称重设计

称重设计
称重设计

应变式称重传感器的设计与计算

[美国]理查德·富兰克林

此篇文章的形成是基于对称重传感器设计者能有所帮助。它深入分析推导出一些公式,这些公式能够计算出位于称重传感器上的某些尺寸大小,并提供所需要的输出。此篇文章还介绍了各种误差来源及设计建议。

粘贴式电阻应变计广泛应用于当今高精度测力与称重传感器的制造中。本篇文章为帮助称重传感器设计者计算出称重传感器尺寸大小,从而为获得唯一需要的输出作了充分的准备。设计者既可以运用有限元分析法经计算机程序(如果可能)来确定称重传感器所需要的尺寸,或运用本文所提供的公式来计算此尺寸。应力公式选自一部非常好的书——应力与应变公式(见参考文献[1])。除了公式汇编,本文还讨论了误差的可能来源及设计建议,有关误差来源的信息主要是基于作者的经验。文中所描述的相关称重传感器没有作专利调查,在考虑把所讨论的设计用于产品的生产或推向市场前,有必要作一下调查。

通过某些假设得出的这些计算公式,另外还有电阻应变计的特性、应力形式、材料特征以及机械加工的偏差都会导致计算结果的一定误差。在批量制造称重传感器前,应制造几个样机进行组装、测试和标定。

在某些工业中,如航天工业也许只需要一次性的称重传感器,为决定其非线性、重复性和滞后等误差,在使用前对其进行标定是十分重要的。当计算机被应用于数据处理时,非线性、零点漂移及灵敏度变化,是很容易修正的。如果称重传感器在使用时要经历强烈的温度变化和外部附加载荷的影响,我们应进行试验并测量出这些影响量所造成的误差。如果某部分结构(如接头、销子、压杆)用来测量或是被用作称重传感器时,标定和测试就尤为重要了。

称重传感器设计包括许多方面,这里对其制造生产不予讨论,例如,需要对电阻应变计安装技术知识的全面了解,一些电阻应变计制造商提供技术资料的同时,还应提供电阻应变计安装的分类等。

有关称重传感器设计的附加内容见参考文献[2](a)和[2](b)。这份小册子及计算机程序比较完整,可以从制造商那里获得。

在过去十年中,计算机技术的发展改变了称重传感器的设计、制造与记录方式,例如在电阻应变计被安装后,所有的称重传感器都有一个原始的不平衡(当没有载荷作用时,也有输出信号存在)。通常零点调整电阻被应用于商业称重传感器,以便消除这种不平衡。运用计算机程序,零点不平衡

数据很容易被除掉。除了零点调整电阻外,在精密的商业称重传感器中安装了许多电阻,便于补偿诸如零点和灵敏度温度影响。如果在记录数据的同时,称重传感器的温度也进行了测量,并且当这个称重传感器被标定时,温度造成的误差已被测定,那么就应该运用计算机程序修正最终数据。商业称重传感器制造商不为计算机提供用于修正原始不平衡或温度影响的数据,因为他们不想局限市场。商业称重传感器不安装零点平衡及温度补偿电阻会节省大量资金,尤其是需求量很大时效果更明显。

