毒物动力学

合集下载

2023年关于毒动力学相关知识解读

2023年关于毒动力学相关知识解读
毒物进入血液后能迅速而均匀地分布于全身并呈现 出一致的消除过程时,可视为一房室模型
如果化学物进入血液后,在体内不同部位的转运和 转化速率不同,达到平衡前需要有一个分布过程时,可 视为多房室模型。
由一个中央室和若干个周边室组成。
中央室:血液供应丰富,肾、心、肝、肺。
周边室:供血量少,血流缓慢或毒物不易进入。
限值化学毒物跨膜转运的因素 灌注限值室 扩散限值室
20
谢谢大家
21
1
一、经典毒物动力学
假定化学毒物的血液或血浆浓度与其组织中的浓度 保持动态平衡,血浆中浓度的变化反应组织中浓度的变 化。
对时间-体存量关系的研究就转变为对时间-血浆浓度 关系的研究,使用相对简单的动力学模型就可以描述机 体内毒物的变化情况。 (一)基本概念 1.速率类型 type of rate 按化学物在体内转运或转化的速率不同可分为:
在一次染毒时:单位时间内消除的量恒定,相当于机 体的最大消除能力,而与体内存量无关。其半对数时量曲线为一条曲线。
部分需要载体转运或限速酶代谢的毒物的体内过程符 合零级速率。
3
2.房室模型
动力学上相互之间难以区分的,转运转化性质近似的 组织、器官和体液。凡转运和转化速率相似者,均可视 为同一房室,机体为一个彼此相连的房室系统。
一级速率过程 first order rate process 零级速率过程 zero order rate process
2
一级速率过程指毒物在体内某一瞬间的变化速率与其 含量的一次方呈正比。
在一次染毒时:毒物的生物半减期恒定;单位时间内 消除毒物的量与机体存量呈正比;其半对数时量曲线为 一条直线。大多数毒物在体内过程符合一级速率。 零级速率过程指毒物在体内某一瞬间的变化速率与其 瞬时含量的零次方呈正比。

第三,四章 毒物的生物转运与转化

第三,四章 毒物的生物转运与转化

(二)毒物动力学参数及其概念: 5、清除率(CL): 每单位时间多少升血中毒物量被清除。 6、生物利用度(F): 生物有效度,是指毒物被机体吸收利用的程度。 7、吸收速率常数(Ka)、峰浓度(Cm)、峰时间 (Tm): 8、房室概念:
(三)毒物消除动力学:
一级消除动力学:速率与毒物的浓度成比例。
简单扩散(simple diffusion) 被动转运
(passive transport)
滤过(filtration)
生 物 转 运
主动转运(active transport)
特殊转运
(special
transport)
膜动转运 (cytosis)
易化扩散(facilitated diffusion) 吞噬(phagocytosis) 入胞作用 (endocytosis) 胞饮(pinocytosis) 出胞作用(exocytosis)
(一)时量曲线(concentration-time curve):
在染毒后不同时间采血样,测定血毒物浓度,以
血毒物浓度为纵坐标,时间为横坐标作图即为毒物
浓度时间曲线,简称时量曲线,通过曲线可定量地 分析毒物在体内动态变化。
(二)毒物动力学参数及其概念:
1、消除半减期(t1/2): 体内血毒物浓度下降一半所需的 时间。 2、曲线下面积(AUC): 指时量曲线下覆盖的总面积。 3、表观分布容积(Vd): 在体内达到动态平衡时,根据与体内毒物量血毒物浓度 的比值,表示毒物以血毒物浓度计算应占有的体液容积。 4、消除速率常数(Ke): 表示体内消除毒物的快慢,可以单位时间内体内毒物被 消除的百分率表示。
一、被动转运(passive transport)
(一)简单扩散

