网络设备彼此通讯。

在路由器中,路由协议用来确定数据包如何转发到接收方设备。

在网络中,路由协议使得不同的网络设备可以相互连接并形成一个整体网络。

路由协议分为两种:1. 内部网关协议(Interior Gateway Protocol,IGP):用于同一个自治系统内的路由器之间传递信息。

2. 外部网关协议(Exterior Gateway Protocol,EGP):用于两个不同自治系统的路由器之间传递信息。

三、主流路由器协议介绍及总结1. OSPF协议OPSF(Open Shortest Path First)协议是一个链路状态协议,它基于Dijkstra算法,用于管理路由。

OSPF协议使用路由器之间的链路状态数据来确定最短路径,可以同时支持IPv4和IPv6。

OSPF协议可以根据网络拓扑结构及其变化,动态计算网络中可达的路由。

OSPF协议是一个开放协议,可以支持多厂商产品的互操作性。

RIP(Routing Information Protocol)协议是一种内部网关协议。

RIP协议以固定的时间间隔从一个路由器向相邻路由器传递其路由表中的全部路由信息。

它的最大跳数是15个,超过这个跳数的路由都会被丢弃。

RIP协议在配置简单、操作方便、安全性高等方面有不错的效果。

3. BGP协议BGP(Border Gateway Protocol)协议是一种外部网关协议,它是ISP和恒定的多本地自治系统(AS)之间交换路由信息的重要协议。

因此,在ISP网络中,BGP协议也被称为ISP核心协议。

BGP协议可以获取AS的路由表数据,经过BGP过滤器等模块对数据进行筛选,从而选择最优的路由。

网络层(路由协议与路由算法)

网络层(路由协议与路由算法)

“最短路径优先”是因为使用了 Dijkstra 提出的最短路径算法SPF
OSPF 只是一个协议的名字,它并不表示其他 的路由选择协议不是“最短路径优先”。 是分布式的链路状态协议。
17
与RIP相比的三个要点 向本自治系统中所有路由器发送信息,这里 使用的方法是洪泛法。 发送的信息就是与本路由器相邻的所有路由 器的链路状态,但这只是路由器所知道的部 分信息。
8
自治系统和 内部网关协议、外部网关协议
自治系统 A R1
用内部网关协议 (例如,RIP)
自治系统 B 用外部网关协议 (例如,BGP-4) R3
用内部网关协议 (例如,RIP)
ห้องสมุดไป่ตู้
R2
用内部网关协议 (例如,OSPF)
自治系统 C
自治系统之间的路由选择也叫做域间路由选择 在自治系统内部的路由选择叫做域内路由选择
12
“距离”的定义 从一路由器到直接连接的网络的距离定义为 1。 从一个路由器到非直接连接的网络的距离定义为 所经过的路由器数加 1。 RIP 协 议 中 的 “ 距 离 ” 也 称 为 “ 跳 数 ” (hop count),因为每经过一个路由器,跳数就加 1。 这里的“距离”实际上指的是“最短距离” RIP 认为一个好的路由就是它通过的路由器的数 目少,即“距离短”。
•算法过程:
① 发现其邻居
② 测量到邻居的延时值
③ 构建链路状态分组信息 ④ 发送链路状态分组 ⑤ 根据收到的其他路由器的链路状态分组信息, 计算新的路由信息
16
内部网关协议---- OSPF (Open Shortest Path First)
1. OSPF 协议的基本特点
“开放”表明 OSPF 协议不是受某一家厂商控 制,而是公开发表的。

路由器的工作原理和功能

路由器的工作原理和功能

第二章路由器模块1路由器的工作原理和功能(ZY3200502001)【模块描述】本模块包含IP路由的基础概念、路由器的主要功能和工作原理。

通过对路由的概念以及路由选择和数据转发等工作过程的介绍,掌握网络互联中有关路由的基础知识,掌握路由器的工作原理。

【正文】一、路由器及其基本功能路由器(Router)是网络之间互联的设备。

如果说交换机的作用是实现计算机、服务器等设备之间的互连,从而构建局域网络的话,那么路由器的作用则是实现网络与网络之间的互连,从而组成更大规模的网络。

路由器工作在TCP/IP网络模型的网络层,对应于OSI七层网络参考模型的第三层,因此,路由器也常称为网络层互连设备。

路由器的主要作用和基本功能如下:1.连接网络大型企业处在不同地域的局域网之间通过路由器连接在一起可以构建企业广域网。

企业局域网内的计算机用户要访问Internet(因特网),可以使用路由器将局域网连接到ISP (Internet Service Provider)网络,实现与全球Internet的连接和共享接入。