符号定义

a—结构系数。

A—横截面面积。

A'—中性轴上横截面面积。

A1—中性轴上翼缘面积。

A2—中性轴上腹板面积。

b—应变梁翼缘或矩形截面的宽度。

c—从中性轴到应变梁或翼缘上表面的距离。

d—从中性轴到翼缘下表面的距离。

e—拉伸或压缩应变。

e1、e2、e3、e4—应变计1、2、3、4的应变值。

e—应变计1应变的绝对值。

1

e s—应变梁表面应变。

e t—电桥的总有效应变。

E i—电桥的激励电压。

E0—电桥的输出电压。

E m—弹性模量。

f—翼缘厚度。

G f—应变计灵敏系数。

h—应变梁厚度。

J—横截面的惯性矩。

l—从应变梁中心到应变计中心线的距离。

L—应变梁上两个应变计中心线之间的距离。

μ—泊松比。

M—应变计中心的弯矩。

N—电桥应变放大系数。

p—分载荷。

P—主载荷。

r—圆柱式弹性体半径。

S—拉伸或压缩应力。

S a—平均应力。

S b—弯曲应力。

S s—剪切应力。

t—中性轴处腹板的厚度。

T—轴的扭矩。

V—剪力。

Z'—从中性轴到A'质心的距离。Z1—从中性轴到翼缘质心的距离。Z2——从中性轴到腹板质心的距离。称重传感器的输出计算

图1 称重传感器电路简图

图1是一个不含温度补偿电阻的称重传感器电路简图。四个电阻应变计呈现在惠斯通电桥的桥臂上。请注意,应变方向相同的两个电阻应变计安装在电桥的相对桥臂上,以保证电桥灵敏度最大。例如,电阻应变计1和3受拉伸应力,2和4受压缩应力,那么这种安装的结果是当称重传感器承载后,增加了电桥从B点到C 点的最终电压输出。相反,当称重传感器由于温度影响而改变它的电阻时,由于增加或减少相同的量,电桥的最终输出不会变化。这种电桥的构造由于温度产生单一的最小输出值,而使称重传感器产生最大输出值。

如图1所示,电桥输出E0与输入E i之比为:

4

0t

f

i

e

G

E

E

=(1)

式中:G f—应变计系数,由应变计制造商提供的非尺寸大小因素。

e t—电桥上应变计的全部有效应变产生的总的应变输出。

变化公式(1),得到总应变:

f i

t G E E

e

4?

=(2)

通过这两个公式,便可以计算称重传感器的输出灵敏度E0/E i,如果给出了电桥各桥臂的应变值,

就可以计算出总的应变值e t 。如果给出了所需要的电桥输出值,要想确定电桥的总应变值e t ,我们必须知道每个桥臂的应变值:

e t =e 1-e 2+e 3-e 4

式中:e 1—应变计1的单轴应变值(通常是称重传感器上最大最主要的应变)。

e 2、e 3和e 4—应变计2、3和4上的单轴应变值。

上述公式e t 中的加号和减号是由其在电桥上的位置而决定的。如果应变计1和3处于拉伸应力,使得电阻增加(或者相对于C 、B 处得到一个正的输出),应变计2和4处于压缩应力,使得电阻减小(或者是得到一个负的输出),则公式为:

e t = e 1-(-e 2)+e 3-(-e 4)

最后,由于电桥的位置,应变计电阻的变化e t 的公式如下:

4321e e e e e t +++=

在全部称重传感器设计中,应变计1、2、3和4上的应变值存在着一个固定的关系N (电桥应变放大系数),则上式可以写为:

1

41

31

21

11

e e e e e e e e e e N t +

+

+

=

=

(3)

e t =N (±e 1)

(4)

用公式(1)代替e t ,结果是:

4

1

0Ne G E E f i =

(5) 公式(2)变化为:

N

G E E e f i

14?

=

(6) 有三种应力被应用于称重传感器的设计中,即拉伸与压缩应力,弯曲应力和剪切应力。 利用拉伸与压缩应力的称重传感器

利用拉伸应力与压缩应力的多为商业称重传感器,它是利用单一载荷产生的应力,代替被称物体产生的应力。由于有较小的纵剖面设计,能为所给的受力状态提供较大的输出。

在航空工业中,通常用圆柱形弹性体作称重传感器(处于拉伸应力或压缩应力的圆柱)是比较方便的。最好是将圆柱的两端固定或设计成双球面,若是作不到这一点,就把应变计粘贴在附加弯矩最小区域,那里的横截面存在有规律的变化,并产生最小的弯曲应力。

注意:1、应变计1、4和2、3为单轴结构或90°应变花,在圆筒表面相隔180°粘贴。

2、在载荷P 方向,应变计1、3受拉伸,应变计2、4受压缩。

图2 电阻应变计位置图

图2是圆柱式称重传感器的一个例子,有关计算圆柱应力S 的传统公式如下:

A

P

S =

(7) 式中:P —轴向载荷。

A —圆柱横截面面积(图2的A-A 部分)。 S —拉伸或压缩应力。

既然这是一个单轴向载荷的圆柱,就可应用虎克定律,其应力、应变可用如下公式计算:

m

E S

e =

1 (8) S=e 1E m

(9)

式中:E m —弹性模量。

e 1—1号应变计的轴向应变值。

圆柱式称重传感器电桥的输出应由公式(5)计算。

既然圆柱的尺寸大小是固定的,正如下面例子所给出的:假设一个额定载荷为P=2500Ib (磅)的钢制弹性体,弹性模量E m =10.63106psi (磅/英寸2),圆筒的外径为2.0英寸,内径为1.75英寸。通过计算其横截面面积为A=0.736英寸2。