毒代动力学的概念

毒代动力学的概念

毒代动力学的概念全文共四篇示例,供读者参考第一篇示例:毒代动力学是指毒物在体内的代谢和排泄过程,是研究毒物在生物体内的吸收、分布、代谢和排泄的科学。

毒代动力学的研究对于毒物的毒性评价、危害防护以及药物治疗等领域具有重要意义。

下面我们将详细介绍毒代动力学的概念及其相关内容。

毒代动力学主要包括以下几个方面:1. 毒物的吸收过程:毒物可以通过多种途径进入生物体内,如口服、吸入、皮肤接触等。

毒物在体内的吸收速度和程度取决于毒物的性质、剂量、给药途径等因素。

毒代动力学研究毒物的吸收过程有助于评估毒物的毒性和风险。

2. 毒物的分布过程:毒物在体内经过吸收后会在体内各个组织和器官中分布。

毒物的分布受到生物膜的通透性、血流速度、脂溶性等因素的影响。

毒代动力学研究毒物的分布过程有助于了解毒物在体内的分布规律和生物效应。

3. 毒物的代谢过程:毒物在体内经过代谢可以被转化为活性物质或产生毒性代谢产物。

毒物的代谢途径主要包括肝脏和其他组织中的代谢酶催化的生物转化反应。

毒代动力学研究毒物的代谢过程有助于评估毒物的代谢产物的毒性及毒物的排泄途径。

毒代动力学的研究方法主要包括动物实验、体外实验和数学模型等。

动物实验是研究毒物在生物体内代谢和排泄过程的主要手段,可以通过给动物不同途径和剂量的毒物并采集样本进行分析来研究毒代动力学的各个过程。

体外实验是通过体外细胞或组织培养系统来模拟毒物在体内的代谢和排泄过程,可以用于筛查毒物的代谢产物或评估毒物的代谢途径。

数学模型是通过建立数学方程来描述毒物在体内吸收、分布、代谢和排泄的动力学过程,可以预测毒物在体内的浓度变化及其对生物体的毒性影响。

第二篇示例:毒代动力学是一门研究有毒物质在生物体内代谢和解毒的过程的学科,也是毒物学的重要分支之一。

毒代动力学研究毒物在生物体内的吸收、分布、代谢和排泄等过程,以及这些过程如何影响毒物的毒性和危害。

了解毒代动力学可以帮助我们更好地理解毒物在生物体内的行为,有效评估毒物的危害程度,制定相应的预防和治疗措施。

毒代动力学名词解释

毒代动力学名词解释

毒代动力学名词解释
嘿,你知道毒代动力学吗?这可真是个超级重要的概念呢!它就像
是一个神秘的密码,解锁着毒物在我们身体里的奇妙旅程。

比如说吧,就像我们去一个陌生的地方旅行,毒物进入身体就像是
我们踏上了这片陌生之地。

毒代动力学就是研究这个毒物在身体这个“大地图”里是怎么移动、怎么变化、怎么被处理的。

它包含了好多方面呢!吸收,毒物是怎么进入身体的,是像一阵风
嗖地一下就进来了,还是慢悠悠地晃进来?分布,毒物在身体各个部
位是怎么分配的呀,是不是有的地方多,有的地方少,就像分糖果一样?代谢,毒物在身体里会经历什么样的变化,是被改头换面了还是
被分解了掉了?还有排泄,毒物最终是怎么离开身体这个“大舞台”的,是大摇大摆地走出去,还是偷偷摸摸地溜走?
你想想看,要是我们不了解这些,那面对毒物该多迷茫啊!这可不
是开玩笑的,要是搞不清楚,那可能会给我们带来大麻烦呢!就好比
你不知道怎么在一个陌生城市里找到正确的路,那不就容易迷路甚至
遇到危险嘛!
毒代动力学对于药物研发也超级重要哦!研究人员得搞清楚药物在
身体里的动向,才能确保它能发挥作用,又不会带来太多副作用。