实际上Internet本身就是由数以万计的路由器互相连接而构成的超大规模的全球性公共信息网。

2.隔离以太广播交换机会将广播包发送到每一个端口,大量的广播会严重影响网络的传输效率。

当由于网卡等设备发生硬件损坏或计算机遭受病毒攻击时,网络内广播包的数量将会剧增,从而导致广播风暴,使网络传输阻塞或陷于瘫痪。

路由器可以隔离广播。

路由器的每个端口均可视为一个独立的网络,它会将广播包限定在该端口所连接的网络之内,而不会扩散到其它端口所连接的网络,如图ZY3200502001-1所示。

路由器广播域交换机图ZY3200502001-1 路由器隔离广播3.路由选择和数据转发“路由(Routing)”功能是路由器最重要的功能。

所谓路由,就是把要传送的数据包从一个网络经过优选的传输路径最终传送到目的网络。

传输路径可以是一条链路,也可以是由一系列路由器及其级联链路组成。

路由器的工作原理

路由器的工作原理

路由器的工作原理
路由器是一种网络设备,用于在计算机网络中传送数据包。

它的工作原理是将收到的数据包从一个网络接口转发到另一个网络接口,以便将数据包从源地址传输到目标地址。

路由器的工作原理可以简单描述如下:
1. 接收数据包:路由器通过一个或多个网络接口接收到数据包。

每个网络接口都连接到一个特定的网络,例如以太网、无线局域网或广域网等。

2. 解析目标地址:路由器会解析数据包中的目标IP地址,通
过查找路由表确定下一跳的目标地址。

路由表中包含了与不同目标地址相关的网络接口及其对应的下一跳。

3. 转发数据包:根据路由表中的信息,路由器将数据包发送到下一跳目标地址。

如果目标地址在同一网络中,路由器会直接将数据包发送到目标设备;如果目标地址不在同一网络中,路由器会将数据包发送到下一跳的路由器,直到数据包到达目标地址。

4. 更新路由表:路由器通过各种路由协议(如RIP、OSPF、BGP等)与其他路由器交换信息,更新路由表。

这样,路由
器可以实时地了解到网络拓扑的变化,并做出相应的路由调整。

5. 过滤数据包:路由器还可以根据一些规则(如访问控制列表)来过滤数据包,以实现网络安全和流量控制等功能。

通过以上工作原理,路由器能够实现数据包的有效转发和路由选择,使得网络中的不同设备能够相互通信和交换数据。

路由器原理及常用的路由协议、路由算法

路由器原理及常用的路由协议、路由算法

路由器原理及常用的路由协议、 路由算法大家好,今天瑞哥给大家分享路由器原理及常用的路由协议、路由算法。

•1网络互连•1.1网桥互连的网络•1.2路由器互连网络•2路由原理•3路由协议• 3.1R IP路由协议• 3.2OSPF路由协议•33 B GP和BGP-4路由协议• 3.4路由表项的优先问题•4路由算法•5新一代路由器路由器工作在OSI模型中的第三层,即网络层。

路由器利用网络层定义的“逻辑“上的网络地址(即IP地址)来区别不同的网络,实现网络的互连和隔离,保持各个网络的独立性。

路由器不转发广播消息……近十年来,随着计算机网络规模的不断扩大,大型互联网络(如Internet)的迅猛发展,路由技术在网络技术中已逐渐成为关键部分,路由器也随之成为最重要的网络设备。

用户的需求推动着路由技术的发展和路由器的普及,人们已经不满足千仅在本地网络上共享信息,而希望最大限度地利用全球各个地区、各种类型的网络资源。

而在目前的情况下,任何一个有一定规模的计算机网络(如企业网、校园网、智能大厦等),无论采用的路由器的分组转发的设计与实现均基于软件,在转发过程中对分组的处理要经过许多环节,转发过程复杂,使得分组转发的速率较慢。

另外,由千路由器是网络互连的关键设备,是网络与其它网络进行通信的一个“关口”,对其安全性有很高的要求,因此路由器中各种附加的安全措施增加了CPU的负担,这样就使得路由器成为整个互联网上的瓶颈”。