为通过公式(3)和(4)确定N ,e 1=e 3,e 2=e 4=μe 1,式中μ为泊松比。代入公式(3)和(4),其结果为:

N=1+μ+1+μ=2(1+μ)

由于钢的μ值为0.32,所以N=2.64。 利用公式(7)计算应力,即

3396736

.02500

===

A P S 磅/英寸2。 通过公式(8)确定应变计1的应变值,即

6

110

6.103396

?==

m E S e =320×10-6 通常写为e 1=320microinches/inch (微英寸/英寸)。

如果应变计灵敏系数(由制造商提供)为2.0,代入公式(5)中,计算结果如下:

422.04

1032064.20.26

0=???=-i E E mv/v 这说明如果给电桥施加E i =10V 激励电压,一个2500磅的载荷施加在称重传感器上时,输出的变化应为E 0=4.22mv 。一个典型的商用称重传感器的额定输出为从2.00到3.00mv/v 或从20到30mv (施加10v 激励电压时),所以0.422mv/v 是一个较低的输出。

若要增大这个例子中圆筒式称重传感器的输出,我们可以作很多工作。

(A )为求所需要的横截面面积A ,假定计算灵敏度为2.0mv/v ,就必须选择能形成这一面积的外径。可在圆柱弹性体表面粘贴应变计并使其受载进行验证,直到得出满足要求的直径为止。如果这种方法不行,可以试验下一个方法。

(B )电桥输出电压E 0与输入电压E i 成正比,输入电压受材料,电桥电阻,应变计尺寸等限制(见参考文献[3])。假定施加在电桥上的最大推荐电压为10V ,要想应用更高的电压,可通过加大电桥电阻的方法,即采用更大电阻的应变计。图2展示的4个应变计,其中两个应变计在0°位置上(或粘贴一个90°的应变花),另两个应变计在180°位置上(或粘贴第2个应变花)。应用8个应变计的电桥,在圆柱表面沿0°,90°,180°和270°粘贴90°的应变花,电桥各臂电阻会增大一倍。这时输入电压可增大,但是由于推荐应用于电桥的电压与电阻的平方根成比例,所以这只能

增加输出值的1.41倍。另外,如果应变计的栅长和栅宽分别由1/8英寸增大到1/4英寸时,应变计的面积便增加了4倍,而输出增加一倍。现在总输出增加了(1.41×2)或2.82倍,电桥电压会增加到28.2V,输出由11.9mv取代了4.22mv。

柱式称重传感器的误差来源

一个泊松电桥(两个应变计测量主应变,另两个应变计测量由于泊松比影响而产生的应变)是固有的非线性电桥。对于一个灵敏度为2.0mv/v的称重传感器,这种固有的非线性大约为0.10%。电桥的非线性可以被另一个非线性部分所抵消一些。引起另一个非线性的原因是由于泊松比使得柱式弹性体横截面面积增加或减少。例如,当称重传感器承受压向载荷时,横截面面积增加,使压缩应力减小;当承受拉向载荷时,就是相反的情况。对于一个灵敏度为2.0mv/v的称重传感器,由于截面积变化引起的非线性误差大约为0.05%,所以总的非性误差为0.10%~0.05%或者0.05%。这是非常小的通常可以忽略不计,但是在称重传感器检测数椐中,这是应该被检测的误差。精密的商用称重传感器应利用附加的半导体应变计,此半导体应变计被粘贴在弹性体上,并串联在电桥电路的供桥端来补偿非线性。

注意图2圆柱式弹性体上应变计的安排,全部应变计被粘贴在同一个平面上,例如纵向应变计1和3为0°和180°,横向应变计2和4为90°和270°,且所有应变计的中心线处于一个横截面的水平线上。圆柱上的应变计如图2安排,有两个原因:

(A)弯曲应力是误差的来源之一,必须使之最小化。理论上,当应变计如图1和2粘贴连线时(如测量拉伸与压缩应力),弯曲应力被消除。因为并不存在准确完美的贴片,建议采取其它方法使得弯曲应力产生的误差尽可能接近于零。在圆柱上弯曲力矩的方向通常是可以确定的,应变计应粘贴在圆柱弯曲力矩最小处,且在中轴线上(见图2),那里的弯曲应力理论上为零。

(B)如果圆柱大且应变计在同一个平面间隔90°粘贴,圆柱周围的任何温度变化都会导致信号漂移。所以电桥相邻两臂的应变计应尽量靠近粘贴,从而减少温度误差,这也是利用90°应变花的原因之一。