就好像是在指挥一场复杂的交响乐,每个音符都要恰到好处,才能奏
出美妙的乐章。

我觉得吧,毒代动力学真的是非常有意义的一个领域,它就像是一
个默默守护我们健康的卫士,虽然我们可能平时不太注意到它,但它
却一直在那里发挥着关键的作用!所以啊,我们真的应该好好了解它,重视它!。

毒物代谢动力学

毒物代谢动力学
总结词
多室模型考虑了毒物在体内分布和消除的复杂过程,将体内划分为多个室。
详细描述
多室模型中,毒物进入体内后,在不同的室之间进行扩散和消除。每个室的毒物浓度和消除速度都可能不同。该 模型适用于毒物在体内分布和消除过程非常复杂的情况,能够更准确地描述毒物在体内的代谢动力学过程。
06
毒物代谢动力学在药物设计和安全性
药物安全性评价中的应用
毒副作用研究
01
通过毒物代谢动力学研究,可以深入了解药物的毒副作用及其
发生机制,为药物安全性评价提供依据。
长期毒性研究
02
了解药物在体内的代谢和排泄过程,有助于评估药物的长期毒
性,为药物的长期使用提供安全保障。
致癌性研究
03
研究药物在体内的代谢过程与致癌性的关系,有助于发现潜在
THANKS
感谢观看Biblioteka 02毒物的吸收、分布和排泄
毒物的吸收
吸入
通过呼吸道吸入,如气体、蒸汽或气溶胶。
食入
通过消化道摄入,如食物、饮料或药物。
皮肤接触
通过皮肤吸收,如化学物质、农药或有毒液体。
注射
通过注射器直接进入血液。
毒物的分布
血液运输
毒物被吸收后,通过血液输送到全身各个器官和组织。
组织摄取
毒物被输送到各个器官和组织后,被细胞摄取并储存。
评价中的应用
药物设计和开发中的应用
药物代谢速率预测
毒物代谢动力学可以预测药物在 体内的代谢速率,有助于指导药 物的剂量选择和给药方案设计。
药物相互作用评估
了解药物之间的代谢相互作用, 有助于预测新药与其他药物联合 使用时的安全性。
药物结构优化
通过对药物代谢过程的研究,可 以对药物分子结构进行优化,以 提高药物的疗效和降低不良反应。

! 3 毒物的处置与毒代动力学

! 3 毒物的处置与毒代动力学

第二章毒物的处置与毒代动力学药物代谢动力学(Pharmcokinetics,PK)概念:简称药动学,主要研究药物的体内过程及体内药物浓度随时间变化的规律,包括药物的吸收、分布、代谢、排泄四个主要环节。

毒物代谢动力学(T o x i c o k i n e t i c s,T K)运用药代动力学的原理和方法,定量地研究毒性剂量下药物在动物体内的吸收、分布、代谢、排泄过程及其特点,进而探讨药物毒性发生和发展规律性的一门学科。

毒代动力学有别于的药代动力学和毒理学是:①所用剂量远远高于临床所用剂量②多为重复多次给药③侧重点是阐明药物毒性发生和发展的动态变化规律性。

毒代动力学研究目的:1、阐述机体与药物(在毒性剂量条件下)接触的强度和时间与药物毒性发生发展的内在关系,明确引起毒性反应的量效关系和时效关系。

2、预测药物毒性作用的靶器官(组织),并解释中毒机制。

3、明确是原形药物还是某种特定产物引起的毒性反应,以及毒性反应种属间的差异的关系。

4、探索毒性反应种属之间的差异,明确动物毒性剂量与临床剂量之间的关系,为临床安全用药提供依据。

5、为临床前毒性研究的实验设计(如动物种属,试验剂量和用药方案的设计)提供依据。

第一节药物体内A D M E过程一、吸收(Absorption)1、常用给药途径:2、吸收速度顺序依次为:吸入>腹腔>舌下含服>直肠>肌注>皮下>口服>皮肤贴剂。