传统的路由器在转发每一个分组时,都要进行一系列的复杂操作,包括路由查找、访问控制表匹配、地址解析、优先级管理以及其它的附加操作。

这一系列的操作大大影响了路由器的性能与效率,降低了分组转发速率和转发的吞吐量,增加了CPU的负担。

而经过路由器的前后分组间的相关性很大,具有相同目的地址和源地址的分组往往连续到达,这为分组的快速转发提供了实现的可能与依据。

新一代路由器,如IP Switch、Tag Switch等,就是采用这一设计思想用硬件来实现快速转发,大大提高了路由器的性能与效率。

路由算法大概综述

路由算法大概综述

因特网的路由选择算法摘要:路由选择协议是路由器用来完成路由表建立和路由信息更新的通信协议。

路由算法在路由协议中起着至关重要的作用,采用何种算法往往决定了最终寻径结果。

本文主要讨论设计路由算法应具有的原则以及第一个得到广泛使用的路由算法RIP和最短路径Dijkstra算法。

1 路由算法概述1.1 路由算法的特点路由选择协议的核心就是路由算法,即需要何种算法来获得路由表中的个项目。

一个理想的路由算法应该具有如下特点。

(1)算法必须是正确的和完整的。

这里,“正确”的含义是指沿着各路由表所指引的路由,分组一定能够最终到达目的网络和目的主机。

(2)算法在计算上应简单。

路由选择的计算不应使网络通信量增加太多的额外开销。

(3)算法应能适应通信量和网络拓扑的变化,这就是说要有自适应性。

当网络中的通信量发生变化时,算法能自适应的改变路由以均衡个链路的负载。

等某个或某些节点、链路发生故障不能工作,或者修理好了再投入运行时,算法也能及时的改变路由。

有时称这种自适应性为“稳健性”(robustness)。

(4)算法应具有稳定性。

在网络通信量和网络拓扑结构相对稳定的情况下,路由算法应收敛于一个可以接受的解,而不应使得出的路由不停的变化。

(5)算法应是公平的。

路由选择算法应对所有用户(除了少数优先级高的用户)都是平等的。

例如,若仅仅使某一对用户的端到端时延为最小,但却不考虑其他的广大用户,这就明显的不符合公平性的要求。

(6)算法应是最佳的。

路由选择算法应当能够找出最好的路由,使得分组平均延时最小而网络的吞吐量最大。

我们希望得到“最佳”的算法,但这并不是最重要的。

对于某些网络,网络的可靠性有时要比最小的分组平均延时或最大吞吐量更加重要。

因此,所谓“最佳”只能是相对于某一种特定要求下得出的较为合理的选择而已。

一个实际的路由选择算法,应该尽可能接近于理想的算法。

在不同的应用条件下,对以上提出的六个方面也可有不同的侧重。

1.2 路由算法的分类路由选择算法是个非常复杂的问题,因为它是网络中的所有节点共同协调工作的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

路由器原理及常用的路由协议、路由算法近十年来,随着计算机网络规模的不断扩大,大型互联网络(如Internet)的迅猛发展,路由技术在网络技术中已逐渐成为关键部分,路由器也随之成为最重要的网络设备。

用户的需求推动着路由技术的发展和路由器的普及,人们已经不满足于仅在本地网络上共享信息,而希望最大限度地利用全球各个地区、各种类型的网络资源。

而在目前的情况下,任何一个有一定规模的计算机网络(如企业网、校园网、智能大厦等),无论采用的是快速以大网技术、FDDI技术,还是ATM技术,都离不开路由器,否则就无法正常运作和管理。

1 网络互连把自己的网络同其它的网络互连起来,从网络中获取更多的信息和向网络发布自己的消息,是网络互连的最主要的动力。

网络的互连有多种方式,其中使用最多的是网桥互连和路由器互连。

1.1 网桥互连的网络网桥工作在OSI模型中的第二层,即链路层。

完成数据帧(frame)的转发,主要目的是在连接的网络间提供透明的通信。

网桥的转发是依据数据帧中的源地址和目的地址来判断一个帧是否应转发和转发到哪个端口。

帧中的地址称为“MAC”地址或“硬件”地址,一般就是网卡所带的地址。

网桥的作用是把两个或多个网络互连起来,提供透明的通信。

网络上的设备看不到网桥的存在,设备之间的通信就如同在一个网上一样方便。

由于网桥是在数据帧上进行转发的,因此只能连接相同或相似的网络(相同或相似结构的数据帧),如以太网之间、以太网与令牌环(token ring)之间的互连,对于不同类型的网络(数据帧结构不同),如以太网与X.25之间,网桥就无能为力了。

网桥扩大了网络的规模,提高了网络的性能,给网络应用带来了方便,在以前的网络中,网桥的应用较为广泛。

但网桥互连也带来了不少问题:一个是广播风暴,网桥不阻挡网络中广播消息,当网络的规模较大时(几个网桥,多个以太网段),有可能引起广播风暴(broadcasting storm),导致整个网络全被广播信息充满,直至完全瘫痪。