弯曲型称重传感器

设计过程与柱式结构有所不同,概述如下:

(A)由公式(3)和(4)确定有效应变N,通常是用公式(4)。

(B)为提供所需要的输出,由公式(6)确定要求的应变。

(C)通过公式(9),由应变算应力。

(D)根据载荷与尺寸大小建立应力公式。

(E)为计算所需尺寸大小,用(C)中计算出的应力替代(D)中产生的应力。

这是为满足所需要的输出,求得称重传感器尺寸大小的最普通方法。另一方面,如果已给出了尺寸大小,而输出E0/E i是所要求得的,那么应依照前面所介绍的圆柱式称重传感器计算过程,应用公式(3)和(4),之后是公式(7)和(8),最后是公式(5)得到输出灵敏度E0/E i。

图3 在载荷P作用下标准的双梁弯曲型称重传感器

图3是在载荷P作用下一个典型的双梁弯曲型称重传感器简图,为了看得清晰,去掉了外壳并加大了偏转度。这种商用称重传感器用于测量较低的载荷,应变计粘贴位置如图3所示。图1所示的电桥电路仍然有效。

图4 半根弯曲梁显示的2片应变计位置图

图4是一个自由体的简图,粘贴有2个应变计的半根应变梁。通常梁的大多数尺寸是固定的,厚度h 根据所需要的输出进行计算。例如假定所需要的输出灵敏度E 0/E i 是3.0mv/v ,首先计算出有效应变值,既然所有的应变计产生相等的应变,由公式(3)和(4)得出N=4。制造商提供的应变计灵敏系数为2.1,接下来为提供所需要的输出,需要求出的应变e 1可以通过公式(6)求得,即

001429.04

1.2003

.04401=??=?

=N G E E e f i 英寸/英寸

又可写为:

e 1=1429微英寸/英寸。

弹性体材料为17—4PH 不锈钢,E m =29.13106磅/英寸2。弯曲应力S b 由公式(6)计算出应变e 1,代入公式(9)得出,即

S b =e 1E m =1429×10-6×29.1×106=41.580磅/英寸2。 在弯曲梁中求弯曲应力的传统公式如下:

J

Mc

S b =

式中:M —应变计2在中心线上的弯矩。

C —从中性轴到梁表面的距离。 J —应变计所在截面的惯性矩。

图5 弯曲梁上应变计到表面距离引起的误差

图4和图5给出p=P/2,C=h/2,l=L/2,M=pl ,对于矩形截面J=bh 3/12,把这些值代入S b =Mc/J 中,得出S b =6pl/bh 2,h 的计算公式为:

b

S pl

h b 6=

(10)

现以用数值表示的实例进行说明,假设截面尺寸与载荷如下: L —应变计中心线之间的距离,L=1.00英寸,l=L/2=0.50英寸。 P —满量程载荷,P=100磅,p=P/2=50磅。 b —梁的宽度,b=0.625英寸。 代入公式(10)得出的结果是:

076.0625

.0580.4150

.0506=???=

h 英寸

弯曲型称重传感器的误差来源

弯曲型称重传感器的误差来源,其一是由于粘贴在梁上的应变计,所用的应变粘结剂和防护涂料增加了非常薄的应变梁的刚度。因为应变计、应变粘结剂和防护涂料不会完全具有弹性,这一附加刚度就会引起滞后和非线性误差。根据估算如果钢制弹性应变梁贴片处的厚度小于0.017英寸(0.43mm ),铝制弹性应变梁的厚度小于0.030英寸(0.76mm ),就会出现小的误差。其二如果不考虑被粘贴的应变计与表面的那段距离(见图5中的d ),那么当你计算非常薄的梁的厚度时就会出现误差。因为应变计的应变值与其到中性轴的距离成正比,所以梁的表面应变e s 比应变计的应变e 2小一些。为阐明这点,我们假定上面梁的厚度h 为0.018英寸,为了求出所需要的输出,仍需假定应变计的应变为1429微英寸/英寸,则重新计算的表面应变为:

d

c c

e s +=

1429 式中:C=h/2=0.018/2=0.009英寸。

d ≈0.0015英寸。 被利用的新的应变为:

0015

.0009.0009

.01429+?=

s e =1225微英寸/英寸。

为提供所需要的输出计算应变的误差,应该比这个例子大约高出17%,这只是计算梁厚度的一个估计的误差,并不是一个操作性的误差。

剪切型称重传感器

当载荷超过了弯曲型称重传感器的要求时,应设计成剪切型结构,但是,当载荷超过200000磅(90718kg )时,建议采用柱式结构。

剪切应变是一个角应变,不能像轴向应变那样进行测量,只能间接测量。莫尔圆有关纯剪切应力情况及应变计粘贴简图如图6所示。

图6 莫尔圆及应变计分布简图

莫尔圆表明切应力的最大值与处于拉伸状态的主应力的最大值是相等的,并且与梁的中性轴成45°方向。应变计是测量主应力产生的应变,因此应变计也同样应与中性轴成45°,如图6所示。此图同样表明一个没有载荷作用的平面部分正方形单元,当有载荷作用时正方形会变成菱形,使得一个应变计处于拉伸状态,而另一个应变计处于压缩状态。请注意应力是双轴的,其处于拉伸状态的主应力的轴向应变值不但与S t 成正比,而且随泊松比μS c 而增加:

e 1='1e (1+μ) (11)

式中:e 1—应变计1的测量应变。

'1e —单轴向范围内的基准应变,'1e =S/E m 。

μ—泊松比。

电桥各桥臂上的应变计承受同样的应变值,所以利用电桥总应变公式,可写为:

e t =()μ+1'1e +()μ+1'1e +()μ+1'1e +()μ+1'1e =4'1e (1+μ)

因为

'

1e e N t =

所以 N=4(1+μ)

泊斯特(Purest )会议有学者认为这是不符合规则的,因为e 1`并没有真实的存在,但是它确实提供了正确的答案,并在N 值计算中有它是很方便的。用于计算所要求的可以提供所需输出的应变算公式(6)可变为:

)

1(0

'1μ+=

f i

G E E e (12) 计算出所要求的单轴应变'1e 后,应力通过公式(9)获得,即

S s =S t =-S c ='1e E m

能否准确计算出称重传感器上的应力,因切应力的种类和弹性体的结构不同而产生很大的差异。例如,一个承受纯剪切应力状态的扭转轴,其切应力计算可由下面典型的公式得出:

J

Tr S s =

式中:S s —切应力(与主应力的最大值相等)。

T —轴上的扭矩。 r —轴的半径。 J —横截面极惯性矩。

另一方面,直接利用剪切载荷准确的确定称重传感器上的切应力是极为困难的。对于剪切型轴销式称重传感器更是如此,下面列举了一些不够精确的原因:

(A )应变计是通过其栅长测量的是应变区的平均应变。如果在应变区内切应力的变化曲线非常陡,且应变计尺寸非常大,所测量的应变值就会比峰值小。

(B )最大切应力只用了直接作用于其上的最大剪切载荷的一部分。公式假设剪切载荷在一个已知的面积内,从底部到顶部较均匀分布,且切应力最大值均匀分布在中性轴上。

(C )称重传感器上的载荷分布还应与安装接头的影响相吻合,如剪切型轴销式称重传感器,其载荷分布取决于轴销与安装接头两者之间的公差,所受载荷由于安装间隙不同而异。

我们将讨论三种切应力称重传感器。准确计算为保证所需输出的弹性体尺寸,与以前所用的程序完全一样。首先进行粗略计算,最后给出准确结果。切应力称重传感器尺寸大小的计算准确率,

不如圆柱、弯曲和扭转型称重传感器。

工字形截面切应力称重传感器 最普通的用于计算切应力的公式为:

A

V S a =

式中:S a —平均切应力。

V —剪切载荷。 A —受剪部分的截面积。

这个公式可以用来计算破坏载荷,但不能给出弹性体粘贴应变计处中性轴上切应力的最大值。对于切应力的最大值的计算公式,应随着受剪截面的形状不同而变化。

图7 S 形剪切式称重传感器

图7是另一个S 形称重传感器简图,除了利用剪切应力代替弯曲应力外,其它均无变化。图中A-A 截面对于两个轴都是对称的,从侧面角度看呈现两倍的尺寸关系。应变计粘贴在工字形截面的腹板上,其截面尺寸为b 、c 、d 、f 和t 。根据上述给定的尺寸,按计算程序计算出腹板的厚度t 。

下列中性轴切应力Ss 最大值计算公式,引自参考文献[1]第91页公式(2),即

Jt

Z VA S s ?

