四川省宜宾市中考数学试题与答案WORD版

合集下载

2019年四川省宜宾市中考数学试卷及答案(Word解析版)

2019年四川省宜宾市中考数学试卷及答案(Word解析版)

四川省宜宾市2019年中考数学试卷一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的..﹣±的倒数是,<3.(3分)(2019•宜宾)如图1放置的一个机器零件,若其主(正)视图如图2,则其俯视图是()....4.(3分)(2019•宜宾)一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球....5.(3分)(2019•宜宾)若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是6.(3分)(2019•宜宾)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是(),函数的特点,来列出方程组,求出未知数,即可写出解析式.7.(3分)(2019•宜宾)如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n 分别是正方形的中心,则这n个正方形重叠部分的面积之和是()(.n根据题意可得,阴影部分的面积是正方形的面积的,即是8.(3分)(2019•宜宾)已知⊙O的半径r=3,设圆心O到一条直线的距离为d,圆上到这条直线的距离为2的点的个数为m,给出下列命题:①若d>5,则m=0;②若d=5,则m=1;③若1<d<5,则m=3;④若d=1,则m=2;⑤若d<1,则m=4.二、填空题:本大题共8小题,每小题3分,共24分.9.(3分)(2019•宜宾)分解因式:x3﹣x= x(x+1)(x﹣1).10.(3分)(2019•宜宾)分式方程﹣=1的解是x=﹣1.5.11.(3分)(2019•宜宾)如图,直线a、b被第三条直线c所截,如果a∥b,∠1=70°,那么∠3的度数是70°.,再根据对顶角相等可得12.(3分)(2019•宜宾)菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线长度是5cm.×=BD=2BO=13.(3分)(2019•宜宾)在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是(2,﹣2).14.(3分)(2019•宜宾)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′= 1.5.中,由勾股定理得,x15.(3分)(2019•宜宾)如图,已知AB为⊙O的直径,AB=2,AD和BE是圆O的两条切线,A、B为切点,过圆上一点C作⊙O的切线CF,分别交AD、BE于点M、N,连接AC、CB,若∠ABC=30°,则AM= .为角∠OA=,即=AM=.故答案为:16.(3分)(2019•宜宾)规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinx•cosy+cosx•siny.据此判断下列等式成立的是②③④(写出所有正确的序号)①cos(﹣60°)=﹣;②sin75°=;③sin2x=2sinx•cosx;④sin(x﹣y)=sinx•cosy﹣cosx•siny.,命题错误;×+×=,命题正确;三、解答题(共8小题,满分72分)解答应写出文字说明,证明过程或演算步骤. 17.(10分)(2019•宜宾)(1)计算:|﹣2|﹣(﹣)0+()﹣1(2)化简:(﹣)•.•••18.(6分)(2019•宜宾)如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.19.(8分)(2019•宜宾)我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有500人.(2)请将统计图2补充完整.(3)统计图1中B项目对应的扇形的圆心角是54度.(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.计图;用样本估计总体;扇形统计图20.(8分)(2019•宜宾)在我市举行的中学生安全知识竞赛中共有20道题.每一题答对得5分,答错或不答都扣3分.(1)小李考了60分,那么小李答对了多少道题?(2)小王获得二等奖(75~85分),请你算算小王答对了几道题?之间,≤y21.(8分)(2019•宜宾)在平面直角坐标系中,若点P(x,y)的坐标x、y均为整数,则称点P为格点,若一个多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.(1)求出图中格点四边形DEFG对应的S,N,L.(2)已知格点多边形的面积可表示为S=N+aL+b,其中a,b为常数,若某格点多边形对应的N=82,L=38,求S的值.a,LS=82+22.(10分)(2019•宜宾)如图,一次函数y=﹣x+2的图象与反比例函数y=﹣的图象交于A、B两点,与x轴交于D点,且C、D两点关于y轴对称.(1)求A、B两点的坐标;(2)求△ABC的面积.)根据反比例函数与一次函数的交点问题得到方程组)根据题意得,解方程组得或×3+×23.(10分)(2019•宜宾)如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;(2)若CF=5,cos∠A=,求BE的长.FOD==,设⊙,解方程= R=AB=2OD=,解=,求出AE=FOD==,则=R=2OD=A==,,﹣=224.(12分)(2019•宜宾)如图,已知抛物线y=x2+bx+c的顶点坐标为M(0,﹣1),与x轴交于A、B两点.(1)求抛物线的解析式;(2)判断△MAB的形状,并说明理由;(3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC,MD,试判断MC、MD是否垂直,并说明理由.,从而求得==,====。

四川省宜宾市中考数学试卷(解析)

四川省宜宾市中考数学试卷(解析)

四川省宜宾市中考数学试卷一.选择题(共8小题)1.(宜宾)﹣3的倒数是()A.B. 3 C.﹣3 D.﹣考点:倒数。

解答:解:根据倒数的定义得:﹣3×(﹣)=1,因此倒数是﹣.故选:D.2.(宜宾)下面四个几何体中,其左视图为圆的是()A.B.C.D.考点:简单几何体的三视图。

解答:解:A.圆柱的左视图是矩形,不符合题意;B.三棱锥的左视图是三角形,不符合题意;C.球的左视图是圆,符合题意;D.长方体的左视图是矩形,不符合题意.故选C.3.(宜宾)下面运算正确的是()A. 7a2b﹣5a2b=2 B. x8÷x4=x2C.(a﹣b)2=a2﹣b2D.(2x2)3=8x6考点:完全平方公式;合并同类项;幂的乘方与积的乘方;同底数幂的除法。

解答:解:A.7a2b﹣5a2b=2a2b,故本选项错误;B.x8÷x4=x4,故本选项错误;C.(a﹣b)2=a2﹣2ab+b2,故本选项错误;D.(2x2)3=8x6,故本选项正确.故选D.区县翠屏区南溪长宁江安宜宾县珙县高县兴文筠连屏山32 32 30 32 30 31 29 33 30 32最高气温(℃)A.32,31.5 B.32,30 C.30,32 D.32,31考点:众数;中位数。

解答:解:在这一组数据中32是出现次数最多的,故众数是32;按大小排列后,处于这组数据中间位置的数是31、32,那么由中位数的定义可知,这组数据的中位数是31.5.故选:A.5.(宜宾)将代数式x2+6x+2化成(x+p)2+q的形式为()A.(x﹣3)2+11 B.(x+3)2﹣7 C.(x+3)2﹣11 D.(x+2)2+4 考点:配方法的应用。

解答:解:x2+6x+2=x2+6x+9﹣9+2=(x+3)2﹣7.故选B.6.(宜宾)分式方程的解为()A. 3 B.﹣3 C.无解D. 3或﹣3考点:解分式方程。

解答:解:方程的两边同乘(x+3)(x﹣3),得12﹣2(x+3)=x﹣3,解得:x=3.检验:把x=3代入(x+3)(x﹣3)=0,即x=3不是原分式方程的解.故原方程无解.故选C.7.(宜宾)如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB.AD的中点,则△AEF与多边形BCDFE的面积之比为()A.B.C.D.考点:相似三角形的判定与性质;三角形的面积;三角形中位线定理。

2023年四川宜宾中考数学真题及答案

2023年四川宜宾中考数学真题及答案

2023年四川宜宾中考数学真题及答案(考试时间:120分钟,全卷满分:150分)注意事项:1.答题时,务必将自己的姓名、座位号,准考证号填写在答题卡指定的位置并将答题卡背面座位号对应标号涂黑.2.答选择题时,务必使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,务必使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡规定的位置上作答,在试卷上答题无效.一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上.1. 2的相反数是( )A. 2B. -2C.D. 1212-2. 下列计算正确的是( )A.B. 422a a -=235ab ba ab +=C.D. 23a a a +=22532x y xy xy -=3. 下列图案中,既是轴对称图形,又是中心对称图形的是( ) A. B. C. D.4. 为积极践行节能减排的发展理念,宜宾大力推进“电动宜宾”工程,2022年城区已建成充电基础设施接口超过8500个.将8500用科学记数法表示为( )A. B. C. D.40.8510⨯28510⨯38.510⨯48.510⨯5. 如图, ,且,,则等于( )AB CD ∥40A ∠=︒24D ∠=︒E ∠A. B. C. D.40︒32︒24︒16︒6. “今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”是《孙子算经》卷中著名数学问题.意思是:鸡兔同笼,从上面数,有35个头;从下面数,有94条腿.问鸡兔各有多少只?若设鸡有只,兔有只,则所列方程组正确的是( )x y A. B. C. D.354294x y x y +=⎧⎨+=⎩352494x y x y +=⎧⎨+=⎩944235x y x y +=⎧⎨+=⎩ 942435x y x y +=⎧⎨+=⎩7. 如图,已知点在上,为的中点.若,则等A B C 、、O A C A AB 35BAC ∠=︒AOB ∠于( )A.B. C. D. 140︒120︒110︒70︒8. 分式方程的解为( ) 2233x x x -=--A. 2 B. 3 C. 4 D. 59. 《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图,是以点O 为圆心、为半径的圆弧,N 是的中点,.“会圆术”给出A AB OA AB MN AB ⊥的弧长的近似值计算公式:.当,时,则的A AB l 2MN l AB OA=+4OA =60AOB ∠=︒l 值为( )A. B. C. D. 11-11-8-8-10. 如图,边长为6的正方形中,M 为对角线上的一点,连接并延长交ABCD BD AM 于点P .若,则的长为( )CD PM PC =AMA. B. C. D. )31()32)61-()62-11. 如图,在平面直角坐标系中,点A 、B 分别在y ,x 轴上,轴.点M 、N 分xOy BC x ⊥别在线段、上,,,反比例函数的图象经过BC AC BM CM =2NC AN =()0k y x x =>M 、N 两点,P 为x 正半轴上一点,且,的面积为3,则k 的值为:1:4OP BP =APN A ( )A. B. C. D. 45445814425722512. 如图,和是以点为直角顶点的等腰直角三角形,把以为中ABC A ADE A A ADE A A心顺时针旋转,点为射线、的交点.若,.以下结论:M BD CE AB =1AD =①;②; BD CE =BD CE ⊥③当点在的延长线上时,; EBA MC =④在旋转过程中,当线段最短时,的面积为.MB MBCA 12其中正确结论有( )A. 1个B. 2个C. 3个D. 4个二、填空题:本大题共6个小题,每小题4分,共24分,请把答案直接填在答题卡对应题中横线上.13. 在“庆五四·展风采”的演讲比赛中,7位同学参加决赛,演讲成绩依次为:77,80,79,77,80,79,80.这组数据的中位数是___________.14. 分解因式:x 3﹣6x 2+9x =___.15. 若关于x 的方程两根的倒数和为1,则m 的值为()22140x m x m -+++=___________.16. 若关于x 的不等式组所有整数解的和为,则整数的值为21192x x a x x +>+⎧⎪⎨+≥-⎪⎩①②14a ___________.17. 如图,是正方形边的中点,是正方形内一点,连接,线段以M ABCD CD P BP BP 为中心逆时针旋转得到线段,连接.若,,则的最小B 90︒BQ MQ 4AB =1MP=MQ 值为___________.18. 如图,抛物线经过点,顶点为,且抛物线与轴2y ax bx c =++()30A -,()1,M m -y 的交点B 在和之间(不含端点),则下列结论:()02-,()03-,①当时,;31x -≤≤1y ≤②当的时, ABM A a =③当为直角三角形时,在内存在唯一点P ,使得的值最小,ABM A AOB A PA PO PB ++最小值的平方为18+其中正确的结论是___________.(填写所有正确结论的序号)三、解答题:本大题共7个小题,共78分,解答应写出文字说明、证明过程或演算步骤19. 计算(1)计算:. 012tan 4512⎛⎫︒-- ⎪⎝⎭(2)化简:. 211224x x x x ⎛⎫-÷ ⎪-+-⎝⎭20. 已知:如图,,,.求证:.AB DE ∥AB DE =AF DC =B E ∠=∠21. 某校举办“我劳动,我快乐,我光荣”活动.为了解该校九年级学生周末在家的劳动情况,随机调查了九年级1班的所有学生在家劳动时间(单位:小时),并进行了统计和整理绘制如图所示的不完整统计图.根据图表信息回答以下问题: 类别 劳动时间x A01x ≤<B12x ≤<C23x ≤<D34x ≤<E 4x ≤(1)九年级1班的学生共有___________人,补全条形统计图;(2)若九年级学生共有800人,请估计周末在家劳动时间在3小时及以上的学生人数;(3)已知E 类学生中恰好有2名女生3名男生,现从中抽取两名学生做劳动交流,请用列表或画树状图的方法,求所抽的两名学生恰好是一男一女的概率.22. 渝昆高速铁路的建成,将会显著提升宜宾的交通地位.渝昆高速铁路宜宾临港长江公铁两用大桥(如图),桥面采用国内首创的公铁平层设计.为测量左桥墩底到桥面的距离1,如图.在桥面上点处,测得到左桥墩的距离米,左桥墩所在塔CD 2A A D 200AD =顶的仰角,左桥墩底的俯角,求的长度.(结果精确B 45BAD ∠=︒C 15CAD ∠=︒CD到) 1 1.41≈ 1.73≈23. 如图,在平面直角坐标系中,等腰直角三角形的直角顶点,顶点xOy ABC ()30C ,A 、恰好落在反比例函数第一象限的图象上. ()6B m ,k y x=(1)分别求反比例函数的表达式和直线所对应的一次函数的表达式; AB (2)在x 轴上是否存在一点P ,使周长的值最小.若存在,求出最小值;若不存ABP A 在,请说明理由.24. 如图,以为直径的上有两点、,,过点作直线AB O A E F A A BEEF =E CD AF ⊥交的延长线于点,交的延长线于点,过作平分交于点AF D AB C C CM ACD ∠AE ,交于点.M BE N(1)求证:是的切线;CD O A (2)求证:;EM EN =(3)如果是的中点,且,求的长.N CM AB =EN 25. 如图,抛物线与x 轴交于点、,且经过点2y ax bx c =++()4,0A -()2,0B ()2,6C -.(1)求抛物线的表达式;(2)在x 轴上方的抛物线上任取一点N ,射线、分别与抛物线的对称轴交于点AN BN P 、Q ,点Q 关于x 轴的对称点为,求的面积;Q 'APQ '△(3)点M 是y 轴上一动点,当最大时,求M 的坐标.AMC ∠参考答案(考试时间:120分钟,全卷满分:150分)注意事项:1.答题时,务必将自己的姓名、座位号,准考证号填写在答题卡指定的位置并将答题卡背面座位号对应标号涂黑.2.答选择题时,务必使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,务必使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡规定的位置上作答,在试卷上答题无效.一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上.【1题答案】【答案】B【2题答案】【答案】B【3题答案】【答案】D【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】A【8题答案】【答案】C【9题答案】【答案】B【10题答案】【答案】C【11题答案】【答案】B【12题答案】【答案】D二、填空题:本大题共6个小题,每小题4分,共24分,请把答案直接填在答题卡对应题中横线上.【13题答案】【答案】79【14题答案】【答案】x (x ﹣3)2【15题答案】【答案】2【16题答案】【答案】或21-【17题答案】【答案】1【18题答案】【答案】②③三、解答题:本大题共7个小题,共78分,解答应写出文字说明、证明过程或演算步骤【19题答案】【答案】(1)(2) 4x【20题答案】【答案】见解析【21题答案】【答案】(1)50,条形统计图见解析(2)人208(3) 35【22题答案】【答案】的长度米CD 54【23题答案】【答案】(1), 6y x =142y x =-+(2)在x 轴上存在一点,使周长的值最小,最小值是()5,0P ABP A 【24题答案】【答案】(1)见解析 (2)见解析(3)6【25题答案】【答案】(1) 233642y x x =--+(2)814APQ S '=A(3)(0,12M -。

四川省宜宾市部编人教版中考数学试题及精析(word版).doc

四川省宜宾市部编人教版中考数学试题及精析(word版).doc

2020 年四川省宜宾市中考数学试卷一、选择题(每题 3分,共 24 分)1.﹣5的绝对值是()A. B. 5C.﹣D.﹣52.科学家在实验中检测出某微生物约为米,将0.0000035 用科学记数法表示为()A. 3.5 ×10﹣6B.×106C. 3.5 ×10 ﹣5D .35 ×10 ﹣53.如图,立体图形的俯视图是()A. B.C. D.4.半径为6,圆心角为120°的扇形的面积是()A . 3 πB . 6πC . 9πD . 12 π5.如图,在△ABC中,∠ C=90 °, AC=4, BC=3 ,将△ABC绕点 A逆时针旋转,使点 C 落在线段 AB 上的点 E处,点 B 落在点 D 处,则 B、D 两点间的距离为()A.B. 2C. 3D .26.如图,点 P是矩形的长分别是 6和 8,则点ABCD 的边 AD上的一动点,矩形的两条边AB、P到矩形的两条对角线 AC 和 BD 的距离之和是(BC)A. 4.8B .5C.6D .7.宜宾市某化工厂,现有 A 种原料 52 千克,B 种原料 64 千克,现用这些原料生产甲、乙两种产品共 20 件.已知生产 1件甲种产品需要 A 种原料 3千克,B种原料 2千克;生产 1件乙种产品需要 A 种原料 2千克,B种原料 4千克,则生产方案的种数为(A.4B.5C.6D.7)8.如图是甲、乙两车在某时段速度随时间变化的图象,以下结论错误的选项是()A.乙前 4秒行驶的行程为 48 米B.在 0到 8秒内甲的速度每秒增加 4米/秒C.两车到第 3秒时行驶的行程相等D.在 4至 8秒内甲的速度都大于乙的速度二、填空题(每题 3分,共 24 分)9 .分解因式: ab 4﹣ 4ab 3 +4ab 2 =10 .如图,直线 a ∥ b ,∠ 1=45 °,∠ 2=30.°,则∠P=°.11.已知一组数据:3,3,4,7,8,则它的方差为.12.今年“五一”节,A、B 两人到商场购物,A 购 3件甲商品和 2件乙商品共支付 16 元,B 购 5件甲商品和 3件乙商品共支付 25 元,求一件甲商品和一件 乙 商 品 各 售 多 少 元 .设 甲 商 品 售 价 x 元 / 件 ,乙 商 品 售 价 y 元 / 件 ,则 可 列 出方程组.13 . 在 平 面 直 角 坐 标 系 内 , 以 点 P ( 1 , 1 ) 为 圆 心 、 为 半 径 作 圆 , 则 该 圆 与 y轴 的交点坐标是.14 . 已 知 一 元 二 次 方 程 x 2+3x ﹣ 4=0 的 两 根 为 x 1 、 x 2 , 则 x 12 +x 1x 2+x 22 = .15 . 规 定 : log a b ( a > 0 , a ≠1, b > 0 ) 表 示 a , b 之 间 的 一 种 运 算 .现有 如 下 的 运 算 法 则 : log n a n=n . log N M= ( a > 0 , a ≠1 , N > 0 , N ≠1 , M > 0). 例 如 : log 2 23=3 , log 25= , 则 log 100 1000= .16 .如图,在边长为 4的正方形 ABCD 中,P 是 BC边上一动点(不含 B 、C 两 点),将△ABP沿直线 AP 翻折,点 B 落在点 E 处;在 CD 上有一点 M ,使得将△CMP 沿直线 MP 翻折后,点 C 落在直线 PE 上的点 F 处,直线 PE 交 CD 于点 N ,连接 MA ,NA .则 以下结论中正确的有 (写出所有正确结论的序号) ① △CMP ∽△BPA ; ② 四边形 AMCB的面积最大值为 10;③ 当 P 为 BC 中点时,AE 为线段 NP 的中垂线; ④ 线段 AM 的最小值为 2;⑤ 当△ABP ≌△ADN 时,BP=4 ﹣4.三、解答题(本大题共 8小题,共 72 分)17 .( 1 ) 计 算 ;( ) ﹣ 2﹣ ( ﹣ 1 ) 20 20﹣ + ( π﹣1 ) 0(2)化简:÷(1﹣) 18. 如图,已知 ∠CAB= ∠DBA , ∠CBD= ∠DAC .求证:BC=AD.19.某校要求八年级同学在课外活动中,必定在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了认识八年级学生参加球类活动的整体情况,现以八年级 2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了以下列图的不完满统计表和扇形统计图:八年级 2 班参加球类活动人数统计表项目 篮球足球乒乓球排球羽毛球人 数 a 6576依照图中供应的信息,解答以下问题:( 1 ) a=, b=;( 2)该校八年级学生共有 600 人,则该年级参加足球活动的人数约人 ;( 3)该班参加乒乓球活动的 5位同学中,有 3位男同学(A ,B ,C )和 2位女同学(D ,E ),现准备从中采用两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混杂双打组合的概率.20.2020 年“母亲节”前夕,宜宾某花店用 4000 元购进若干束花,很快售完,接着又用 4500 元购进第二批花,已知第二批所购花的束数是第一批所购花束数的 1.5 倍,且每束花的进价比第一批的进价少 5元,求第一批花每束的进价是多少?21.如图,CD 是一高为 4米的平台,AB 是与 CD 底部相平的一棵树,在平台顶 C 点测得树顶A 点的仰角α=30 °,从平台底部向树的方向水平前进 3 米到达点 E ,在点 E 处测得树顶 A 点的仰角β=60 °,求树高 AB (结果保留根号)22 .如图,一次函数 y=kx+b的图象与反比例函数y=(x>0)的图象交于A (2 ,﹣ 1 ), B (, n )两点,直线 y=2 与 y 轴交于点 C .(1)求一次函数与反比率函数的解析式;(2)求△ABC 的面积.23.如图 1,在△APE 中,∠PAE=90 °,PO 是△APE 的角均分线,以 O 为圆心,OA 为半径作圆交 AE 于点 G.(1)求证:直线 PE 是⊙O 的切线;(2)在图 2中,设 PE 与⊙O 相切于点 H,连接 AH ,点 D 是⊙O 的劣弧上一点,过点 D 作⊙O的切线,交 PA 于点 B,交 PE 于点 C,已知△PBC 的周长为 4 , tan ∠ EAH= ,求 EH 的长.24 .如图,已知二次函数 y1 =ax 2+bx过(﹣2,4),(﹣4,4)两点.(1 )求二次函数 y 1的解析式;(2 )将 y 1沿 x 轴翻折,再向右平移 2 个单位,得到抛物线 y 2,直线 y=m ( m > 0 )交 y 2于 M 、 N 两点,求线段 MN 的长度(用含 m 的代数式表示);(3 )在( 2 )的条件下, y 1、 y2交于 A 、 B 两点,如果直线 y=m 与 y 1、 y2的图象形成的封闭曲线交于 C 、 D 两点( C 在左侧),直线 y= ﹣ m 与 y1、 y 2的图象形成的封闭曲线交于 E、F两点(E在左侧),求证:四边形 CEFD 是平行四边形.2020 年四川省宜宾市中考数学试卷参照答案与试题解析一、选择题(每题 3分,共 24 分)1.﹣5的绝对值是()A.B. 5C.﹣D.﹣5【考点】绝对值.【解析】绝对值的性质:一个正数的绝对值是它自己;一个负数的绝对值是它的相反数;0 的绝对值是 0.【解答】解:依照负数的绝对值是它的相反数,得|﹣5|=5.应选:B.2.科学家在实验中检测出某微生物约为米,将用科学记数法表示为()A. 3.5 ×10﹣6B. 3.5 ×106C. 3.5 ×10 ﹣5D. 35 ×10 ﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于 1 的正数也可以利用科学记数法表示,一般形式为 a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左侧起第一个不为零的数字前面的 0的个数所决定.【解答】解:×10 ﹣6,应选:A.3.如图,立体图形的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【解析】依照几何体的三视图,即可解答.【解答】解:立体图形的俯视图是 C.应选:C.4.半径为 6,圆心角为 120°的扇形的面积是()A . 3 πB . 6πC . 9πD . 12 π【考点】扇形面积的计算.【解析】依照扇形的面积公式 S=计算即可.【解答】解: S==12 π,应选:D.5.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点 C 落在线段 AB 上的点 E处,点 B 落在点 D 处,则 B、D 两点间的距离为()A.B. 2C. 3D .2【考点】旋转的性质.【解析】经过勾股定理计算出 AB 长度,利用旋转性质求出各对应线段长度,利用勾股定理求出 B、D 两点间的距离.【解答】解:∵在△ABC中,∠C=90°,AC=4,BC=3,∴ AB=5 ,∵将△ABC绕点 A 逆时针旋转,使点 C落在线段 AB上的点 E处,点 B 落在点D处,∴AE=4 , DE=3 ,∴BE=1 ,在 Rt △ BED 中,BD== .应选:A.6.如图,点 P是矩形的长分别是 6和 8,则点ABCD 的边 AD上的一动点,矩形的两条边AB、P到矩形的两条对角线 AC 和 BD 的距离之和是(BC)A. 4.8B .5C.6D .【考点】矩形的性质.【解析】第一连接 OP,由矩形的两条边 AB、BC 的长分别为 3和 4,可求得 OA=OD=5 ,△ AOD 的面积,然后由 S△AO D =S △AOP +S △DOP =OA ?PE+OD ?PF 求得答案.【解答】解:连接 OP,∵矩形的两条边 AB、BC 的长分别为 6和 8,∴ S 矩形AB C D =AB ? BC=48 , OA=OC,OB=OD,AC=BD=10,∴OA=OD=5 ,∴S△AC D=S 矩形AB CD=24 ,∴S△AOD =S △AC D=12 ,∵S△AOD =S △AOP +S △DOP =OA ?PE+OD ?PF= ×5 ×PE+ ×5 ×PF= ( PE+PF ) =12 ,解得: PE+PF=4.8 .应选:A.7.宜宾市某化工厂,现有 A 种原料 52 千克,B 种原料 64 千克,现用这些原料生产甲、乙两种产品共 20 件.已知生产 1件甲种产品需要 A 种原料 3千克,B种原料 2千克;生产 1件乙种产品需要 A 种原料 2千克,B种原料 4千克,则生产方案的种数为()A.4B.5C.6D.7【考点】二元一次方程组的应用.【分析】设生产甲产品x 件,则乙产品(20 ﹣x )件,根据生产1 件甲种产品需要 A 种原料 3千克,B种原料 2千克;生产 1件乙种产品需要 A种原料 2 千克, B 种原料 4 千克,列出不等式组,求出不等式组的解,再根据 x 为整数,得出有 5种生产方案.【解答】解:设生产甲产品 x 件,则乙产品( 20 ﹣ x )件,根据题意得:,解 得 : 8 ≤x ≤12 , ∵ x 为 整 数 ,∴ x=8 , 9 , 10 , 11 , 12 ,∴ 有 5种生产方案:方案 1,A 产品 8件,B 产品 12件; 方案 2,A 产品 9件,B 产品 11件; 方案 3,A 产品 10件,B 产品 10 件; 方案 4,A 产品 11件,B 产品 9件; 方案 5,A 产品 12件,B 产品 8件; 应选 B .8.如图是甲、乙两车在某时段速度随时间变化的图象,以下结论错误的选项是 ()A .乙前 4秒行驶的行程为 48 米B .在 0到 8秒内甲的速度每秒增加 4米/秒C .两车到第 3秒时行驶的行程相等D .在 4至 8秒内甲的速度都大于乙的速度 【考点】函数的图象.【解析】依照函数图象和速度、时间、行程之间的关系,分别对每一项进行 解析即可得出答案.【解答】解:A 、依照图象可得,乙前 4秒行驶的行程为 12×4=48 米,正确;B 、依照图象得:在 0到 8秒内甲的速度每秒增加 4米秒/,正确;C 、依照图象可得两车到第 3 秒时行驶的行程不相等,故本选项错误;D 、在 4至 8秒内甲的速度都大于乙的速度,正确; 应选 C .二、填空题(每题 3分,共 24 分)9 . 分 解 因 式 : ab 4 ﹣ 4ab 3 +4ab 2= ab 2( b ﹣ 2) 2.【考点】提公因式法与公式法的综合运用.【解析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有 3项,可采用完满平方公式连续分解.【 解 答 】 解 : ab 4﹣ 4ab 3+4ab 2=ab 2 ( b 2﹣ 4b+4 )=ab 2 ( b ﹣ 2 ) 2 .故 答 案 为 : ab 2 ( b ﹣ 2 ) 2.10 . 如 图 , 直 线 a ∥ b , ∠ 1=45 °, ∠ 2=30 °, 则 ∠ P= 75°.【考点】平行线的性质.【 分 析 】 过 P 作 PM ∥ 直 线 a , 求 出 直 线 a ∥ b ∥ PM , 根 据 平 行 线 的 性 质 得 出∠ EPM= ∠2=30 °, ∠FPM= ∠1=45 °,即可求出答案 .【解答】解:过 P 作 PM ∥ 直 线 a ,∵ 直 线 a ∥ b ,∴ 直 线 a ∥ b ∥ PM ,∵ ∠ 1=45 °, ∠ 2=30 °,∴ ∠ EPM= ∠ 2=30 °, ∠ FPM= ∠ 1=45 °, ∴ ∠ EPF= ∠ EPM+ ∠ FPM=30 °+45 °=75 °,故答案为:75.11.已知一组数据:3,3,4,7,8,则它的方差为.【考点】方差.【解析】依照平均数的计算公式先算出这组数据的平均数,再依照方差公式进行计算即可. 【解答】解:这组数据的平均数是:(3+3+4+7+8 )÷5=5,则这组数据的方差为: [(3﹣5)2+(3﹣5)2+(4﹣5)2+( 7﹣5)2+( 8﹣5) 2] =4.4 .故答案为:.12.今年“五一”节,A 、B 两人到商场购物,A 购 3件甲商品和 2件乙商品共支付 16 元,B 购 5件甲商品和 3件乙商品共支付 25 元,求一件甲商品和一件 乙 商 品 各 售 多 少 元 .设 甲 商 品 售 价 x 元 / 件 ,乙 商 品 售 价 y 元 / 件 ,则 可 列 出方程组 .【考点】由实责问题抽象出二元一次方程组.【解析】分别利用“A 购 3件甲商品和 2件乙商品共支付商品和 3件乙商品共支付 25 元”得出等式求出答案.16 元,B购5 件 甲【 解 答 】 解 : 设 甲 商 品 售 价 x 元 / 件 , 乙 商 品 售 价 y 元 / 件 , 则 可 列 出 方 程 组 :.故答案为:.13 . 在 平 面 直 角 坐 标 系 内 , 以 点 P ( 1 , 1 ) 为 圆 心 、 为 半 径 作 圆 , 则 该 圆 与 y轴的交点坐标是 (0,3),(0,﹣1) .【考点】坐标与图形性质.【解析】在平面直角坐标系中,依照勾股定理先求出直角三角形的别的一个直角边,再依照点 P 的坐标即可得出答案.【 解 答 】 解 : 以 ( 1 , 1 ) 为 圆 心 , 为 半 径 画 圆 , 与 y 轴 相 交 , 构 成 直 角 三 角形 ,用勾股定理计算得另素来角边的长为 2,则 与 y 轴 交 点 坐 标 为 ( 0 , 3 ) 或 ( 0, ﹣ 1 ). 故答案为:(0,3),(0,﹣1).14 .已 知 一 元 二 次 方 程 x 2 +3x ﹣ 4=0 的 两 根 为 x 1 、x 2,则 x 1 2 +x 1 x 2 +x 22=13. 【考点】根与系数的关系.【 分 析 】 根 据 根 与 系 数 的 关 系 得 到 x 1 +x 2 = ﹣ 3 , x 1x 2 = ﹣ 4 ,再 利 用 完 全 平 方 公式变 形 得 到 x 1 2+x 1 x 2 +x 2 2 = ( x 1 +x 2 ) 2﹣ x 1 x 2 ,然 后 利 用 整 体 代 入 的 方 法 计 算 .【 解 答 】 解 : 根 据 题 意 得 x 1 +x 2 = ﹣ 3 , x 1 x 2 =﹣ 4,所 以 x 1 2+x 1x 2+x 2 2 = ( x 1+x 2) 2 ﹣ x 1 x 2 = ( ﹣ 3 ) 2﹣ ( ﹣ 4 ) =13 .故 答案为 13.15 . 规 定 : log a b ( a > 0 , a ≠1, b > 0 ) 表 示 a , b 之 间 的 一 种 运 算 .现 有 如 下 的 运 算 法 则 : log n a n=n . log N M= ( a > 0 , a ≠1 , N > 0 , N ≠1 , M > 0).例 如 : log 2 23=3 , log 25= , 则 log 100 1000= . 【 考点】实数的运算. 【 分 析 】 先 根 据 log N M= ( a > 0 , a ≠1 , N > 0, N ≠1 , M > 0 ) 将 所 求 式 子 化 成 以 10 为底的对数形式,再利用公式进行计算. 【 解 答 】 解 : log 100 1000=== . 故答案为:.16 .如图,在边长为 4的正方形 ABCD中,P 是 BC 边上一动点(不含 B 、C 两 点),将△ABP 沿直线 AP 翻折,点 B 落在点 E 处;在 CD 上有一点 M ,使得将△CMP沿直线 MP 翻折后,点 C 落在直线 PE 上的点 F 处,直线 PE 交CD 于点 N ,连接 MA ,NA .则以下结论中正确的有 ①②⑤(写出所有正确结论的序号) ① △CMP ∽△BPA ; ② 四边形 AMCB 的面积最大值为 10;③ 当 P 为 BC 中点时,AE 为线段 NP 的中垂线;④ 线段 AM的最小值为 2;⑤ 当△ABP ≌△ADN 时,BP=4 ﹣4.【考点】相似形综合题.【解析】① 正确,只要证明∠APM=90°即可解决问题.② 正 确 , 设 PB=x , 构 建 二 次 函 数 , 利 用 二 次 函 数 性 质 解 决 问 题 即 可 .③ 错 误 ,设 ND=NE=y ,在 RT △ PCN 中 ,利 用 勾 股 定 理 求 出 y 即 可 解 决 问 题 . ④ 错误,作 MG ⊥AB 于 G ,因为 AM== ,所以 AG 最小时 AM 最小,成立二次函数,求得 AG 的最小值为 3,AM 的最小值为 5.⑤ 正 确 ,在 AB 上 取 一 点 K 使 得 AK=PK ,设 PB=z ,列 出 方 程 即 可 解 决 问 题 .【解答】解:∵∠APB= ∠APE ,∠MPC= ∠MPN , ∵ ∠ CPN+ ∠ NPB=180°,∴ 2∠ NPM+2 ∠ APE=180 °, ∴ ∠ MPN+ ∠ APE=90 °,∴ ∠ APM=90 °,∵ ∠ CPM+ ∠ APB=90 °, ∠ APB+ ∠ PAB=90 °,∴∠CPM= ∠PAB , ∵四边形 ABCD是正方形,∴ AB=CB=DC=AD=4, ∠ C= ∠ B=90 °,∴△CMP ∽△BPA .故① 正确, 设 PB=x , 则 CP=4 ﹣ x , ∵△CMP ∽△BPA ,∴ =,∴ CM=x ( 4 ﹣ x ),∴ S 四 边 形 AM CB = [4+x ( 4﹣ x ) ] ×4= ﹣ x 2+2x+8=﹣ ( x ﹣ 2 ) 2+10 ,∴ x=2时,四边形AMCB面积最大值为10,故② 正确,当 PB=PC=PE=2时,设ND=NE=y,在 RT △ PCN 中,( y+2 )2= ( 4 ﹣ y )2+22解得 y= ,∴NE≠EP,故③错误,作MG⊥AB 于 G,∵ AM== ,∴AG 最小时 AM最小,∵ AG=AB﹣BG=AB﹣CM=4﹣x(4﹣x)=(x﹣1)2+3,∴x=1 时, AG 最小值 =3 ,∴AM 的最小值==5 ,故④错误.∵△ABP ≌ △ADN 时,∴ ∠ PAB= ∠°,在AB上取一点K使得AK=PK∴ ∠ KPA= ∠°∵ ∠ PKB= ∠ KPA+ ∠ KAP=45°,∴ ∠ BPK= ∠ BKP=45°,,设PB=z,∴PB=BK=z , AK=PK=z ,∴z+z=4 ,∴z=4 ﹣ 4 ,∴PB=4 ﹣4故⑤正确.故答案为①②⑤.三、解答题(本大题共 8小题,共 72 分)17 .( 1 )计算;()﹣2﹣(﹣ 1 )20 20﹣ + (π﹣1 )0(2)化简:÷(1﹣)【考点】实数的运算;分式的混杂运算;零指数幂;负整数指数幂.【解析】(1)原式利用零指数幂、负整数指数幂法规,乘方的意义,以及算术平方根定义计算即可获取结果;(2)原式括号中两项通分并利用同分母分式的减法法规计算,同时利用除法法规变形,约分即可获取结果.【解答】解:(1)原式=9﹣1﹣5+1=4 ;(2)原式 =÷=?= .18.如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.【考点】全等三角形的判断与性质.【解析】先依照题意得出∠DAB=∠CBA,再由ASA定理可得出△ADB ≌△BCA ,由此可得出结论.【解答】解:∵∠CAB=∠DBA,∠CBD=∠DAC,∴∠DAB=∠ CBA.在△ADB与△BCA中,,∴△ADB ≌△BCA ( ASA ),∴BC=AD .19.某校要求八年级同学在课外活动中,必定在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了认识八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了以下列图的不完满统计表和扇形统计图:八年级 2 班参加球类活动人数统计表项目篮球足球乒乓球排球羽毛球人数a6576依照图中供应的信息,解答以下问题:( 1) a=16 ,;( 2)该校八年级学生共有600人,则该年级参加足球活动的人数约90 人;(3)该班参加乒乓球活动的 5位同学中,有 3位男同学(A,B,C)和 2位女同学(D,E),现准备从中采用两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混杂双打组合的概率.【考点】列表法与树状图法;用样本估计整体;扇形统计图.【解析】(1)第一求得总人数,尔后依照百分比的定义求解;(2)利用总数乘以对应的百分比即可求解;(3)利用列举法,依照概率公式即可求解.【解答】解:( 1 ) a=5 ÷12.5% ×40%=16,5÷12.5%=7÷b%,∴b=17.5 ,故答案为:16,;(2 ) 600 ×[6 ÷( 5÷12.5% ) ] =90 (人),故答案为:90;(3)如图,∵共有 20 种等可能的结果,两名主持人恰为一男一女的有 12 种情况,∴则 P(恰好选到一男一女)==.20.2020 年“母亲节”前夕,宜宾某花店用 4000 元购进若干束花,很快售完,接着又用 4500 元购进第二批花,已知第二批所购花的束数是第一批所购花束数的 1.5 倍,且每束花的进价比第一批的进价少 5元,求第一批花每束的进价是多少?【考点】分式方程的应用.【分析】设第一批花每束的进价是x 元/ 束,则第一批进的数量是:,第二批进的数量是:,再依照等量关系:第二批进的数量=第一批进的数量×1.5 可得方程.【解答】解:设第一批花每束的进价是 x 元 / 束,依题意得:×1.5= ,解得 x=20 .经检验 x=20是原方程的解,且符合题意.答:第一批花每束的进价是 20 元/束.21.如图,CD 是一高为 4米的平台,AB 是与 CD 底部相平的一棵树,在平台顶 C 点测得树顶A 点的仰角α=30 °,从平台底部向树的方向水平前进 3 米到达点 E ,在点 E 处测得树顶 A 点的仰角β=60 °,求树高 AB (结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】作 CF ⊥ AB 于点 F,设 AF=x 米,在直角△ ACF中利用三角函数用 x 表示出 CF 的长,在直角△ABE中表示出 BE 的长,尔后依照 CF﹣BE=DE即可列方程求得 x 的值,进而求得 AB 的长.【解答】解:作 CF ⊥ AB 于点 F ,设 AF=x米,在 Rt △ ACF中, tan ∠ ACF= ,则 CF====x,在直角△ABE中, AB=x+BF=4+x(米),在直角△ABF中, tan ∠ AEB= ,则 BE===( x+4 )米.∵CF ﹣ BE=DE ,即 x﹣( x+4 ) =3 .解得: x= ,则AB=+4= (米).答:树高 AB 是米.22 .如图,一次函数 y=kx+b的图象与反比例函数y=(x>0)的图象交于A (2 ,﹣ 1 ), B (, n )两点,直线 y=2 与 y 轴交于点 C .(1)求一次函数与反比率函数的解析式;(2)求△ABC 的面积.【考点】反比率函数与一次函数的交点问题.【分析】( 1 )把 A 坐标代入反比例解析式求出 m 的值,确定出反比例解析式,再将 B 坐标代入求出 n 的值,确定出 B 坐标,将 A 与 B 坐标代入一次函数解析式求出 k 与 b 的值,即可确定出一次函数解析式;(2)利用两点间的距离公式求出 AB 的长,利用点到直线的距离公式求出点C到直线 AB 的距离,即可确定出三角形 ABC 面积.【解答】解:( 1 )把 A ( 2 ,﹣ 1)代入反比例解析式得:﹣ 1= ,即 m=﹣ 2 ,∴反比例解析式为 y= ﹣,把 B (, n )代入反比例解析式得: n= ﹣ 4 ,即 B (,﹣ 4 ),把 A 与 B 坐标代入 y=kx+b中得:,解得: k=2 , b= ﹣ 5,则一次函数解析式为 y=2x ﹣ 5 ;(2 )∵ A ( 2 ,﹣ 1), B (,﹣ 4 ),直线 AB 解析式为 y=2x ﹣ 5 ,∴ AB== ,原点( 0 , 0 )到直线 y=2x ﹣ 5 的距离 d== ,则 S△AB C =AB ? d= .23.如图 1,在△APE中,∠PAE=90°,PO是△APE的角均分线,以O为圆心,OA 为半径作圆交 AE 于点 G.(1)求证:直线 PE 是⊙O 的切线;(2)在图 2中,设 PE 与⊙O 相切于点 H,连接 AH ,点 D 是⊙O 的劣弧上一点,过点 D 作⊙O的切线,交 PA 于点 B,交 PE 于点 C,已知△PBC 的周长为 4 , tan ∠ EAH= ,求 EH 的长.【考点】切线的判断与性质.【解析】(1)作 OH⊥PE,由 PO 是∠APE 的角均分线,获取∠APO= ∠EPO,判断出△PAO≌△PHO,获取 OH=OA ,用“圆心到直线的距离等于半径”来得出直线 PE 是⊙O 的切线;(2)先利用切线的性质和△PBC 的周长为 4求出 PA=2 ,再用三角函数求出OA,AG ,尔后用三角形相似,获取 EH=2EG ,AE=2EH ,用勾股定理求出 EG,最后用切割线定理即可.【解答】证明:(1)如图 1,作 OH⊥PE,∴ ∠ OHP=90°,∵ ∠ PAE=90 ,∴∠OHP= ∠OAP ,∵PO 是∠APE的角均分线,∴∠APO= ∠EPO ,在△PAO 和△PHO中,∴△PAO ≌△PHO ,∴OH=OA ,∵OA 是⊙O 的半径,∴OH 是⊙O 的半径,∵OH ⊥ PE,∴直线 PE 是⊙O 的切线.(2)如图 2,连接 GH,∵BC,PA,PB 是⊙O的切线,∴DB=DA , DC=CH ,∵△PBC 的周长为 4,∴PB+PC+BC=4 ,∴PB+PC+DB+DC=4,∴PB+AB+PC+CH=4,∴PA+PH=4 ,∵PA,PH 是⊙O 的切线,∴PA=PH ,∴ PA=2 ,由(1)得,△PAO ≌△PHO ,∴ ∠ OFA=90°,∴ ∠ EAH+ ∠ AOP=90°,∵ ∠ OAP=90°,∴ ∠ AOP+ ∠ APO=90°,∴∠APO= ∠EAH ,∵tan ∠ EAH= ,∴ tan ∠ APO== ,∴OA=PA=1 ,∴AG=2 ,∵ ∠ AHG=90°,∵tan ∠ EAH== ,∵△EGH ∽△EHA ,∴=== ,∴ EH=2EG , AE=2EH ,∴AE=4EG ,∵AE=EG+AG ,∴EG+AG=4EG ,∴EG=AG= ,∵EH 是⊙O 的切线,EGA 是⊙O的割线,∴ EH 2=EG×EA=EG ×( EG+AG ) = ×( +2 ) =,∴EH= .24 .如图,已知二次函数 y1 =ax 2+bx过(﹣2,4),(﹣4,4)两点.(1 )求二次函数 y 1的解析式;(2 )将 y 1沿 x 轴翻折,再向右平移 2 个单位,得到抛物线 y 2,直线 y=m ( m > 0 )交 y 2于 M 、 N 两点,求线段 MN 的长度(用含 m 的代数式表示);(3 )在( 2 )的条件下, y 1、 y2交于 A 、 B 两点,如果直线 y=m 与 y 1、 y2的图象形成的封闭曲线交于 C 、 D 两点( C 在左侧),直线 y= ﹣ m 与 y1、 y 2的图象形成的封闭曲线交于 E、F两点(E在左侧),求证:四边形 CEFD 是平行四边形.【考点】二次函数综合题.【解析】(1)依照待定系数法即可解决问题.(2 )先求出抛物线 y 2的顶点坐标,再求出其解析式,利用方程组以及根与系数关系即可求出 MN .(3)用近似(2)的方法,分别求出 CD、EF 即可解决问题.【解答】解:( 1 )∵二次函数 y 1=ax 2+bx过(﹣2,4),(﹣4,4)两点,∴解得,∴二次函数 y 1的解析式 y1 = ﹣ x 2﹣ 3x .(2 )∵ y 1= ﹣( x+3 )2+,∴极点坐标(﹣ 3,),∵将 y 1沿 x 轴翻折,再向右平移 2 个单位,得到抛物线 y2,∴抛物线 y 2的顶点坐标(﹣ 1 ,﹣),∴抛物线 y 2为 y= ( x+1 )2﹣,由消去 y 整理得到 x 2+2x ﹣ 8 ﹣ 2m=0 ,设 x 1, x 2是它的两个根,则 MN=|x 1﹣ x2 |== ,( 3 )由消去 y 整理得到 x 2+6x+2m=0,设两个根为 x1, x 2,则 CD=|x 1﹣ x 2 |== ,由消去 y 得到 x 2+2x ﹣ 8+2m=0 ,设两个根为 x 1, x 2,则 EF=|x 1﹣ x 2 |== ,∴EF=CD ,EF∥CD,∴四边形 CEFD 是平行四边形.2020年7月1日。