二、分布(distribution)概念:药物由血管到组织器官过程和结果。

对分布的影响因素:1、药物和蛋白的结合率2、体内屏障:血脑屏障、胎盘屏障、血眼屏障、其他屏障、生物屏障三、代谢 (Metabolism)又称代谢生物转化,指药物在体内多种药物代谢酶(尤其是肝药酶)作用下,其化学结构发生改变的过程。

药物经过生物转化后的四种结果:1、由活性药物转化成无活性的代谢物(灭活):药物代谢最普通的方式。

2、由无活性药物转化成活性代谢物(活化):如环磷酰胺转化后变成具有抗癌活性的醛磷酰胺。

毒物代谢动力学(毒代动力学)指导原则毒性研究中全身

毒物代谢动力学(毒代动力学)指导原则毒性研究中全身

S3A人用药品注册技术要求国际协调会ICH三方协调指导原则毒物代谢动力学(毒代动力学)指导原则:毒性研究中全身暴露的评价现行ICH进程第四阶段1994年10月27日本指导原则由相应的ICH专家小组,根据ICH程序制定,并经各国管理部门协商,已进入第四阶段,被推荐给欧盟、日本和美国管理部门采用内容1前言2毒代动力学的目的和检测参数3一般原则3.1引言3.2对暴露水平的定量3.3采样时间点的确定3.4达到适当暴露浓度的给药剂量设置3.4.1低剂量3.4.2中剂量3.4.3高剂量3.5毒性研究中暴露评价的范围3.6对暴露水平解释中的复杂因素3.7给药途径3.8代谢产物的测定3.9数据的统计学处理3.10分析方法3.11报告4不同毒性试验中的毒代动力学4.1引言4.2单次给药毒性研究4.3重复给药毒性研究4.4遗传毒性研究4.5致癌性(致瘤性)研究4.5.1指标或剂量范围的研究4.5.2主研究4.6生殖毒性研究4.6.1引言4.6.2生育力研究4.6.3妊娠期和哺乳期研究5.附注6.参考文献(其他ICH指导原则)毒代动力学研究:毒性研究中全身暴露的评价1前言本指导原则所涉及的毒物代谢动力学(毒代动力学)仅与拟开发作为人用的药品有关。

毒代动力学是药代动力学在全身暴露评价中的延伸,为非临床毒性研究的有机组成部分,或为某一特殊设计的支持研究,以评估药物的系统暴露情况。

研究结果可用于阐明毒理学发现及其与临床安全性问题的相关性(文中其它术语的定义见注释1)1。

制定该指导原则是为了使人们理解毒代动力学的意义和应用,指导毒代动力学的试验设计。

本指导原则强调毒性试验需与毒代动力学相结合,这将有助于解释毒理学发现和制定合理的试验设计。

毒代动力学测定通常是结合于毒性研究中,故又被称为“伴随毒代动力学1”。

有时,模拟毒性试验的支持研究也可获得相应的毒代动力学数据。

毒代动力学试验的试验程序有助于获得受试动物多次重复给药的药代动力学数据。

毒代动力学

毒代动力学
分子型 离子型
毒物总量 (分子型+离子型
血浆 pH=7.4 胃液 pH=1.4

[HA] 1 [HA] 1
[A-] 100 [A-] 0.0001
101
1.0001
4
主Hale Waihona Puke 转运 (active transport)
特点: 逆浓度差转运 消耗能量 需载体,有饱和性 有竞争性抑制现象(例:丙磺舒与青霉素)
95mg – 5mg bound
14
与血浆蛋白结合率比较高的药物
> 95% bound
Thyroxine 甲状腺素 Warfarin 华法林 Diazepam 地西泮 Frusemide 呋塞米 Heparin 肝素 Imipramine 丙咪嗪
> 90% but < 95% bound
Glibenclamide 格列本脲 Phenytoin 苯妥英 Propranolol 普萘洛尔 Sodium Valproate 丙戊酸钠
药物(毒物)在人体内的分布情况
区域 血浆
总量的%
70kg人的体液(L)
给1g化合物后血浆浓度(mg/L)
4.5 20 55 ---
3 14 38 ---
333 71 26 0~25
总细胞外液 总体液 组织结合
(二)药物(毒物在组织中的储存)
1. 药物与血浆蛋白结合(Protein binding)
血脑屏障 Blood Brain Barrier
胎盘屏障 Placental barriers
18
三、生物转化
Biotransformation
药物在机体内发生化学结构的改变过程,是药物 在体内消除的重要途径