?= (14)

式中:V —剪力。

t —腹板厚度。

A '—中性轴以上横截面面积。 Z '—从中性轴到面积A '形心的距离。 A 'Z '=A 1Z 1+A 2Z 2

A 1Z 1—中性轴以上翼缘面积乘以中性轴到翼缘形心的距离,依照图7,A 1Z 1=fb (d+f/2)。 A 2Z 2—中性轴以上腹板的面积乘以中性轴到腹板形心的距离,A 2Z 2=td×(d /2)。 J —中性轴以上截面的惯性矩

12

)2)((12)2(3

3d t b c b J --=

例如图7中的称重传感器,假设所需的输出是 3.0mv/v ,弹性体由17—4PH 不锈钢制成,E m =29.1×106磅/英寸2,μ=0.29,利用公式(6)、(9)及N=4(1+μ),求得应力为33800磅/英寸2,其中E 0/E i =3.0mv/m ,G f =2.0,假设所给的载荷及尺寸如下:

P=V=15000磅,d=0.80英寸,f=0.20英寸,c=1.00英寸,b=1.50英寸。把这些数值代入公式(14),即可得到一个有关t 的二次方程式,解此方程求得t=0.273英寸。

为确定强度,还需要其它尺寸大小,例如确定承受载荷螺纹的允许直径,符合螺纹外径要求的宽度b 一定要足够大等。图中A-A 部分的箭头指向是高弯曲应力与拉伸应力合二为一的结合面,必须具有足够大的强度才能安全的承受载荷。粘贴有应变计的腹板两侧的盲孔部分可以是方形、矩形,也可以是圆形使得加工简单。据估计称重传感器任意部分的应力都比应变计处的应力小。

工字形截面切应力称重传感器的误差来源

依照惯例,当计算工字梁的应力时,假设腹板承受所有载荷。如果我们采用这种方法,那么将利用平均应力S α=V/A 的计算公式来确定腹板的厚度。采用上面的例子,承受载荷的腹板截面面积是A=2ct ,又因为A=V/S α,则腹板厚度t 计算如下:

222.033800

0.12150002=??==

a cS V t 英寸 此值比通过公式(14)得出的t 值小18%,尽管公式(14)略显繁琐,但对于不同的截面形状,它的计算是比较准确的。

轮辐式称重传感器

图8是一个轮辐式称重传感器简图,这种设计是为了生产高准确度的称重传感器。

图8 轮辐式称重传感器

粘贴应变计的轮辐是一个矩形截面梁,通常高度h 比宽度b 长一些。把公式(14)应用于矩形截面见参考文献[1]第92页公式(3),得出切应力计算公式如下:

A

aV

S s

(15) 式中:V —剪力,V=P/4。

a —形状系数。

A —矩形截面的面积,A=bh 。

轮辐式称重传感器的误差来源

参考文献[1]指出,对于矩形截面其形状系数a=3/2,但是如前所述最终的输出是几个因素共同作用形成的。比较截面的高度,及截面的宽度与高度比,我的经验是a随着应变计的尺寸变化而变化。现举例说明,一个200000磅的称重传感器,截面高度h为2.386英寸,宽度b为1.172英寸。这么大的高度解决了通过应变计基长测量平均应变的问题,因为应变计基长只有1/8英寸。形状系数a为1.25,并不是参考文献[1]中所述的1.50,表1给出了a的数值。

建议设计者形状系数最好选取1.25,组装一台称重传感器样件,校准所需要的截面面积。一旦在样件上建立了准确的计算模型,调整截面的宽度,就可以求得所需要的输出值,然后再组装一台称重传感器样件,并进行校核以确定最终输出。

图8给出了8片应变计的情况,应变计1A和1B串联,作为图1中的应变计1;应变计2A和2B串联作为图1中的应变计2,如此等等,这种联结组桥方式提供了最精确的称重传感器。但是采用4片应变计的称重传感器价格会低一些,只是准确度为中等水平。4片应变计可粘贴在图8中1A、1B、3A和3B的位置上。购买的应变计应具有与中性轴成45°或135°的敏感栅,选择一个具有适当方向敏感栅的应变计是非常重要的。参考图6确定应变计的粘贴位置,使2片应变计处于拉伸状态,而另外2片应变计处于压缩状态。

较大量程的轮辐式称重传感器,例如容量超过200000磅(90718kg)时,会出现较大的滞后误差。这已形成了理论,即滞后误差是在泊松比作用下,在轮辐受载过程中轮箍底部产生向外移动的力,从而形成力矩。由于存在摩擦力,轮箍移出时的力矩与移回时的力矩是不同的,因而产生滞后。处于压缩状态的大型柱式称重传感器不会出现滞后现象,所以,既然大多数用户都希望轮辐式称重传感器的设计会提供精确的结果,那么轮辐式称重传感器的最大容量最好限定为200000磅之内。