四川省宜宾市2019年中考数学试题及答案(word版)

四川省宜宾市2019年中考数学试题及答案(word版)

xEDCB A 宜宾市2019年高中阶段学校招生考试数学试卷(考试时间:120分钟, 全卷满分120分)一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对成题目上. (注意..:在试题卷....上作..答无效...) 1.–15的相反数是( B ) A .5 B . 15 C . – 15 D .–52. 如图,立体图形的左视图是( A )DCBA正面3. 地球绕太刚每小时转动经过的路程约为110000米,将110000用科学记数法表示为( D ) A .11⨯104 B . 0.11⨯107 C . 1.1⨯106 D . 1.1⨯1054. 今年4则这8A .85、85 B .87、85C .85、86D .85、875. 把代数式3x 3 –12x 2+12x 分解因式,结果正确的是( D ) A .3x (x 2–4x +4) B . 3x (x –4)2C . 3x (x +2)(x –2)D . 3x (x –2)26. 如图,△OAB 与△OCD 是以点O 为位似中心的位似图形, 相似比为l :2,∠OCD =90°,CO =CD .若B (1,0),则点C 的坐标为( B )A .(1,2)B .(1,1)C .(2, 2)D .(2,1)7. 如图,以点O 为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、……、20,阴影部分是由第l 个圆和第2个圆,第3个圆和第4个圆,……,第l9个圆和第20个圆形成的所有圆环,则阴影部分的面积为( B )A .231πB .210πC .190πD .171π8. 在平面直角坐标系中,任意两点A (x 1,y 1),B (x 2,y 2)规定运算:①A ○+B =( x 1+ x 2, y 1+ y 2);②A ○⨯B = x 1 x 2+y 1 y 2 ③当x 1= x 2且y 1= y 2时A =B 有下列四个命题:(1)若A (1,2),B (2,–1),则A ○+B =(3,1),A ○⨯B =0; (2)若A ○+B =B ○+C ,则A =C ; (3)若A ○⨯B =B ○⨯C ,则A =C ; (4)对任意点A 、B 、C ,均有(A ○+B )○+C =A ○+( B ○+C )成立.其中正确命题的个数为( C ) A . 1个 B . 2个 C . 3个 D .4个二、填空题:(本大题共8小题,每小题3分,共24分)请把答案 直接填在答题卡对应题中横线上(注意..:在试题卷....上作..答无效...) 9. 一元一次不等式组⎩⎨⎧x +2≥05x –1>0的解集是 15x> 10. 如图,AB ∥CD ,AD ∥BC ,AD 与BC 交于点E ,若∠B =35°, ∠D =45°,则∠AEC = .80°11.关于x 的一元一次方程x 2–x +m =0没有实数根,则m 的取值范围是 1m >12.如图,在菱形ABCD 中,点P 是对角线AC 上的一点,PE ⊥AB 于点E ,若PE =3,则点P 到AD 的距离为 .313.某楼盘2019年房价为每平方米8100元,经过两年连续降价后,2019年房价为7600元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为 .2810017600(x )-=14.如图,AB 为⊙O 的直径,延长AB 至点D ,使BD =OB ,DC 切⊙O 于点C ,点B 是CF ⌒的中点,弦CF 交AB 于点F 若⊙O 的半径为2,则CF =.15.如图, 一次函数的图象与x 轴、y 轴分别相交于点A 、B ,将△AOB 沿直线AB 翻折,得△ACB .若C (32,32),则该一次幽数的解析式为.y =+16.如图,在正方形ABC'D 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连结BD 、DP ,BD 与CF 相交于点H .给出下列结论:①△ABE ≌△DCF ;②FP PH = 35;③DP 2=PH ·PB ;④ S △BPD S 正方形ABCD= 3–14.其中正确的是 (写出所有正确结论的序号). ①③④EPDCBAADxHPABCDEF三、解答题:(本人题共8个题,共72分) 17.(本小题满分10分)(.注意:在试题卷上作答无效............) (1)计算:(–3)0– ||–3 + (–1)2019+ (12)–1 -1(2) 化简:(1a –1 – 1a 2–1)÷a 2– a a 2–11-1a 18.(本小题满分6分)(.注意:在试题卷上作答无效............) 如图,AC =DC ,BC =EC ,∠ACD = ∠BCE 求证:∠A =∠D(略)DE A为进一步增强学生体质,据悉,我市从2019年起,中考体育测试将进行改革,实行必测项目和选测项目相结合的方式必测项目有三项:立定跳远、坐位体前屈、跑步;选测项目:在篮球(记为X 1)、排球(记为X 2)、足球(记为X 3)中任选一项。

2019年四川宜宾中考数学试卷及详细答案解析(word版)

2019年四川宜宾中考数学试卷及详细答案解析(word版)

2019年四川宜宾中考数学试卷一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上。

1.(3分)2的倒数是( ) A .12B .﹣2C .−12D .±122.(3分)人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为( ) A .5.2×10﹣6B .5.2×10﹣5C .52×10﹣6D .52×10﹣53.(3分)如图,四边形ABCD 是边长为5的正方形,E 是DC 上一点,DE =1,将△ADE 绕着点A 顺时针旋转到与△ABF 重合,则EF =( )A .√41B .√42C .5√2D .2√134.(3分)一元二次方程x 2﹣2x +b =0的两根分别为x 1和x 2,则x 1+x 2为( ) A .﹣2B .bC .2D .﹣b5.(3分)已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是( )A .10B .9C .8D .76.(3分)如表记录了两位射击运动员的八次训练成绩:次数 环数 运动员第1次第2次第3次第4次第5次第6次第7次第8次甲 10 7 7 8 8 8 9 7 乙1055899810根据以上数据,设甲、乙的平均数分别为x 甲、x 乙,甲、乙的方差分别为s 甲2,s 乙2,则下列结论正确的是( ) A .x 甲=x 乙,s 甲2<s 乙2 B .x 甲=x 乙,s 甲2>s 乙2 C .x 甲>x 乙,s 甲2<s 乙2D .x 甲<x 乙,s 甲2<s 乙27.(3分)如图,∠EOF 的顶点O 是边长为2的等边△ABC 的重心,∠EOF 的两边与△ABC 的边交于E ,F ,∠EOF =120°,则∠EOF 与△ABC 的边所围成阴影部分的面积是( )A .√32B .2√35C .√33D .√348.(3分)已知抛物线y =x 2﹣1与y 轴交于点A ,与直线y =kx (k 为任意实数)相交于B ,C 两点,则下列结论不正确的是( ) A .存在实数k ,使得△ABC 为等腰三角形B .存在实数k ,使得△ABC 的内角中有两角分别为30°和60° C .任意实数k ,使得△ABC 都为直角三角形D .存在实数k ,使得△ABC 为等边三角形二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横上。

(中考精品)四川省宜宾市中考数学真题(解析版)

(中考精品)四川省宜宾市中考数学真题(解析版)

宜宾市2022年初中学业水平考试暨高中阶段学校招生考试数学一、选择题:本大题共12个小题,每小题4分,共48分.1. 4的平方根是( )A. ±2B. 2C. ﹣2D. 16【答案】A【解析】【详解】【分析】根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得x 2=a ,则x 就是a 的一个平方根.【详解】∵(±2 )2=4,∴4的平方根是±2,故选A .【点睛】本题主要考查平方根定义,熟练掌握平方根的定义是解题的关键. 2. 如图是由5个相同的正方体搭成的几何体,从正面看,所看到的图形是( )A. B. C. D.【答案】D【解析】【分析】根据所给几何体判断即可.【详解】解:从正面看,所看到的图形是:故选:D .的【点睛】考查几何体的三视图的知识,从正面看到的图形是主视图,从左面看到的图形是左视图,从上面看到的图形是俯视图.掌握以上知识是解题的关键.3. 下列计算不正确的是( )A. 3362a a a +=B. ()236a a -=C. 32a a a ÷=D. 235a a a ⋅=【答案】A【解析】【分析】根据合并同类项法则判定A ;根据幂的乘方法则计算并判定B ;根据同底数幂相除法则计算并判定C ;根据同底数幂相乘运算法则计算并判定D .【详解】解:A 、a 3+a 3=2a 3,故此选项符合题意;B 、(-a 3)2=a 6,故此选项不符合题意;C 、32a a a ÷=,故此选项不符合题意;D 、235a a a ⋅=,故此选项不符合题意;故选:A .【点睛】本题考查合并同类项,幂的乘方,同底数幂相除法,同底数幂相除法,熟练掌握合并同类项、幂的乘方 、,同底数幂相除法、同底数幂相除法运算法则是解题的关键. 4. 某校在中国共产主义青年团成立100周年之际,举行了歌咏比赛,七位评委对某个选手的打分分别为:91,88,95,93,97,95,94.这组数据的众数和中位数分别是( )A. 94,94B. 95,95C. 94,95D. 95,94 【答案】D【解析】【分析】将这组数据从小到大重新排列,再根据中位数的定义以及众数的定义求解即可.【详解】将这组数据从小到大重新排列为88,91,93,94,95,95,97,∴这组数据的中位数为94,95出现了2次,次数最多,故众数为95故选:D .【点睛】本题主要考查中位数和众数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数的平均数就是这组数据的中位数.众数:在一组数据中出现次数最多的数.5. 如图,在ABC ∆中,5AB AC ==,D 是BC 上的点,DE ∥AB 交AC 于点E ,DF ∥AC 交AB 于点F ,那么四边形AFDE 的周长是( )A. 5B. 10C. 15D. 20【答案】B【解析】 【分析】由于DE ∥AB ,DF ∥AC ,则可以推出四边形AFDE 是平行四边形,然后利用平行四边形的性质可以证明□AFDE 的周长等于AB +A C .【详解】∵DE ∥AB ,DF ∥AC ,则四边形AFDE 是平行四边形,∠B =∠EDC ,∠FDB =∠C∵AB =AC ,∴∠B =∠C ,∴∠B =∠FDB ,∠C =∠EDF ,∴BF =FD ,DE =EC ,所以□AFDE 的周长等于AB +AC =10.故答案为B【点睛】本题考查了平行四边形的性质、等腰三角形的性质、平行四边形的判定,熟练掌握这些知识点是本题解题的关键.6. 2020年12月17日,我国嫦娥五号返回器携带着月球样本玄武岩成功着陆地球.2021年10月19日,中国科学院发布了一项研究成果:中国科学家测定,嫦娥五号带回的玄武岩形成的年龄为20.300.04±亿年.用科学记数法表示此玄武岩形成的年龄最小的为( )(单位:年)A 82.03410⨯ B. 92.03410⨯ C. 82.02610⨯ D. 92.02610⨯【答案】D【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,看小数点移动了多少位,n 的绝对值与小数点移动的位数相同.小数点向左移动时,n 是正整数;小数点向右移动时,n 是负整数.【详解】解:20.30亿-0.04亿=20.26亿=2026000000=2.026×109,故选:D ..【点睛】本题主要考查科学记数法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.解题关键是正确确定a 的值以及n 的值.7. 某家具厂要在开学前赶制540套桌凳,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的桌凳比原计划多2套,结果提前3天完成任务.问原计划每天完成多少套桌凳?设原计划每天完成x 套桌凳,则所列方程正确的是( ) A. 54054032x x -=- B. 54054032x x -=+ C. 54054032x x -=+ D. 54054032x x -=- 【答案】C【解析】分析】设原计划每天完成x 套桌凳,根据“提前3天完成任务”列出分式方程即可.【详解】解:设原计划每天完成x 套桌凳,根据题意得,54054032x x -=+. 故选:C .【点睛】本题考查了列分式方程,理解题意是解题的关键.8. 若关于x 的一元二次方程2210ax x +-=有两个不相等的实数根,则a 的取值范围是( )A. 0a ≠B. 1a >-且0a ≠C. 1a ≥-且0a ≠D. 1a >-【答案】B【解析】【分析】根据一元二次方程的定义和根的判别式得出a ≠0,Δ=22-4a ×(-1)=4+4a >0,再求出即可.【详解】解:∵关于x 的一元二次方程ax 2+2x -1=0有两个不相等的实数根,∴a ≠0,Δ=22-4a ×(-1)=4+4a >0,解得:a >-1且a ≠0,故选:B .【点睛】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax 2+bx +c =0(a 、b 、c 为常数,a ≠0),当b 2-4ac >0时,方程有两个不相等的实数根;当b 2-4ac =0时,方程有两个相等的实数根;当b 2-4ac <0时,方程没有实数根. 9. 如图,在矩形纸片ABCD 中,5AB =,3BC =,将BCD △沿BD 折叠到BED 位置,DE 交AB 于点F ,则cos ADF ∠的值为( ) 【A. 817B. 715C. 1517D. 815【答案】C【解析】【分析】先根据矩形的性质和折叠的性质,利用“AAS ”证明AFD EFB ∆∆≌,得出AF EF =,DF BF =,设AF EF x ==,则5BF x =-,根据勾股定理列出关于x 的方程,解方程得出x 的值,最后根据余弦函数的定义求出结果即可.【详解】解:∵四边形ABCD 为矩形,∴CD =AB =5,AB =BC =3,90A C ∠=∠=︒,根据折叠可知,3BE BC ==,5DE DE ==,90∠=∠=︒E C ,∴在△AFD 和△EFB 中903A E AFD EFB AD BE ∠=∠=︒⎧⎪∠=∠⎨⎪==⎩,∴AFD EFB ∆∆≌(AAS ),∴AF EF =,DF BF =,设AF EF x ==,则5BF x =-,在Rt BEF ∆中,222BF EF BE =+,即()22253x x -=+, 解得:85x =,则817555DF BF ==-=, ∴315cos 17175AD ADF DF ∠===,故C 正确.故选:C .【点睛】本题主要考查了矩形的折叠问题,三角形全等的判定和性质,勾股定理,三角函数的定义,根据题意证明AFD EFB ∆∆≌,是解题的关键.10. 已知m 、n 是一元二次方程2250x x +-=的两个根,则22m mn m ++的值为( )A. 0B. -10C. 3D. 10 【答案】A【解析】【分析】根据一元二次方程根与系数关系得出mn =-5,把x =m 代入方程得m 2+2m -5=0,即m 2+2m =5,代入即可求解.【详解】解:∵m 、n 是一元二次方程2250x x +-=两个根,∴mn =-5,m 2+2m -5=0,∴m 2+2m =5,∴22m mn m ++=5-5=10,故选:A .【点睛】本题考查代数式求值,一元二次方程根与系数关系,方程解的意义,根据一元二次方程根与系数关系和方程解的意义得出mn =-5,m 2+2m =5是解题的关键.11. 已知抛物线2y ax bx c =++的图象与x 轴交于点()2,0A -、()4,0B ,若以AB 为直径的圆与在x 轴下方的抛物线有交点,则a 的取值范围是( ) A. 13a ≥ B. 13a > C. 103a << D. 103a <≤ 【答案】A【解析】【分析】根据题意,设抛物线的解析式为()()24y a x x =+-,进而求得顶点的的坐标,结合图形可知当顶点纵坐标小于或等于-3满足题意,即可求解.【详解】解: 抛物线2y ax bx c =++的图象与x 轴交于点()2,0A -、()4,0B , 设抛物线的解析式为()()24y a x x =+-()222819y ax ax a a x a ∴=--=--顶点坐标为()1,9a -, 6AB = ,以AB 为直径的圆与在x 轴下方的抛物线有交点,则圆的半径为3,如图,的93a ∴-≤- 解得13a ≥ 故选:A【点睛】本题考查了圆的的性质,二次函数图象的性质,求得抛物线的顶点纵坐标的范围是解题的关键.12. 如图,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点D 是BC 边上的动点(不与点B 、C 重合),DE 与AC 交于点F ,连结CE .下列结论:①BD CE =;②DAC CED ∠=∠;③若2BD CD =,则45CF AF =;④在ABC 内存在唯一一点P ,使得PA PB PC ++的值最小,若点D 在AP 的延长线上,且AP 的长为2,则2CE = )A. ①②④B. ①②③C. ①③④D. ①②③④【答案】B【解析】【分析】证明BAD CAE ≌,即可判断①,根据①可得ADB AEC ∠=∠,由180ADC AEC ∠+∠=︒可得,,,A D C E 四点共圆,进而可得DAC DEC ∠=∠,即可判断②,过点A 作AG BC ⊥于G ,交ED 的延长线于点H ,证明FAH FCE ∽,根据相似三角形的性质可得45CF AF =,即可判断③,将APC △绕A 点逆时针旋转60度,得到AB P ''△,则APP ' 是等边三角形,根据当,,,B P P C ''共线时,PA PB PC ++取得最小值,可得四边形ADCE 是正方形,勾股定理求得DP , 根据CE AD AP PD ==+即可判断④.【详解】解: ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒, ,,AB AC AD AE BAD CAE ∴==∠=∠BAD CAE ∴△≌△BD CE ∴=故①正确;BAD CAE ≌ADB AEC ∴∠=∠180ADC AEC ∴∠+∠=︒,,,A D C E ∴四点共圆,CD CD =DAC DEC ∴∠=∠故②正确;如图,过点A 作AG BC ⊥于G ,交ED 的延长线于点H ,BAD CAE ≌,45,45ACE ABD ACB ∴∠=∠=︒∠=︒90DCE ∴∠=︒FC AH ∴∥2BD CD =,BD CE =1tan 2DC DEC CE ∴∠==,13CD BC = 设6BC a =,则2DC a =,132AG BC a ==,24EC DC a == 则32GD GC DC a a a =-=-=FC AH ∥1tan 2GD H GH ∴== 22GH GD a ∴==325AH AG GH a a a ∴=+=+=AH ∥CE ,FAH FCE ∴ ∽CF CE AF AH ∴= 4455CF a AF a ∴== 则45CF AF =; 故③正确如图,将ABP 绕A 点逆时针旋转60度,得到AB P ''△,则APP ' 是等边三角形,PA PB PC PP P B PC B C '''+++∴'+=≥,当,,,B P P C ''共线时,PA PB PC ++取得最小值,此时180********CPA APP '∠=-∠=︒-=︒︒︒,180********APB AP B AP P ∠=∠=︒-∠=︒-︒='''︒,360360*********BPC BPA APC ∠=︒-∠-∠=︒-︒-︒=︒,此时120APB BPC APC ∠=∠=∠=︒,AC AB AB '== ,AP AP '=,APC AP B ''∠=∠,AP B APC ''∴ ≌,PC P B PB ''∴==,60APP DPC '∠=∠=︒ ,DP ∴平分BPC ∠,PD BC ∴⊥,,,,A D C E 四点共圆,90AEC ADC ∴∠=∠=︒,又AD DC BD ==,BAD CAE ≌,AE EC AD DC ∴===,则四边形ADCE 是菱形,又90ADC ∠=︒,∴四边形ADCE 是正方形,9060150B AC B AP PAC P AP ''''∠=∠+∠+∠=︒+︒=︒ ,则'B A BA AC ==,()1180152B ACB B AC '''∠=∠=︒-∠=︒, 30PCD ∠=︒ ,DC ∴=,DC AD = ,2AP =,则)12AP AD DP DP =-=-=,1DP ∴==+, 2AP = ,3CE AD AP PD ∴==+=,故④不正确,故选B .【点睛】本题考查了旋转的性质,费马点,圆内接四边形的性质,相似三角形的性质与判定,全等三角形的性质与判定,勾股定理,解直角三角形,正方形的性质与判定,掌握以上知识是解题的关键.二、填空题:本大题共6个小题,每小题4分,共24分.13. 分解因式:34x x -=______.【答案】x (x +2)(x ﹣2).【解析】【详解】解:34x x -=2(4)x x -=x (x+2)(x ﹣2). 故答案为x (x+2)(x ﹣2).14. 不等式组325,212x x -≥⎧⎪⎨+>-⎪⎩的解集为______.【答案】41x -<≤- 【解析】【分析】先分别求出不等式组中每一个不等式的解集,再根据确定不等式组解集原则“大大取较大,小小取较小,大小小大,中间找,大大小小无处找”确定出不等式组的公共解集即可.【详解】解:325212x x -≥⎧⎪⎨+>-⎪⎩①②,解①得:x ≤–1, 解②得:x >-4, ∴-4<x ≤-1.故答案为:-4<x ≤-1.【点睛】本题考查解不等式组,掌握确定不等式组解集原则“大大取较大,小小取较小,大小小大,中间找,大大小小无处找”是解题的关键.15. 如图,ABC 中,点E 、F 分别在边AB 、AC 上,12∠=∠.若4BC =,2AF =,3CF =,则EF =______.【答案】85【解析】【分析】易证△AEF ∽△ABC ,得EF AFBC AC =即EF AF BC AF CF=+即可求解. 【详解】解:∵∠1=∠2,∠A =∠A , ∴△AEF ∽△ABC , ∴EF AFBC AC =,即EF AF BC AF CF =+ ∵4BC =,2AF =,3CF =, ∴2423EF =+, ∴EF =85, 故答案为:85. 【点睛】本题考查相似三角形的判定与性质,熟练掌握相似三角形的判定与性质定理是解题的关键.16. 《数学九章》是中国南宋时期杰出数学家秦九韶的著作,书中提出了已知三角形三边a 、b 、c 求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S =.现有周长为18的三角形的三边满足::4:3:2a b c =,则用以上给出的公式求得这个三角形的面积为______.【答案】 【解析】【分析】根据周长为18的三角形的三边满足::4:3:2a b c =,求得8,6,4a b c ===,代入公式即可求解.【详解】解:∵周长为18的三角形的三边满足::4:3:2a b c =,设4,3,2a k b k c k ===∴43218k k k ++= 解得2k =∴8,6,4a b c ===∴S =====故答案为:【点睛】本题考查了化简二次根式,正确的计算是解题的关键.17. 我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为______.【答案】289 【解析】【分析】设直角三角形的三边分别为,,a b c ,较长的直角边为,a 较短的直角边为,b c 为斜边,由切线长定理可得,直角三角形的内切圆的半径等于2a b c+-,即6a b c +-=,根据小正方的面积为49,可得()249a b -=,进而计算2c 即22a b +即可求解.【详解】解:设四个全等的直角三角形的三边分别为,,a b c ,较长的直角边为,a 较短的直角边为,b c 为斜边,直角三角形的内切圆半径为3,小正方形的面积为49,∴()23492a b c a b +-=-=,, ∴6a b c +-=①,7a b -=②,131,22c c a b +-∴==, 222ab c += ③,22213122c c c +-⎛⎫⎛⎫∴+= ⎪ ⎪⎝⎭⎝⎭, 解得=17c 或5c =-(舍去), 大正方形的面积为2217289c ==, 故答案为:289.【点睛】本题考查了切线长定理,勾股定理,解一元二次方程,二元一次方程组,掌握直角三角形的内切圆的半径等于2a b c+-是解题的关键. 18. 如图,△OMN 是边长为10的等边三角形,反比例函数y =kx(x >0)的图象与边MN 、OM 分别交于点A 、B (点B 不与点M 重合).若AB ⊥OM 于点B ,则k 的值为______.【答案】【解析】【分析】过点B 作BC ⊥x 轴于点C ,过点A 作AD ⊥x 轴于点D ,设OC =x ,利用含30度角的直角三角形的性质以及勾股定理求得点B (x ),点A (15-2x ,,再利用反比例函数的性质列方程,解方程即可求解.【详解】解:过点B 作BC ⊥x 轴于点C ,过点A 作AD ⊥x 轴于点D ,如图:∵△OMN 是边长为10的等边三角形,∴OM =MN =ON =10,∠MON =∠MNO =∠M =60°, ∴∠OBC =∠MAB =∠NAD =30°,设OC =x ,则OB =2x ,BC x ,MB =10-2x ,MA =2MB =20-4x ,∴NA =10-MA =4x -10,DN =12NA =2x -5,AD DN (2x x , ∴OD =ON -DN =15-2x ,∴点B (x x ),点A (15-2x ,x ), ∵反比例函数y =kx(x >0)的图象与边MN 、OM 分别交于点A 、B ,∴x x =(15-2x x , 解得x =5(舍去)或x =3,∴点B (3,),∴k .故答案为:【点睛】本题是反比例函数的综合题,考查了等边三角形的性质,含30度角的直角三角形的性质以及勾股定理,解题的关键是学会利用参数构建方程解决问题.三、解答题:本大题共7个小题,共78分.19. 计算:(14sin 302--;(2)21111aa a ⎛⎫-÷ ⎪+-⎝⎭.【答案】(1(2)1a - 【解析】【分析】(1)先化简二次根式,把特殊角三角函数值代入,并求绝对值,再计算乘法,最后合并同类二次根式即可;(2)先计算括号,再运用除法法则转化成乘法计算即可求解. 【小问1详解】解:原式1422=-⨯+=【小问2详解】解:原式211111a a a a a+-⎛⎫=-⋅ ⎪++⎝⎭()()111a a a a a+-=⋅+ 1a =-.【点睛】本题考查实数的混合运算,分式的混合运算,熟练掌握实数混合运算与分式混合运算法则,熟记特殊角的三角函数值.20. 已知:如图,点A 、D 、C 、F 在同一直线上,AB DE ∥,B E ∠=∠,BC EF =. 求证:AD CF =.【答案】见解析 【解析】【分析】根据AB DE ∥,可得A EDF ∠=∠,根据AAS 证明ABC DEF △≌△,进而可得AC DF =,根据线段的和差关系即可求解. 【详解】证明:∵AB DE ∥, ∴A EDF ∠=∠, 在ABC 与DEF 中,A EDFB E BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()AAS ABC DEF ≌△△, ∴AC DF =,∴AC DC DF DC -=-, ∴AD CF =.【点睛】本题考查了平行线的性质,全等三角形的判定与性质,掌握全等三角形的性质与判定是解题的关键.21. 在4月23日世界读书日来临之际,为了解某校九年级(1)班同学们的阅读爱好,要求所有同学从4类书籍中(A :文学类;B :科幻类;C :军事类;D :其他类),选择一类自己最喜欢的书籍进行统计.根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息回答问题:(1)求九年级(1)班的人数并补全条形统计图; (2)在扇形统计图中,求m 的值;(3)如果选择C 类书籍的同学中有2名女同学,其余为男同学,现要在选择C 类书籍的同学中选取两名同学去参加读书交流活动,请你用画树状图或列表的方法求出恰好是一男一女同学去参加读书交流活动的概率. 【答案】(1)40人,见解析(2)40 (3)23【解析】【分析】(1)根据A 类的人数与占比即可求得总人数,进而即可求得C 类的人数,补全统计图;(2)根据B 的人数与总人数即可求解.(3)用画树状图或列表的方法求概率即可求解. 【小问1详解】九(1)班人数:1230%40÷=(人), ∴C 类的人数()40121684=-++=(人), ∴补全的条形统计图为:【小问2详解】16%100%40%40m =⨯=,∴40m =, 【小问3详解】 (方法一)画树状图:共有12种等可能性结果,其中一男一女的机会有8种, ∴()82123P ==一男一女. (方法二)列表:1女2女 1男 2男 1女1女2女1女1男 1女2男 2女 2女1女2女1男2女2男 1男 1男1女 1男2女1男2男2男2男1女2男2女2男1男共有12种等可能性结果,其中一男一女的机会有8种, ∴()82123P ==一男一女. 【点睛】本题考查是条形统计图和扇形统计图的综合运用,样本估计总体,画树状图或列表的方法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. .22. 宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图1)成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A 处(如图2)测得楼顶D 的仰角为45°,沿坡比为7:24的斜坡AB 前行25米到达平台B 处,测得楼顶D 的仰角为60°,求东楼的高度DE .(结果精确到1米.参1.7≈ 1.4≈)的【答案】40m 【解析】【分析】根据7:24i =,25AB =,设7BF a =,则24AF a =,根据勾股定理求得1a =,又设BE x =,则FC BE x ==,7CE BF ==,求出DE ,根据AC DC =列出方程,解方程进而根据DE =即可求解.【详解】解:在Rt ABF 中,7:24i =,25AB =, 设7BF a =,则24AF a =,由222AF BF AB +=, 得()()22224725a a +=, 解得:1a =, ∴7BF =,24AF =又设BE x =,则FC BE x ==,7CE BF == 在Rt BDE 中,60DBE ∠=︒,则DE ==,∴7DC DE EC =+=+,在Rt ACD △中,45DAC ∠=︒,则AC DC =, ∴24AF FC x +=+,∴247x +=+,解得:(1712x =+,∴173402DE ==⨯≈. ∴东楼的高度约为40m .【点睛】本题考查了解直角三角形的实际应用,掌握三角形中的边角关系是解题的关键.23. 如图,一次函数y ax b =+的图象与x 轴交于点()40A ,,与y 轴交于点B ,与反比例函数()0ky x x=>的图象交于点C 、D .若tan 2BAO ∠=,3BC AC =.(1)求一次函数和反比例函数的表达式; (2)求OCD 的面积. 【答案】(1)28y x =-+,6y x= (2)8 【解析】【分析】(1)根据tan 2BAO ∠=,可得出B 点的坐标,运用待定系数法即可求出AB 的解析式;再通过比例关系解出点C 的坐标,可得反比例函数表达式; (2)过D 作DF y ⊥轴,垂足为点F ,联列方程组解出点D 的坐标,再根据OCD AOB ODB OAC S S S S =--△△△△即可求出OCD 的面积.【小问1详解】在Rt AOB 中,∵tan 2BAO ∠=, ∴2BO OA =,∵()40A ,,∴()08B ,, ∵A 、B 两点在函数y ax b =+上,将()40A ,、()08B ,代入y ax b =+得 408a b b +=⎧⎨=⎩解得2a =-,8b =, ∴28y x =-+设()11C x y ,,过点C 作CE x ⊥轴,垂足为E ,则CE BO ,∴AC CEAB BO=, 又∵3BC AC =,∴14AC CE AB BO ==, 即184CE =,2CE =,即12y =, ∴1282x -+=,∴13x =,∴()32C ,∴11326k x y ==⨯=, ∴6y x=; 【小问2详解】 解方程组286y x y x =-+⎧⎪⎨=⎪⎩,得1116x y =⎧⎨=⎩,2232x y =⎧⎨=⎩ ∴()32C ,,()16D , 过D 作DF y ⊥轴,垂足为点F∵OCD AOB ODB OAC S S S S =--△△△△ ∴111222OCD S OA OB BO DF OA CE =⋅-⋅-⋅△ ()14881422=⨯-⨯-⨯ 8=.【点睛】本题考查反比例函数的性质,涉及反比例函数与一次函数的交点问题,反比例函数中的面积问题,熟练运用反比例函数的性质,以及灵活运用面积计算的方法是解题的关键.24. 如图,点C 是以AB 为直径的O 上一点,点D 是AB 的延长线上一点,在OA 上取一点F ,过点F 作AB 的垂线交AC 于点G ,交DC 的延长线于点E ,且EG EC =.(1)求证:DE 是O 的切线;(2)若点F 是OA 的中点,4BD =,1sin 3D ∠=,求EC 的长.【答案】(1)见解析(2【解析】 【分析】(1)连结OC ,利用等腰三角形的性质和圆周角定理证90OCE ∠=︒,即可由切线的判定定理得出结论;(2)解Rt OCD △,求出2CO =,从而求得6OD =,则可求得CD =,再证OCD EFD ∽△△,得OD CD ED FD =,即可求得ED =,即可由EC ED CD =-求解.【小问1详解】 证明:如图,连结OC ,∵OA OC =,∴1A ∠=∠,又∵EG EC =,∴32∠=∠,又∵34∠=∠,∴42∠=∠,又∵EF AB ⊥,∴490A ∠+∠=︒,∴1290∠+∠=︒,即90OCE ∠=︒,∴OC DE ⊥,∴DE 是O 的切线;【小问2详解】解:在Rt OCD △中,4BD =,1sin 3CO D OD ∠==, ∴143CO CO CO OD OB BD OB ===++, ∴2CO =,∴6OD =,∴CD ===又∵点F 为AO 中点, ∴112122FO AO ==⨯=, ∴7FD FO OD =+=,∵D D ∠=∠,90OCD EFD ∠=∠=︒∴OCD EFD ∽△△,∴OD CD ED FD =,即6ED =∴ED =,∴EC ED CD =-=-=. 【点睛】本题考查切线的判定,圆周角定理,等腰三角形的性质,解直角三角形,相似三角形的判定与性质,熟练掌握相关性质与判定是解题的关键.25. 如图,抛物线2y ax bx c =++与x 轴交于()3,0A 、()1,0B -两点,与y 轴交于点()0,3C ,其顶点为点D ,连结AC .(1)求这条抛物线所对应的二次函数的表达式及顶点D 的坐标;(2)在抛物线的对称轴上取一点E ,点F 为抛物线上一动点,使得以点A 、C 、E 、F 为顶点、AC 为边的四边形为平行四边形,求点F 的坐标;(3)在(2)的条件下,将点D 向下平移5个单位得到点M ,点P 为抛物线的对称轴上一动点,求35PF PM +的最小值. 【答案】(1)2y x 2x 3=-++,顶点D 的坐标为()1,4(2)()2,5F --或()4,5F -(3)245【解析】【分析】(1)用待定系数法求解二次函数解析式,再化成顶点式即可得出顶点坐标; (2)先用待定系数法求直线AC 解析式为3y x =-+,再过点F 作FG DE ⊥于点G ,证OAC GFE ≌△△,得3OA GF ==,设F 点的坐标为()2,23m m m -++,则G 点的坐标为()21,23m m -++,所以13FG m =-=,即可求出2m =-或4m =,从而求得点F 坐标;(3),是平移得得点M 的坐标为()1,1-,则(2)知点()14,5F -与点()22,5F --关于对称轴1x =对称,连结12F F ,对称轴于点H ,连结1F M 、2F M ,过点2F 作21F N F M ⊥于点N ,交对称轴于点P ,则4MH =,13HF =,15MF =.在1Rt MHF 中,1113sin 5F H HMF MF ∠==,则在Rt MPN 中,13sin 5PN HMF PM ∠==,所以35PN PM =,所以1235PF PM PF PN F N +=+=为最小值,根据1221164522MF F S F N =⨯⨯=⨯⋅△,所以2245F N =,即可求出35PF PM +. 【小问1详解】解:∵抛物线2y ax bx c =++经过点()3,0A ,()1,0B -,()0,3C ,∴9330303a b a b c ++=⎧⎪-+=⎨⎪=⎩,解得:123a b c =-⎧⎪=⎨⎪=⎩,∴抛物线的解析式为:2y x 2x 3=-++=-(x -1)2+4,∴顶点D 的坐标为()1,4;【小问2详解】解:设直线AC 的解析式为:y kx b =+,把点()3,0A ,()0,3C 代入得:1k =-,3b =,∴直线AC 解析式为:3y x =-+,过点F 作FG DE ⊥于点G ,∵以A 、C 、E 、F 四点为顶点的四边形是以AC 为边的平行四边形,∴AC EF ∥,AC =EF ,又∵OA FG ,∴OAC GFE ∠=∠∴OAC GFE ≌△△,∴3OA GF ==,设F 点的坐标为()2,23m m m -++,则G 点的坐标为()21,23m m -++, ∴13FG m =-=,∴2m =-或4m =,当2m =-时,2235m m -++=-,∴()12,5F --,当4m =时,2235m m -++=-∴()24,5F -,∴()2,5F --或()4,5F -;【小问3详解】解:由题意,得点M 的坐标为()1,1-,由题意知:点()14,5F -与点()22,5F --关于对称轴1x =对称,连结12F F ,对称轴于点H ,连结1F M 、2F M ,过点2F 作21F N F M ⊥于点N ,交对称轴于点P ,则4MH =,13HF =,15MF =.在1Rt MHF 中,1113sin 5F H HMF MF ∠==,则在Rt MPN 中,13sin 5PN HMF PM ∠== ∴35PN PM =, 又∵21PF PF = ∴1235PF PM PF PN F N +=+=为最小值, 又∵1221164522MF F S F N =⨯⨯=⨯⋅△, ∴2245F N =, ∴求得35PF PM +的最小值为245. 【点睛】本题考查用待定系数法求函数解析式,二次函数图象性质,平行四边形的性质,解直角三角形,利用轴对称求最小值,本题属二次函数综合题目,掌握二交次函数图象性质和灵活运用是解题的关键。