第二个问题是,当与外部网络互连时,网桥会把内部和外部网络合二为一,成为一个网,双方都自动向对方完全开放自己的网络资源。

这种互连方式在与外部网络互连时显然是难以接受的。

问题的主要根源是网桥只是最大限度地把网络沟通,而不管传送的信息是什么。

1.2 路由器互连网络路由器互连与网络的协议有关,我们讨论限于TCP/IP网络的情况。

路由器工作在OSI模型中的第三层,即网络层。

路由器利用网络层定义的“逻辑”上的网络地址(即IP地址)来区别不同的网络,实现网络的互连和隔离,保持各个网络的独立性。

路由器不转发广播消息,而把广播消息限制在各自的网络内部。

发送到其他网络的数据茵先被送到路由器,再由路由器转发出去。

IP路由器只转发IP分组,把其余的部分挡在网内(包括广播),从而保持各个网络具有相对的独立性,这样可以组成具有许多网络(子网)互连的大型的网络。

由于是在网络层的互连,路由器可方便地连接不同类型的网络,只要网络层运行的是IP协议,通过路由器就可互连起来。

网络中的设备用它们的网络地址(TCP/IP网络中为IP地址)互相通信。

IP地址是与硬件地址无关的“逻辑”地址。

路由器只根据IP地址来转发数据。

IP地址的结构有两部分,一部分定义网络号,另一部分定义网络内的主机号。

目前,在Internet网络中采用子网掩码来确定IP地址中网络地址和主机地址。

子网掩码与IP地址一样也是32bit,并且两者是一一对应的,并规定,子网掩码中数字为“1”所对应的IP地址中的部分为网络号,为“0”所对应的则为主机号。

网络号和主机号合起来,才构成一个完整的IP地址。

同一个网络中的主机IP地址,其网络号必须是相同的,这个网络称为IP子网。

通信只能在具有相同网络号的IP地址之间进行,要与其它IP子网的主机进行通信,则必须经过同一网络上的某个路由器或网关(gateway)出去。

不同网络号的IP地址不能直接通信,即使它们接在一起,也不能通信。

路由器有多个端口,用于连接多个IP子网。

每个端口的IP地址的网络号要求与所连接的IP子网的网络号相同。

不同的端口为不同的网络号,对应不同的IP子网,这样才能使各子网中的主机通过自己子网的IP地址把要求出去的IP分组送到路由器上。

2 路由原理当IP子网中的一台主机发送IP分组给同一IP子网的另一台主机时,它将直接把IP分组送到网络上,对方就能收到。

而要送给不同IP于网上的主机时,它要选择一个能到达目的子网上的路由器,把IP分组送给该路由器,由路由器负责把IP分组送到目的地。

如果没有找到这样的路由器,主机就把IP分组送给一个称为“缺省网关(default gateway)”的路由器上。

“缺省网关”是每台主机上的一个配置参数,它是接在同一个网络上的某个路由器端口的IP地址。

路由器转发IP分组时,只根据IP分组目的IP地址的网络号部分,选择合适的端口,把IP分组送出去。

同主机一样,路由器也要判定端口所接的是否是目的子网,如果是,就直接把分组通过端口送到网络上,否则,也要选择下一个路由器来传送分组。

路由器也有它的缺省网关,用来传送不知道往哪儿送的IP分组。

这样,通过路由器把知道如何传送的IP 分组正确转发出去,不知道的IP分组送给“缺省网关”路由器,这样一级级地传送,IP分组最终将送到目的地,送不到目的地的IP分组则被网络丢弃了。

目前TCP/IP网络,全部是通过路由器互连起来的,Internet就是成千上万个IP子网通过路由器互连起来的国际性网络。

这种网络称为以路由器为基础的网络(router based network),形成了以路由器为节点的“网间网”。

在“网间网”中,路由器不仅负责对IP分组的转发,还要负责与别的路由器进行联络,共同确定“网间网”的路由选择和维护路由表。

路由动作包括两项基本内容:寻径和转发。

寻径即判定到达目的地的最佳路径,由路由选择算法来实现。

由于涉及到不同的路由选择协议和路由选择算法,要相对复杂一些。

为了判定最佳路径,路由选择算法必须启动并维护包含路由信息的路由表,其中路由信息依赖于所用的路由选择算法而不尽相同。

路由选择算法将收集到的不同信息填入路由表中,根据路由表可将目的网络与下一站(nexthop)的关系告诉路由器。

路由器间互通信息进行路由更新,更新维护路由表使之正确反映网络的拓扑变化,并由路由器根据量度来决定最佳路径。

这就是路由选择协议(routing protocol),例如路由信息协议(RIP)、开放式最短路径优先协议(OSPF)和边界网关协议(BGP)等。

转发即沿寻径好的最佳路径传送信息分组。

路由器首先在路由表中查找,判明是否知道如何将分组发送到下一个站点(路由器或主机),如果路由器不知道如何发送分组,通常将该分组丢弃;否则就根据路由表的相应表项将分组发送到下一个站点,如果目的网络直接与路由器相连,路由器就把分组直接送到相应的端口上。