轴销剪切式称重传感器

图9是在一个吊环内装有轴销剪切式称重传感器的简图,这个组合表明切应力称重传感器应用的多样性和广泛性。本文展示的这台轴销剪切式称重传感器取自生产厂家的产品目录,见参考文献[4]。

1.承载卷筒,2. 挂钩或吊链,3. U形吊环,

4. 剪切轴销,

5. 凹陷部分连线插头

图9 轴销剪切式称重传感器

应变计粘贴在轴销上的直径d为1/8英寸到1/2英寸的圆孔内,并处于有凹槽的位置上。应变计的粘贴位置必须准确,这项工作应该由一名熟练的机械师利用特殊的工具完成。

参考文献[5]详尽的讨论了轴销剪切式称重传感器,如果对制造类似的称重传感器有兴趣,建议读者重新读一下那篇文章。计算轴销上切应力的公式选自参考文献[1],在参考文献[5]中也给出了计算公式。此作者的研究展示了初始原型的真实应力,它与计算公式有着非常大的差异。例如需要为所计算的弹性体提供1.0mv/v的输出时,那么直径小的轴销切应力大约是11500磅/英寸2,而要求弹性体提供相同的输出时,直径大的轴销切应力却是7500磅/英寸2。称重传感器的输出受很多因素影响,比如说穿过中心孔的直径d,凹槽的直径D,轴销与支撑之间的间隙,支撑的硬度,应变计的尺寸等。可以被利用计算轴销剪切式称重传感器输出的最好公式是(15)式,其中形状系数a在1.5到2.0之间变化。

表1列举了经试验得出的a的一些数值,凹槽直径D从1.0到3.0之间变化,轴销是钢制的,称重传感器的输出灵敏度为2.0mv/v,而中间孔的直径d为0.50英寸。

轴销剪切式称重传感器的误差来源及设计建议

参考文献[5]指出“当几何形状没有问题时,传统的称重传感器要优于轴销剪切式称重传感器”。轴销剪切式称重传感器在具体应用中,有很多误差来源,归纳起来主要有:

(A)为了具有最好的重复性和最小的滞后误差,轴销剪切式称重传感器的输出灵敏度应设计为1.00mv/v,所以当轴销受载时,不会因椭圆变形在轴销中引起较大的弯曲应力,这就增加了安全载荷和疲劳寿命。

(B)轴销的凹槽必须是应变计敏感栅宽度的2倍。但是,如果凹槽过宽,当轴销受载时就会产生较大的弯曲应力而引起误差,同时也降低了安全载荷。参考文献[5]提供了有关凹槽宽度的设计建议。

(C)轴销与支撑之间的间隙应尽量小一些,以减少弯曲变形。当轴销的直径为1.0英寸时,最大间隙为0.004英寸;当直径为4.0英寸时,最大间隙为0.007英寸。如图9中吊环式称重传感器的情况,要求吊环为轴销提供紧密的配合。

(D)支撑应具有足够的刚度来抵抗弯曲变形,越刚硬越好。测试与校准轴销时,应该与实际安装使用时是同一个支撑。

(E)在使用寿命内,如果轴销需要承受冲击载荷或许多循环载荷时,凹槽就需要有足够大的半径。另外,如果轴销要在很冷的天气(0°以下)工作并承受冲击载荷时,就不要选用较脆的钢种如17-4PH来制造轴销。

(F)与轮辐式称重传感器相似,大型轴销剪切式称重传感器(200000磅或更高)会出现滞后误差。一个二百万磅的轴销剪切式称重传感器的滞后误差大约是1.0%到3.0%,为了减小(并不是消除)这一误差,所有大型切应力称重传感器都应该将输出灵敏度限制在1.00mv/v之内。

(G)如果公式(15)被应用于实心轴销剪切式称重传感器时,形状系数a是一个常数4/3或是1.33,这个公式假设最大切应力均匀分布在轴销的中性轴上。

(H)由四只称重传感器组装的承载器,每个称重传感器必须具有相同的输出灵敏度。如果一只称重传感器的输出灵敏度是3.0mv/v其它几只的输出灵敏度也应该是3.0mv/v。如果不具备这一特点,任何一个偏于承载器的载荷都会得到不同的测量结果。一个轴销就是一台电子衡器,由两个称重传感器并联组成(每个槽内有一只称重传感器),如果输出灵敏度不同,测量结果就会随着偏心载荷的不同而变化。图8中的中心通孔就是用来把外载荷集中于称重传感器中心而设计的。