2023四川省宜宾市中考数学真题试卷和答案

2023四川省宜宾市中考数学真题试卷和答案

宜宾市2023年初中学业水平考试暨高中阶段学校招生考试数学(考试时间:120分钟,全卷满分:150分)注意事项:1.答题时,务必将自己的姓名、座位号,准考证号填写在答题卡指定的位置并将答题卡背面座位号对应标号涂黑.2.答选择题时,务必使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,务必使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡规定的位置上作答,在试卷上答题无效.一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上.1. 2的相反数是( )A. 2B. -2C.12D. 12-2. 下列计算正确的是( )A. 422a a -= B. 235ab ba ab +=C. 23a a a += D. 22532x y xy xy-=3. 下列图案中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.4. 为积极践行节能减排发展理念,宜宾大力推进“电动宜宾”工程,2022年城区已建成充电基础设施接口超过8500个.将8500用科学记数法表示为( )A. 40.8510⨯ B. 28510⨯ C. 38.510⨯ D. 48.510⨯5. 如图, AB CD ∥,且40A ∠=︒,24D ∠=︒,则E ∠等于( )的A. 40︒B. 32︒C. 24︒D. 16︒6. “今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”是《孙子算经》卷中著名数学问题.意思是:鸡兔同笼,从上面数,有35个头;从下面数,有94条腿.问鸡兔各有多少只?若设鸡有x 只,兔有y 只,则所列方程组正确的是( )A. 354294x y x y +=⎧⎨+=⎩ B. 352494x y x y +=⎧⎨+=⎩ C. 944235x y x y +=⎧⎨+=⎩ D. 942435x y x y +=⎧⎨+=⎩7. 如图,已知点A B C 、、在O 上,C 为 AB 的中点.若35BAC ∠=︒,则AOB ∠等于( )A. 140︒B. 120︒C. 110︒D. 70︒8. 分式方程2233x x x -=--的解为( )A 2B. 3C. 4D. 59. 《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度“会圆术”.如图, AB 是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,MNAB ⊥.“会圆术”给出 AB 的弧长l 的近似值计算公式:2MN l AB OA=+.当4OA =,60AOB ∠=︒时,则l 的值为( )A. 11-B. 11-C. 8-D. 8-10. 如图,边长为6的正方形ABCD 中,M 为对角线BD 上的一点,连接AM 并延长交CD 于点P .若PM PC =,则AM的长为( ).的A. )31-B. ()32-C. )61D. ()6211. 如图,在平面直角坐标系xOy 中,点A 、B 分别在y ,x 轴上,BC x ⊥轴.点M 、N 分别在线段BC 、AC 上,BM CM =,2NC AN =,反比例函数()0k y x x=>的图象经过M 、N 两点,P 为x 正半轴上一点,且:1:4OP BP =,APN 的面积为3,则k 的值为( )A.454B.458C.14425D.722512. 如图,ABC 和ADE 是以点A 为直角顶点的等腰直角三角形,把ADE 以A 为中心顺时针旋转,点M 为射线BD 、CE的交点.若AB =,1AD =.以下结论:①BD CE =;②BD CE ⊥;③当点E 在BA的延长线上时,MC =;④在旋转过程中,当线段MB 最短时,MBC 面积为12.其中正确结论有( )A. 1个B. 2个C. 3个D. 4个二、填空题:本大题共6个小题,每小题4分,共24分,请把答案直接填在答题卡对应题中横线上.的13. 在“庆五四·展风采”的演讲比赛中,7位同学参加决赛,演讲成绩依次为:77,80,79,77,80,79,80.这组数据的中位数是___________.14. 分解因式:x 3﹣6x 2+9x =___.15. 若关于x 的方程()22140x m x m -+++=两根的倒数和为1,则m 的值为___________.16. 若关于x 的不等式组2151922x x a x x +>+⎧⎪⎨+≥-⎪⎩①②所有整数解的和为14,则整数a 的值为___________.17. 如图,M 是正方形ABCD 边CD 的中点,P 是正方形内一点,连接BP ,线段BP 以B 为中心逆时针旋转90︒得到线段BQ ,连接MQ .若4AB =,1MP =,则MQ 的最小值为___________.18. 如图,抛物线2y ax bx c =++经过点()30A -,,顶点为()1,M m -,且抛物线与y 轴的交点B 在()02-,和()03-,之间(不含端点),则下列结论:①当31x -≤≤时,1y ≤;②当ABMa =③当ABM 为直角三角形时,在AOB 内存在唯一点P ,使得PA PO PB ++的值最小,最小值的平方为18+.其中正确的结论是___________.(填写所有正确结论的序号)三、解答题:本大题共7个小题,共78分,解答应写出文字说明、证明过程或演算步骤19.计算(1)计算:012tan 4512⎛⎫︒-- ⎪⎝⎭.(2)化简:211224x x x x ⎛⎫-÷⎪-+-⎝⎭.20. 已知:如图,AB DE ∥,AB DE =,AF DC =.求证:B E ∠=∠.21. 某校举办“我劳动,我快乐,我光荣”活动.为了解该校九年级学生周末在家的劳动情况,随机调查了九年级1班的所有学生在家劳动时间(单位:小时),并进行了统计和整理绘制如图所示的不完整统计图.根据图表信息回答以下问题:类别劳动时间xA 01x ≤<B 12x ≤<C 23x ≤<D 34x ≤<E4x≤(1)九年级1班的学生共有___________人,补全条形统计图;(2)若九年级学生共有800人,请估计周末在家劳动时间在3小时及以上学生人数;(3)已知E 类学生中恰好有2名女生3名男生,现从中抽取两名学生做劳动交流,请用列表或画树状图的方法,求所抽的两名学生恰好是一男一女的概率.22. 渝昆高速铁路的建成,将会显著提升宜宾的交通地位.渝昆高速铁路宜宾临港长江公铁两用大桥(如图1),桥面采用国内首创的公铁平层设计.为测量左桥墩底到桥面的距离CD ,如图2.在桥面上点A的处,测得A 到左桥墩D 的距离200AD =米,左桥墩所在塔顶B 的仰角45BAD ∠=︒,左桥墩底C 的俯角15CAD ∠=︒,求CD 的长度.(结果精确到1 1.41≈ 1.73≈)23. 如图,在平面直角坐标系xOy 中,等腰直角三角形ABC 的直角顶点()30C ,,顶点A 、()6B m ,恰好落在反比例函数ky x=第一象限的图象上.(1)分别求反比例函数的表达式和直线AB 所对应的一次函数的表达式;(2)在x 轴上是否存在一点P ,使ABP 周长的值最小.若存在,求出最小值;若不存在,请说明理由.24. 如图,以AB 为直径的O 上有两点E 、F , BEEF =,过点E 作直线CD AF ⊥交AF 的延长线于点D ,交AB 的延长线于点C ,过C 作CM 平分ACD ∠交AE 于点M ,交BE 于点N .(1)求证:CD 是O 的切线;(2)求证:EM EN =;(3)如果N 是CM 的中点,且AB =,求EN 的长.25. 如图,抛物线2y ax bx c =++与x 轴交于点()4,0A -、()2,0B ,且经过点()2,6C -.(1)求抛物线的表达式;(2)在x 轴上方的抛物线上任取一点N ,射线AN 、BN 分别与抛物线的对称轴交于点P 、Q ,点Q 关于x 轴的对称点为Q ',求APQ '△的面积;(3)点M 是y 轴上一动点,当AMC ∠最大时,求M 的坐标.宜宾市2023年初中学业水平考试暨高中阶段学校招生考试数学(考试时间:120分钟,全卷满分:150分)注意事项:1.答题时,务必将自己的姓名、座位号,准考证号填写在答题卡指定的位置并将答题卡背面座位号对应标号涂黑.2.答选择题时,务必使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,务必使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡规定的位置上作答,在试卷上答题无效.一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上.1. 2的相反数是( )A. 2 B. -2C.12D. 12-【答案】B 【解析】【详解】2的相反数是-2.故选:B.2. 下列计算正确的是( )A. 422a a -= B. 235ab ba ab +=C. 23a a a += D. 22532x y xy xy-=【答案】B 【解析】【分析】根据整式的加减计算即可.【详解】A 、422a a a -=,不符合题意;B 、23235ab ba ab ab ab +=+=,符合题意;C 、2,a a 不是同类项,无法计算,不符合题意;D 、225,3x y xy -,不同类项,无法计算,不符合题意;故选:B .【点睛】本题考查了整式的加减,熟练掌握同类项的判定与合并是解题的关键.3. 下列图案中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.【答案】D 【解析】【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A 、是轴对称图形但不是中心对称图形,故A 选项不符合题意;B 、是中心对称图形但不是轴对称图形,故B 选项不合题意;C 、既不是轴对称图形,也不是中心对称图形,故C 选项不合题意;D 、既是轴对称图形,又是中心对称图形,故D 选项符合题意.故选D .【点睛】本题主要考查了轴对称图形和中心对称图形,解题的关键在于能够熟练掌握轴对称图形和中心对称图形的定义.4. 为积极践行节能减排的发展理念,宜宾大力推进“电动宜宾”工程,2022年城区已建成充电基础设施接口超过8500个.将8500用科学记数法表示为( )A. 40.8510⨯ B. 28510⨯ C. 38.510⨯ D.48.510⨯【答案】C 【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,比位数少1位,按要求表示即可.是【详解】解:根据科学记数法要求,8500共有4位数,从而用科学记数法表示为38.510⨯,故选:C .【点睛】本题考查科学记数法,按照定义,确定a 与n 的值是解决问题的关键.5. 如图, AB CD ∥,且40A ∠=︒,24D ∠=︒,则E ∠等于( )A. 40︒B. 32︒C. 24︒D. 16︒【答案】D 【解析】【分析】可求40ACD ∠=︒,再由ACD D E ∠=∠+∠,即可求解.【详解】解:AB CD ∥ ,40ACD A ∴∠=∠=︒,ACD D E ∠=∠+∠ ,2440E ∴︒+∠=︒,16E ∴∠=︒.故选:D .【点睛】本题考查了平行线的性质,三角形外角性质,掌握三角形外角的性质是解题的关键.6. “今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”是《孙子算经》卷中著名数学问题.意思是:鸡兔同笼,从上面数,有35个头;从下面数,有94条腿.问鸡兔各有多少只?若设鸡有x 只,兔有y 只,则所列方程组正确的是( )A. 354294x y x y +=⎧⎨+=⎩ B. 352494x y x y +=⎧⎨+=⎩ C. 944235x y x y +=⎧⎨+=⎩ D.942435x y x y +=⎧⎨+=⎩【答案】B 【解析】【分析】根据题意,由设鸡有x 只,兔有y 只,则由等量关系有35个头和有94条腿列出方程组即可得到答案.【详解】解:设鸡有x 只,兔有y 只,则由题意可得352494x y x y +=⎧⎨+=⎩,故选:B .【点睛】本题考查列二元一次方程组解决古代数学问题,读懂题意,找准等量关系列方程组是解决问题的关键.7. 如图,已知点A B C 、、在O 上,C 为 AB 的中点.若35BAC ∠=︒,则AOB ∠等于( )A. 140︒B. 120︒C. 110︒D. 70︒【答案】A【解析】【分析】连接OC ,如图所示,根据圆周角定理,找到各个角之间的关系即可得到答案.【详解】解:连接OC ,如图所示:点A B C 、、在O 上,C 为 AB 的中点,BC AC ∴=,12BOC AOC AOB ∴∠=∠=∠, 35BAC ∠=︒,根据圆周角定理可知270BOC BAC ∠=∠=︒,2140AOB BOC ∴∠=∠=︒,故选:A .【点睛】本题考查圆中求角度问题,涉及圆周角定理,找准各个角之间的和差倍分关系是解决问题的关键.8. 分式方程2233x x x -=--的解为( )A. 2B. 3C. 4D. 5【答案】C【解析】【分析】根据分式方程的解法直接求解即可得到答案.【详解】解:2233x x x -=--,方程两边同时乘以()3x -得到22x -=,4x ∴=,检验:当4x =时,34310x -=-=≠,4x ∴=是原分式方程的解,故选:C .【点睛】本题考查分式方程的解法,对于分式方程求解验根是解决问题的关键步骤.9. 《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图, AB 是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,MN AB ⊥.“会圆术”给出 AB 的弧长l 的近似值计算公式:2MN l AB OA=+.当4OA =,60AOB ∠=︒时,则l 的值为( )A. 11-B. 11-C. 8-D.8-【答案】B【解析】【分析】连接ON ,根据等边三角形的性质,垂径定理,勾股定理,特殊角的三角函数,后代入公式计算即可.【详解】连接ON ,根据题意, AB 是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,MN AB ⊥,得ON AB ⊥,∴点M ,N ,O 三点共线,∵4OA =,60AOB ∠=︒,∴OAB 是等边三角形,∴4,60sin 60OA AB OAN ON OA ==∠=︒=︒=,,∴4,60sin 60OA AB OAN ON OA ==∠=︒=︒=,∴()2244114MN l AB OA -=+=+=-故选B .【点睛】本题考查了等边三角形的性质,垂径定理,勾股定理,特殊角的函数值,熟练掌握相关知识是解题的关键.10. 如图,边长为6的正方形ABCD 中,M 为对角线BD 上的一点,连接AM 并延长交CD 于点P .若PM PC =,则AM 的长为( )A. )31-B. ()32-C. )61D. ()62-【答案】C【解析】【分析】先根据正方形的性质、三角形全等的判定证出ADM CDM ≅ ,根据全等三角形的性质可得DAM DCM ∠=∠,再根据等腰三角形的性质可得CMP DCM ∠=∠,从而可得30DAM ∠=︒,然后利用勾股定理、含30度角的直角三角形的性质求解即可得.【详解】解: 四边形ABCD是边长为6的正方形,6,90,45AD CD ADC ADM CDM ∴==∠=︒∠=∠=︒,在ADM △和CDM V 中,45DM DM ADM CDM AD CD =⎧⎪∠=∠=︒⎨⎪=⎩,()SAS ADM CDM ∴≅ ,DAM DCM ∴∠=∠,PM PC = ,CMP DCM ∴∠=∠,22APD CMP DCM DCM DAM ∴∠=∠+∠=∠=∠,又18090APD DAM ADC ∠+∠=︒-∠=︒ ,30DAM ∴∠=︒,设PD x =,则22AP PD x ==,6PM PC CD PD x ==-=-,6AD ∴===,解得x =,66PM x ∴=-=-2AP x ==,()661AM AP PM ∴=-=-=,故选:C .【点睛】本题考查了正方形的性质、勾股定理、含30度角的直角三角形的性质、等腰三角形的性质等知识点,熟练掌握正方形的性质是解题关键.11. 如图,在平面直角坐标系xOy 中,点A 、B 分别在y ,x 轴上,BC x ⊥轴.点M 、N 分别在线段BC 、AC 上,BM CM =,2NC AN =,反比例函数()0k y x x =>的图象经过M 、N 两点,P 为x 正半轴上一点,且:1:4OP BP =,APN 的面积为3,则k 的值为( )A. 454 B. 458 C. 14425 D. 7225【答案】B【解析】【分析】过点N 作NQ x ⊥轴于点Q ,设点A 的坐标为()()0,0A a a >,点M 的坐标为()()5,0,0M b c b c >>,点N 的坐标为()(),0,0N m n m n >>,则()5,2C b c ,OA a =,5OB b =,先求出点N 的坐标为522,33b a c N +⎛⎫ ⎪⎝⎭,再根据3APN AOP NPQ OANQ S S S S =--= 梯形可得29ab bc +=,然后将点,M N 的坐标代入反比例函数的解析式可得27a c =,从而可得bc 的值,由此即可得.【详解】解:如图,过点N 作NQ x ⊥轴于点Q ,设点A 的坐标为()()0,0A a a >,点M 的坐标为()()5,0,0M b c b c >>,点N 的坐标为()(),0,0N m n m n >>,则()5,2C b c ,OA a =,5OB b =,:1:4OP BP = ,,4OP b BP b ∴==,2NC AN = ,()()5202223b m m n c a c ⎧-=-⎪∴⎨-=-⎪⎩,解得53223b m a c n ⎧=⎪⎪⎨+⎪=⎪⎩,522,33b a c N +⎛⎫∴ ⎪⎝⎭,522,33b ac OQ NQ +∴==,23b PQ OQ OP ∴=-=,APN 的面积为3,3AOP NPQ OANQ S S S ∴--= 梯形,即15221122232332233a c b a c b a ab ++⎛⎫⨯+--⨯⋅= ⎪⎝⎭,整理得:29ab bc +=,将点()5225,,,33b a c M b c N +⎛⎫ ⎪⎝⎭代入k y x =得:522533b a c k bc +==⋅,整理得:27a c =,将27a c =代入29ab bc +=得:79bc bc +=,解得98bc =,则4558k bc ==,故选:B .【点睛】本题主要考查了反比例函数的几何应用,熟练掌握反比例函数的性质,正确求出点N 的坐标是解题关键.12. 如图,ABC 和ADE 是以点A 为直角顶点的等腰直角三角形,把ADE 以A 为中心顺时针旋转,点M 为射线BD 、CE 的交点.若AB =,1AD =.以下结论:①BD CE =;②BD CE ⊥;③当点E 在BA 的延长线上时,MC =;④在旋转过程中,当线段MB 最短时,MBC 的面积为12.其中正确结论有( )A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】证明BAD CAE ≌即可判断①,根据三角形的外角的性质得出②,证明DCM ECA ∠∠∽=A 为圆心,AD 为半径画圆,当CE 在A 的下方与A 相切时,MB 的值最小,可得四边形AEMD 是正方形,在Rt MBC 中MC =1=+,然后根据三角形的面积公式即可判断④.【详解】解:∵ABC 和ADE 是以点A 为直角顶点的等腰直角三角形,∴,,90BA CA DA EA BAC DAE ==∠=∠=︒,∴BAD CAE ∠=∠,∴BAD CAE ≌,∴ABD ACE ∠=∠,BD CE =,故①正确;设ABD ACE α∠=∠=,∴45DBC α∠=︒-,∴454590EMB DBC BCM DBC BCA ACE αα∠=∠+∠=∠+∠+∠=︒-+︒+=︒,∴BD CE ⊥,故②正确;当点E 在BA 的延长线上时,如图所示∵DCM ECA ∠=∠,90DMC EAC ∠=∠=︒,∴DCM ECA∠∠∽∴MC CD AC EC=∵AB =,1AD =.∴1CD AC AD =-=-,2CE ===∴MC =,故③正确;④如图所示,以A 为圆心,AD 为半径画圆,∵90BMC ∠=︒,∴当CE 在A 的下方与A 相切时,MB 的值最小, 90ADM DAE AEM ∠=∠=∠=︒∴四边形AEMD 是矩形,又AE AD =,∴四边形AEMD 是正方形,∴1MD AE ==,∵BD EC ===,∴1MB BD MD =-=,在Rt MBC中,MC =∴PB取得最小值时,MC =1==+∴)11111222BMC S MB MC =⨯=-= 故④正确,故选:D .【点睛】本题考查了旋转的性质,相似三角形的性质,勾股定理,切线的性质,垂线段最短,全等三角形的性质与判定,正方形的性质,熟练掌握以上知识是解题的关键.二、填空题:本大题共6个小题,每小题4分,共24分,请把答案直接填在答题卡对应题中横线上.13. 在“庆五四·展风采”的演讲比赛中,7位同学参加决赛,演讲成绩依次为:77,80,79,77,80,79,80.这组数据的中位数是___________.【答案】79【解析】【分析】根据有序数组中间的一个数据或中间两个数据的平均数是中位数计算即可.【详解】将这组数据从小到大排列为:77,77,79,79,80,80,80,中间数据是79,故中位数是79.故答案为:79.【点睛】本题考查了中位数的定义,熟练掌握定义是解题的关键.14. 分解因式:x 3﹣6x 2+9x =___.【答案】x (x ﹣3)2【解析】详解】解:x 3﹣6x 2+9x=x (x 2﹣6x +9)=x (x ﹣3)2故答案为:x (x ﹣3)2【15. 若关于x 的方程()22140x m x m -+++=两根的倒数和为1,则m 的值为___________.【答案】2【解析】【分析】根据根与系数的关系即可求出答案.【详解】解:设方程的两个根分别为a ,b ,由题意得:()+2+1a b m =,4ab m =+,∴()2+111+++4m a b a b ab m ==,∴()2+11+4m m =,解得:2m =,经检验:2m =是分式方程的解,检验:()()()()22Δ2144421424120m m =-+-+=⨯+-⨯+=>⎡⎤⎣⎦,∴2m =符合题意,∴2m =.故答案为:2.【点睛】本题考查了一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.16. 若关于x 的不等式组2151922x x a x x +>+⎧⎪⎨+≥-⎪⎩①②所有整数解的和为14,则整数a 的值为___________.【答案】2或1-【解析】【分析】根据题意可求不等式组的解集为15a x -<≤,再分情况判断出a 的取值范围,即可求解.【详解】解:由①得:1x a >-,由②得:5x ≤,∴不等式组的解集为:15a x -<≤,所有整数解的和为14,①整数解为:2、3、4、5,112a ∴≤-<,解得:23a ≤<,a 为整数,2a ∴=.②整数解为:1-,0,1,2、3、4、5,211a ∴-≤-<-,解得:10a-≤<,a 为整数,1a ∴=-.综上,整数a 的值为2或1-故答案为:2或1-.【点睛】本题考查了含参数的一元一次不等式组的整数解问题,掌握一元一次不等式组的解法,理解参数的意义是解题的关键.17. 如图,M 是正方形ABCD 边CD 的中点,P 是正方形内一点,连接BP ,线段BP 以B 为中心逆时针旋转90︒得到线段BQ ,连接MQ .若4AB =,1MP =,则MQ 的最小值为___________.【答案】1【解析】【分析】连接BM ,将BM 以B 中心,逆时针旋转90︒,M 点的对应点为E ,由 P 的运动轨迹是以M 为圆心,1为半径的半圆,可得:Q 的运动轨迹是以E 为圆心,1为半径的半圆,再根据“圆外一定点到圆上任一点的距离,在圆心、定点、动点,三点共线时定点与动点之间的距离最短”,所以当M 、Q 、E 三点共线时,MQ 的值最小,可求ME ==,从而可求解.【详解】解,如图,连接BM ,将BM 以B 中心,逆时针旋转90︒,M 点的对应点为E ,P 的运动轨迹是以M 为圆心,1为半径的半圆,∴Q 的运动轨迹是以E 为圆心,1为半径的半圆,如图,当M 、Q 、E 三点共线时,MQ 的值最小,四边形ABCD 是正方形,4CD AB BC ∴===,90C ∠=︒,M 是CM 中点,2CM ∴=,BM ∴===,由旋转得:BM BE =,ME ∴==,MQ ME EQ ∴=-1=-,∴MQ值最小为1.故答案:1.【点睛】本题考查了正方形的性质,旋转的性质,勾股定理,动点产生的线段最小值问题,掌握相关的性质,根据题意找出动点的运动轨迹是解题的关键.18. 如图,抛物线2y ax bx c =++经过点()30A -,,顶点为()1,M m -,且抛物线与y 轴的交点B 在()02-,和()03-,之间(不含端点),则下列结论:①当31x -≤≤时,1y ≤;②当ABMa =③当ABM 为直角三角形时,在AOB 内存在唯一点P ,使得PA PO PB ++的值最小,最小值的平方为18+.其中正确的结论是___________.(填写所有正确结论的序号)的的【答案】②③【解析】【分析】根据条件可求抛物线与x 轴的另一交点坐标,结合图象即可判断①;设抛物线为()()13y a x x =-+,即可求出点M 的坐标,根据割补法求面积,判断②;分三种情况讨论,然后以点O 为旋转中心,将AOB 顺时针旋转60︒至'AOA ,连接'AA ,'PP ,'A B ,得到'''+PA PO PB P A PP PB A B ++=+≥,判断③.【详解】解:∵抛物线2y ax bx c =++经过点()30A -,,顶点为()1,M m -,∴对称轴=1x -,∴抛物线与x 轴的另一交点坐标为()1,0,由图象可得:当31x -≤≤时,0y ≤;∴①错,不符合题意;∵抛物线与x 轴的另一交点坐标为()1,0,∴设抛物线为()()13y a x x =-+,当=1x -时,4y a =-,当=0x 时,3y a =-,∴()1,4M a --,()0,3B a -,如图所示,过点M 作平行于y 轴的直线l ,过点A 作AE l ⊥,过点B 作BN l ⊥,∴12ABM AMF BMF S S S MF AO =+=⨯⨯V V V ,设直线AB 的解析式为''y k x b =+,把()0,3B a -,()30A -,代入得:3+03k b b a '''-=⎧⎨=-⎩,解得:3k ab a =-⎧⎨=-''⎩,∴直线AB 的解析式为3y ax a =--,当=1x -是,2y a =-,∴()1,2F a --,∴2MF a =,∴1232a ⨯⨯,解得:a =∵点B 是抛物线与y 轴的交点,∴当0x =时,3y a =-,∴()0,3B a -,∵ABM 为直角三角形,当90AMB ∠=︒时,∴222AM BM AB +=,∵AM =,BM =,AB =∴222416199a a a +++=+,整理得:284a =,解得:a =(舍)∴0,B ⎛ ⎝,当90ABM ∠=︒时,∴222AB BM AM +=,∴222416991a a a +=+++,整理得:266a =解得:1a =或1-(舍)∴()0,3B -,当90MAB ∠=︒时,∴222AB AM BM +=,∴222416199a a a +++=+,无解;以点O 为旋转中心,将AOB 顺时针旋转60︒至'AOA ,连接'AA ,'PP ,'A B ,如图所示,则'AOA ,'POP 为等边三角形,∴'OP PP =,'AP AP =,∴+PA PO PB P A PP PB A B ''''++=+≥,∵'AOA 为等边三角形,()30A -,∴'32A x -=,'3tan 602A y ⨯︒=,∴'32A -æççççè,当0,B ⎛ ⎝时,∵22'235424A B æöç÷=+=+ç÷ç÷èø, 当()0,3B -时,22'233182A B öæö÷ç÷÷=+=+ç÷÷ç÷÷èøø,∴PA PO PB ++的值最小,最小值的平方为18+,故③正确;故答案为:②③.【点睛】本题考查了二次函数的综合问题,综合性较强,难度较大,扎实的知识基础是关键.三、解答题:本大题共7个小题,共78分,解答应写出文字说明、证明过程或演算步骤19. 计算(1)计算:012tan 4512⎛⎫︒-- ⎪⎝⎭.(2)化简:211224x x x x ⎛⎫-÷ ⎪-+-⎝⎭.【答案】(1) (2)4x【解析】【分析】(1)根据特殊角的锐角三角函数、零指数幂、绝对值化简计算即可;(2)根据分式化简运算规则计算即可.【小问1详解】解:原式211⨯⨯=【小问2详解】解:原式()()()()2+2242+22+2x x x x x x x x⎛⎫--=-⨯ ⎪ ⎪--⎝⎭22444x x x -=⨯-4x=【点睛】本题考查了实数的混合运算与分式化简以及特殊角三角函数,熟记运算法则是关键.20. 已知:如图,AB DE ∥,AB DE =,AF DC =.求证:B E ∠=∠.【答案】见解析【解析】【分析】根据平行线的性质得出A D ∠=∠,然后证明AC DF =,证明()SAS ABC DEF ≌△△,根据全等三角形的性质即可得证.【详解】证明:∵AB DE ∥,∴A D ∠=∠,∵AF DC =,∴AF CF DC CF+=+即AC DF =在ABC 与DEF 中AC DF A D AB DE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC DEF ≌△△,∴B E ∠=∠.【点睛】本题考查了全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.21. 某校举办“我劳动,我快乐,我光荣”活动.为了解该校九年级学生周末在家的劳动情况,随机调查了九年级1班的所有学生在家劳动时间(单位:小时),并进行了统计和整理绘制如图所示的不完整统计图.根据图表信息回答以下问题:类别劳动时间xA 01x ≤<B 12x ≤<C 23x ≤<D 34x ≤<E4x≤(1)九年级1班学生共有___________人,补全条形统计图;(2)若九年级学生共有800人,请估计周末在家劳动时间在3小时及以上的学生人数;(3)已知E 类学生中恰好有2名女生3名男生,现从中抽取两名学生做劳动交流,请用列表或画树状图的方法,求所抽的两名学生恰好是一男一女的概率.【答案】(1)50,条形统计图见解析 (2)208人的(3)35【解析】【分析】(1)利用C 类人数除以对应的百分比即可得到九年级1班的总人数,再分别求出B 和D 的人数,补全统计图即可;(2)用九年级学生总人数乘以九年级1班周末在家劳动时间在3小时及以上的学生占的比值即可得到答案;(3)根据题意列出表格,利用满足要求的情况数除以总的情况数即可得到答案.【小问1详解】解:由题意得到,1530%50÷=(人),故答案为:50类别B 的人数为5028%14⨯=(人),类别D 的人数为508141558----=(人),补全条形统计图如下:【小问2详解】由题意得,8580020850+⨯=(人),即估计周末在家劳动时间在3小时及以上的学生人数为208人;【小问3详解】列表如下:女1女2男1男2男3女1女1,女2女1,男1女1,男2女1,男3女2女2,女1女2,男1女2,男2女2,男3男1男1,女1男1,女2男1,男2男1,男3男2男2,女1男2,女2男2,男1男2,男3男3男3,女1男3,女2男3,男1男3,男2由表格可知,共有20种等可能的情况,其中一男一女共有12种,∴所抽的两名学生恰好是一男一女的概率是123205=.【点睛】此题考查了条形统计图和扇形统计图的信息关联、用树状图或列表法求概率、样本估计总体等知识,熟练掌握用树状图或列表法求概率、样本估计总体是解题的关键.22. 渝昆高速铁路的建成,将会显著提升宜宾的交通地位.渝昆高速铁路宜宾临港长江公铁两用大桥(如图1),桥面采用国内首创的公铁平层设计.为测量左桥墩底到桥面的距离CD ,如图2.在桥面上点A 处,测得A 到左桥墩D 的距离200AD =米,左桥墩所在塔顶B 的仰角45BAD ∠=︒,左桥墩底C 的俯角15CAD ∠=︒,求CD 的长度.(结果精确到1 1.41≈ 1.73≈)【答案】CD 的长度54米【解析】【分析】AD 上截取AE ,使得AE EC =,设CD x =,在Rt ECD △中,ED =,2EC x =,则)2AD AE ED x =+=+,进而即可求解.【详解】解:如图所示,AD 上截取AE ,使得AE EC =,∴EAC ECA =∠∠,∵15CAD ∠=︒∴230CED EAC ∠=∠=︒,设CD x =,在Rt ECD △中,ED =,2EC x =∴)2AD AE ED x=+=又200AD =∴)2002x=∴(()20022002 1.7354x ==-≈⨯-=即54CD =米【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.23. 如图,在平面直角坐标系xOy 中,等腰直角三角形ABC 的直角顶点()30C ,,顶点A 、()6B m ,恰好落在反比例函数ky x=第一象限的图象上.(1)分别求反比例函数的表达式和直线AB 所对应的一次函数的表达式;(2)在x 轴上是否存在一点P ,使ABP 周长的值最小.若存在,求出最小值;若不存在,请说明理由.【答案】(1)6y x =,142y x =-+(2)在x 轴上存在一点()5,0P ,使ABP 周长的值最小,最小值是+【解析】【分析】(1)过点A 作AE x ⊥轴于点E ,过点B 作BD x ⊥轴于点D ,证明()AAS ACE CBD ≌,则3,CD AE BD EC m ====,由3OE m =-得到点A 的坐标是()3,3m -,由A 、()6B m ,恰好落在反比例函数ky x=第一象限的图象上得到()336m m -=,解得1m =,得到点A 的坐标是()2,3,点B 的坐标是()6,1,进一步用待定系数法即可得到答案;(2)延长AE 至点A ',使得EA AE '=,连接A B '交x 轴于点P ,连接AP ,利用轴对称的性质得到AP A P '=,()2,3A '-,则AP PB A B '+=,由AB =AB 是定值,此时ABP 的周长为AP PB AB AB A B '++=+最小,利用待定系数法求出直线A B '的解析式,求出点P 的坐标,再求出周长最小值即可.【小问1详解】解:过点A 作AE x ⊥轴于点E ,过点B 作BD x ⊥轴于点D ,则90AEC CDB ∠=∠=︒,∵点()30C ,,()6B m ,,∴3,6,OC OD ==BD m =,∴3CD OD OC =-=,∵ABC 是等腰直角三角形,∴90,ACB AC BC ∠=︒=,∵90ACE BCD CBD BCD ∠+∠=∠+∠=︒,∴ACE CBD ∠=∠,∴()AAS ACE CBD ≌,∴3,CD AE BD EC m ====,∴3OE OC EC m =-=-,∴点A 的坐标是()3,3m -,∵A 、()6B m ,恰好落在反比例函数ky x=第一象限的图象上.∴()336m m -=,解得1m =,∴点A 的坐标是()2,3,点B 的坐标是()6,1,∴66k m ==,∴反比例函数的解析式是6y x=,设直线AB 所对应的一次函数的表达式为y px q =+,把点A 和点B 的坐标代入得,2361p q p q +=⎧⎨+=⎩,解得124p q ⎧=-⎪⎨⎪=⎩,∴直线AB 所对应的一次函数的表达式为142y x =-+,【小问2详解】延长AE 至点A ',使得EA AE '=,连接A B '交x 轴于点P ,连接AP,∴点A 与点A '关于x 轴对称,∴AP A P '=,()2,3A '-,∵AP PB A P PB A B ''+=+=,∴AP PB +的最小值是A B '的长度,∵AB ==AB 是定值,∴此时ABP 的周长为AP PB AB AB A B '++=+最小,设直线A B '的解析式是y nx t =+,则2361n t n t +=-⎧⎨+=⎩,解得15n t =⎧⎨=-⎩,∴直线A B '的解析式是5y x =-,当0y =时,05x =-,解得5x =,即点P 的坐标是()5,0,此时AP PB AB AB A B '++=+==+,综上可知,在x 轴上存在一点()5,0P ,使ABP 周长的值最小,最小值是+【点睛】此题考查了反比例函数和一次函数的图象和性质、用到了待定系数法求函数解析式、勾股定理求两点间距离、轴对称最短路径问题、全等三角形的判定和性质等知识,数形结合和准确计算是解题的关键.24. 如图,以AB 为直径的O 上有两点E 、F , BEEF =,过点E 作直线CD AF ⊥交AF 的延长线于点D ,交AB 的延长线于点C ,过C 作CM 平分ACD ∠交AE 于点M ,交BE 于点N .(1)求证:CD 是O 的切线;(2)求证:EM EN =;(3)如果N 是CM 的中点,且AB =,求EN 的长.【答案】(1)见解析(2)见解析 (3)6【解析】【分析】(1)根据同弧所对的圆周角相等得出12∠=∠,根据OA OE =,得出13∠=∠,则23∠∠=可得OE AF ∥,根据已知CD AF ⊥,得出OE CD ⊥,即可得证;(2)根据角平分线的定义得出1562DCA ∠=∠=∠,又1122DAC ∠=∠=∠,根据三角形内角和定理得出EMC =∠45︒,由AB 是O 的直径,即可得证;(3)取EC 的中点P ,连接PN ,证明BEC OAE ∠=∠,由N 是MC 的中点,P 是EC 的中点,得出11,22PN EM PN EM EN ==∥,进而得出1tan 2PN PEN EN ∠==,设BE b =,则2AE b =,勾股定理得出18AE =,9EB =,证明ECB ACE ∽得出2AE CE EB CB==,根据角平分线的性质得出2EN EC BN BC ==,即可求解.【小问1详解】证明:如图所示,∵ BEEF =,∴12∠=∠,∵OA OE=∴13∠=∠,。