这就是路由转发协议(routed protocol)。

路由转发协议和路由选择协议是相互配合又相互独立的概念,前者使用后者维护的路由表,同时后者要利用前者提供的功能来发布路由协议数据分组。

下文中提到的路由协议,除非特别说明,都是指路由选择协议,这也是普遍的习惯。

3 路由协议典型的路由选择方式有两种:静态路由和动态路由。

静态路由是在路由器中设置的固定的路由表。

除非网络管理员干预,否则静态路由不会发生变化。

由于静态路由不能对网络的改变作出反映,一般用于网络规模不大、拓扑结构固定的网络中。

静态路由的优点是简单、高效、可靠。

在所有的路由中,静态路由优先级最高。

当动态路由与静态路由发生冲突时,以静态路由为准。

动态路由是网络中的路由器之间相互通信,传递路由信息,利用收到的路由信息更新路由器表的过程。

它能实时地适应网络结构的变化。

如果路由更新信息表明发生了网络变化,路由选择软件就会重新计算路由,并发出新的路由更新信息。

这些信息通过各个网络,引起各路由器重新启动其路由算法,并更新各自的路由表以动态地反映网络拓扑变化。

动态路由适用于网络规模大、网络拓扑复杂的网络。

当然,各种动态路由协议会不同程度地占用网络带宽和CPU资源。

静态路由和动态路由有各自的特点和适用范围,因此在网络中动态路由通常作为静态路由的补充。

当一个分组在路由器中进行寻径时,路由器首先查找静态路由,如果查到则根据相应的静态路由转发分组;否则再查找动态路由。

根据是否在一个自治域内部使用,动态路由协议分为内部网关协议(IGP)和外部网关协议(EGP)。

这里的自治域指一个具有统一管理机构、统一路由策略的网络。

自治域内部采用的路由选择协议称为内部网关协议,常用的有RIP、OSPF;外部网关协议主要用于多个自治域之间的路由选择,常用的是BGP和BGP-4。

下面分别进行简要介绍。

3.1 RIP路由协议RIP协议最初是为Xerox网络系统的Xerox parc通用协议而设计的,是Internet中常用的路由协议。

RIP采用距离向量算法,即路由器根据距离选择路由,所以也称为距离向量协议。

路由器收集所有可到达目的地的不同路径,并且保存有关到达每个目的地的最少站点数的路径信息,除到达目的地的最佳路径外,任何其它信息均予以丢弃。

同时路由器也把所收集的路由信息用RIP协议通知相邻的其它路由器。

这样,正确的路由信息逐渐扩散到了全网。

RIP使用非常广泛,它简单、可靠,便于配置。

但是RIP只适用于小型的同构网络,因为它允许的最大站点数为15,任何超过15个站点的目的地均被标记为不可达。

而且RIP每隔30s一次的路由信息广播也是造成网络的广播风暴的重要原因之一。

3.2 OSPF路由协议80年代中期,RIP已不能适应大规模异构网络的互连,0SPF随之产生。

它是网间工程任务组织(1ETF)的内部网关协议工作组为IP网络而开发的一种路由协议。

0SPF是一种基于链路状态的路由协议,需要每个路由器向其同一管理域的所有其它路由器发送链路状态广播信息。

在OSPF的链路状态广播中包括所有接口信息、所有的量度和其它一些变量。

利用0SPF的路由器首先必须收集有关的链路状态信息,并根据一定的算法计算出到每个节点的最短路径。

而基于距离向量的路由协议仅向其邻接路由器发送有关路由更新信息。

与RIP不同,OSPF将一个自治域再划分为区,相应地即有两种类型的路由选择方式:当源和目的地在同一区时,采用区内路由选择;当源和目的地在不同区时,则采用区间路由选择。

这就大大减少了网络开销,并增加了网络的稳定性。

当一个区内的路由器出了故障时并不影响自治域内其它区路由器的正常工作,这也给网络的管理、维护带来方便。

3.3 BGP和BGP-4路由协议BGP是为TCP/IP互联网设计的外部网关协议,用于多个自治域之间。

相关文档
最新文档