毒物动力学

毒物动力学

毒物动力学是研究化学物质(毒物)在体内的吸收、分布、代谢和排泄(ADME)的学科,是毒理学的一个分支。

它主要关注的是毒物对人体的影响,包括毒性的大小、作用机制、剂量和浓度的关系以及不同物种之间的差异等。

毒物动力学的研究对于制定合理的剂量方案、预测毒物的毒性和安全性、指导毒物的处理和处置等方面都具有重要的意义。

在实际应用中,毒物动力学常常与其他学科相结合,如药学、医学和环境科学等,以更好地服务于人类的健康和安全。

环境毒理学-第三讲-毒物动力学

环境毒理学-第三讲-毒物动力学

中央室和周边室在t时刻的转运过程:
dC1 ( K12 K10 )C1 K 21C2 dt
dC 2 K12 C1 K 21C2 dt
高丽丽 环境毒理学基础
三、两室模型
dC1 ( K12 K10 )C1 K 21C2 dt
dC 2 K12 C1 K 21C2 dt
– K越大,表明消除越快
高丽丽 环境毒理学基础
一、基本概念

半减期(T1/2) /消除半衰期/生物半衰期
– 指一种毒物从体内或血浆或某一脏器中含量(浓度)减 少一半所需要的时间
– 可表示毒物由机体消除的速度或机体对该毒物的消除 能力
– 与消除速度常数(K)成反比; T1/2=0.693/K – 高亲水性毒物,能迅速被代谢为水溶性化合物,生物 半减期短;生化转化缓慢或不易被代谢的亲脂性毒物, 生物半减期长。
浓度 c
8 6 4 2 0 0 5
y = 13.421e-0.1237x R2 = 0.9781
lgc
1.2 1 0.8 0.6 0.4 0.2
lgc = -0.0533t + 1.1256 R2 = 0.9792
10
15
20
25
0 0 5 10
时间 t
时间 t
15
20
25
解:
首先以lgc对t拟合,求得直线回归方程:
与毒物的分布、消除和室间转运有关(α大于β)。
高丽丽 环境毒理学基础
三、两室模型
设t时刻中央室毒物的浓度为C,则C1=CVd1,带入上 面求解方程式,得到:
C D( K 21 ) t D(k21 ) t e e Vd 1 ( ) Vd 1 ( )