2020年四川省宜宾市中考数学试题及参考答案(word解析版)

2020年四川省宜宾市中考数学试题及参考答案(word解析版)

宜宾市2020年初中学业水平暨高中阶段学校招生考试数学(考试时间:120分钟,全卷满分:150分)一、选择题:本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.6的相反数是()A.6 B.﹣6 C.D.﹣2.我国自主研发的北斗系统技术世界领先,2020年6月23日在西昌卫星发射中心成功发射最后一颗北斗三号组网卫星,该卫星发射升空的速度约为7100米/秒.将7100用科学记数法表示为()A.7100 B.0.71×104C.71×102D.7.1×1033.如图所示,圆柱的主视图是()A.B.C.D.4.下列计算正确的是()A.3a+2b=5ab B.(﹣2a)2=﹣4a2C.(a+1)2=a2+2a+1 D.a3•a4=a125.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.7名学生的鞋号(单位:厘米)由小到大是:20,21,22,22,22,23,23,则这组数据的众数和中位数分别是()A.20,21 B.21,22 C.22,22 D.22,237.如图,M、N分别是△ABC的边AB、AC的中点,若∠A=65°,∠ANM=45°,则∠B=()A.20°B.45°C.65°D.70°8.学校为了丰富学生知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等.设文学类图书平均每本x元,则列方程正确的是()A.=B.=C.=D.=+89.如图,AB是⊙O的直径,点C是圆上一点,连结AC和BC,过点C作CD⊥AB于点D,且CD=4,BD=3,则⊙O的周长是()A.π B.π C.π D.π10.某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A型和B型两种分类垃圾桶,A型分类垃圾桶500元/个,B型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有()A.2种B.3种C.4种D.5种11.如图,△ABC和△ECD都是等边三角形,且点B、C、D在一条直线上,连结BE、AD,点M、N分别是线段BE、AD上的两点,且BM=BE,AN=AD,则△CMN的形状是()A.等腰三角形B.直角三角形C.等边三角形D.不等边三角形12.函数y=ax2+bx+c(a≠0)的图象与x轴交于点(2,0),顶点坐标为(﹣1,n),其中n>0.以下结论正确的是()①abc>0;②函数y=ax2+bx+c(a≠0)在x=1和x=﹣2处的函数值相等;③函数y=kx+1的图象与y=ax2+bx+c(a≠0)的函数图象总有两个不同交点;④函数y=ax2+bx+c(a≠0)在﹣3≤x≤3内既有最大值又有最小值.A.①③B.①②③C.①④D.②③④二、填空题:本大题共6个小题,每小题4分,共24分.13.分解因式:a3﹣a=.14.如图,A、B、C是⊙O上的三点,若△OBC是等边三角形,则cos∠A =.15.已知一元二次方程x2+2x﹣8=0的两根为x1、x2,则+2x1x2+=.16.如图,四边形ABCD中,DA⊥AB,CB⊥AB,AD=3,AB=5,BC=2,P是边AB上的动点,则PC+PD的最小值是.17.定义:分数(m,n为正整数且互为质数)的连分数(其中a1,a2,a3,…,为整数,且等式右边的每个分数的分子都为1),记作+++…,例如:======,的连分数为,记作+++,则++.18.在Rt△ABC中,∠ACB=90°,D是AB的中点,BE平分∠ABC交AC于点E,连结CD交BE于点O.若AC=8,BC=6,则OE的长是.三、解答题:本大题共7个小题,共78分,解答应写出文字说明,证明过程或演算步骤.19.(10分)(1)计算:()﹣1﹣(π﹣3)0﹣|﹣3|+(﹣1)2020;(2)化简:÷(1﹣).20.(10分)如图,在△ABC中,点D是边BC的中点,连结AD并延长到点E,使DE=AD,连结CE.(1)求证:△ABD≌△ECD;(2)若△ABD的面积为5,求△ACE的面积.21.(10分)在疫情期间,为落实“停课不停学”,某校对本校学生某一学科在家学习情况进行抽样调查,了解到学生的学习方式有:电视直播、任课教师在线辅导、教育机构远程教学、自主学习.参与调查的学生只能选择一种学习方式,将调查结果绘制成不完整的扇形统计图和条形统计图.根据如图所示的统计图,解答下列问题.(1)本次接受调查的学生有名;(2)补全条形统计图;(3)根据调查结果,若本校有1800名学生,估计有多少名学生参与任课教师在线辅导?22.(12分)如图,AB和CD两幢楼地面距离BC为30米,楼AB高30米,从楼AB的顶部点A测得楼CD的顶部点D的仰角为45°.(1)求∠CAD的大小;(2)求楼CD的高度(结果保留根号).23.(12分)如图,一次函数y=kx+b的图象与反比例函数y=(x<0)的图象相交于点A(﹣3,n),B(﹣1,﹣3)两点,过点A作AC⊥OP于点C.(1)求一次函数和反比例函数的表达式;(2)求四边形ABOC的面积.24.(12分)如图,已知AB是⊙O的直径,点C是圆上异于A、B的一点,连结BC并延长至点D,使CD=BC,连结AD交⊙O于点E,连结BE.(1)求证:△ABD是等腰三角形;(2)连结OC并延长,与以B为切点的切线交于点F,若AB=4,CF =1,求DE的长.25.(12分)如图,已知二次函数的图象顶点在原点,且点(2,1)在二次函数的图象上,过点F(0,1)作x轴的平行线交二次函数的图象于M、N两点.(1)求二次函数的表达式;(2)P为平面内一点,当△PMN是等边三角形时,求点P的坐标;(3)在二次函数的图象上是否存在一点E,使得以点E为圆心的圆过点F和点N,且与直线y=﹣1相切.若存在,求出点E的坐标,并求⊙E的半径;若不存在,说明理由.答案与解析一、选择题:本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.6的相反数是()A.6 B.﹣6 C.D.﹣【知识考点】相反数.【思路分析】求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解题过程】解:根据相反数的含义,可得6的相反数是:﹣6.故选:B.【总结归纳】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.我国自主研发的北斗系统技术世界领先,2020年6月23日在西昌卫星发射中心成功发射最后一颗北斗三号组网卫星,该卫星发射升空的速度约为7100米/秒.将7100用科学记数法表示为()A.7100 B.0.71×104C.71×102D.7.1×103【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解题过程】解:将7100用科学记数法表示为:7.1×103.故选:D.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图所示,圆柱的主视图是()A.B.C.D.【知识考点】简单几何体的三视图.【思路分析】根据主视图是从正面看得到的图形,可得答案.【解题过程】解:从正面看,是一个矩形.故选:B.【总结归纳】本题考查了简单几何体的三视图,从正面看得到的图形是主视图.4.下列计算正确的是()A.3a+2b=5ab B.(﹣2a)2=﹣4a2C.(a+1)2=a2+2a+1 D.a3•a4=a12【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.【思路分析】根据完全平方公式,合并同类项、积的乘方、同底数幂的乘法的运算法则逐一计算可得.【解题过程】解:A、3a与2b不是同类项,不能合并,原计算错误,故此选项不符合题意;B、(﹣2a)2=4a2,原计算错误,故此选项不符合题意;C、(a+1)2=a2+2a+1,原计算正确,故此选项符合题意;D、a3•a4=a7,原计算错误,故此选项不符合题意;故选:C.【总结归纳】本题主要考查整式的运算,解题的关键是掌握完全平方公式、合并同类项、积的乘方、同底数幂的乘法运算法则及同类项概念等知识点.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.【知识考点】在数轴上表示不等式的解集;解一元一次不等式组.【思路分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【解题过程】解:不等式组,由①得:x<2,由②得:x≥﹣1,∴不等式组的解集为﹣1≤x<2.表示为:故选:A.【总结归纳】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.6.7名学生的鞋号(单位:厘米)由小到大是:20,21,22,22,22,23,23,则这组数据的众数和中位数分别是()A.20,21 B.21,22 C.22,22 D.22,23【知识考点】中位数;众数.【思路分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解题过程】解:数据按从小到大的顺序排列为20,21,22,22,22,23,23,所以中位数是22;数据22出现了3次,出现次数最多,所以众数是22.故选:C.【总结归纳】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.如图,M、N分别是△ABC的边AB、AC的中点,若∠A=65°,∠ANM=45°,则∠B=()A.20°B.45°C.65°D.70°【知识考点】三角形中位线定理.【思路分析】根据三角形中位线定理得出MN∥BC,进而利用平行线的性质解答即可.【解题过程】解:∵M、N分别是△ABC的边AB、AC的中点,∴MN∥BC,∴∠C=∠ANM=45°,∴∠B=180°﹣∠A﹣∠C=180°﹣65°﹣45°=70°,故选:D.【总结归纳】此题考查三角形中位线定理,关键是根据三角形中位线定理得出MN∥BC解答.8.学校为了丰富学生知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等.设文学类图书平均每本x元,则列方程正确的是()A.=B.=C.=D.=+8 【知识考点】由实际问题抽象出分式方程.【思路分析】设文学类图书平均每本x元,则科普类图书平均每本(x+8)元,根据数量=总价÷单价结合用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等,即可得出关于x的分式方程,此题得解.【解题过程】解:设文学类图书平均每本x元,则科普类图书平均每本(x+8)元,依题意,得:=.故选:B.【总结归纳】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.9.如图,AB是⊙O的直径,点C是圆上一点,连结AC和BC,过点C作CD⊥AB于点D,且CD =4,BD=3,则⊙O的周长是()A.π B.π C.π D.π【知识考点】勾股定理;垂径定理;圆周角定理.【思路分析】利用相似三角形的性质可得AB的长,利用周长公式可得结果.【解题过程】解:∵AB是⊙O的直径,∴∠ACB=90°,∵CD⊥AB,∴Rt△ABC∽Rt△CBD,∴,∵CD=4,BD=3,∴BC===5∴,∴AB=,∴⊙O的周长是π,故选:A.【总结归纳】本题主要考查了圆周角定理和相似三角形的判定和性质定理,熟练掌握定理是解答此题的关键.10.某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A型和B型两种分类垃圾桶,A 型分类垃圾桶500元/个,B型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有()A.2种B.3种C.4种D.5种【知识考点】一元一次不等式的应用.【思路分析】设购买A型分类垃圾桶x个,则购买B型分类垃圾桶(6﹣x)个,根据总价=单价×数量,结合总费用不超过3100元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再结合x,(6﹣x)均为非负整数,即可得出x的可能值,进而可得出购买方案的数量.【解题过程】解:设购买A型分类垃圾桶x个,则购买B型分类垃圾桶(6﹣x)个,依题意,得:500x+550(6﹣x)≤3100,解得:x≥4.∵x,(6﹣x)均为非负整数,∴x可以为4,5,6,∴共有3种购买方案.故选:B.【总结归纳】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.11.如图,△ABC和△ECD都是等边三角形,且点B、C、D在一条直线上,连结BE、AD,点M、N分别是线段BE、AD上的两点,且BM=BE,AN=AD,则△CMN的形状是()A.等腰三角形B.直角三角形C.等边三角形D.不等边三角形【知识考点】全等三角形的判定与性质;等边三角形的判定与性质.【思路分析】根据等边三角形的性质得出BC=AC,EC=CD,进而利用SAS证明△BCE与△ACD全等,进而利用全等三角形的性质解答即可.【解题过程】解:∵△ABC和△ECD都是等边三角形,∴BC=AC,EC=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,在△BCE与△ACD中,∴△BCE≌△ACD(SAS),∴∠MBC=∠NAC,BE=AD,∵BM=BE,AN=AD,∴BM=AN,在△MBC与△NAC中,∴△MBC≌△NAC(SAS),∴MC=NC,∠BCM=∠ACN,∵∠BCM+∠MCA=60°,∴∠NCA+∠MCA=60°,∴∠MCN=60°,∴△MCN是等边三角形,故选:C.【总结归纳】此题主要考查了全等三角形的判定与性质等知识,解题时注意:两边及其夹角分别对应相等的两个三角形全等.根据已知得出△BCE≌△ACD是解题关键.12.函数y=ax2+bx+c(a≠0)的图象与x轴交于点(2,0),顶点坐标为(﹣1,n),其中n>0.以下结论正确的是()①abc>0;②函数y=ax2+bx+c(a≠0)在x=1和x=﹣2处的函数值相等;③函数y=kx+1的图象与y=ax2+bx+c(a≠0)的函数图象总有两个不同交点;④函数y=ax2+bx+c(a≠0)在﹣3≤x≤3内既有最大值又有最小值.A.①③B.①②③C.①④D.②③④【知识考点】一次函数的图象;一次函数的性质;一次函数图象上点的坐标特征;二次函数图象与系数的关系;二次函数图象上点的坐标特征;二次函数的最值;抛物线与x轴的交点.【思路分析】根据待定系数法,方程根与系数的关系等知识和数形结合能力仔细分析即可解.【解题过程】解:依照题意,画出图形如下:∵函数y=ax2+bx+c(a≠0)的图象与x轴交于点(2,0),顶点坐标为(﹣1,n),其中n>0.∴a<0,c>0,对称轴为x=﹣=﹣1,∴b=2a<0,∴abc>0,故①正确,∵对称轴为x=﹣1,∴x=1与x=﹣3的函数值是相等的,故②错误;∵顶点为(﹣1,n),∴抛物线解析式为;y=a(x+1)2+n=ax2+2ax+a+n,联立方程组可得:,可得ax2+(2a﹣k)x+a+n﹣1=0,∴△=(2a﹣k)2﹣4a(a+n﹣1)=k2﹣4ak+4a﹣4an,∵无法判断△是否大于0,∴无法判断函数y=kx+1的图象与y=ax2+bx+c(a≠0)的函数图象的交点个数,故③错误;当﹣3≤x≤3时,当x=﹣1时,y有最大值为n,当x=3时,y有最小值为16a+n,故④正确,故选:C.【总结归纳】本题主要考查了二次函数图象上点的坐标特征,抛物线与x轴的交点,一次函数的性质,二次函数与系数的关系等知识点的理解和掌握,能根据图象确定与系数有关的式子的符号是解题的关键.二、填空题:本大题共6个小题,每小题4分,共24分.13.分解因式:a3﹣a=.【知识考点】提公因式法与公式法的综合运用.【思路分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解题过程】解:a3﹣a=a(a2﹣1)=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).【总结归纳】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.14.如图,A、B、C是⊙O上的三点,若△OBC是等边三角形,则cos∠A=.【知识考点】等边三角形的性质;圆周角定理;解直角三角形.【思路分析】由△OBC是等边三角形可知∠BOC=60°,根据圆周角定理可求出∠A的度数,可得cos∠A.【解题过程】解:∵△OBC是等边三角形,∴∠BOC=60°,∴∠A=30°,∴cos∠A=cos30°=.故答案为:.【总结归纳】本题主要考查了圆周角定理和等边三角形的性质,熟练运用圆周角定理是解答此题的关键.15.已知一元二次方程x2+2x﹣8=0的两根为x1、x2,则+2x1x2+=.【知识考点】根与系数的关系.【思路分析】根据根与系数的关系得出x1+x2=﹣2,x1•x2=﹣8,再通分后根据完全平方公式变形,再代入求出即可.【解题过程】解:∵一元二次方程x2+2x﹣8=0的两根为x1、x2,∴x1+x2=﹣2,x1•x2=﹣8,∴+2x1x2+=2x1x2+=2×(﹣8)+=﹣16+=﹣,故答案为:﹣.【总结归纳】本题考查了根与系数的关系和求代数式的值,能熟记根与系数的关系的内容是解此题的关键.16.如图,四边形ABCD中,DA⊥AB,CB⊥AB,AD=3,AB=5,BC=2,P是边AB上的动点,则PC+PD的最小值是.【知识考点】轴对称﹣最短路线问题.【思路分析】要求PC+PD的和的最小值,PC,PD不能直接求,可考虑通过作辅助线转化PC,PD的值,从而找出其最小值求解.【解题过程】解:延长CB到C′,使C′B=CB=2,连接DC′交AB于P.则DC′就是PC+PD 的和的最小值.∵AD∥BC,∴∠A=∠PBC′,∠ADP=∠C′,∴△ADP∽△BC′P,∴AP:BP=AD:BC′=3:2,′∴PB=AP,∵AP+BP=AB=5,∴AP=5,BP=2,∴PD===3,PC′===2,∴DC′=PD+PC′=3+2=5,∴PC+PD的最小值是5,故答案为5.【总结归纳】此题考查了轴对称的性质、勾股定理的运用及相似三角形的判定和性质,解题时要注意找到对称点,并根据“两点之间线段最短”确定P点的位置.17.定义:分数(m,n为正整数且互为质数)的连分数(其中a1,a2,a3,…,为整数,且等式右边的每个分数的分子都为1),记作+++…,例如:======,的连分数为,记作+++,则++.【知识考点】有理数的混合运算;规律型:数字的变化类.【思路分析】根据连分数的定义列式计算即可解答.【解题过程】解:++====.故答案为:.【总结归纳】本题考查新定义连分数的化简,解答本题的关键是明确题意,利用题目中的新规定解答问题.18.在Rt△ABC中,∠ACB=90°,D是AB的中点,BE平分∠ABC交AC于点E,连结CD交BE于点O.若AC=8,BC=6,则OE的长是.【知识考点】角平分线的性质;直角三角形斜边上的中线;勾股定理;平行线分线段成比例.【思路分析】过A作AF∥BC,证明△AEF∽△CEB,求出AE、CE的值,根据勾股定理求出AB和BE长,求出M、N分别是BC、BE的中点,根据相似得出比例式,代入求出OE即可.【解题过程】解:在Rt△ACB中,∠ACB=90°,AC=8,BC=6,由勾股定理得:AB=10,过A作AF∥BC,交BE延长线于F,∵AF∥BC,∴∠F=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠F=∠ABE,∴AB=AF=10,∵AF∥BC,∴△AEF∽△CEB,∴=,∴=,解得:AE=5,CE=8﹣5=3,在Rt△ECB中,由勾股定理得:BE==3,过D作DM∥AC,交BC于M,交BE于N,∵D为AB的中点,∴M为BC的中点,N为BE的中点,∴DN=AE==2.5,BN=NE=BE=,∵DM∥AC,∴△DNO∽△CEO,∴=,∴=,解得:OE=,故答案为:.【总结归纳】本题考查了角平分线的性质,平行线分线段成比例定理,相似三角形的性质和判定等知识点,能正确作出辅助线是解此题的关键,题目比较好,难度偏大.三、解答题:本大题共7个小题,共78分,解答应写出文字说明,证明过程或演算步骤.19.(10分)(1)计算:()﹣1﹣(π﹣3)0﹣|﹣3|+(﹣1)2020;(2)化简:÷(1﹣).【知识考点】实数的运算;分式的混合运算;零指数幂;负整数指数幂.【思路分析】(1)直接利用负整数指数幂的性质以及零指数幂的性质、绝对值的性质分别化简得出答案;(2)直接将括号里面通分运算,再利用分式的基本性质分别化简得出答案.【解题过程】解:(1)()﹣1﹣(π﹣3)0﹣|﹣3|+(﹣1)2020=4﹣1﹣3+1=1;(2)÷(1﹣)=÷=•=2.【总结归纳】此题主要考查了分式的混合运算以及实数运算,正确化简分式是解题关键.20.(10分)如图,在△ABC中,点D是边BC的中点,连结AD并延长到点E,使DE=AD,连结CE.(1)求证:△ABD≌△ECD;(2)若△ABD的面积为5,求△ACE的面积.【知识考点】全等三角形的判定与性质.【思路分析】(1)根据SAS证明△ABD≌△ECD即可;(2)根据全等三角形的性质和三角形中线的性质解答即可.【解题过程】证明:(1)∵D是BC中点,∴BD=CD,在△ABD与△CED中,∴△ABD≌△ECD(SAS);(2)在△ABC中,D是边BC的中点,∴S△ABD=S△ADC,∵△ABD≌△ECD,∴S△ABD=S△ECD,∵S△ABD=5,∴S△ACE=S△ACD+S△ECD=5+5=10,答:△ACE的面积为10.【总结归纳】此题考查全等三角形的判定和性质,关键是根据SAS证明△ABD≌△ECD解答.21.(10分)在疫情期间,为落实“停课不停学”,某校对本校学生某一学科在家学习情况进行抽样调查,了解到学生的学习方式有:电视直播、任课教师在线辅导、教育机构远程教学、自主学习.参与调查的学生只能选择一种学习方式,将调查结果绘制成不完整的扇形统计图和条形统计图.根据如图所示的统计图,解答下列问题.(1)本次接受调查的学生有名;(2)补全条形统计图;(3)根据调查结果,若本校有1800名学生,估计有多少名学生参与任课教师在线辅导?【知识考点】用样本估计总体;扇形统计图;条形统计图.【思路分析】(1)根据A的人数和所占的百分比即可得出答案;(2)用总人数减去其他学习方式的人数,求出C学习方式的人数,从而补全统计图;(3)用本校的总人数乘以参与任课教师在线辅导的人数所占的百分比即可.【解题过程】解:(1)本次接受调查的学生有:9÷15%=60(名);故答案为:60;(2)选择C学习方式的人数有:60﹣9﹣30﹣6=15(人),补全统计图如下:(3)根据题意得:1800×=900(名),答:估计有900名学生参与任课教师在线辅导.【总结归纳】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22.(12分)如图,AB和CD两幢楼地面距离BC为30米,楼AB高30米,从楼AB的顶部点A测得楼CD的顶部点D的仰角为45°.(1)求∠CAD的大小;(2)求楼CD的高度(结果保留根号).【知识考点】解直角三角形的应用﹣仰角俯角问题.【思路分析】(1)过A作AE⊥CD于点E,可得AB=EC=30米,AE=BC=30米,在直角三角形中,利用锐角三角函数的定义求出∠CAE,进一步求得∠CAD的大小;(2)利用等腰直角三角形的性质求出DE的长,由CE+ED求出CD的长即可.【解题过程】解:(1)过A作AE⊥CD于点E,则AB=EC=30米,AE=BC=30米,在Rt△AEC中,tan∠CAE==,则∠CAE=30°,则∠CAD=30°+45°=75°;(2)在Rt△AED中,DE=AE=30米,CD=CE+ED=(30+30)米.【总结归纳】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解本题的关键.23.(12分)如图,一次函数y=kx+b的图象与反比例函数y=(x<0)的图象相交于点A(﹣3,n),B(﹣1,﹣3)两点,过点A作AC⊥OP于点C.(1)求一次函数和反比例函数的表达式;(2)求四边形ABOC的面积.【知识考点】反比例函数与一次函数的交点问题.【思路分析】(1)将点B坐标代入,确定反比例函数的关系式,进而确定点A坐标,把点A、B 的坐标代入求出一次函数的关系式;(2)将四边形ABOC的面积转化为S△BOM+S梯形ACMB,利用坐标及面积的计算公式可求出结果.【解题过程】解:(1)B(﹣1,﹣3)代入y=得,m=3,∴反比例函数的关系式为y=;把A(﹣3,n)代入y=得,n=﹣1∴点A(﹣3,﹣1);把点A(﹣3,﹣1),B(﹣1,﹣3)代入一次函数y=kx+b得,,解得:,∴一次函数y=﹣x﹣4;答:一次函数的关系式为y=﹣x﹣4,反比例函数的关系式为y=;(2)如图,过点B作BM⊥OP,垂足为M,由题意可知,OM=1,BM=3,AC=1,MC=OC ﹣OM=3﹣1=2,∴S四边形ABOC=S△BOM+S梯形ACMB=+(1+3)×2=.【总结归纳】本题考查一次函数、反比例函数的图象和性质,把点的坐标代入是常用的方法,将坐标与线段的长的相互转化是计算面积的关键.24.(12分)如图,已知AB是⊙O的直径,点C是圆上异于A、B的一点,连结BC并延长至点D,使CD=BC,连结AD交⊙O于点E,连结BE.(1)求证:△ABD是等腰三角形;(2)连结OC并延长,与以B为切点的切线交于点F,若AB=4,CF=1,求DE的长.【知识考点】等腰三角形的判定与性质;切线的性质;相似三角形的判定与性质.【思路分析】(1)由线段垂直平分线的性质可得AB=AD,可得结论;(2)通过证明△OBF∽△AEB,可得,即可求解.【解题过程】证明:(1)∵AB是⊙O的直径,∴∠ACB=90°,∴AC⊥BD,又∵CD=BC,∴AB=AD,∴△ABD是等腰三角形;(2)∵△ABD是等腰三角形,∴∠BAC=∠BAD,AB=AD,BC=BD,又∵∠BAC=∠BOC,∴∠BOC=∠BAD,∵BF是⊙O的切线,∴∠FBO=90°,∵AB是⊙O的直径,∴∠AEB=90°=∠BFO,∴△OBF∽△AEB,∴,∵AB=4,CF=1,∴OB=2,OF=OC+CF=3,∴,∴AE=,∴DE=AD﹣AE=.【总结归纳】本题考查了相似三角形的判定和性质,圆的有关知识,等腰三角形的性质,证明△OBF∽△AEB是本题的关键,25.(12分)如图,已知二次函数的图象顶点在原点,且点(2,1)在二次函数的图象上,过点F (0,1)作x轴的平行线交二次函数的图象于M、N两点.(1)求二次函数的表达式;(2)P为平面内一点,当△PMN是等边三角形时,求点P的坐标;(3)在二次函数的图象上是否存在一点E,使得以点E为圆心的圆过点F和点N,且与直线y =﹣1相切.若存在,求出点E的坐标,并求⊙E的半径;若不存在,说明理由.【知识考点】二次函数综合题.【思路分析】(1)设二次函数表达式为:y=ax2,将(2,1)代入上式,即可求解;(2)△PMN是等边三角形,则点P在y轴上且PM=4,故PF=2,即可求解;(3)在Rt△FQE中,EN==,EF==,即可求解.【解题过程】解:(1)∵二次函数的图象顶点在原点,故设二次函数表达式为:y=ax2,将(2,1)代入上式并解得:a=,故二次函数表达式为:y=x2;(2)将y=1代入y=x2并解得:x=±2,故点M、N的坐标分别为(﹣2,1)、(2,1),则MN=4,∵△PMN是等边三角形,∴点P在y轴上且PM=4,∴PF=2;∵点F(0,1),∴点P的坐标为(0,1+2)或(0,1﹣2);(3)假设二次函数的图象上是否存在一点E满足条件,设点Q是FN的中点,则点Q(1,1),故点E在FN的中垂线上.∴点E是FN的中垂线与y=x2图象的交点,∴y=×12=,则点E(1,),EN==,同理EF==,点E到直线y=﹣1的距离为|﹣(﹣1)|=,故存在点E,使得以点E为圆心半径为的圆过点F,N且与直线y=﹣1相切.【总结归纳】本题考查的是二次函数综合运用,涉及到一次函数的性质、圆的基本的性质、等边三角形的性质等,综合性强,难度适中.21。

最新整理四川省宜宾市中考数试题及答案Word,有答案.doc

最新整理四川省宜宾市中考数试题及答案Word,有答案.doc

四川省宜宾市高中阶段招生试卷数学试题(考试时间:120分钟 全卷满分120分)注意事项:1. 答题前,必须把考号和姓名写在密封线内;2. 直接在试卷上作答,不得将答案写到密封线内.Ⅰ基础卷(全体考生必做,共3个大题,共72分)一、选择题:(本大题8个小题,每小题3分,共24分)以下每个小题均给出了代号为A,B,C,D 的四个答案,其中只有一个答案是正确的,请将正确答案的代号直接填在题后的括号中.1、-4的相反数是()A. 4B.41C. 41-D.-42、下列各式中,计算错误的是( ) A. 2a+3a=5a B. –x 2·x= -x 3 C. 2x-3x= -1D.(-x 3)2= x 63、若分式122--x x 的值为0,则x 的值为( ) A. 1 B. -1 C. ±1 D.24、到 5月8日止,青藏铁路共运送旅客265.3万人次,用科学记数法表示265.3万正确的是( )A. 2.653×105B. 2.653×106C. 2.653×107D. 2.653×1085、如图,AB ∥CD ,直线PQ 分别交AB 、CD 于点E 、F ,FG 是∠EFD 的平分线,交AB 于点G . 若∠PFD=40°,那么∠FGB 等于( )A. 80°B. 100°C. 110°D.120° 6、小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x 月后他能捐出100元,则下列方程中能正确计算出x 的是 ( ) A. 10x+20=100 B.10x-20=100 C. 20-10x=100 D.20x+10=100 7、一个口袋中装有4个红球,3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是 ( ) A.94 B.92 C.31 D.32 8、下面几何的主视图是( )Q PG F E D C B A二,填空题: (本大题共4小题,每小题3分,共12分),请把答案直接填在题中横线上.9、因式分解:3y 2-27= .10、一组数据:2,3,2,5,6,2,4,3,的众数是11、如图,△ABC 内接于⊙0,∠BAC=120°,AB=AC=4. BD 为⊙0的直径,则BD=12、若方程组⎩⎨⎧=-=+.,2a by x b y x 的解是⎩⎨⎧==.0,1y x ,那么=-b a三.解答题.(本大题共4小题,共36分),解答应写出文字说明,证明过程或演算步骤.13、(本题共3小题,每小题5分,共15分)(1)请先将下式化简,再选择一个你喜欢又使原式有意义的数代入求值..121)11(2+-÷--a a a a (2)计算:︒---+-45tan 2)510()31(401(3)某地为了解从 以来初中学生参加基础教育课程改革的情况,随机调查了本地区1000名初中学生学习能力优秀的情况.调查时,每名学生可以在动手能力,表达能力,创新能力,解题技巧,阅读能力和自主学习等六个方面中选择自己认为是优秀的项.调查后绘制了如下图所示的统计图.请根据统计图反映的信息解答下列问题:①学生获得优秀人数最多的一项和最有待加强的一项各是什么? ②这1000名学生平均每人获得几个项目为优秀?③若该地区共有2万名初中学生,请估计他们表达能力为优秀的学生有多少人?O D CBA14、(本小题满分7分)已知:如图,AD=BC,AC=BD.求证:OD=OCAB15、(本小题满分7分)某学校准备添置一些“中国结”挂在教室。

2023年四川省宜宾中考数学真题 (解析版)

2023年四川省宜宾中考数学真题  (解析版)

宜宾市2023年初中学业水平考试暨高中阶段学校招生考试数学(考试时间:120分钟,全卷满分:150分)注意事项:1.答题时,务必将自己的姓名、座位号,准考证号填写在答题卡指定的位置并将答题卡背面座位号对应标号涂黑.2.答选择题时,务必使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,务必使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡规定的位置上作答,在试卷上答题无效.一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上.1. 2的相反数是( )A. 2B. -2C. 12D. 12− 【答案】B【解析】【详解】2的相反数是-2.故选:B.2. 下列计算正确的是( )A. 422a a −=B. 235ab ba ab +=C. 23a a a +=D. 22532x y xy xy −= 【答案】B【解析】【分析】根据整式的加减计算即可.【详解】A 、422a a a −=,不符合题意;B 、23235ab ba ab ab ab +=+=,符合题意;C 、2,a a 不是同类项,无法计算,不符合题意;D 、225,3x y xy −,不同类项,无法计算,不符合题意; 是故选:B .【点睛】本题考查了整式的加减,熟练掌握同类项的判定与合并是解题的关键.3. 下列图案中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.【答案】D【解析】【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A 、是轴对称图形但不是中心对称图形,故A 选项不符合题意;B 、是中心对称图形但不是轴对称图形,故B 选项不合题意;C 、既不是轴对称图形,也不是中心对称图形,故C 选项不合题意;D 、既是轴对称图形,又是中心对称图形,故D 选项符合题意.故选D .【点睛】本题主要考查了轴对称图形和中心对称图形,解题的关键在于能够熟练掌握轴对称图形和中心对称图形的定义.4. 为积极践行节能减排的发展理念,宜宾大力推进“电动宜宾”工程,2022年城区已建成充电基础设施接口超过8500个.将8500用科学记数法表示为( )A. 40.8510×B. 28510×C. 38.510×D. 48.510×【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ×,其中110a ≤<,n 为整数,比位数少1位,按要求表示即可.【详解】解:根据科学记数法要求,8500共有4位数,从而用科学记数法表示为38.510×,故选:C .【点睛】本题考查科学记数法,按照定义,确定a 与n 的值是解决问题的关键.5. 如图, AB CD ∥,且40A ∠=°,24D ∠=°,则E ∠等于( )A. 40°B. 32°C. 24°D. 16°【答案】D【解析】 【分析】可求40ACD ∠=°,再由ACD D E ∠=∠+∠,即可求解.【详解】解:AB CD ∥Q ,40ACD A ∴∠=∠=°,ACD D E ∠=∠+∠Q ,2440E ∴°+∠=°,16E ∴∠=°.故选:D .【点睛】本题考查了平行线的性质,三角形外角性质,掌握三角形外角的性质是解题的关键. 6. “今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”是《孙子算经》卷中著名数学问题.意思是:鸡兔同笼,从上面数,有35个头;从下面数,有94条腿.问鸡兔各有多少只?若设鸡有x 只,兔有y 只,则所列方程组正确的是( )A. 354294x y x y += +=B. 352494x y x y += +=C. 944235x y x y += +=D. 942435x y x y += +=【答案】B【解析】【分析】根据题意,由设鸡有x 只,兔有y 只,则由等量关系有35个头和有94条腿列出方程组即可得到答案.【详解】解:设鸡有x 只,兔有y 只,则由题意可得352494x y x y += +=, 故选:B .【点睛】本题考查列二元一次方程组解决古代数学问题,读懂题意,找准等量关系列方程组是解决问题的关键.7. 如图,已知点A B C 、、在O e 上,C 为»AB 的中点.若35BAC ∠=°,则AOB ∠等于( )A. 140°B. 120°C. 110°D. 70°【答案】A【解析】 【分析】连接OC ,如图所示,根据圆周角定理,找到各个角之间的关系即可得到答案.【详解】解:连接OC ,如图所示:Q 点A B C 、、在O e 上,C 为»AB 的中点,»»BC AC ∴=,12BOC AOC AOB ∴∠=∠=∠, Q 35BAC ∠=°,根据圆周角定理可知270BOC BAC ∠=∠=°,2140AOB BOC ∴∠=∠=°,故选:A .【点睛】本题考查圆中求角度问题,涉及圆周角定理,找准各个角之间的和差倍分关系是解决问题的关键.8. 分式方程2233x x x −=−−的解为( ) A. 2B. 3C. 4D. 5【答案】C【解析】【分析】根据分式方程的解法直接求解即可得到答案. 【详解】解:2233x x x −=−−, 方程两边同时乘以()3x −得到22x −=,4x ∴=,检验:当4x =时,34310x −=−=≠,4x ∴=是原分式方程的解,故选:C .【点睛】本题考查分式方程的解法,对于分式方程求解验根是解决问题的关键步骤.9. 《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图,»AB 是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,MN AB ⊥.“会圆术”给出»AB 的弧长l 的近似值计算公式:2MN l AB OA=+.当4OA =,60AOB ∠=°时,则l 的值为( )A. 11−B. 11−C. 8−D. 8−【答案】B【解析】 【分析】连接ON ,根据等边三角形的性质,垂径定理,勾股定理,特殊角的三角函数,后代入公式计算即可.【详解】连接ON ,根据题意,»AB 是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,MN AB ⊥,得ON AB ⊥,∴点M ,N ,O 三点共线,∵4OA =,60AOB ∠=°,∴OAB V 是等边三角形,∴4,60sin 60OA AB OAN ON OA ==∠=°=°=,,∴4,60sin 60OA AB OAN ON OA ==∠=°=°=,∴2411MN l AB OA =++=−故选B .【点睛】本题考查了等边三角形的性质,垂径定理,勾股定理,特殊角的函数值,熟练掌握相关知识是解题的关键.10. 如图,边长为6的正方形ABCD 中,M 为对角线BD 上的一点,连接AM 并延长交CD 于点P .若PM PC =,则AM 的长为( )A. )31−B. ()32−C. )61D. ()62 【答案】C【解析】【分析】先根据正方形的性质、三角形全等的判定证出ADM CDM ≅V V ,根据全等三角形的性质可得DAM DCM ∠=∠,再根据等腰三角形的性质可得CMP DCM ∠=∠,从而可得30DAM ∠=°,然后利用勾股定理、含30度角的直角三角形的性质求解即可得.【详解】解:Q 四边形ABCD 是边长为6的正方形,6,90,45AD CD ADC ADM CDM ∴==∠=°∠=∠=°,在ADM △和CDM V 中,45DM DM ADM CDM AD CD = ∠=∠=° =, ()SAS ADM CDM ∴≅V V ,DAM DCM ∴∠=∠,PM PC =Q ,CMP DCM ∴∠=∠,22APD CMP DCM DCM DAM ∴∠=∠+∠=∠=∠,又18090APD DAM ADC ∠+∠=°−∠=°Q ,30DAM ∴∠=°,设PD x =,则22AP PD x ==,6PM PC CD PD x ==−=−,6AD ∴===,解得x =,66PM x ∴=−=−2AP x ==,()661AM AP PM ∴−−−, 故选:C .【点睛】本题考查了正方形的性质、勾股定理、含30度角的直角三角形的性质、等腰三角形的性质等知识点,熟练掌握正方形的性质是解题关键.11. 如图,在平面直角坐标系xOy 中,点A 、B 分别在y ,x 轴上,BC x ⊥轴.点M 、N 分别在线段BC 、AC 上,BM CM =,2NC AN =,反比例函数()0k y x x =>的图象经过M 、N 两点,P 为x 正半轴上一点,且:1:4OP BP =,APN V 的面积为3,则k 的值为( )A. 454B. 458C. 14425D. 7225【答案】B【解析】【分析】过点N 作NQ x ⊥轴于点Q ,设点A 的坐标为()()0,0A a a >,点M 的坐标为()()5,0,0M b c b c >>,点N 的坐标为()(),0,0N m n m n >>,则()5,2C b c ,OA a =,5OB b =,先求出点N 的坐标为522,33b a c N + ,再根据3APN AOP NPQ OANQ S S S S =−−=V V V 梯形可得29ab bc +=,然后将点,M N 的坐标代入反比例函数的解析式可得27a c =,从而可得bc 的值,由此即可得.【详解】解:如图,过点N 作NQ x ⊥轴于点Q ,设点A 的坐标为()()0,0A a a >,点M 的坐标为()()5,0,0M b c b c >>,点N 的坐标为()(),0,0N m n m n >>,则()5,2C b c ,OA a =,5OB b =,:1:4OP BP =Q ,,4OP b BP b ∴==,2NC AN =Q ,()()5202223b m m n c a c −=− ∴ −=− ,解得53223b m a c n = + =, 522,33b a c N + ∴ , 522,33b a c OQ NQ +∴==, 23b PQ OQ OP ∴=−=, APN QV 的面积为3,3AOP NPQ OANQ S S S ∴−−=V V 梯形,即15221122232332233a c b a c b a ab ++ ×+−−×⋅= , 整理得:29ab bc +=,将点()5225,,,33b a c M b c N + 代入k y x =得:522533b a c k bc +==⋅, 整理得:27a c =, 将27a c =代入29ab bc +=得:79bc bc +=,解得98bc =, 则4558k bc ==, 故选:B . 【点睛】本题主要考查了反比例函数的几何应用,熟练掌握反比例函数的性质,正确求出点N 的坐标是解题关键.12. 如图,ABC V 和ADE V 是以点A 为直角顶点的等腰直角三角形,把ADE V 以A 为中心顺时针旋转,点M 为射线BD 、CE 的交点.若AB =,1AD =.以下结论:①BD CE =;②BD CE ⊥;③当点E 在BA 的延长线上时,MC =; ④在旋转过程中,当线段MB 最短时,MBC V 的面积为12.其中正确结论有( )A. 1个B. 2个C. 3个D. 4个【答案】D【解析】 【分析】证明BAD CAE V V ≌即可判断①,根据三角形的外角的性质得出②,证明DCM ECA ∠∠∽得出=A 为圆心,AD 为半径画圆,当CE 在A e 的下方与A e 相切时,MB 的值最小,可得四边形AEMD 是正方形,在Rt MBC V 中MC =1,然后根据三角形的面积公式即可判断④. 【详解】解:∵ABC V 和ADE V 是以点A 为直角顶点的等腰直角三角形,∴,,90BA CA DA EA BAC DAE ==∠=∠=°, ∴BAD CAE ∠=∠,∴BAD CAE V V ≌,∴ABD ACE ∠=∠,BD CE =,故①正确; 设ABD ACE α∠=∠=,∴45DBC α∠=°−,∴454590EMB DBC BCM DBC BCA ACE αα∠=∠+∠=∠+∠+∠=°−+°+=°, ∴BD CE ⊥,故②正确;当点E 在BA 的延长线上时,如图所示∵DCM ECA ∠=∠,90DMC EAC ∠=∠=°, ∴DCM ECA ∠∠∽ ∴MC CD AC EC=∵AB =1AD =.∴1CD AC AD =−−,2CE=∴MC =,故③正确; ④如图所示,以A 为圆心,AD 为半径画圆,∵90BMC ∠=°,∴当CE 在A e 的下方与A e 相切时,MB 的值最小, 90ADM DAE AEM ∠=∠=∠=°∴四边形AEMD 是矩形,又AE AD =,∴四边形AEMD 是正方形,∴1MD AE ==,∵BD EC =∴1MB BD MD =−−,在Rt MBC V 中,MC =∴PB 取得最小值时,MC =1+∴)11111222BMC S MB MC =×=−+=V 故④正确,故选:D .【点睛】本题考查了旋转的性质,相似三角形的性质,勾股定理,切线的性质,垂线段最短,全等三角形的性质与判定,正方形的性质,熟练掌握以上知识是解题的关键.二、填空题:本大题共6个小题,每小题4分,共24分,请把答案直接填在答题卡对应题中横线上.13. 在“庆五四·展风采”的演讲比赛中,7位同学参加决赛,演讲成绩依次为:77,80,79,77,80,79,80.这组数据的中位数是___________.【答案】79【解析】【分析】根据有序数组中间的一个数据或中间两个数据的平均数是中位数计算即可.【详解】将这组数据从小到大排列为:77,77,79,79,80,80,80,中间数据是79,故中位数是79.故答案为:79.【点睛】本题考查了中位数的定义,熟练掌握定义是解题的关键.14. 分解因式:x 3﹣6x 2+9x =___.【答案】x (x ﹣3)2【解析】详解】解:x 3﹣6x 2+9x=x (x 2﹣6x +9)=x (x ﹣3)2故答案为:x (x ﹣3)215. 若关于x 的方程()22140x m x m −+++=两根的倒数和为1,则m 的值为___________. 【答案】2【解析】【分析】根据根与系数的关系即可求出答案.【详解】解:设方程的两个根分别为a ,b ,由题意得:()+2+1a b m =,4abm =+, ∴()2+111+++4m a b a b ab m ==, ∴()2+11+4m m =,解得:2m =, 经检验:2m =是分式方程的解,检验:()()()()22Δ2144421424120m m =−+−+=×+−×+=> , ∴2m =符合题意,∴2m =.故答案为:2.【点睛】本题考查了一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键. 16. 若关于x 的不等式组2151922x x a x x +>+ +≥− ①②所有整数解的和为14,则整数a 的值为___________. 【【答案】2或1−【解析】【分析】根据题意可求不等式组的解集为15a x −<≤,再分情况判断出a 的取值范围,即可求解.【详解】解:由①得:1x a >−,由②得:5x ≤,∴不等式组的解集为:15a x −<≤,Q 所有整数解的和为14,①整数解为:2、3、4、5,112a ∴≤−<,解得:23a ≤<,Q a 为整数,2a ∴=.②整数解为:1−,0,1,2、3、4、5,211a ∴−≤−<−,解得:10a −≤<,Q a 为整数,1a ∴=−.综上,整数a 的值为2或1−故答案为:2或1−.【点睛】本题考查了含参数的一元一次不等式组的整数解问题,掌握一元一次不等式组的解法,理解参数的意义是解题的关键.17. 如图,M 是正方形ABCD 边CD 的中点,P 是正方形内一点,连接BP ,线段BP 以B 为中心逆时针旋转90°得到线段BQ ,连接MQ .若4AB =,1MP =,则MQ 的最小值为___________.【答案】1【解析】【分析】连接BM ,将BM 以B 中心,逆时针旋转90°,M 点的对应点为E ,由 P 的运动轨迹是以M 为圆心,1为半径的半圆,可得:Q 的运动轨迹是以E 为圆心,1为半径的半圆,再根据“圆外一定点到圆上任一点的距离,在圆心、定点、动点,三点共线时定点与动点之间的距离最短”,所以当M 、Q 、E 三点共线时,MQ的值最小,可求ME =【详解】解,如图,连接BM ,将BM 以B 中心,逆时针旋转90°,M 点的对应点为E ,Q P 的运动轨迹是以M 为圆心,1为半径的半圆,∴Q 的运动轨迹是以E 为圆心,1为半径的半圆,如图,当M 、Q 、E 三点共线时,MQ 的值最小,Q 四边形ABCD 是正方形,4CD AB BC ∴===,90C ∠=°,M Q 是CM 中点,2CM ∴=,BM ∴=,由旋转得:BM BE =,ME ∴==MQ ME EQ ∴=−1−,∴MQ值最小为1.故答案:1.【点睛】本题考查了正方形的性质,旋转的性质,勾股定理,动点产生的线段最小值问题,掌握相关的性质,根据题意找出动点的运动轨迹是解题的关键.的的18. 如图,抛物线2y ax bx c ++经过点()30A −,,顶点为()1,M m −,且抛物线与y 轴的交点B 在()02−,和()03−,之间(不含端点),则下列结论:①当31x −≤≤时,1y ≤;②当ABM V a = ③当ABM V 为直角三角形时,在AOB V 内存在唯一点P ,使得PA PO PB ++的值最小,最小值的平方为18+.其中正确的结论是___________.(填写所有正确结论的序号)【答案】②③【解析】【分析】根据条件可求抛物线与x 轴的另一交点坐标,结合图象即可判断①;设抛物线为()()13y a x x =−+,即可求出点M 的坐标,根据割补法求面积,判断②;分三种情况讨论,然后以点O 为旋转中心,将AOB V 顺时针旋转60°至'AOA V ,连接'AA ,'PP ,'A B ,得到'''+PA PO PB P A PP PB A B ++=+≥,判断③. 【详解】解:∵抛物线2y ax bx c ++经过点()30A −,,顶点为()1,M m −, ∴对称轴=1x −,∴抛物线与x 轴的另一交点坐标为()1,0,由图象可得:当31x −≤≤时,0y ≤;∴①错,不符合题意;∵抛物线与x 轴的另一交点坐标为()1,0,∴设抛物线为()()13y a x x =−+,当=1x −时,4y a =−,当=0x 时,3y a =−,∴()1,4M a −−,()0,3B a −,如图所示,过点M 作平行于y 轴的直线l ,过点A 作AE l ⊥,过点B 作BN l ⊥,∴12ABM AMF BMF S S S MF AO =+=××V V V , 设直线AB 的解析式为''y k x b =+, 把()0,3B a −,()30A −,代入得:3+03k b b a ′′′−= =−, 解得:3k a b a =− =−′′, ∴直线AB 的解析式为3y ax a =−−, 当=1x −是,2y a =−,∴()1,2F a −−,∴2MF a =,∴1232a ××,解得:a =∵点B 是抛物线与y 轴的交点,∴当0x =时,3y a =−,∴()0,3B a −,∵ABM V 为直角三角形,当90AMB ∠=°时,∴222AM BM AB +=,∵AM ,BM ,AB ∴222416199a a a +++=+,整理得:284a =,解得:a =或(舍)∴0,B , 当90ABM ∠=°时,∴222AB BM AM +=,∴222416991a a a +=+++,整理得:266a =解得:1a =或1−(舍)∴()0,3B −,当90MAB ∠=°时,∴222AB AM BM +=,∴222416199a a a +++=+,无解;以点O 为旋转中心,将AOB V 顺时针旋转60°至'AOA V ,连接'AA ,'PP ,'A B ,如图所示,则'AOA V ,'POP V 为等边三角形,∴'OP PP =,'AP AP =,∴+PA PO PB P A PP PB A B ′′′′++=+≥,∵'AOA V 为等边三角形,()30A −,∴'32A x −=,'3tan 602A y ×°==,∴'32A −骣琪琪琪琪桫,当0,B 时,∵22'235424A B 骣琪=+=+琪琪桫, 当()0,3B −时,22'233182A B 骣琪=+=+琪琪桫,∴PA PO PB ++的值最小,最小值的平方为18+,故③正确;故答案为:②③.【点睛】本题考查了二次函数的综合问题,综合性较强,难度较大,扎实的知识基础是关键.三、解答题:本大题共7个小题,共78分,解答应写出文字说明、证明过程或演算步骤 19. 计算(1)计算:012tan 4512 °−−. (2)化简:211224x x x x −÷ −+− .【答案】(1)(2)4x【解析】【分析】(1)根据特殊角的锐角三角函数、零指数幂、绝对值化简计算即可;(2)根据分式化简运算规则计算即可.【小问1详解】解:原式211××=【小问2详解】解:原式()()()()2+2242+22+2x x x x x x x x −−=−× −−22444x x x −×− 4x= 【点睛】本题考查了实数的混合运算与分式化简以及特殊角三角函数,熟记运算法则是关键.20. 已知:如图,AB DE ∥,AB DE =,AF DC =.求证:B E ∠=∠.【答案】见解析【解析】【分析】根据平行线的性质得出A D ∠=∠,然后证明AC DF =,证明()SAS ABC DEF ≌△△,根据全等三角形的性质即可得证.【详解】证明:∵AB DE ∥,∴A D ∠=∠,∵AF DC =,∴AF CF DC CF +=+即AC DF =在ABC V 与DEF V 中AC DF A D AB DE = ∠=∠ =, ∴()SAS ABC DEF ≌△△,∴B E ∠=∠.【点睛】本题考查了全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键. 21. 某校举办“我劳动,我快乐,我光荣”活动.为了解该校九年级学生周末在家的劳动情况,随机调查了九年级1班的所有学生在家劳动时间(单位:小时),并进行了统计和整理绘制如图所示的不完整统计图.根据图表信息回答以下问题: 类别 劳动时间xA01x ≤< B12x ≤< C23x ≤< D34x ≤< E 4x ≤(1)九年级1班学生共有___________人,补全条形统计图;(2)若九年级学生共有800人,请估计周末在家劳动时间在3小时及以上的学生人数;(3)已知E 类学生中恰好有2名女生3名男生,现从中抽取两名学生做劳动交流,请用列表或画树状图的方法,求所抽的两名学生恰好是一男一女的概率.【答案】(1)50,条形统计图见解析(2)208人(3)35【解析】【分析】(1)利用C 类人数除以对应的百分比即可得到九年级1班的总人数,再分别求出B 和D 的人数,补全统计图即可;(2)用九年级学生总人数乘以九年级1班周末在家劳动时间在3小时及以上的学生占的比值即可得到答案;(3)根据题意列出表格,利用满足要求的情况数除以总的情况数即可得到答案.【小问1详解】解:由题意得到,1530%50÷=(人), 的故答案为:50类别B 的人数为5028%14×=(人),类别D 的人数为508141558−−−−=(人), 补全条形统计图如下:【小问2详解】 由题意得,8580020850+×=(人), 即估计周末在家劳动时间在3小时及以上的学生人数为208人;【小问3详解】列表如下: 女1 女2 男1 男2 男3女1 女1,女2 女1,男1 女1,男2 女1,男3女2 女2,女1 女2,男1 女2,男2 女2,男3男1 男1,女1 男1,女2 男1,男2 男1,男3男2 男2,女1 男2,女2 男2,男1男2,男3 男3 男3,女1 男3,女2 男3,男1 男3,男2由表格可知,共有20种等可能的情况,其中一男一女共有12种,∴所抽的两名学生恰好是一男一女的概率是123205=. 【点睛】此题考查了条形统计图和扇形统计图的信息关联、用树状图或列表法求概率、样本估计总体等知识,熟练掌握用树状图或列表法求概率、样本估计总体是解题的关键.22. 渝昆高速铁路的建成,将会显著提升宜宾的交通地位.渝昆高速铁路宜宾临港长江公铁两用大桥(如图1),桥面采用国内首创的公铁平层设计.为测量左桥墩底到桥面的距离CD ,如图2.在桥面上点A 处,测得A 到左桥墩D 的距离200AD =米,左桥墩所在塔顶B 的仰角45BAD ∠=°,左桥墩底C 的俯角15CAD ∠=°,求CD 的长度.(结果精确到11.41≈1.73≈)【答案】CD 的长度54米【解析】【分析】AD 上截取AE ,使得AE EC =,设CD x =,在Rt ECD △中,ED =,2EC x =,则)2AD AE ED x =+=+,进而即可求解. 【详解】解:如图所示,AD 上截取AE ,使得AE EC =,∴EAC ECA =∠∠,∵15CAD ∠=°∴230CED EAC ∠=∠=°,设CD x =,在Rt ECD △中,ED =,2EC x =∴)2AD AE ED x =+=又200AD =∴)2002x =∴(()20022002 1.7354x =≈×−= 即54CD =米【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.23. 如图,在平面直角坐标系xOy 中,等腰直角三角形ABC 的直角顶点()30C ,,顶点A 、()6B m ,恰好落在反比例函数k y x=第一象限的图象上.(1)分别求反比例函数的表达式和直线AB 所对应的一次函数的表达式;(2)在x 轴上是否存在一点P ,使ABP V 周长的值最小.若存在,求出最小值;若不存在,请说明理由.【答案】(1)6y x =,142y x =−+(2)在x 轴上存在一点()5,0P ,使ABP V 周长的值最小,最小值是+【解析】【分析】(1)过点A 作AE x ⊥轴于点E ,过点B 作BD x ⊥轴于点D ,证明()AAS ACE CBD V V ≌,则3,CD AE BD EC m ====,由3OE m =−得到点A 的坐标是()3,3m −,由A 、()6B m ,恰好落在反比例函数k y x=第一象限的图象上得到()336m m −=,解得1m =,得到点A 的坐标是()2,3,点B 的坐标是()6,1,进一步用待定系数法即可得到答案;(2)延长AE 至点A ′,使得EA AE ′=,连接A B ′交x 轴于点P ,连接AP ,利用轴对称的性质得到AP A P ′=,()2,3A ′−,则AP PB A B ′+=,由AB =AB 是定值,此时ABP V 的周长为AP PB AB AB A B ′++=+最小,利用待定系数法求出直线A B ′的解析式,求出点P 的坐标,再求出周长最小值即可.【小问1详解】解:过点A 作AE x ⊥轴于点E ,过点B 作BD x ⊥轴于点D ,则90AEC CDB ∠=∠=°,∵点()30C ,,()6B m ,,∴3,6,OC OD ==BD m =, ∴3CD OD OC =−=,∵ABC V 是等腰直角三角形,∴90,ACB AC BC ∠=°=, ∵90ACE BCD CBD BCD ∠+∠=∠+∠=°,∴ACE CBD ∠=∠,∴()AAS ACE CBD V V ≌,∴3,CDAE BD EC m ====, ∴3OE OC EC m =−=−,∴点A 的坐标是()3,3m −,∵A 、()6B m ,恰好落在反比例函数k y x=第一象限的图象上. ∴()336m m −=, 解得1m =,∴点A 的坐标是()2,3,点B 的坐标是()6,1,∴66k m ==, ∴反比例函数的解析式是6y x=, 设直线AB 所对应的一次函数的表达式为y px q =+,把点A 和点B 的坐标代入得,2361p q p q += += ,解得124p q =− = , ∴直线AB 所对应的一次函数的表达式为142y x =−+, 【小问2详解】延长AE 至点A ′,使得EA AE ′=,连接A B ′交x 轴于点P ,连接AP ,∴点A 与点A ′关于x 轴对称,∴AP A P ′=,()2,3A ′−,∵AP PB A P PB A B ′′+=+=,∴AP PB +的最小值是A B ′的长度,∵AB =AB 是定值,∴此时ABP V 的周长为AP PB AB AB A B ′++=+最小,设直线A B ′的解析式是y nx t =+, 则2361n t n t +=− +=, 解得15n t = =−, ∴直线A B ′的解析式是5y x =−,当0y =时,05x =−,解得5x =,即点P 的坐标是()5,0,此时AP PB AB AB A B ′++=+=+,综上可知,在x 轴上存在一点()5,0P ,使ABP V 周长的值最小,最小值是+【点睛】此题考查了反比例函数和一次函数的图象和性质、用到了待定系数法求函数解析式、勾股定理求两点间距离、轴对称最短路径问题、全等三角形的判定和性质等知识,数形结合和准确计算是解题的关键.24. 如图,以AB 为直径的O e 上有两点E 、F ,»»BE EF =,过点E 作直线CD AF ⊥交AF 的延长线于点D ,交AB 的延长线于点C ,过C 作CM 平分ACD ∠交AE 于点M ,交BE 于点N .(1)求证:CD 是O e 的切线;(2)求证:EM EN =;(3)如果N 是CM 的中点,且AB =EN 的长.【答案】(1)见解析 (2)见解析(3)6【解析】【分析】(1)根据同弧所对的圆周角相等得出12∠=∠,根据OA OE =,得出13∠=∠,则23∠∠=可得OE AF ∥,根据已知CD AF ⊥,得出OE CD ⊥,即可得证;(2)根据角平分线的定义得出1562DCA ∠=∠=∠,又1122DAC ∠=∠=∠,根据三角形内角和定理得出EMC =∠45°,由AB 是O e 的直径,即可得证;(3)取EC 的中点P ,连接PN ,证明BEC OAE ∠=∠,由N 是MC 的中点,P 是EC 的中点,得出11,22PN EM PN EM EN ==∥,进而得出1tan 2PN PEN EN ∠==,设BE b =,则2AE b =,勾股定理得出18AE =,9EB =,证明ECB ACE V V ∽得出2AECE EB CB ==,根据角平分线的性质得出2EN EC BN BC==,即可求解. 【小问1详解】证明:如图所示,∵»»BEEF =,∴12∠=∠,∵OA OE =∴13∠=∠,∴23∠∠=,∴OE AF ∥∵CD AF ⊥,∴OE CD ⊥,∴CD 是O e 的切线;【小问2详解】证明:如图所示,∵CM 平分ACD ∠ ∴1562DCA ∠=∠=∠ 又∵1122DAC ∠=∠=∠,AD CD ⊥则90ADC ∠=°,∴EMC =∠()()11151804522DAC DCA ADC ∠+∠=∠+∠=°−∠=°, ∵AB 是O e 的直径, ∴90MEN AEB ∠=∠=°,∴45ENM EMN ∠=∠=°,∴EM EN =;【小问3详解】解:如图所示,取EC 的中点P ,连接PN ,∵CD 是O e 的切线,∴90CEB OEB ∠+∠=°,∵90AEB AEO OEB ∠=∠+∠=°,∴AEO BEC ∠=∠,又OAE OEA ∠=∠,∴BEC OAE ∠=∠,∵N 是MC 的中点,P 是EC 的中点, ∴11,22PN EM PN EM EN ==∥, ∵AE EB ⊥,∴PN EB ⊥, 在Rt PEN △中,1tan 2PN PEN EN ∠==, ∵BEC OAE ∠=∠, ∴1tan tan 2EB EAB PEN AE ∠==∠= 设BE b =,则2AE b =,∴AB =∵AB =∴9b =∴18AE =,9EB =,∵BEC EAC ∠=∠,ECB ACE ∠=∠, ∴ECB ACE V V ∽, ∴2AECE EB CB==,∵CM 是ACD ∠的角平分线,∴N 到,CD AC 的距离相等,设为d ,在EBC V ,设点C 到EB 的距离为h , ∴11221122ENC BNC EC d EN h S S BC d BN h ××==××V V , ∴2ENEC BN BC==, ∴263EN EB ==. 【点睛】本题考查了圆的综合问题,相似三角形的性质与判定,切线的判定与性质,圆周角定理,熟练掌握以上知识是解题的关键.25. 如图,抛物线2y ax bx c ++与x 轴交于点()4,0A −、()2,0B ,且经过点()2,6C −.(1)求抛物线的表达式;(2)在x 轴上方的抛物线上任取一点N ,射线AN 、BN 分别与抛物线的对称轴交于点P 、Q ,点Q 关于x 轴的对称点为Q ′,求APQ ′△的面积;(3)点M 是y 轴上一动点,当AMC ∠最大时,求M 的坐标.【答案】(1)233642y x x =−−+ (2)814APQ S ′=V (3)(0,12M − 【解析】【分析】(1)设抛物线的解析式为()()42y a x x =+−,代入点C 的坐标,确定a 值即可.(2)设233,642N m m m−−+,直线AN 的解析式为y kx b =+,直线BN 的解析式为y px q =+,表示出P ,Q ,Q ′的坐标,进而计算即可.(3)当M 是y 轴与经过A ,C ,M 三点的圆的切点是最大计算即可.【小问1详解】∵抛物线2y ax bx c ++与x 轴交于点()4,0A −、()2,0B , ∴设抛物线的解析式为()()42y a x x =+−,∵经过点()2,6C −,∴()()62422a =−+−−, 解得34a =−, ∴()()3424y x x =−+−, ∴233642y x x =−−+. 【小问2详解】 如图,当点N 在对称轴的右侧时, ∵()22333627+4+1424y x x x =−−+=−, ∴对称轴为直线=1x −,设233,642N m m m−−+,直线AN 的解析式为y kx b =+,直线BN 的解析式为y px q =+, ∴224020,3333664242k b p q mk b m m mp q m m −+=+= +=−−++=−−+解得2222333366424224,33123624242m m m m p k m m m m m m b q m m −−+ −−+ = = −+ +−−−+= =+ −,∴直线AN 的解析式为2243363624442y m m x m m m m +−−++−++−,直线BN的解析式为22233363124222y x m m m m m m ++−−−+−−, 当=1x −时,()()2223399618362912444444242m m m m m m y m m m m −−+−−+−=×−+==−++−+−+, ()()22233399631218422914422224y m m m m m m m m m m −−++−×−+==−+−−−+,∴()91,24P m−−− ,()91,44Q m −+ ,()91,44Q m ′−−+, ∴()()992724442PQ m m ′=−−++=, ∴127813224APQ S ′=××=V . 如图,当点N 在对称轴的左侧时, ∵()22333627+4+1424y x x x =−−+=−, ∴对称轴为直线=1x −,设233,642N m m m −−+ ,()91,24P m −−− ,()91,44Q m −+ ,()91,44Q m ′−−+, ∴()()992724442PQ m m ′=−−++=, ∴127813224APQ S ′=××=V . 综上所述,814APQ S ′=V . 【小问3详解】当AMC V 的外接圆与OM 相切,切点为M 时, AMC ∠最大,设外接圆的圆心为E ,Q 是异于点M 的一点,连接QA ,QC ,QA 交圆于点T ,则AMC ATC ∠=∠,根据三角形外角性质,得ATC AQC ∠>∠,故AMC AQC ∠>∠,∴AMC ∠最大,设OA 与圆交于点H ,连接MH ,ME ,根据切线性质,∴90EMO MOA ∠=∠=°,作直径HN ,连接MN ,∴90HMN ∠=°,MNH MAH ∠=∠,∵EM EH =,∴EMH EHM ∠=∠,∴9090EMH EHM °−∠=°−∠,∴OMH MNH MAH ∠=∠=∠,∴OMH OAM V V ∽, ∴OM OH OA OM=, ∴2OM OA OH =g ,设,OM y OH x ==,则AH 4x =−, ∴24y x =,∴y =过点E 作EF OA ⊥,垂足为F ,过点C 作CG OA ⊥,垂足为G ,交EM 于点P , 根据垂径定理,得42x AFFH −==,四边形EMOF 是矩形, ∴4422x x EC EM OF x −+===+=,根据()2,6C −,得2CD PM OG ===,6CG = ∴4222P x E EM PM x +−===−,∴6CP CG PG CG OM =−=−=−,在直角三角形PEC 中,∴2224()(6()22xx ++−=,∴16x +∴22(16)x +,∴21122560x x −+=,解得156x =−,2564x =+>(舍去),∴(2612y =−=−故12OM =−,∴当AMC ∠最大时,(0,12M −.【点睛】此题是二次函数综合题,主要考查了待定系数法,等腰三角形的性质,垂径定理,勾股定理,矩形的判定和性质,三角形的外接圆,相似三角形的判定和性质,用方程的思想解决问题是解本题的关键.。