毒理学-毒物的生物转运与转化 毒物动力学

毒理学-毒物的生物转运与转化 毒物动力学

(三)经皮吸收
部位:表皮及附属器官(毛囊、汗腺、皮脂腺)。 过程:
♪穿透相:过角质层 ♪吸收相:进表皮较深层(颗粒层、棘层、生发层)→
真皮(真皮内静脉、毛细淋巴管)入血 影响因素:
♪脂/水分配系数 ♪种属 ♪皮肤不同部位 ♪皮肤完整性 ♪温湿度
(四)其它途径吸收 腹腔(enterocoelia) 皮下(皮内)(subcutaneous/intracutaneous) 肌肉注射(intramuscular) 静脉注射(intravenous)
◆ 阐明外源化学物毒作用机制 探明化学物种属差异存在的原因 预测人类暴露化学物后的处置及在毒性中的作用
◆有助于阐明化学物的联合作用机制 ◆通过改变外源化学物的ADME过程来预防和治疗化学
中毒
第一节 生物膜和生物转运
一、生物膜与生物转运(biomembrane) (一)生物膜的结构 细胞膜(质膜)(cell membrane) 细胞器膜:核膜、内质网膜、线粒体膜、溶酶体膜等 组成结构 脂质双分子层 膜蛋白(结构pro、受体、
(三) 毒物代谢酶的抑制与激活 1. 酶抑制
竞争性抑制
因为毒物代谢酶的底物特异性相对较低,活性 有限,如同时有两种或两种以上的外源化学物 为一种酶代谢,可发生竞争性抑制。 这种抑制 并不影响酶的活性及含量,而是一种毒物占据 了酶的活性中心,导致其它毒物的代谢受阻。
♪利于排泄 ♪代谢解毒(metabolic detoxication) ♪代谢活化(metabolic activation) ♪活性中间产物(reactive intermediate)
▫亲电子剂(electrophilic) ▫自由基(free radicals) ▫亲核剂(nucleophilic)(少见) ▫氧化还原剂(reductant-oxidant, redox)(少见)

毒性动力学

毒性动力学
按清除途径不同,可有肾清除率(CLr),肝清除率(CLh)。血浆清除率则 是肾和肝清除率的总和。 CL= Vd· Ke或CL= D/AUC。
肾清除率(CIR)可描述尿排泄动力学,CIR是外源化学物的尿排泄速率除 以血浆浓度,即CIR =(kDa/dt)/c。一般用尿排泄速率对相应集尿期中间时 间点的血浆浓度作图,所得直线的斜率为CIR。
时量曲线的实质: 是吸收、分布速率和消除速率的代谢值。
6
毒物动力学
非静注染毒的时量曲线可分为三个期:潜伏期、持续期及残留期。 潜伏期 (latent period)是染毒后到开始出现毒作用的一段时间,主 要反映外源化学物的吸收和分布过程。静注染毒时一般无潜伏期。
峰时间(peak time)是指染毒后达到最高浓度的时间。 峰浓度(peak concentration)与外源化学物剂量成正比,峰浓度 超过最低有害浓度时,就出现毒作用。 持续期(persistent period)是指外源化学物维持有害浓度的时间,其 长短与外源化学物的吸收及消除速率有关。 残留期(residual period)是指体内外源化学物已降到有害浓度以下, 但尚未从体内完全消除。残留期的长短与消除速率有关。残留期长 反映外源化学物在体内储存,多次反复染毒易引起积蓄中毒。
由于该毒物动力学主要是剂量改变而导致出现毒物动力学参数 变化,因此,也将非线性毒物动力学称为剂量依赖性毒物动力学。 出现非线性毒物动力学的主要原因是:①外源化学物剂量较大;② 在吸收、分布、代谢和排泄过程中,有酶、载体以及转运系统的参 与。例如主动转运饱和,血浆蛋白结合位点饱和,高浓度时,代谢 酶系统的饱和;肾小管重吸收饱和等。
影响时量曲线的主要因素为:外源化学物的生物利用度、血浆 半减期、每次剂量、染毒间隔时间、外源化学物的表观分布容积和 每日染毒总量。