四川省宜宾市2019年中考数学试卷(Word解析版)-精品

四川省宜宾市2019年中考数学试卷(Word解析版)-精品

2019年四川省宜宾市中考数学试卷一、选择题(本大题共8小题,共24.0分)1. 2的倒数是( )A. 12B. −2C. −12D. ±122. 人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为( ) A. 5.2×10−6 B. 5.2×10−5 C. 52×10−6 D. 52×10−5 3. 如图,四边形ABCD 是边长为5的正方形,E 是DC 上一点,DE =1,将△ADE 绕着点A 顺时针旋转到与△ABF 重合,则EF =( ) A. √41 B. √42 C. 5√2 D. 2√13 4. 一元二次方程x 2-2x +b =0的两根分别为x 1和x 2,则x 1+x 2为( ) A. −2 B. b C. 2 D. −b5. 已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是( ) A. 10 B. 9 C. 8 D. 76. 如表记录了两位射击运动员的八次训练成绩:次数 环数 运动员 第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲 10 7 7 8 8 8 9 7 乙1055899810根据以上数据,设甲、乙的平均数分别为甲−、乙−,甲、乙的方差分别为s 甲2,s 乙2,则下列结论正确的是( )A. x 甲−=x 乙−,s 甲2<s 乙2B. x 甲−=x 乙−,s 甲2>s 乙2C. x 甲−>x 乙−,s 甲2<s 乙2D. x 甲−<x 乙−,s 甲2<s 乙27. 如图,∠EOF 的顶点O 是边长为2的等边△ABC 的重心,∠EOF 的两边与△ABC 的边交于E ,F ,∠EOF =120°,则∠EOF 与△ABC 的边所围成阴影部分的面积是( )A. √32B. 2√35C. √33D. √348. 已知抛物线y =x 2-1与y 轴交于点A ,与直线y =kx (k 为任意实数)相交于B ,C 两点,则下列结论不正确的是( )A. 存在实数k ,使得△ABC 为等腰三角形B. 存在实数k ,使得△ABC 的内角中有两角分别为30∘和60∘C. 任意实数k ,使得△ABC 都为直角三角形D. 存在实数k ,使得△ABC 为等边三角形二、填空题(本大题共8小题,共24.0分)9. 分解因式:b 2+c 2+2bc -a 2=______.10. 如图,六边形ABCDEF 的内角都相等,AD ∥BC ,则∠DAB =______°.11. 将抛物线y =2x 2的图象,向左平移1个单位,再向下平移2个单位,所得图象的解析式为______. 12. 如图,已知直角△ABC 中,CD 是斜边AB 上的高,AC =4,BC =3,则AD =______.13. 某产品每件的生产成本为50元,原定销售价65元,经市场预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%.若要使半年以后的销售利润不变,设每个季度平均降低成本的百分率为x ,根据题意可列方程是______.14. 若关于x 的不等式组{x−24<x−132x −m ≤2−x有且只有两个整数解,则m 的取值范围是______.15. 如图,⊙O 的两条相交弦AC 、BD ,∠ACB =∠CDB =60°,AC =2√3,则⊙O的面积是______.16. 如图,△ABC 和△CDE 都是等边三角形,且点A 、C 、E 在同一直线上,AD 与BE 、BC 分别交于点F 、M ,BE 与CD 交于点N .下列结论正确的是______(写出所有正确结论的序号).①AM =BN ;②△ABF ≌△DNF ;③∠FMC +∠FNC =180°;④1MN =1AC +1CE三、计算题(本大题共1小题,共10.0分)17. (1)计算:(2019-√2)0-2-1+|-1|+sin 245°(2)化简:2xyx 2−y 2÷(1x−y +1x+y )四、解答题(本大题共7小题,共62.0分)18. 如图,AB =AD ,AC =AE ,∠BAE =∠DAC .求证:∠C =∠E .19. 某校在七、八、九三个年级中进行“一带一路”知识竞赛,分别设有一等奖、二等奖、三等奖、优秀奖、纪念奖.现对三个年级同学的获奖情况进行了统计,其中获得纪念奖有17人,获得三等奖有10人,并制作了如图不完整的统计图. (1)求三个年级获奖总人数; (2)请补全扇形统计图的数据;(3)在获一等奖的同学中,七年级和八年级的人数各占14,其余为九年级的同学,现从获一等奖的同学中选2名参加市级比赛,通过列表或者树状图的方法,求所选出的2人中既有七年级又有九年级同学的概率.20.甲、乙两辆货车分别从A、B两城同时沿高速公路向C城运送货物.已知A、C两城相距450千米,B、C两城的路程为440千米,甲车比乙车的速度快10千米/小时,甲车比乙车早半小时到达C城.求两车的速度.21.如图,为了测得某建筑物的高度AB,在C处用高为1米的测角仪CF,测得该建筑物顶端A的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A的仰角为60°.求该建筑物的高度AB.(结果保留根号)(k>0)的图象和一次函数y=-x+b的图象都过22.如图,已知反比例函数y=kx点P(1,m),过点P作y轴的垂线,垂足为A,O为坐标原点,△OAP的面积为1.(1)求反比例函数和一次函数的解析式;(2)设反比例函数图象与一次函数图象的另一交点为M,过M作x轴的垂线,垂足为B,求五边形OAPMB的面积.23.如图,线段AB经过⊙O的圆心O,交⊙O于A、C两点,BC=1,AD为⊙O的弦,连结BD,∠BAD=∠ABD=30°,连结DO并延长交⊙O于点E,连结BE交⊙O于点M.(1)求证:直线BD是⊙O的切线;(2)求⊙O的半径OD的长;(3)求线段BM的长.24.如图,在平面直角坐标系xOy中,已知抛物线y=ax2-2x+c与直线y=kx+b都经过A(0,-3)、B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;(3)设点P是直线AB下方抛物线上的一动点,当△PAB面积最大时,求点P的坐标,并求△PAB面积的最大值.答案和解析1.【答案】A【解析】解:2的倒数是,故选:A.根据倒数的定义,可以求得题目中数字的倒数,本题得以解决.本题考查倒数,解答本题的关键是明确倒数的定义.2.【答案】B【解析】解:0.000052=5.2×10-5;故选:B.由科学记数法可知0.000052=5.2×10-5;本题考查科学记数法;熟练掌握科学记数法a×10n中a与n的意义是解题的关键.3.【答案】D【解析】解:由旋转变换的性质可知,△ADE≌△ABF,∴正方形ABCD的面积=四边形AECF的面积=25,∴BC=5,BF=DE=1,∴FC=6,CE=4,∴EF===2.故选:D.根据旋转变换的性质求出FC、CE,根据勾股定理计算即可.本题考查的是旋转变换的性质、勾股定理的应用,掌握性质的概念、旋转变换的性质是解题的关键.4.【答案】C【解析】解:根据题意得:x1+x2=-=2,故选:C.根据“一元二次方程x2-2x+b=0的两根分别为x1和x2”,结合根与系数的关系,即可得到答案.本题考查了根与系数的关系,正确掌握一元二次方程根与系数的关系是解题的关键.5.【答案】B【解析】解:从俯视图可得最底层有5个小正方体,由主视图可得上面一层是2个,3个或4个小正方体,则组成这个几何体的小正方体的个数是7个或8个或9个,组成这个几何体的小正方体的个数最多是9个.故选:B.从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.本题考查三视图的知识及从不同方向观察物体的能力,解题中用到了观察法.确定该几何体有几列以及每列方块的个数是解题关键.6.【答案】A【解析】解:(1)=(10+7+7+8+8+8+9+7)=8;=(10+5+5+8+9+9+8+10)=8;s甲2=[(10-8)2+(7-8)2+(7-8)2+(8-8)2+(8-8)2+(8-8)2+(9-8)2+(7-8)2]=1;s乙2=[(10-8)2+(5-8)2+(5-8)2+(8-8)2+(9-8)2+(9-8)2+(8-8)2+(10-8)2]=,∴=,s 甲2<s乙2,故选:A.分别计算平均数和方差后比较即可得到答案.本题考查了方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.【答案】C【解析】解:连接OB、OC,过点O作ON⊥BC,垂足为N,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O为△ABC的内心∴∠OBC=∠OBA=∠ABC,∠OCB=∠ACB.∴∠OBA=∠OBC=∠OCB=30°.∴OB=OC.∠BOC=120°,∵ON⊥BC,BC=2,∴BN=NC=1,∴ON=tan∠OBC•BN=×1=,∴S△OBC=BC•ON=.∵∠EOF=∠AOB=120°,∴∠EOF-∠BOF=∠AOB-∠BOF,即∠EOB=∠FOC.在△EOB和△FOC中,,∴△EOB≌△FOC(ASA).∴S阴影=S△OBC=故选:C.连接OB、OC,过点O作ON⊥BC,垂足为N,由点O是等边三角形ABC的内心可以得到∠OBC=∠OCB=30°,结合条件BC=2即可求出△OBC的面积,由∠EOF=∠BOC,从而得到∠EOB=∠FOC,进而可以证到△EOB≌△FOC,因而阴影部分面积等于△OBC的面积.此题考查了等边三角形的性质、等腰三角形的性质、三角函数的定义、全等三角形的判定与性质、三角形的内心、三角形的内角和定理,有一定的综合性,作出辅助线构建全等三角形是解题的关键.8.【答案】D【解析】解:A、如图1,可以得△ABC为等腰三角形,正确;B、如图3,∠ACB=30°,∠ABC=60°,可以得△ABC的内角中有两角分别为30°和60°,正确;C、如图2和3,∠BAC=90°,可以得△ABC为直角三角形,正确;D、不存在实数k,使得△ABC为等边三角形,不正确;本题选择结论不正确的,故选:D.通过画图可解答.本题考查了二次函数和正比例函数图象,等边三角形和判定,直角三角形的判定,正确画图是关键.9.【答案】(b+c+a)(b+c-a)【解析】解:原式=(b+c)2-a2=(b+c+a)(b+c-a).故答案为:(b+c+a)(b+c-a)当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题考查了分组分解法分解因式,难点是采用两两分组还是三一分组.比如本题有a的二次项,a的一次项,有常数项,所以首要考虑的就是三一分组.10.【答案】60【解析】解:在六边形ABCDEF中,(6-2)×180°=720°,=120°,∴∠B=120°,∵AD∥BC,∴∠DAB=180°-∠B=60°,故答案为:60°.先根据多边形内角和公式(n-2)×180°求出六边形的内角和,再除以6即可求出∠B的度数,由平行线的性质可求出∠DAB的度数.本题考查了多边形的内角和公式,平行线的性质等,解题关键是能够熟练运用多边形内角和公式及平行线的性质.11.【答案】y=2(x+1)2-2【解析】解:将抛物线y=2x2的图象,向左平移1个单位,再向下平移2个单位,所得图象的解析式为:y=2(x+1)2-2.故答案为:y=2(x+1)2-2.直接利用二次函数的平移规律进而得出答案.此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.12.【答案】165【解析】解:在Rt△ABC中,AB==5,由射影定理得,AC2=AD•AB,∴AD==,故答案为:.根据勾股定理求出AB,根据射影定理列式计算即可.本题考查的是射影定理、勾股定理,在直角三角形中,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.13.【答案】65×(1-10%)×(1+5%)-50(1-x)2=65-50【解析】解:设每个季度平均降低成本的百分率为x,依题意,得:65×(1-10%)×(1+5%)-50(1-x)2=65-50.故答案为:65×(1-10%)×(1+5%)-50(1-x)2=65-50.设每个季度平均降低成本的百分率为x,根据利润=售价-成本价结合半年以后的销售利润为(65-50)元,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.14.【答案】-2≤m<1【解析】解:解不等式①得:x>-2,解不等式②得:x≤,∴不等式组的解集为-2<x≤,∵不等式组只有两个整数解,∴0≤<1,解得:-2≤m<1,故答案为-2≤m<1.先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于m的不等式组,求出即可.本题考查了解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出关于m的不等式组,难度适中.15.【答案】16π【解析】解:∵∠A=∠BDC,而∠ACB=∠CDB=60°,∴∠A=∠ACB=60°,∴△ACB为等边三角形,∵AC=2,∴圆的半径为4,∴⊙O的面积是16π,故答案为:16π.由∠A=∠BDC,而∠ACB=∠CDB=60°,所以∠A=∠ACB=60°,得到△ACB为等边三角形,又AC=2,从而求得半径,即可得到⊙O的面积.本题考查了圆周角定理,解题的关键是能够求得圆的半径,难度不大.16.【答案】①③④【解析】证明:①∵△ABC和△CDE都是等边三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=60°,∴∠ACB+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴AD=BE,∠ADC=∠BEC,∠CAD=∠CBE,在△DMC和△ENC中,,∴△DMC≌△ENC(ASA),∴DM=EN,CM=CN,∴AD-DM=BE-EN,即AM=BN;②∵∠ABC=60°=∠BCD , ∴AB ∥CD ,∴∠BAF=∠CDF ,∵∠AFB=∠DFN ,∴△ABF ∽△DNF ,找不出全等的条件;③∵∠AFB+∠ABF+∠BAF=180°,∠FBC=∠CAF , ∴∠AFB+∠ABC+∠BAC=180°, ∴∠AFB=60°, ∴∠MFN=120°, ∵∠MCN=60°, ∴∠FMC+∠FNC=180°; ④∵CM=CN ,∠MCN=60°, ∴△MCN 是等边三角形,∴∠MNC=60°, ∵∠DCE=60°, ∴MN ∥AE , ∴==, ∵CD=CE ,MN=CN , ∴=, ∴=1-,两边同时除MN 得=-, ∴=.故答案为①③④①根据等边三角形性质得出AC=BC ,CE=CD ,∠ACB=∠ECD=60°,求出∠BCE=∠ACD ,根据SAS 推出两三角形全等即可;②根据∠ABC=60°=∠BCD ,求出AB ∥CD ,可推出△ABF ∽△DNF ,找不出全等的条件; ③根据角的关系可以求得∠AFB=60°,可求得MFN=120°,根据∠BCD=60°可解题; ④根据CM=CN ,∠MCN=60°,可求得∠CNM=60°,可判定MN ∥AE ,可求得==,可解题.本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,考查了平行线的运用,考查了正三角形的判定,本题属于中档题. 17.【答案】解:(1)原式=1-12+1+(√22)2 =2-12+12=2 (2)原式=2xy (x+y)(x−y)÷2x (x+y)(x−y)=2xy (x+y)(x−y)×(x+y)(x−y)2x=y .【解析】(1)先根据0指数幂、负整数指数幂的意义、特殊角的三角函数值,计算出(2019-)0、2-1、sin 245°的值,再加减;(2)先算括号里面的加法,再把除法转化为乘法,求出结果.本题考查了零指数、负整数指数幂的意义,特殊角的三角函数值、分式的混合运算等知识点,题目难度不大,综合性较强,是中考热点题型.a 0=1(a≠0);a -p =(a≠0).18.【答案】证明:∵∠BAE =∠DAC∴∠BAE +∠CAE =∠DAC +∠CAE∴∠CAB =∠EAD ,且AB =AD ,AC =AE∴△ABC ≌△ADE (SAS )∴∠C =∠E【解析】由“SAS”可证△ABC ≌△ADE ,可得∠C=∠E .本题考查了全等三角形的判定和性质,证明∠CAB=∠EAD 是本题的关键.19.【答案】解:(1)三个年级获奖总人数为17÷34%=50(人);(2)三等奖对应的百分比为1050×100%=20%, 则一等奖的百分比为1-(14%+20%+34%+24%)=4%,补全图形如下:(3)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A 、B 、C 分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率为13.【解析】(1)由获得纪念奖的人数及其所占百分比可得答案;(2)先求出获得三等奖所占百分比,再根据百分比之和为1可得一等奖对应百分比,从而补全图形;(3)画树状图(用A 、B 、C 分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.也考查了统计图.20.【答案】解:设乙车的速度为x 千米/时,则甲车的速度为(x +10)千米/时.根据题意,得:450x+10+12=440x ,解得:x =80,或x =-110(舍去),∴x =80,经检验,x =,80是原方程的解,且符合题意.当x =80时,x +10=90.答:甲车的速度为90千米/时,乙车的速度为80千米/时.【解析】设乙车的速度为x 千米/时,则甲车的速度为(x+10)千米/时,路程知道,且甲车比乙车早半小时到达C 城,以时间做为等量关系列方程求解.本题考查分式方程的应用、分式方程的解法,分析题意,找到合适的等量关系是解决问题的关键.根据时间=,列方程求解.21.【答案】解:设AM =x 米,在Rt △AFM 中,∠AFM =45°,∴FM =AM =x , 在Rt △AEM 中,tan ∠AEM =AM EM , 则EM =AM tan∠AEM =√33x , 由题意得,FM -EM =EF ,即x -√33x =40,解得,x =60+20√3,∴AB =AM +MB =61+20√3,答:该建筑物的高度AB 为(61+20√3)米.【解析】设AM=x 米,根据等腰三角形的性质求出FM ,利用正切的定义用x 表示出EM ,根据题意列方程,解方程得到答案.本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.22.【答案】解:(1)∵过点P 作y 轴的垂线,垂足为A ,O 为坐标原点,△OAP 的面积为1. ∴S △OPA =12|k |=1,∴|k |=2,∵在第一象限,∴k =2, ∴反比例函数的解析式为y =2x ;∵反比例函数y =k x (k >0)的图象过点P (1,m ),∴m =21=2,∴P (1,2),∵次函数y =-x +b 的图象过点P (1,2),∴2=-1+b ,解得b =3,∴一次函数的解析式为y =-x +3;(2)设直线y =-x +3交x 轴、y 轴于C 、D 两点,∴C (3,0),D (0,3), 解{y =−x +3y =2x 得{y =2x=1或{y =1x=2, ∴P (1,2),M (2,1),∴PA =1,AD =3-2=1,BM =1,BC =3-2=1, ∴五边形OAPMB 的面积为:S △COD -S △BCM -S △ADP =12×3×3-12×1×1-12×1×1=72. 【解析】(1)根据系数k 的几何意义即可求得k ,进而求得P (1,2),然后利用待定系数法即可求得一次函数的解析式;(2)设直线y=-x+3交x 轴、y 轴于C 、D 两点,求出点C 、D 的坐标,然后联立方程求得P 、M 的坐标,最后根据S 五边形=S △COD -S △APD -S △BCM ,根据三角形的面积公式列式计算即可得解;本题考查了反比例函数与一次函数的交点问题,三角形的面积以及反比例函数系数k 的几何意义,求得交点坐标是解题的关键.23.【答案】(1)证明:∵OA =OD ,∠A =∠B =30°, ∴∠A =∠ADO =30°,∴∠DOB =∠A +∠ADO =60°,∴∠ODB =180°-∠DOB -∠B =90°,∵OD 是半径,∴BD 是⊙O 的切线;(2)∵∠ODB =90°,∠DBC =30°,∴OD =12OB , ∵OC =OD ,∴BC =OC =1, ∴⊙O 的半径OD 的长为1;(3)∵OD =1,∴DE =2,BD =√3,∴BE =√BD 2+DE 2=√7,∵BD 是⊙O 的切线,BE 是⊙O 的割线,∴BD 2=BM •BE ,∴BM =BD 2BE =√7=3√77. 【解析】(1)根据等腰三角形的性质得到∠A=∠ADO=30°,求出∠DOB=60°,求出∠ODB=90°,根据切线的判定推出即可;(2)根据直角三角形的性质得到OD=OB ,于是得到结论;(3)解直角三角形得到DE=2,BD=,根据勾股定理得到BE==,根据切割线定理即可得到结论.本题考查了切线的判定和性质,圆周角定理,直角三角形的性质,勾股定理,切割线定理,正确的识别图形是解题的关键.24.【答案】解:(1)∵抛物线y =ax 2-2x +c 经过A (0,-3)、B (3,0)两点,∴{c =−39a−6+c=0,∴{c =−3a=1,∴抛物线的解析式为y =x 2-2x -3,∵直线y =kx +b 经过A (0,-3)、B (3,0)两点, ∴{b =−33k+b=0,解得:{b =−3k=1,∴直线AB 的解析式为y =x -3,(2)∵y =x 2-2x -3=(x -1)2-4,∴抛物线的顶点C 的坐标为(1,-4),∵CE ∥y 轴,∴E (1,-2),∴CE =2,①如图,若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE =MN ,设M (a ,a -3),则N (a ,a 2-2a -3),∴MN =a -3-(a 2-2a -3)=-a 2+3a ,∴-a 2+3a =2,解得:a =2,a =1(舍去),∴M (2,-1),②如图,若点M 在x 轴上方,四边形CENM 为平行四边形,则CE =MN , 设M (a ,a -3),则N (a ,a 2-2a -3),∴MN =a 2-2a -3-(a -3)=a 2-3a ,∴a 2-3a =2, 解得:a =3+√172,a =3−√172(舍去),∴M (3+√172,−3+√172),综合可得M 点的坐标为(2,-1)或(3+√172,−3+√172).(3)如图,作PG ∥y 轴交直线AB 于点G , 设P (m ,m 2-2m -3),则G (m ,m -3), ∴PG =m -3-(m 2-2m -3)=-m 2+3m , ∴S △PAB =S △PGA +S △PGB =12PG ⋅OB =12×(−m 2+3m)×3=−32m 2+92m =-32(m −32)2+278,∴当m =32时,△PAB 面积的最大值是278,此时P 点坐标为(32,−32).【解析】(1)将A (0,-3)、B (3,0)两点坐标分别代入二次函数的解析式和一次函数解析式即可求解; (2)先求出C 点坐标和E 点坐标,则CE=2,分两种情况讨论:①若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE=MN ,②若点M 在x 轴上方,四边形CENM 为平行四边形,则CE=MN ,设M (a ,a-3),则N (a ,a 2-2a-3),可分别得到方程求出点M 的坐标;(3)如图,作PG ∥y 轴交直线AB 于点G ,设P (m ,m 2-2m-3),则G (m ,m-3),可由,得到m的表达式,利用二次函数求最值问题配方即可.本题是二次函数综合题,考查了待定系数法求函数解析式,二次函数求最值问题,以及二次函数与平行四边形、三角形面积有关的问题.。

四川省宜宾市2021年中考数学真题试题(Word+答案+解析)

四川省宜宾市2021年中考数学真题试题(Word+答案+解析)
三、解答题;本大题共7个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(1)计算: ;
(2)化简: .
20.如图,已知OA=OC,OB=OD,∠AOC=∠BOD.求证:△AOB≌△COD.
21.为帮助学生养成热爱美、发现美的艺术素养,某校开展了“一人一艺”的艺术选修课活动.学生根据自己的喜好选择一门艺术项目(A:书法,B:绘画,C:摄影,D:泥塑,E:剪纸),张老师随机对该校部分学生的选课情况进行调查后,制成了两幅不完整的统计图(如图所示).
A.4B.5C.6D.12
【答案】C
【解析】
【分析】由于m、n是一元二次方程x2+3x−9=0的两个根,根据根与系数的关系可得m+n=−3,mn=−9,而m是方程的一个根,可得m2+3m−9=0,即m2+3m=9,那么m2+4m+n=m2+3m+m+n,再把m2+3m、m+n的值整体代入计算即可.
【详解】解:∵m、n是一元二次方程x2+3x−9=0的两个根,
1.﹣2的绝对值是()
A. 2B. C. D.
【答案】A
【解析】
【详解】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.
2.下列图形是轴对称图形的是( )
A. B. C. D.
【答案】D
【解析】
【分析】根据轴对称图形的定义,逐一判断选项,即可.
A.平行四边形是轴对称图形B.平行四边形的邻边相等
C.平行四边形的对角线互相垂直D.平行四边形的对角线互相平分
8.若关于x的分式方程 有增根,则m的值是( )
A.1B. ﹣1C.2D. ﹣2
9.如图,在△ABC中,点O是角平分线AD、BE的交点,若AB=AC=10,BC=12,则tan∠OBD的值是( )

2019年四川省宜宾市中考数学试题(WORD版,含答案)

2019年四川省宜宾市中考数学试题(WORD版,含答案)

DCBADC B A 宜宾市2019年高中阶段学校招生考试数学试卷(考试时间:120分钟,全卷满分120分)注意事项:1.答题前,必须把考号和姓名写在密封线内;2.直接在试卷上作答,不得将答案写到密封线内.一、选择题:(本大题8个小题,每小题3分,共24分)以下每个小题均给出了代号为A 、B 、C 、D 的四个答案,其中只有一个答案是正确的,请将正确答案的代号直接填在题后的括号中.1.||–5的值是( )A .15B .5C .–5D .–15 2.根式x –3中x 的取值范围是( )A .x ≥ 3B .x ≤ 3C . x < 3D . x > 3 3. 下列运算正确的是( ) A .3a –2a = 1 B .a 2·a 3=a 6 C . (a –b )2=a 2–2ab +b 2 D . (a +b )2=a 2+b 2 4.如图,直线AB 、CD 相交于点E ,DF ∥AB . 若∠D =70°,则∠CEB 等于( ) A .70° B .80°C .90°D .110°5.分式方程 2x –1 = 12的解是( )A .3B .4C .5D 无解.6.如图所示的几何体的正视图是( )7.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( ) A .3 B .4 C .5 D .68.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线 是A →D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三 角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( )FEDCBA B CCB二、填空题:(本大题共8个小题,每小题3分,共72分)请把答案直接填在题中的横线上. 9.分解因式:4x 2–1= .10.某城市在“五一”期间举行了“让城市更美好”大型书画、摄影展览活动,据统计,星期一至星期日参观的人数分别是:2030、3150、1320、1460、1090、据的中位数和众数分别是 .11.如图,PA 、PB 是⊙O 的切线,A 、B 为切点, AC 是⊙O 的直径,∠P = 40°,则∠BAC = . 12.已知一元二次方程x 2–6x –5=0两根为a 、b ,则 1a + 1b 的值是 13.一个圆锥形的零件的母线长为4,底面半径为1, 则这个圆锥形零件的全面积是 .14.如图,边长为2的正方形ABCD 的中心在直角坐标系的原点O ,AD ∥x 轴,以O 为顶点且过A 、D 两点的抛物线与以O 为顶点且经过B 、C 两点的抛物线将正方形分割成几部分,则图中阴影部份的面积是15.某城市居民最低生活保障在2019年是240元,经过连续两年的增加,到2019年提高到345.6元,则该城市两年最低生活保障的平均年增长率是 .16.如图,在△ABC 中,AB =BC ,将△ABC 绕点B 顺时针旋转 α度,得到△A 1BC 1,A 1B 交AC 于点E ,A 1C 1分别交AC 、BC于点D 、F ,下列结论:①∠CDF =α,②A 1E =CF ,③DF =FC ,④AD =CE ,⑤A 1F =CE . 其中正确的是 (写出正确结论的序号).三、解答题:(本大题共8小题,共72分)解答时应写出文字说明, 证明过程或演算步骤. 17.(每小题5分,共15分)(1)计算:3(3–π)0– 20–155 + (–1)2019xC 1A 1F E D CA(2)先化简,再求值:3x –3 – 18x 2 – 9 ,其中x = 10–3(3)如图,平行四边形ABCD 的对角线AC 、BD 交于点O ,E 、F 在AC 上,G 、H 在BD 上,且AF =CE ,BH =DG ,求证:AG ∥HE18.(本小题6分)解不等式组⎩⎪⎨⎪⎧x –83 < 01 – 12 x ≤ – 13x,并把它的解集在数轴上表示出来.OH GABCDEF19.(本小题8分)某校开展了以“人生观、价值观”为主题的班队活动,活动结束后,初三(2)班数学兴趣小组提出了5个主要观点并在本班50名学生中进行了调查(要求每位同学只选自己最认可的一项观点),并制成了如下扇形统计图.(1)该班学生选择“和谐”观点的有人,在扇形统计图中,“和谐”观点所在扇形区域的圆心角是度.(2)如果该校有1500名初三学生,利用样本估计选择“感恩”观点的初三学生约有人.(3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查,求恰好选到“和谐”和“感恩”观点的概率(用树状图或列表法分析解答)互助10%20.(本小题满分7分)某县为鼓励失地农民自主创业,在2019年对60位自主创业的失地农民自主创业的失地农民进行奖励,共计划奖励10万元.奖励标准是:失地农民自主创业连续经营一年以上的给予1000元奖励;自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励.问:该县失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别有多少人?21.(本小题满分7分)如图,一次函数的图象与反比例函数y1= –3x( x<0)的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0).当x<–1时,一次函数值大于反比例函数的值,当x>–1时,一次函数值小于反比例函数值.(1)求一次函数的解析式;(2)设函数y2= ax(x>0)的图象与y1= –3x(x<0)的图象关于y轴对称.在y2=ax(x>0)的图象上取一点P(P点的横坐标大于2),过P作PQ⊥x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.x22.(本小题满分7分)如图,飞机沿水平方向(A、B两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M到飞行路线AB的距离MN.飞机能够测量的数据有俯角和飞行的距离(因安全因素,飞机不能飞到山顶的正上方N处才测飞行距离),请设计一个距离MN 的方案,要求:(1)指出需要测量的数据(用字母表示,并在图中标出);(2)用测出的数据写出求距离MN的步骤.ANM23.(本小题满分10分)⌒上取一点E使∠EBC = 已知:在△ABC中,以AC边为直径的⊙O交BC于点D,在劣弧AD∠DEC,延长BE依次交AC于G,交⊙O于H.(1)求证:AC⊥BH(2)若∠ABC= 45°,⊙O的直径等于10,BD =8,求CE的长.24.(本小题满分12分)已知抛物线的顶点是C(0,a) (a>0,a为常数),并经过点(2a,2a),点D(0,2a)为一定点.(1)求含有常数a的抛物线的解析式;(2)设点P是抛物线任意一点,过P作PH⊥x轴,垂足是H,求证:PD = PH;(3)设过原点O的直线l与抛物线在第一象限相交于A、B两点,若DA=2DB,且S△ABD = 42,求a的值.x宜宾市2019年高中阶段学校招生考试数学试题答案及评分意见说明:一、本解答给出了一种或几种解法供参考,如果考生的解答与本解答不同,但结果正确,可比照评分意见制订相应的评分细则.8 6O第一个观点⑤④③②①二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半,如果后继部分的解答有严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得累加分数.四、只给整数分数,选择题和填空题不给中间分.一、选择题(每小题3 分,共24分)题号 1 2 3 4 5 6 7 8答案 B A C D C D D B二、填空题(每小题3 分,共24分)9.(2x+1)(2x–1);10.2030、3150;11.20°;12.–65;13.5π;14.2;15.20%;16.①②⑤.三、解答题(本大题共8个题,共72分)17.(1)解:原式=3⨯1–(2–3)+(–1)(4分)= 3 (5分)(2 )解:3x–3–18x2–9=3x–3–18(x+3)(x–3)(2分)=3(x–3)(x+3)(x–3)=3x+3(4分)当x = 10时,∴原式=310=31010(5分)(3)证明:∵平行四边形ABCD中,OA=OC,(1分)由已知:AF=CEAF–OA= CE–OC∴OF=OE(3分)同理得:OG=OH∴四边形EGFH是平行四边形(4分)∴GF∥HE(5分)18.解:⎩⎪⎨⎪⎧x–83< 0………………………①1 –12x ≤–13x…………………②由①得:x<8 (2分)由②得∴不等式的解集是:6≤x<8 (6分)19.(1)5,36;(2分)(2)420;(4分)(3)以下两种方法任选一种(用树状图)设平等、进取、和谐、感恩、互助的序号依次是①②③④⑤OHGAB CDEF∴恰好选到“和谐”和“感恩”观点的概率是 110 (8分) (用列表法)平等 进取 和谐 感恩 互助∴恰好选到“和谐”和“感恩”观点的概率是 110 (8分)20.解:方法一设失地农民中自主创业连续经营一年以上的有x 人,则根据题意列出方程 1000x +(60–x )(1000+2000)=100000 (3分) 解得:x = 40 (5分) ∴60 – x =60 – 40 = 20 (6分)答:失地农民中自主创业连续经营一年以上的有40,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人. (7分)方法二设失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民有分别有x ,y 人,根据题意列出方程组:⎩⎨⎧x +y =601000x +(1000+2000)y =100000 (3分)解之得:⎩⎨⎧x =40y =20 (6分)答:失地农民中自主创业连续经营一年以上的有40,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人. (7分)21.解:(1)∵x < –1时,一次函数值大于反比例函数值,当x >–1时,一次函数值小于反比例函数值.∴A 点的横坐标是–1,∴A (–1,3) (1分) 设一次函数解析式为y = kx +b ,因直线过A 、C则⎩⎨⎧–k +b =32k +b =0 ,解之得:⎩⎨⎧k = –1b =1 ,∴一次函数解析式为y = –x +2 (3分)(2)∵y 2 = a x (x >0)的图象与y 1= – 3x (x <0)的图象y 轴对称, ∴y 2 = 3x (x >0) (4分)∵B 点是直线y = –x +2与y 轴的交点,∴B (0,2) (5分) 设P (n ,3n ),n >2 S 四边形BCQP –S △BOC =2∴12( 2+ 3n )n – 12⨯2⨯2 = 2,n = 52, (6分) ∴P (52,65) (7分) 22.解:连结AD 交BH 于F此题为开放题,答案不唯一,只要方案设计合理,可参照给分. (1)如图,测出飞机在A 处对山顶 的俯角为α,测出飞机在B 处对山顶的俯角为β,测出AB 的距离为d ,连结AM ,BM .(3分)(2)第一步骤:在Rt △AMN 中, tan α = MNAN ∴AN = MNtan α第二步骤:在Rt △BMN 中tan β = MN BN ∴AN = MNtan β其中:AN = d +BN解得:MN = d ·tan α·tan βtan β–tan α 23.证明:(1)连结AD (1分) ∵∠DAC = ∠DEC ∠EBC = ∠DEC∴∠DAC = ∠EBC (2分) 又∵AC 是⊙O 的直径 ∴∠ADC =90° (3分) ∴∠DCA +∠DAC =90° ∴∠EBC +∠DCA = 90°∴∠BGC =180°–(∠EBC +∠DCA ) = 180°–90°=90° ∴AC ⊥BH (5分) (2)∵∠BDA =180°–∠ADC = 90° ∠ABC = 45° ∴∠BAD = 45° ∴BD = AD∵BD = 8 ∴AD =8 (6分) 又∵∠ADC = 90° AC =10∴由勾股定理 DC =AC 2–AD 2= 102–82 = 6 ∴BC =BD +DC =8+6=14 (7分) 又∵∠BGC = ∠ADC = 90° ∠BCG =∠ACD ∴△BCG ∽△ACD ∴ CGDC = BCACβαAB NM∴CG 6 = 1410 ∴CG = 425 (8分)连结AE ∵AC 是直径 ∴∠AEC =90° 又因 EG ⊥AC∴ △CEG ∽△CAE ∴ CE AC = CG CE ∴CE 2=AC · CG = 425 ⨯ 10 = 84 ∴CE = 84= 2 21 (10分)24.解:(1)设抛物线的解析式为y =kx 2+a (1分) ∵点D (2a ,2a )在抛物线上,4a 2k +a = 2a ∴k = 14a (3分) ∴抛物线的解析式为y = 14a x 2+a (4分)(2)设抛物线上一点P (x ,y ),过P 作PH ⊥x 轴,PG ⊥y 轴,在Rt △GDP 中, 由勾股定理得:PD 2=DG 2+PG 2=(y –2a )2+x 2 =y 2 – 4ay +4a 2+x 2∵y = 14a x 2+a ∴x 2 = 4a ⨯ (y – a )= 4ay – 4a 2 ∴PD 2= y 2– 4ay +4a 2+4ay – 4a 2= y 2=PH 2∴PD = PH(3)过B 点BE ⊥ x 轴,AF ⊥x 轴. 由(2)的结论:BE =DB AF =DA ∵DA =2DB ∴AF =2BE ∴AO = 2BO ∴B 是OA 的中点, ∴C 是OD 的中点, 连结BC∴BC = DA 2 = AF2 = BE = DB 过B 作BR ⊥y 轴,∵BR ⊥CD ∴CR =DR ,OR = a + a2 = 3a2 , ∴B 点的纵坐标是3a2,又点B 在抛物线上, ∴3a2 = 14a x 2+a ∴x 2 =2a 2 ∵x >0 ∴x = 2a∴B (2a ,3a2 ) (10分) AO = 2OB , ∴S △ABD =S △OBD = 4 2 所以,12⨯2a ⨯2a = 4 2∴a 2= 4 ∵a >0 ∴a = 2 (12分)x。

2021年四川省宜宾市数学中考真题含答案解析(word解析版)

2021年四川省宜宾市数学中考真题含答案解析(word解析版)

2021年四川省宜宾市中考数学试卷一.选择题(本大题共8小题,每小题3分,满分24分。

在每小题给出的四个选项中,只有一个是符合题目要求的,请将正确选项填在括号内。

)1.(2013宜宾)下列各数中,最小的数是( ) A.2B.﹣3C.﹣D.0考点:有理数大小比较.分析:根据正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,进行比较即可.解答:解:∵﹣3<﹣<0<2,∴最小的数是﹣3。

故选B.点评:此题考查了有理数的大小比较,要熟练掌握任意两个有理数比较大小的方法:正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小. 2.(2013宜宾)据宜宾市旅游局公布的数据,今年“五一”小长假期间,全市实现旅游总收入330000000元.将330000000用科学记数法表示为( ) A.3.3×108B.3.3×109C.3.3×107D.0.33×1010考点:科学记数法—表示较大的数.专题:计算题.分析:找出所求数字的位数,减去1得到10的指数,表示成科学记数法即可.解答:解:330000000用科学记数法表示为3.3×108.故选A.点评:此题考查了科学记数法﹣表示较大的数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 3.(2013宜宾)下列水平放置的四个几何体中,主视图与其它三个不相同的是( ) A.B.C.D.考点:简单几何体的三视图.分析:分别找到四个几何体从正面看所得到的图形比较即可.解答:解:A.主视图为长方形。

B.主视图为长方形。

C.主视图为长方形。

D.主视图为三角形.则主视图与其它三个不相同的是D.故选D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图. 4.(2013宜宾)要判断小强同学的数学考试成绩是否稳定,那么需要知道他最近几次数学考试成绩的( ) A.方差B.众数C.平均数D.中位数考点:方差。

2023年四川省宜宾市中考数学试卷(含答案)070849

2023年四川省宜宾市中考数学试卷(含答案)070849

2023年四川省宜宾市中考数学试卷试卷考试总分:149 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 12 小题 ,每题 4 分 ,共计48分 )1. 的相反数是 A.B.C.D.2. 下列计算正确的是( )A.=B.=C.=D.=3. 下列图案中,既是轴对称图形又是中心对称图形的有 ( )A.个B.个C.个D.个4. 这段时间,一个叫“学习强国”的理论学习平台火了,很多人主动下载、积极打卡,兴起了一股全民学习的热潮,据不完全统计,截止月号,华为官方应用市场“学习强国”下载量已达次,请将用科学记数法表示为( )A.B.C.D.5. 如图所示,直线、被直线、所截,且,与相交于点,则( )−12()−22−12122a +3b 5ab5a −3a 22−3a a 2−a−2b +3b a 2a 2ba 2123442APP 88300000883000000.883×1098.83×1088.83×10788.3×106a b c d a//b c d O α=A.B.C.D.6. 将克含糖的糖水与克含糖的糖水混合,混合后的糖水含糖( )A.%B.C.D.7. 如图,是的直径,点,是圆上两点,且,则( )A.B.C.D.8. 分式方程的解是( )A.=B.=C.=D.=11∘33∘43∘68∘x 10%y 30%20×100%x+y2×100%x+3y20×100%x+3y10x+10y AB ⊙O C D ∠AOC =126∘∠CDB =27∘64∘54∘32∘=11x+2x 1x −1x 2x −29. 如图,用一个半径为的定滑轮带动重物上升,滑轮上一点旋转了,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了( )A.B.C.D.10. 如图,已知正方形边长为,连接、,平分交于点,则长为( )A. B.C.D.11. 在平面直角坐标系中,点是坐标原点,点是轴正半轴上的一个动点,过点作轴的平行线交反比例函数 的图象于点,当点的横坐标逐渐增大时,的面积将会( )A.先增大后减小B.不变C.逐渐减小D.逐渐增大12. 如图,正方形中,点在边上,点在边上,若,则下列结论:①;②;③;④;⑤.其中结论正确的序号是 ( )A.①②③B.④⑤5cm A 108∘πcm2πcm3πcm5πcmABCD 1AC BD CE ∠ACD BD E DE 2−2−1−12−O A x A y y =(x >0)2x B A △OAB ABCD E AD F CD ∠BEF =∠EBC,AB =3AE DF =FC AE+DF =EF ∠BFE =∠BFC ∠DEF +∠CBF =∠BFC BF :EF =3:55–√C.①②③④D.①②③④⑤二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )13. 已知一组样本数据:,,,,,,则这组样本的中位数为________.14. 分解因式:________.15. 若关于的方程的一个根是,则另一个根是________.16. 定义:对于实数,符号表示不大于的最大整数.例如: ,,,如果,满足条件的所有整数有________.17. 已知的半径为,为圆上一定点,为圆上一动点,以为边作等腰,点在圆上运动一周的过程中,的最大值为________.18. 如图,为的平分线上一点,过点作任意一条直线分别与的两边相交于点,,为的中点,过点作的垂线交射线于点,若,则的大小为________(用含的代数式表示).三、 解答题 (本题共计 7 小题 ,每题 11 分 ,共计77分 )19. 计算:.20. 如图,在中,,,是边上两点且,求证:.21. 某校开设有(类)、音乐(类)、体育(类)、舞蹈(类)四类社团活动,要求学生全员参加,每人限报一类.为了了解学生参与社团活动的情况,校学生会随机抽查了部分学生,将所收集的数据绘制成如图所示不完整的统计图.请根据图中提供的信息解答下列问题:类型频数频率123451b −8ab +16b =a 2x +3x+k =0x 21a [a]a [5.7]=5[5]=5[−π]=−4[]=−2x+12x ⊙O 2A P AP Rt △APG P OG A ∠MON OD A ∠MON B C P BC P BC OA D ∠BDC =α∠BOD α(−1+2sin −|1−|+)201660∘3–√π0△ABE AB =AE C D BE AC =AD BC =DE STEAM A B C D A30x B180.15Cm 0.40D n y________,并补全条形统计图;若该校共有人,报的有________人;如果学生会想从类的甲、乙、丙三人中随机选择两人参加舞蹈演出,请用列表法或树状图的方法求出恰好选中甲的概率.22. 某建筑工地的平衡力矩塔吊如图所示,在配重点处测得塔帽的仰角为,在点的正下方处的点处测得塔帽的仰角为,请你依据相关数据计算塔帽与地面的距离的高度.(计算结果精确到,参考数据:) 23. 如图,已知一次函数的图象与反比例函数的图象交于,两点,且点的横坐标和点的纵坐标都是.求:一次函数的解析式;的面积;并利用图象指出,当为何值时有.24. 如图,在中.(1)若=,=,求的度数;(2)若的半径为,且=,求点到的距离. 25. 如图,抛物线 与轴相交于,两点,点在点的右侧,与轴相交于点(1)x =(2)1800STEAM (3)D E A 30∘E 23m D A 53∘AC 0.1m ≈1.732,sin ≈0.80,cos ≈0.60,tan ≈3–√53∘53∘53∘43=kx+b y 1=−y 28x A B A B −2(1)(2)△AOB (3)x >y 1y 2⊙O ∠ACB 80∘∠BOC ⊙O 13BC 10O BC y =−+2x+12x 252x A B B A y C.求点,,的坐标;在抛物线的对称轴上有一点,使 的值最小,求点的坐标;点为轴上一动点,在抛物线上是否存在一点,使以,,,四点构成的四边形为平行四边形?若存在,求点的坐标;若不存在,请说明理由.(1)A B C (2)P PA+PC P (3)M x N A C M N N参考答案与试题解析2023年四川省宜宾市中考数学试卷试卷一、 选择题 (本题共计 12 小题 ,每题 4 分 ,共计48分 )1.【答案】D【考点】相反数【解析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“-”,据此解答即可.【解答】解:根据相反数的含义,可得的相反数是:.故选.2.【答案】D【考点】合并同类项【解析】此题暂无解析【解答】此题暂无解答3.【答案】C【考点】中心对称图形轴对称图形【解析】此题暂无解析【解答】此题暂无解答4.−12−(−)=1212D【答案】C【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正整数;当原数的绝对值时,是负整数.【解答】将用科学记数法表示为:.5.【答案】B【考点】平行线的性质三角形的外角性质【解析】由平行线的性质可得,又由外角的性质可得,可求得.【解答】解:如图,,,又,.故选.6.【答案】D【考点】由实际问题抽象出二元一次方程组【解析】a ×10n 1≤|a |<10n n a n ≥10n <1n 883000008.83×107∠1=79∘∠1+α=112∘α∵a//b ∴∠1=79∘∵∠1+α=112∘∴α=−=112∘79∘33∘B此题暂无解析【解答】解:混合之后糖的含量:,故选.7.【答案】A【考点】圆周角定理圆心角、弧、弦的关系【解析】由=,可求得的度数,然后由圆周角定理,求得的度数.【解答】解:∵=,∴==,∵=.故选.8.【答案】B【考点】解分式方程【解析】根据分式方程的求解方法解题,注意检验根的情况;【解答】,两侧同时乘以,可得=,解得=;经检验=是原方程的根;9.【答案】C【考点】弧长的计算【解析】根据定滑轮的性质得到重物上升的即为转过的弧长,利用弧长公式计算即可.=×100%10%x+30%y x+y x+3y 10x+10yD ∠AOC 126∘∠BOC ∠CDB ∠AOC 126∘∠BOC −∠AOC 180∘54∘∠CDB =∠BOC 1227∘A =11x+2(x+2)x+21x −1x −1【解答】解:根据题意得:,则重物上升了.故选10.【答案】C【考点】正方形的性质【解析】此题暂无解析【解答】此题暂无解答11.【答案】B【考点】反比例函数图象上点的坐标特征反比例函数系数k 的几何意义【解析】此题暂无解析【解答】此题暂无解答12.【答案】D【考点】全等三角形的性质与判定正方形的性质翻折变换(折叠问题)【解析】【解答】解:①项,延长交的延长线于点.不妨设正方形的边长为,假设是的中点,l==3π(cm)108π×51803πcm C.EF BC G 3F CD F =3则,,,所以在和中,有 所以 ,所以,所以,,所以,所以,故假设成立,所以,故①项正确.②项 ,,,所以 ,故②项正确.③项,过点作于点,,即,因为,所以,所以在与中,有所以,所以即,故③项正确.④项,过点作交于点,所以,所以, ,所以.因为,所以,故④项正确.⑤项,,故⑤正确.故选.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )13.【答案】【考点】中位数【解析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:将这组数据小到大排列:,,,,,,所以中位数为.故答案为:.14.【答案】.AE =1DE =2DF =32EF ==D +D E 2F 2−−−−−−−−−−√52△EDF △CCF ∠EDF =∠GCF ,DF =CF ,∠EFD =∠GFC ,△EDF ≅△GCF (ASA)GF =EF =,CG =DE =252EG =EF +GF =5BG =B +CG =5C ′EG =BG ∠BEF =∠EBC DF =FC AE =1DF =32AE+DF ==EF 52B BH ⊥EF H =−−−S △BEF S 正方形ABCD S △ABE S △EDF S △BCF =3×3−×3×1−×2×−×3×=S △BEF 1212321232154=EF ⋅BH =×⋅BH S △BEF 121252BH =3Rt △BHF Rt △BCF {BF =BF,BH =BC,Rt △BHF ≅Rt △BCF (HL)∠BFH =∠BFC ∠BFE =∠BFC F FP//BC AB P FP//AD ∠DEF =∠EFP ∠CBF =∠BFP ∠DEF +∠CBF =∠EFP +∠BFP =∠BFE ∠BFE =∠BFC ∠DEF +∠CBF =∠BFC BF ∶EF =∶=3∶5+32 1.52−−−−−−−√525–√D 2.5112345=2.52+322.5b(a −4)2【考点】提公因式法与公式法的综合运用【解析】先提公因式,再用完全平方公式进行因式分解.【解答】.15.【答案】【考点】根与系数的关系【解析】设方程的两根分别为,,则由根与系数关系得,,由可得.【解答】解:根据题意,设方程的两根分别为,,令,则由根与系数关系得,,∵,∴.故答案为:.16.【答案】,【考点】一元一次不等式组的整数解【解析】根据已知得出,求出即可.【解答】解:由定义可知,解得,所以满足条件的所有整数有,.故答案为:,.17.【答案】【考点】旋转的性质等腰直角三角形b −8ab +16b =b(−8a +16)=b(a −4a 2a 2)2−4x 1x 2+=−3x 1x 2=1x 1=−4x 2x 1x 2=1x 1+=−3x 1x 2=1x 1=−4x 2−4−5−4−2≤<−1x+12−2≤<−1x+12−5≤x <−3−5−4−5−42+2全等三角形的性质与判定三角形三边关系【解析】连接,作交于点,连接,,.首先证明,推出==,由=,可得=,由,推出,由此即可解决问题;【解答】连接,作交于点,连接,,.∵=,=,∴=,∴=,=,∴=,∴==,∵==,∴,∴==,∵=,∴=,∵,∴,∴的最大值为.18.【答案】【考点】角平分线的性质等腰三角形的性质全等三角形的性质与判定【解析】【解答】解:如图,过作于,于,OA OH ⊥OA ⊙O H AH HC OP ∠OAP ∽△HAG OP 2HG 2OG ≤OH+HG OG ≤2+2OA OH ⊥OA ⊙O H AH HG OP OA OH ∠AOH 90∘AH OA AP PG ∠APG 90∘AG AP ∠OAH ∠PAG 45∘∠OAP ∽△HAG OP 2HG 2OG ≤OH+HG OG ≤2+2OG 2+2−90∘α2D DE ⊥OM E DF ⊥ON F则.∵为的角平分线,∴.为的中点,,,∴(),∴.∵,,即,,.故答案为:.三、 解答题 (本题共计 7 小题 ,每题 11 分 ,共计77分 )19.【答案】原式=.【考点】零指数幂实数的运算特殊角的三角函数值【解析】先计算乘方、代入三角函数值、去绝对值符号、计算零指数幂,再去括号,最后计算加减可得.【解答】原式=.20.【答案】证明:∵,∴,∵,∴,∴,在和中,∴,∴.∠DEB =∠DFC =∠DFO =90∘OA ∠MON DE =DF ∵P BC PD ⊥BC ∴BD =CD Rt △DEB ≅Rt △DFC HL ∠BDE =∠CDF ∠BDC =α∴∠BDF +∠CDF =∠BDF +∠BDE ∠EDF =α∴∠MON =(180−α)∘∴∠BOD =[(180−α)=−12]∘90∘α2−90∘α2=1+2×−(−1)+13–√23–√=1+−+1+13–√3–√3=1+2×−(−1)+13–√23–√=1+−+1+13–√3–√3AB =AE ∠B =∠E AC =AD ∠ACD =∠ADC ∠BAC =∠EAD △ABC △AED AB =AE,∠BAC =∠EAD,AC =AD,△ABC ≅△AED(SAS)BC =DE全等三角形的性质与判定【解析】根据等腰三角形的性质可得到两组相等的角,再根据判定,由全等三角形的性质即可求得结论.【解答】证明:∵,∴,∵,∴,∴,在和中,∴,∴.21.【答案】解:抽取的学生数为(人),∴,类人数为(人),∴类人数为(人).补全条形统计图如图所示.由题意,画树状图如图,共有种等可能的结果,其中恰好选中里的种情况,则恰好选中甲的概率为.【考点】条形统计图频数(率)分布表用样本估计总体列表法与树状图法【解析】SAS △ABC ≅△AED AB =AE ∠B =∠E AC =AD ∠ACD =∠ADC ∠BAC =∠EAD △ABC △AED AB =AE,∠BAC =∠EAD,AC =AD,△ABC ≅△AED(SAS)BC =DE (1)18÷0.15=120x =30÷120=0.25C 120×0.40=48D 120−30−18−48=24450(3)64=4623解:抽取的学生数为(人),∴,类人数为(人),∴类人数为(人).补全条形统计图如图所示.报的有(人).故答案为:.由题意,画树状图如图,共有种等可能的结果,其中恰好选中里的种情况,则恰好选中甲的概率为.22.【答案】解:设的高度为米.在中,由,得 ,易证四边形为矩形,∴,,在中,由,得,由,得,解得 .答:塔帽与地面的距离约为米.【考点】解直角三角形的应用-仰角俯角问题【解析】此题暂无解析【解答】解:设的高度为米.在中,由,得 ,易证四边形为矩形,∴,,在中,由,得,由,得,解得 .答:塔帽与地面的距离约为米.23.【答案】解:∵点的横坐标和点的纵坐标都是,(1)18÷0.15=120x =30÷120=0.25C 120×0.40=48D 120−30−18−48=24(2)STEAM 1800×0.25=450450(3)64=4623AC x Rt △ACD AC =CD ⋅tan53∘CD =x 34BCDE BE =CD =x 34BC =DE =23Rt △ABE AB =BE ⋅tan30∘AB ≈0.433x BC =AC −AB x−0.433x =23x ≈40.6AC 40.6AC x Rt △ACD AC =CD ⋅tan53∘CD =x 34BCDE BE =CD =x 34BC =DE =23Rt △ABE AB =BE ⋅tan30∘AB ≈0.433x BC =AC −AB x−0.433x =23x ≈40.6AC 40.6(1)A B −2=−=48=−28∴,,解得,∴,.把点的坐标代入函数解析式,得解得∴一次函数的解析式为.一次函数图象与轴的交点坐标为,∴.根据图象,当或时,.【考点】待定系数法求一次函数解析式反比例函数与一次函数的综合三角形的面积【解析】(1)先利用反比例函数求出点、的坐标,再利用待定系数法求一次函数的解析式;(2)求出一次函数图象与轴的交点坐标,然后求出与的面积,则;(3)可根据图象直接写出答案.【解答】解:∵点的横坐标和点的纵坐标都是,∴,,解得,∴,.把点的坐标代入函数解析式,得解得∴一次函数的解析式为.一次函数图象与轴的交点坐标为,∴.根据图象,当或时,.24.y =−=48−2−=−28x x =4A(−2,4)B(4,−2)A ,B {−2k +b =4,4k +b =−2,{k =−1,b =2,y =−x+2(2)y C(0,2)=+S △AOB S △AOC S △BOC =×2×|−2|+×2×41212=2+4=6(3)x <−20<x <4>y 1y 2A B y △AOC △BOC =+S △AOB S △AOC S △BOC (1)A B −2y =−=48−2−=−28x x =4A(−2,4)B(4,−2)A ,B {−2k +b =4,4k +b =−2,{k =−1,b =2,y =−x+2(2)y C(0,2)=+S △AOB S △AOC S △BOC =×2×|−2|+×2×41212=2+4=6(3)x <−20<x <4>y 1y 2【答案】∵=,∴==,∴==,∴==;作于,如图=,在中,==,即点到的距离为.【考点】圆心角、弧、弦的关系垂径定理圆周角定理【解析】此题暂无解析【解答】此题暂无解答25.【答案】解:当 时, ,,当 时, ,化简,得 ,解得,,∵点在点的右侧,∴;连接,交对称轴于点,连接∵点和点关于抛物线的对称轴对称,.要使 的值最小,则应使 的值最小,所以与对称轴的交点使得 的值最小.设所在直线的解析式为 ,∠ABC ∠ACB 80∘∠A −−180∘80∘80∘20∘∠BOC 2∠A 40∘OH ⊥BC H BC 5Rt △OBH OH O BC 12(1)x =0y =52∴C(0,)52y =0−+2x+=012x 252x 2−4x −5=0x 1=5=−1x 2B A A(−1,0),B(5,0)(2)BC P AP.A B ∴AP =PB PA+PC PB+PC BC P PA+PC BC y =kx+b (5,0),C(0,)5将 代入,可得解得 故所在直线的解析式为.抛物线的对称轴为直线,当时, ,的坐标为.如图,①当在轴上方,此时 ,且,则 ,四边形 是平行四边形.②当在轴下方:作,交 于点如果四边形 是平行四边形.,,又∵,,.当时, ,,, ,.综上所述,点的坐标为 ,或.【考点】二次函数综合题【解析】此题暂无解析【解答】解:当 时, ,,当 时, ,化简,得 ,解得,,∵点在点的右侧,∴;B(5,0),C(0,)52b =,525k +b =0, k =−,12b =,52BC y =−x+1252x =2x =2y =−×2+=125232∴P (2,)32(3)N x A =C M 1N 1A //C M 1N 1(4,)N 152∴ACN 1M 1N x D ⊥A N 2M 2AM 2 D.ACM 2N 2∴AC//,AC =M 2N 2M 2N 2∴∠CAO =∠D N2M 2∠AOC =∠D M2N 2∴△AOC ≅△D (AAS)M 2N 2∴D =OC =N 252y =−52−+2x+=−12x 25252∴=2−,=2+x 114−−√x 214−−√∴(2+N 214−−√−)52(2−,−)N 314−−√52N (4,),(2+5214−−√−)52(2−,−)14−−√52(1)x =0y =52∴C(0,)52y =0−+2x+=012x 252x 2−4x −5=0x 1=5=−1x 2B A A(−1,0),B(5,0)连接,交对称轴于点,连接∵点和点关于抛物线的对称轴对称, . 要使 的值最小,则应使 的值最小,所以与对称轴的交点使得 的值最小.设所在直线的解析式为 ,将 代入,可得 解得 故所在直线的解析式为.抛物线的对称轴为直线,当时, ,的坐标为.如图,①当在轴上方,此时 ,且,则 ,四边形 是平行四边形.②当在轴下方:作,交 于点如果四边形 是平行四边形.,,又∵,,.当时, ,,, ,.综上所述,点的坐标为 ,或.(2)BC P AP.A B ∴AP =PB PA+PC PB+PC BC P PA+PC BC y =kx+b B(5,0),C(0,)52 b =,525k +b =0, k =−,12b =,52BC y =−x+1252x =2x =2y =−×2+=125232∴P (2,)32(3)N x A =C M 1N 1A //C M 1N 1(4,)N 152∴ACN 1M 1N x D ⊥A N 2M 2AM 2 D.ACM 2N 2∴AC//,AC =M2N 2M 2N 2∴∠CAO =∠D N2M 2∠AOC =∠D M 2N 2∴△AOC ≅△D (AAS)M 2N 2∴D =OC =N 252y =−52−+2x+=−12x 25252∴=2−,=2+x 114−−√x 214−−√∴(2+N 214−−√−)52(2−,−)N 314−−√52N (4,),(2+5214−−√−)52(2−,−)14−−√52。