毒物动力学

毒物动力学
Ka 中央室,C1 Ke K21 K12 周边室,C

单位: L/h, ml/min等 ml/min等 单位:
二、一室模型(单室模型)
将机体视为单一的室, 指毒物进入机体后, 将机体视为单一的室, 指毒物进入机体后, 能迅速均匀地分布于整个机体之中。 能迅速均匀地分布于整个机体之中。 1、模型假设 毒物直接进入血液; 毒物直接进入血液; 毒物迅速分布并在各组织和器官中建立平衡。 毒物迅速分布并在各组织和器官中建立平衡。 2、可用于描述: 可用于描述: 毒品静脉注射; 毒品静脉注射; 一些口服药品。 一些口服药品。
(2)半衰期(T1/2):某毒物在体内含量减少一半 半衰期( 所需要的时间。与消除速率常数( 成反比: 所需要的时间。与消除速率常数(K)成反比: T1/2=0.696/K =0.696/K 一般亲水性毒物半衰期短,亲脂性毒物半衰期长。 一般亲水性毒物半衰期短,亲脂性毒物半衰期长。 (3)消除率(Cl, clearance rate):单位时间内毒 消除率(Cl, rate): 物消除量与血浆中毒物浓度之比: 物消除量与血浆中毒物浓度之比: Cl=消除速率 血浆浓度= Cl=消除速率/血浆浓度= 消除速率/ dD/dt/C=KD/C= dD/dt/C=KD/C=KVd
房室, 2、室(房室,comparment) 将机体作为一个系统, 将机体作为一个系统,按动力学特点分为若干 部分,每个部分称为室。 部分,每个部分称为室。 划分依据:毒物转运速率是否近似。 划分依据:毒物转运速率是否近似。
一室模型:毒物转运速率高, 一室模型:毒物转运速率高,能迅速与体内各 组织达到平衡 二室(或多室)模型: 二室(或多室)模型:毒物在不同组织和器官中 的转运速率不同。 的转运速率不同。 将血流丰富, 将血流丰富,能与央室; 的组织和器官与血液一起,称为中央室; 其它血流量少毒物穿透速率慢的组织, 其它血流量少毒物穿透速率慢的组织,称 周边室。 为周边室。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内的分布情况,房室模型是假设机体象房室,毒物进
入体内可分布于房室中,由于分布速率的快慢,可分为
一室开放模型、二室开放模型或多室开放模型。
化学毒物内转运的速率过程分为一级、零级和非线性。
(一)基本概念
1、速率类型:按化学物在体内转运或转化的速率
不同分:
(1)一级速率过程(first order rate process)
(一)时量曲线
血浆毒物浓度随时间变化的动态过程,可用时量 关系来表示。
在染毒后不同时间采血样,测定血毒物浓度,以 血毒物浓度为纵坐标,时间为横坐标作图即为毒物浓
度时间曲线(concentration-time curve),简称时量
曲线 。
时量曲线可定量的分析毒物的体内动态变化。毒物的ADME过 程是同时进行的。时量曲线实际上是吸收、分布速率和消除速 率的代数值。
静注染毒的时量曲线一般无潜伏期。
血 毒 物 浓 度
一、经典毒物动力学
教材61页
基本理论:速率论和房室模型。
基本思想:外源化学物的血液或血浆浓度与其组织 中的浓度保持动态平衡,血浆浓度的变化可以反映 组织中的浓度变化。 研究的核心问题: 时间与毒物水平的关系——时 量曲线
房室模型(compartment model)是用来描述毒物在体
第三节 毒物动力学
(Toxicokinetics)
概述
1. 定义:毒物动力学是以速率论的观点出发,用数 学模型分析和研究外源化学物数量在生物转运和转 化过程中的动态变化规律。
教材61页
毒物动力学(toxicokinetics)是研究机体对化学毒物的作
用(ADME过程)和靶器官中化学毒物或其活性代谢物的 量。
概念:指毒物在机体内某一瞬间的变化速率与其 瞬间含量的一次方呈正比。
公式: dc/dt=-KeC dc/dt 为毒物浓度随时间的变化率 Ke 为速率常数 C 为体内毒物浓度
多数毒物在体内过程符合一级速率过程。
特点**:
❖ 毒物任何时间的消除速率与毒物该时间在体内的 量成正比。
❖ 血浆浓度的对数值对时间作图可得一直线。
公式: dc/dt=-Ke
说明毒物在体内随时间变化速率过程 与毒物浓度无关。
部分需要载体转运或限速酶代谢的毒 物的体内过程符合零级速率。
特点**: ❖ 血浆浓度对时间作为一直线; ❖ 毒物在任何时间的消除速率是一常数,为恒量
衰减,半减期与体内毒物量无关; ❖ 毒物半减期随初始浓度或剂量增加而增加。
两室间的转运速率相等。
二室开放模型时量曲线
①iv:时量曲线在半对数坐标上 表现为二项指数衰减曲线。
前段下降迅速,反应毒物从中央 室向周边室分布过程,称为分布 相、快相;后段曲线下降趋缓, 反应毒物消除过程,称为消除相 或慢相。
②非iv:分布相可部分或全部被上升趋势的吸收相遮 盖,此时与一房室曲线类似。
(3)非线性动力学(non-linear toxical kinetics)
非线性动力学是指外源化学物剂量较大,化学物在体内 的某些过程不符合线性速度过程的要求,存在明显的非 线性特征。当血毒物浓度很高时,毒物消除慢、血毒物 浓度的变化相当于零级,为非线性动力学过程;当血毒 物浓度较低时转为线性动力学过程。
当毒物吸收入血循环后,立即均 匀分布到全,称为一室开放模型。以一 室模型处置的化学毒物从机体消除通 常符合一级动力学。
一室开放模型时量曲线:
(2) 二室开放模型(open two compartment model)
当毒物在体内组织器官中分布速率不同,毒物先进入中央 室,然后较缓慢地进入周边室。中央室和周边室之间的转运 是可逆的,达到动态平衡时,
❖ 毒物的半减期恒定,不因毒物本身数量、染毒途 径或方式而发生变化。
❖ 血浆和其他组织的毒物浓度以单位时间某恒定分 值减少,即恒比衰减。
(2)零级速率过程( zero order rate process ) 概念: 当化合物的量超过机体的转运能力时,它们的 转运速度与其本身数量无关,即转运速度与化合物 数量的零次方呈正比。
多房室模型由一个中央室和若干个周边室相互 连接而成。
-中央室多由血液及供血丰富、血流通畅的组织、 脏器组成,如细胞外液、心、肝、肾、腺体等。
-周边室则由供血量少、血流缓慢或化学物不易通 过的脏器如静止状态的肌肉、脂肪、骨、皮肤。
封闭式模型 如化学物进入机体后仅在各房室间转运、而从
具有非线性动力学特征的毒物,在重复染毒时血毒物浓 度的增加与剂量增加不成正比关系,剂量增加,会使稳 态血毒物浓度的增加超过按比例的增加量,毒性效应增 强。
2、房室模型(compartment model)
是按照动力学的特点将机体分为若干部分,每个部分 叫做房室,用以描述毒物在体内的分布状态,并因此 推导出代谢动力学的有关参数和数学方程。
毒物效应动力学(toxicodynamics)研究在靶器官中化学毒
物或其活性代谢物与大分子(靶分子)的作用,及其所引 起的局部的或整体的毒性效应。
概述
教材61页
2. 目的:
①有助于毒理学研究的设计(如剂量和染毒途径); ②通过对暴露、时间依赖性的靶器官剂量与毒作用关系研 究,解释毒作用机制; ③确定有关剂量、分布、代谢和消除的参数,用以进行对 人的危险性评价。
说明:房室不是具备解剖学位置或生理学功能的概 念。是指在动力学上相互之间难以区分,转运、转化 性能相近的组织、器官和体液。凡是转运、转化相似 者均可以视为一个房室。
由于分布速率的快慢,可分为一室开放模型、二室 开放模型或多室开放模型。
(1) 一室开放模型(open one compartment model)
非静注染毒的时量曲线可分为三个期:
潜伏期 (latent period )
-染毒后到开始出现毒作用的一段时 间,毒物的吸收和分布过程
持续期 ( persistent period )
-毒物持续有害浓度的时间,其长短 与毒物的吸收及消除速率有关
残留期 ( residual period )
-体内毒物已降到有害浓度以下,但 尚未从体内完全消除。残留期的长 短与消除速率有关
相关文档
最新文档