宜宾市中考数学试卷含答案解析(word版)

宜宾市中考数学试卷含答案解析(word版)

2017年四川省宜宾市中考数学试卷一、选择题(8题&#215;3分=24分)1.(3分)9的算术平方根是()A.3 B.﹣3 C.±3 D.2.(3分)据相关报道,开展精准扶贫工作五年以来,我国约有人摆脱贫困,将用科学记数法表示是()A.55×106 B.×108C.×106D.×1073.(3分)下面的几何体中,主视图为圆的是()A. B.C.D.4.(3分)一元二次方程4x2﹣2x+=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.无法判断5.(3分)如图,BC∥DE,若∠A=35°,∠C=24°,则∠E等于()A.24°B.59°C.60°D.69°6.(3分)某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵 D.每人植树量的平均数是5棵7.(3分)如图,在矩形ABCD中BC=8,CD=6,将△ABE沿BE折叠,使点A恰好落在对角线BD上F处,则DE的长是()A.3 B.C.5 D.8.(3分)如图,抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题(8题&#215;3分=24分)9.(3分)分解因式:xy2﹣4x= .10.(3分)在平面直角坐标系中,点M(3,﹣1)关于原点的对称点的坐标是.11.(3分)如图,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是.12.(3分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是.13.(3分)若关于x、y的二元一次方程组的解满足x+y>0,则m 的取值范围是.14.(3分)经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是.15.(3分)如图,⊙O的内接正五边形ABCDE的对角线AD与BE相交于点G,AE=2,则EG的长是.16.(3分)规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+,n为整数),例如:[]=2,()=3,[)=2.则下列说法正确的是.(写出所有正确说法的序号)①当x=时,[x]+(x)+[x)=6;②当x=﹣时,[x]+(x)+[x)=﹣7;③方程4[x]+3(x)+[x)=11的解为1<x<;④当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.三、解答题(本大题共8个题,共72分)17.(10分)(1)计算(2017﹣π)0﹣()﹣1+|﹣2|(2)化简(1﹣)÷().18.(6分)如图,已知点B、E、C、F在同一条直线上,AB=DE,∠A=∠D,AC ∥DF.求证:BE=CF.19.(8分)端午节放假期间,小明和小华准备到宜宾的蜀南竹海(记为A)、兴文石海(记为B)、夕佳山民居(记为C)、李庄古镇(记为D)的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点都被选中的可能性相同.(1)小明选择去蜀南竹海旅游的概率为.(2)用树状图或列表的方法求小明和小华都选择去兴文石海旅游的概率.20.(8分)用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.21.(8分)如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边去两点B、C测得∠α=30°,∠β=45°,量得BC长为100米.求河的宽度(结果保留根号).22.(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A (﹣3,m+8),B(n,﹣6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.23.(10分)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.(1)求证:直线CE是⊙O的切线.(2)若BC=3,CD=3,求弦AD的长.24.(12分)如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.2017年四川省宜宾市中考数学试卷参考答案与试题解析一、选择题(8题&#215;3分=24分)1.(3分)(2017•宜宾)9的算术平方根是()A.3 B.﹣3 C.±3 D.【分析】根据算术平方根的定义解答.【解答】解:∵32=9,∴9的算术平方根是3.故选:A.【点评】本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.2.(3分)(2017•宜宾)据相关报道,开展精准扶贫工作五年以来,我国约有人摆脱贫困,将用科学记数法表示是()A.55×106 B.×108C.×106D.×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:=×107,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•宜宾)下面的几何体中,主视图为圆的是()A. B.C.D.【分析】根据常见几何体的主视图,可得答案.【解答】解:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选:C.【点评】本题考查了常见几何体的三视图,熟记常见几何体的三视图是解题关键.4.(3分)(2017•宜宾)一元二次方程4x2﹣2x+=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.无法判断【分析】根据方程的系数结合根的判别式,即可得出△=0,由此即可得出原方程有两个相等的实数根.【解答】解:在方程4x2﹣2x+=0中,△=(﹣2)2﹣4×4×()=0,∴一元二次方程4x2﹣2x+=0有两个相等的实数根.故选B.【点评】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的实数根”是解题的关键.5.(3分)(2017•宜宾)如图,BC∥DE,若∠A=35°,∠C=24°,则∠E等于()A.24°B.59°C.60°D.69°【分析】先由三角形的外角性质求出∠CBE的度数,再根据平行线的性质得出∠E=∠CBE即可.【解答】解:∵∠A=35°,∠C=24°,∴∠CBE=∠A+∠C=59°,∵BC∥DE,∴∠E=∠CBE=59°;故选:B.【点评】本题考查的是平行线的性质,三角形是外角性质;熟练掌握平行线的性质,由三角形的外角性质求出∠CBE的度数是关键.6.(3分)(2017•宜宾)某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵 D.每人植树量的平均数是5棵【分析】A、将人数进行相加,即可得出结论A正确;B、由种植4棵的人数最多,可得出结论B正确;C、由4+10=14,可得出每人植树量数列中第15、16个数为5,即结论C正确;D、利用加权平均数的计算公式,即可求出每人植树量的平均数约是棵,结论D错误.此题得解.【解答】解:A、∵4+10+8+6+2=30(人),∴参加本次植树活动共有30人,结论A正确;B、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B正确;C、∵共有30个数,第15、16个数为5,∴每人植树量的中位数是5棵,结论C正确;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈(棵),∴每人植树量的平均数约是棵,结论D不正确.故选D.【点评】本题考查了条形统计图、中位数、众数以及加权平均数,逐一分析四个选项的正误是解题的关键.7.(3分)(2017•宜宾)如图,在矩形ABCD中BC=8,CD=6,将△ABE沿BE 折叠,使点A恰好落在对角线BD上F处,则DE的长是()A.3 B.C.5 D.【分析】由ABCD为矩形,得到∠BAD为直角,且三角形BEF与三角形BAE全等,利用全等三角形对应角、对应边相等得到EF⊥BD,AE=EF,AB=BF,利用勾股定理求出BD的长,由BD﹣BF求出DF的长,在Rt△EDF中,设EF=x,表示出ED,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出DE的长.【解答】解:∵矩形ABCD,∴∠BAD=90°,由折叠可得△BEF≌△BAE,∴EF⊥BD,AE=EF,AB=BF,在Rt△ABD中,AB=CD=6,BC=AD=8,根据勾股定理得:BD=10,即FD=10﹣6=4,设EF=AE=x,则有ED=8﹣x,根据勾股定理得:x2+42=(8﹣x)2,解得:x=3(负值舍去),则DE=8﹣3=5,故选C【点评】此题考查了翻折变换,矩形的性质,以及勾股定理,熟练掌握定理及性质是解本题的关键.8.(3分)(2017•宜宾)如图,抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2其中正确结论的个数是()A.1个B.2个C.3个D.4个【分析】把点A坐标代入y2,求出a的值,即可得到函数解析式;令y=3,求出A、B、C的横坐标,然后求出BD、AD的长,利用勾股定理的逆定理以及结合二次函数图象分析得出答案.【解答】解:∵抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),∴3=a(1﹣4)2﹣3,解得:a=,故①正确;∵E是抛物线的顶点,∴AE=EC,∴无法得出AC=AE,故②错误;当y=3时,3=(x+1)2+1,解得:x1=1,x2=﹣3,故B(﹣3,3),D(﹣1,1),则AB=4,AD=BD=2,∴AD2+BD2=AB2,∴③△ABD是等腰直角三角形,正确;∵(x+1)2+1=(x﹣4)2﹣3时,解得:x1=1,x2=37,∴当37>x>1时,y1>y2,故④错误.故选:B.【点评】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,已知函数值求自变量的值.二、填空题(8题&#215;3分=24分)9.(3分)(2017•宜宾)分解因式:xy2﹣4x= x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10.(3分)(2017•宜宾)在平面直角坐标系中,点M(3,﹣1)关于原点的对称点的坐标是(﹣3,1).【分析】根据两点关于原点对称,则两点的横、纵坐标都是互为相反数解答.【解答】解:点M(3,﹣1)关于原点的对称点的坐标是(﹣3,1).故答案为:(﹣3,1).【点评】本题考查了关于原点对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.11.(3分)(2017•宜宾)如图,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD 的面积是24 .【分析】根据菱形的面积等于对角线乘积的一半列式计算即可得解.【解答】解:∵菱形ABCD的对角线AC=6,BD=8,∴菱形的面积S=AC•BD=×8×6=24.故答案为:24.【点评】本题考查了菱形的性质,熟练掌握菱形的面积等于对角线乘积的一半是解题的关键.12.(3分)(2017•宜宾)如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是60°.【分析】如图,首先运用旋转变换的性质求出∠AOC的度数,结合∠AOB=27°,即可解决问题.【解答】解:如图,由题意及旋转变换的性质得:∠AOC=45°,∵∠AOB=15°,∴∠AOD=45°+15°=60°,故答案为:60°.【点评】该题主要考查了旋转变换的性质及其应用问题;牢固掌握旋转变换的性质是灵活运用、解题的关键.13.(3分)(2017•宜宾)若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是m>﹣2 .【分析】首先解关于x和y的方程组,利用m表示出x和y,代入x+y>0即可得到关于m的不等式,求得m的范围.【解答】解:,①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>﹣2.故答案是:m>﹣2.【点评】本题考查的是解二元一次方程组和不等式,解答此题的关键是把m当作已知数表示出x、y的值,再得到关于m的不等式.14.(3分)(2017•宜宾)经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是50(1﹣x)2=32 .【分析】根据某药品经过连续两次降价,销售单价由原来50元降到32元,平均每次降价的百分率为x,可以列出相应的方程即可.【解答】解:由题意可得,50(1﹣x)2=32,故答案为:50(1﹣x)2=32.【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.15.(3分)(2017•宜宾)如图,⊙O的内接正五边形ABCDE的对角线AD与BE相交于点G,AE=2,则EG的长是﹣1 .【分析】在⊙O的内接正五边形ABCDE中,设EG=x,易知:∠AEB=∠ABE=∠EAG=36°,∠BAG=∠AGB=72°,推出AB=BG=AE=2,由△AEG∽△BEA,可得AE2=EG•EB,可得22=x(x+2),解方程即可.【解答】解:在⊙O的内接正五边形ABCDE中,设EG=x,易知:∠AEB=∠ABE=∠EAG=36°,∠BAG=∠AGB=72°,∴AB=BG=AE=2,∵∠AEG=∠AEB,∠EAG=∠EBA,∴△AEG∽△BEA,∴AE2=EG•EB,∴22=x(x+2),解得x=﹣1+或﹣1﹣,∴EG=﹣1,故答案为﹣1.【点评】本题考查正多边形与圆、相似三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会构建方程解决问题,属于中考填空题中的压轴题.16.(3分)(2017•宜宾)规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+,n为整数),例如:[]=2,()=3,[)=2.则下列说法正确的是②③.(写出所有正确说法的序号)①当x=时,[x]+(x)+[x)=6;②当x=﹣时,[x]+(x)+[x)=﹣7;③方程4[x]+3(x)+[x)=11的解为1<x<;④当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.【分析】根据题意可以分别判断各个小的结论是否正确,从而可以解答本题.【解答】解:①当x=时,[x]+(x)+[x)=[]+()+[)=1+2+2=5,故①错误;②当x=﹣时,[x]+(x)+[x)=[﹣]+(﹣)+[﹣)=(﹣3)+(﹣2)+(﹣2)=﹣7,故②正确;③当1<x<时,4[x]+3(x)+[x)=4×1+3×2+1=4+6+1=11,故③正确;④∵﹣1<x<1时,∴当﹣1<x<﹣时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当﹣<x<0时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当x=0时,y=[x]+(x)+x=0+0+0=0,当0<x<时,y=[x]+(x)+x=0+1+x=x+1,当<x<1时,y=[x]+(x)+x=0+1+x=x+1,∵y=4x,则x﹣1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,∴当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有三个交点,故④错误,故答案为:②③.【点评】本题考查新定义,解答本题的关键是明确题意,根据题目中的新定义解答相关问题.三、解答题(本大题共8个题,共72分)17.(10分)(2017•宜宾)(1)计算(2017﹣π)0﹣()﹣1+|﹣2|(2)化简(1﹣)÷().【分析】(1)根据零指数幂、负整数指数幂、绝对值分别求出每个部分的值,再代入求出即可;(2)先算减法和分解因式,把除法变成乘法,最后根据分式的乘法法则进行计算即可.【解答】解:(1)原式=1﹣4+2=﹣1;(2)原式=÷=•=.【点评】本题考查了分式的混合运算和零指数幂、负整数指数幂、绝对值等知识点,能灵活运用知识点进行化简是解此题的关键,注意运算顺序.18.(6分)(2017•宜宾)如图,已知点B、E、C、F在同一条直线上,AB=DE,∠A=∠D,AC∥DF.求证:BE=CF.【分析】欲证BE=CF,则证明两三角形全等,已经有两个条件,只要再有一个条件就可以了,而AC∥DF可以得出∠ACB=∠F,条件找到,全等可证.根据全等三角形对应边相等可得BC=EF,都减去一段EC即可得证.本题主要考查三角形全等的判定和全等三角形的对应边相等;要牢固掌握并灵活运用这些知识.【解答】证明:∵AC∥DF,∴∠ACB=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);∴BC=EF,∴BC﹣CE=EF﹣CE,即BE=CF.【点评】本题主要考查三角形全等的判定和全等三角形的对应边相等;要牢固掌握并灵活运用这些知识.19.(8分)(2017•宜宾)端午节放假期间,小明和小华准备到宜宾的蜀南竹海(记为A)、兴文石海(记为B)、夕佳山民居(记为C)、李庄古镇(记为D)的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点都被选中的可能性相同.(1)小明选择去蜀南竹海旅游的概率为.(2)用树状图或列表的方法求小明和小华都选择去兴文石海旅游的概率.【分析】(1)利用概率公式直接计算即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去兴文石海旅游的情况,再利用概率公式即可求得答案.【解答】解:(1)∵小明准备到宜宾的蜀南竹海(记为A)、兴文石海(记为B)、夕佳山民居(记为C)、李庄古镇(记为D)的一个景点去游玩,∴小明选择去蜀南竹海旅游的概率=,故答案为:;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去兴文石海旅游的概率=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)(2017•宜宾)用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.【分析】工作效率:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋;工作量:A型机器人搬运700袋大米,B型机器人搬运500袋大米;工作时间就可以表示为:A型机器人所用时间=,B型机器人所用时间=,由所用时间相等,建立等量关系.【解答】解:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋,依题意得:=,解这个方程得:x=70经检验x=70是方程的解,所以x﹣20=50.答:A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.(8分)(2017•宜宾)如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边去两点B、C测得∠α=30°,∠β=45°,量得BC长为100米.求河的宽度(结果保留根号).【分析】直接过点A作AD⊥BC于点D,利用tan30°==,进而得出答案.【解答】解:过点A作AD⊥BC于点D,∵∠β=45°,∠ADC=90°,∴AD=DC,设AD=DC=xm,则tan30°==,解得:x=50(+1),答:河的宽度为50(+1)m.【点评】此题主要考查了解直角三角形的应用,正确得出AD=CD是解题关键.22.(10分)(2017•宜宾)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣3,m+8),B(n,﹣6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.【分析】(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B 的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据S△AOB =S△AOC+S△BOC列式计算即可得解.【解答】解:(1)将A(﹣3,m+8)代入反比例函数y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,点A的坐标为(﹣3,2),反比例函数解析式为y=﹣,将点B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,点B的坐标为(1,﹣6),将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函数解析式为y=﹣2x﹣4;(2)设AB与x轴相交于点C,令﹣2x﹣4=0解得x=﹣2,所以,点C的坐标为(﹣2,0),所以,OC=2,S△AOB =S△AOC+S△BOC,=×2×3+×2×1,=3+1,=4.【点评】本题考查了反比例函数与一次函数交点问题,主要利用了待定系数法求一次函数解析式和待定系数法求反比例函数解析式,三角形的面积的求解,关键在于先求出点A的坐标.23.(10分)(2017•宜宾)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.(1)求证:直线CE是⊙O的切线.(2)若BC=3,CD=3,求弦AD的长.【分析】(1)连结OC,如图,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,则∠3=∠2,于是可判断OD∥AE,根据平行线的性质得OD⊥CE,然后根据切线的判定定理得到结论;(2)由△CDB∽△CAD,可得==,推出CD2=CB•CA,可得(3)2=3CA,推出CA=6,推出AB=CA﹣BC=3,==,设BD=K,AD=2K,在Rt△ADB 中,可得2k2+4k2=5,求出k即可解决问题.【解答】(1)证明:连结OC,如图,∵AD平分∠EAC,∴∠1=∠3,∵OA=OD,∴∠1=∠2,∴∠3=∠2,∴OD∥AE,∵AE⊥DC,∴OD⊥CE,∴CE是⊙O的切线;(2)∵∠CDO=∠ADB=90°,∴∠2=∠CDB=∠1,∵∠C=∠C,∴△CDB∽△CAD,∴==,∴CD2=CB•CA,∴(3)2=3CA,∴CA=6,∴AB=CA﹣BC=3,==,设BD=K,AD=2K,在Rt△ADB中,2k2+4k2=5,∴k=,∴AD=.【点评】本题考查切线的判定和性质、平行线的性质、切线的判定、勾股定理等知识,解题的关键是学会填空常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.24.(12分)(2017•宜宾)如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线的解析式;(2)由题意可求得C点坐标,设平移后的点C的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可求得C′点的坐标,则可求得平移的单位,可求得m的值;(3)由(2)可求得E点坐标,连接BE交对称轴于点M,过E作EF⊥x轴于点F,当BE为平行四边形的边时,过Q作对称轴的垂线,垂足为N,则可证得△PQN≌△EFB,可求得QN,即可求得Q到对称轴的距离,则可求得Q点的横坐标,代入抛物线解析式可求得Q点坐标;当BE为对角线时,由B、E的坐标可求得线段BE的中点坐标,设Q(x,y),由P点的横坐标则可求得Q点的横坐标,代入抛物线解析式可求得Q点的坐标.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点,∴,解得,∴抛物线解析式为y=﹣x2+4x+5;(2)∵AD=5,且OA=1,∴OD=6,且CD=8,∴C(﹣6,8),设平移后的点C的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可得8=﹣x2+4x+5,解得x=1或x=3,∴C′点的坐标为(1,8)或(3,8),∵C(﹣6,8),∴当点C落在抛物线上时,向右平移了7或9个单位,∴m的值为7或9;(3)∵y=﹣x2+4x+5=﹣(x﹣2)2+9,∴抛物线对称轴为x=2,∴可设P(2,t),由(2)可知E点坐标为(1,8),①当BE为平行四边形的边时,连接BE交对称轴于点M,过E作EF⊥x轴于点F,当BE为平行四边形的边时,过Q作对称轴的垂线,垂足为N,如图,则∠BEF=∠BMP=∠QPN,在△PQN和△EFB中∴△PQN≌△EFB(AAS),∴NQ=BF=OB﹣OF=5﹣1=4,设Q(x,y),则QN=|x﹣2|,∴|x﹣2|=4,解得x=﹣2或x=6,当x=﹣2或x=6时,代入抛物线解析式可求得y=﹣7,∴Q点坐标为(﹣2,﹣7)或(6,﹣7);②当BE为对角线时,∵B(5,0),E(1,8),∴线段BE的中点坐标为(3,4),则线段PQ的中点坐标为(3,4),设Q(x,y),且P(2,t),∴x+2=3×2,解得x=4,把x=4代入抛物线解析式可求得y=5,∴Q(4,5);综上可知Q点的坐标为(﹣2,﹣7)或(6,﹣7)或(4,5).【点评】本题为二次函数的综合应用,涉及待定系数法、平移的性质、全等三角形的判定和性质、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)注意待定系数法的应用,在(2)中求得平移后C点的对应点的坐标是解题的关键,在(3)中确定出Q点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DCB A41216x y O O y x 161248816x y O 416xy O8888D C B A 四川省宜宾市2011年高中阶段学校招生考试数学试卷(考试时间:120分钟,全卷满分120分)一、选择题:(本大题8个小题,每小题3分,共24分)以下每个小题均给出了代号为A 、B 、C 、D 的四个答案,其中只有一个答案是正确的,请将正确答案的代号直接填在题后的括号中.)1.||–5的值是( ) A .15 B .5 C .–5 D .–152.根式x –3中x 的取值范围是( )A .x ≥ 3B .x ≤ 3C . x < 3D . x > 3 3. 下列运算正确的是( ) A .3a –2a = 1 B .a 2·a 3=a 6 C . (a –b )2=a 2–2ab +b 2 D . (a +b )2=a 2+b 2 4.如图,直线AB 、CD 相交于点E ,DF ∥AB . 若∠D =70°,则∠CEB 等于( ) A .70° B .80° C .90° D .110° 5.分式方程 2x –1 = 12的解是( )A .3B .4C .5D 无解.6.如图所示的几何体的正视图是( )7.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )A .3B .4C .5D .68.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线 是A →D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三 角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( )F ED CBA(4题图) (6题图) (7题A B CDFE PD CBA二、填空题:(本大题共8个小题,每小题3分,共72分)请把答案直接填在题中的横线上)9.分解因式:4x 2–1= .10.某城市在“五一”期间举行了“让城市更美好”大型书画、摄影展览活动,据统计,星期一至星期日参观的人数分别是:2030、3150、1320、1460、1090、3150、4120,则这组数据的中位数和众数分别是 .11.如图,PA 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P = 40°,则∠BAC = .12.已知一元二次方程x 2–6x –5=0两根为a 、b ,则 1a + 1b 的值是13.一个圆锥形的零件的母线长为4,底面半径为1,则这个圆锥形零件的全面积是 .14.如图,边长为2的正方形ABCD 的中心在直角坐标系的原点O ,AD ∥x 轴,以O 为顶点且过A 、D 两点的抛物线与以O 为顶点且经过B 、C 两点的抛物线将正方形分割成几部分,则图中阴影部份的面积是15.某城市居民最低生活保障在2009年是240元,经过连续两年的增加,到2011年提高到345.6元,则该城市两年最低生活保障的平均年增长率是 .16.如图,在△ABC 中,AB =BC ,将△ABC 绕点B 顺时针旋转 α度,得到△A 1BC 1,A 1B 交AC 于点E ,A 1C 1分别交AC 、BC 于点D 、F ,下列结论:①∠CDF =α,②A 1E =CF , ③DF =FC ,④AD =CE ,⑤A 1F =CE .其中正确的是 (写出正确结论的序号).三、解答题:(本大题共8小题,共72分)解答时应写出文字说明,证明过程或演算步骤) 17.(每小题5分,共15分)(1)计算:3(3–π)0– 20–155 + (–1)2011(11题图) O C BAPA BC D O x y (14题图)(16题图) C 1A 1FEDCB A(2)先化简,再求值:3x –3 – 18x 2 – 9 ,其中x = 10–3(3)如图,平行四边形ABCD 的对角线AC 、BD 交于点O ,E 、F 在AC 上,G 、H 在BD 上,且AF =CE ,BH =DG ,求证:AG ∥HE18.(本小题6分)解不等式组⎩⎪⎨⎪⎧x –83 < 01 – 12 x ≤ – 13x,并把它的解集在数轴上表示出来.OHGABCDEF(17(3)题图)19.(本小题8分)某校开展了以“人生观、价值观”为主题的班队活动,活动结束后,初三(2)班数学兴趣小组提出了5个主要观点并在本班50名学生中进行了调查(要求每位同学只选自己最认可的一项观点),并制成了如下扇形统计图.(1)该班学生选择“和谐”观点的有 人,在扇形统计图中,“和谐”观点所在扇形区域的圆心角是 度.(2)如果该校有1500名初三学生,利用样本估计选择“感恩”观点的初三学生约有 人. (3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查,求恰好选到“和谐”和“感恩”观点的概率(用树状图或列表法分析解答)20.(本小题满分7分)某县为鼓励失地农民自主创业,在2010年对60位自主创业的失地农民自主创业的失地农民进行奖励,共计划奖励10万元.奖励标准是:失地农民自主创业连续经营一年以上的给予1000元奖励;自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励.问:该县失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别有多少人?互助12%感恩28%和谐10%平等20%思取30%(19题图)21.(本小题满分7分)如图,一次函数的图象与反比例函数y 1= – 3x ( x <0)的图象相交于A 点,与y 轴、x 轴分别相交于B 、C 两点,且C (2,0).当x <–1时,一次函数值大于反比例函数的值,当x >–1时,一次函数值小于反比例函数值. (1) 求一次函数的解析式;(2) 设函数y 2= a x (x >0)的图象与y 1= – 3x (x <0)的图象关于y 轴对称.在y 2= ax (x >0)的图象上取一点P (P 点的横坐标大于2),过P 作PQ ⊥x 轴,垂足是Q ,若四边形BCQP 的面积等于2,求P 点的坐标.QPOCBAy 2y 1yx(21题图)22.(本小题满分7分)如图,飞机沿水平方向(A 、B 两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M 到飞行路线AB 的距离MN .飞机能够测量的数据有俯角和飞行的距离(因安全因素,飞机不能飞到山顶的正上方N 处才测飞行距离),请设计一个距离MN 的方案,要求:(1)指出需要测量的数据(用字母表示,并在图中标出); (2)用测出的数据写出求距离MN 的步骤.23.(本小题满分10分)已知:在△ABC 中,以AC 边为直径的⊙O 交BC 于点D ,在劣弧AD ⌒上取一点E 使∠EBC =∠DEC ,延长BE 依次交AC 于G ,交⊙O 于H . (1)求证:AC ⊥BH (2)若∠ABC = 45°,⊙O 的直径等于10,BD =8,求CE 的长.HG OAB CD E(23题图)MNBA(22题图)24.(本小题满分12分)已知抛物线的顶点是C (0,a) (a>0,a为常数),并经过点(2a,2a),点D(0,2a)为一定点.(1)求含有常数a的抛物线的解析式;(2)设点P是抛物线任意一点,过P作PH⊥x轴,垂足是H,求证:PD = PH;(3)设过原点O的直线l与抛物线在第一象限相交于A、B两点,若DA=2DB,且S△ABD = 42,求a的值.DC BAO yx(24题图)x86O四川省宜宾市2011年高中阶段学校招生考试数学试题答案及评分意见说明:一、本解答给出了一种或几种解法供参考,如果考生的解答与本解答不同,但结果正确,可比照评分意见制订相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半,如果后继部分的解答有严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一、选择题(每小题3 分,共24分)题号 1 2 3 4 5 6 7 8 答案 B A C D C D D B二、填空题(每小题3 分,共24分)9.(2x +1)(2x –1);10.2030、3150; 11.20°;12.– 65;13.5π;14.2;15.20%;16.①②⑤.三、解答题(本大题共8个题,共72分)17.(1)解:原式=3⨯1–(2–3)+(–1) (4分) = 3 (5分) (2 )解:3x –3 – 18x 2–9 = 3x –3 – 18(x +3)(x –3) (2分) = 3(x –3)(x +3)(x –3) = 3x +3 (4分)当x = 10时,∴原式= 310= 31010 (5分)(3)证明:∵平行四边形ABCD 中,OA =OC , (1分) 由已知:AF =CEAF –OA = CE – OC ∴OF =OE (3分) 同理得:OG =OH∴四边形EGFH 是平行四边形 (4分) ∴GF ∥HE (5分)18.解:⎩⎪⎨⎪⎧x –83 < 0 ……………………… ①1 – 12 x ≤ – 13x ………………… ②由①得:x <8 (2分)由②得x ≥6 (4分)OH GA BCDEF(17(3)题图)第一个观点第一个观点①②③④⑤①②③④⑤①②③④⑤①②③④⑤⑤④③②①∴不等式的解集是:6≤x<8 (6分)19.(1)5,36;(2分)(2)420;(4分)(3)以下两种方法任选一种(用树状图)设平等、进取、和谐、感恩、互助的序号依次是①②③④⑤∴恰好选到“和谐”和“感恩”观点的概率是110 (8分)(用列表法)平等进取和谐感恩互助平等平等、进取平等、和谐平等、感恩平等、互助进取进取、平等进取、和谐进取、感恩进取、互助和谐和谐、平等和谐、进取和谐、感恩和谐、互助感恩感恩、平等感恩、进取感恩、和谐感恩、互助互助互助、平等互助、进取互助、和谐互助、感恩∴恰好选到“和谐”和“感恩”观点的概率是110 (8分)20.解:方法一设失地农民中自主创业连续经营一年以上的有x人,则根据题意列出方程1000x+(60–x)(1000+2000)=100000 (3分)解得:x = 40 (5分)∴60 –x =60 – 40 = 20 (6分)答:失地农民中自主创业连续经营一年以上的有40,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人. (7分)方法二设失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民有分别有x ,y 人,根据题意列出方程组:⎩⎨⎧x +y =601000x +(1000+2000)y =100000 (3分)解之得:⎩⎨⎧x =40y =20(6分)答:失地农民中自主创业连续经营一年以上的有40,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人. (7分)21.解:(1)∵x < –1时,一次函数值大于反比例函数值,当x >–1时,一次函数值小于反比例函数值.∴A 点的横坐标是–1,∴A (–1,3) (1分) 设一次函数解析式为y = kx +b ,因直线过A 、C则⎩⎨⎧–k +b =32k +b =0 ,解之得:⎩⎨⎧k = –1b =1,∴一次函数解析式为y = –x +2 (3分)(2)∵y 2 = ax (x >0)的图象与y 1= – 3x (x <0)的图象y 轴对称, ∴y 2 = 3x (x >0) (4分)∵B 点是直线y = –x +2与y 轴的交点,∴B (0,2) (5分) 设P (n ,3n ),n >2 S 四边形BCQP –S △BOC =2 ∴12( 2+ 3n )n – 12⨯2⨯2 = 2,n = 52, (6分) ∴P (52,65) (7分)22.解:连结AD 交BH 于F此题为开放题,答案不唯一,只要方案设计合理,可参照给分. (1)如图,测出飞机在A 处对山顶 的俯角为α,测出飞机在B 处 对山顶的俯角为β,测出AB 的距离为d ,连结AM ,BM . (3分)(2)第一步骤:在Rt △AMN 中, tan α = MNAN ∴AN = MNtan α第二步骤:在Rt △BMN 中tan β = MN BN ∴AN = MNtan β其中:AN = d +BN (5分)解得:MN = d ·tan α·tan βtan β–tan α (7分)23.证明:(1)连结AD (1分) ∵∠DAC = ∠DEC ∠EBC = ∠DECβαA BNM(22题图)HG OAE∴∠DAC = ∠EBC (2分)又∵AC 是⊙O 的直径 ∴∠ADC =90° (3分)∴∠DCA +∠DAC =90° ∴∠EBC +∠DCA = 90°∴∠BGC =180°–(∠EBC +∠DCA ) = 180°–90°=90°∴AC ⊥BH (5分)(2)∵∠BDA =180°–∠ADC = 90° ∠ABC = 45° ∴∠BAD = 45°∴BD = AD∵BD = 8 ∴AD =8 (6分)又∵∠ADC = 90° AC =10∴由勾股定理 DC =AC 2–AD 2= 102–82 = 6∴BC =BD +DC =8+6=14 (7分)又∵∠BGC = ∠ADC = 90° ∠BCG =∠ACD∴△BCG ∽△ACD∴ CG DC = BC AC∴CG 6 = 1410 ∴CG = 425 (8分)连结AE ∵AC 是直径 ∴∠AEC =90° 又因 EG ⊥AC∴ △CEG ∽△CAE ∴ CE AC = CG CE ∴CE 2=AC · CG = 425 ⨯ 10 = 84∴CE = 84= 2 21 (10分)24.解:(1)设抛物线的解析式为y =kx 2+a (1分)∵点D (2a ,2a )在抛物线上,4a 2k +a = 2a ∴k = 14a (3分)∴抛物线的解析式为y = 14a x 2+a (4分)(2)设抛物线上一点P (x ,y ),过P 作PH ⊥x 轴,PG ⊥y 轴,在Rt △GDP 中, 由勾股定理得:PD 2=DG 2+PG 2=(y –2a )2+x 2 =y 2 – 4ay +4a 2+x 2(5分) ∵y = 14a x 2+a ∴x 2 = 4a ⨯ (y – a )= 4ay – 4a 2 (6分)∴PD 2= y 2– 4ay +4a 2 +4ay – 4a 2= y 2 =PH 2∴PD = PH(3)过B 点BE ⊥ x 轴,AF ⊥x 轴.由(2)的结论:BE =DB AF =DA∵DA =2DB ∴AF =2BE ∴AO = 2BO∴B 是OA 的中点,∴C 是OD 的中点,连结BC∴BC = DA 2 = AF 2 = BE = DB (9分) 过B 作BR ⊥y 轴, H F E R G P D C B A O y x (24题图)∵BR ⊥CD ∴CR =DR ,OR = a + a 2 = 3a 2 , ∴B 点的纵坐标是3a 2,又点B 在抛物线上, ∴3a 2 = 14a x 2+a ∴x 2 =2a 2∵x >0 ∴x = 2a∴B (2a ,3a 2 ) (10分) AO = 2OB , ∴S △ABD =S △OBD = 4 2 所以,12⨯2a ⨯2a = 4 2∴a 2= 4 ∵a >0 ∴a = 2 (12分)。

相关文档
最新文档