结语

本篇论文是基于对称重传感器设计者能有所帮助而写的,它提供了一些公式,这些公式可用于计算称重传感器上的某个尺寸的大小,并提供所需要的其它计算结果。它同样介绍了用于计算圆柱式结构称重传感器输出的公式(通常被用于航空工业)。

本篇论文全面介绍了称重传感器的误差来源和设计建议。但是应该强调的是影响称重传感器第一个样件输出的尺寸计算误差,应该在生产第二个样件前对这一尺寸进行更正。

本篇论文中的电桥电路(图1)并没有串入温度补偿电阻。例如应变计的灵敏系数、绝大多数材料的弹性模量都随着温度的变化而变化,所以称重传感器的输出灵敏度也随着变化,这个误差在商用称重传感器中通常是被补偿的。在商用称重传感器中电桥串联了温度补偿电阻,当温度变化时,补偿电阻会进行补偿。如果称重传感器串入了灵敏度温度补偿电阻,对于一个给定的输入电压,输出一定是一个符合要求的标准值。考虑到补偿电阻将减少输出值,所以设计的电桥输出值一定要比标准值高。表2是本篇论文所介绍公式的总结。

注释1、在全部公式中假设应力是单向的并且符合虎克定律,或者是应用公式将应力转换为应变或是相反将应变转换为应力,即S=eE m或e=S/E m。

注释2、为了得到需要求得的尺寸重新整理了公式。

注释3、用在公式(5)中代入N的方法求得输出值。

参考文献

〔1〕Roark,Raymond J.and Young,Warren C.,Formulas for Stress and Strain,Fifth edition,McGraw-Hill,1975.(罗克2雷蒙德2杰和杨格2沃伦2希:应力与应变公式,第五版,麦克格来-希尔出版,1975年。)

〔2〕(a)The technical staff of Measurements Group Inc., Strain Gage Based Transducers-Their

Design and Construction, P.O.Box 27777, Raleigh, North Carolina,27611,(919)365-3800,1988.

(b)T-Design (Computer Software ),B.L.H.Electronics, 75Shawmut Rd. Canton, MA02021,(617)821-2000.[(a)测量技术人员集团公司,应变式传感器的结构与计算。(b)T-程序(计算机软件)。]〔3〕Measurements Group Technical Note TN-502,Optimizing Strain Gage Excitation Levels(计量集团技术注释TN-502,选择最佳应变值。)

〔4〕Metrox,Inc,Load Pins,Drawing no. LP102-0000,1991 catalog.(梅特罗伊公司,轴销式称重,1991年目录第LP102-0000号图。)

〔5〕Yorgiadis,Alexander,The Shear Pin Force Transducer,Instruments and Control Magazine,October 1986.(约吉艾迪斯,亚历山大,轴销剪切式力传感器,仪器与控制杂志,1986年10月)。

作者简介

理查德2富兰克林在purdue(珀杜)大学机械工程专业获得工学学士学位。在工作期间他继续深造于San Diego(圣2迪格)大学,同样是机械工程专业他获得了工学硕士学位。在获得硕士学位不久,他在加利福尼亚获注册专业工程师执照。富兰克林先生拥有一个小的应变计技术咨询公司。

他从事航空工业已有23年,并作为通用原子能公司的设计和测试工程师18年。他为商业杂志,西部应变计委员会及报纸撰写文章。晚上他在西海岸大学及卡耶麦克亚大学教授测试设备及应用数学已8年。

可用如下方式与富兰克林先生联系:Versatile Instruments,P.O.Bxo876,Del Mar,CA92014,619/755-2944

译自Measurements &Control,October1996.

翻译:宋玉梅

校对:刘九卿

电子称设计方案

便携电子称的设计方案 电子秤的应用系统是由硬件和软件所组成。硬件指单片机、扩展的存储器、扩展的输入输出设备等部分;软件是各种工作程序的总称。硬件和软件只有紧密配合、协调一致,才能提高系统的性能价格比。从一开始设计硬件时,就应考虑相应软件的设计方法,而软件设计是根据硬件原理和系统的功能要求进行的。 一、基本要求: 1、电子秤称重范围:0~;重量误差不大于; 2、数码管显示或者液晶显示:所称物体重量 二、特色与创新: 使用单片机为控制核心,大大简化了系统的组成构造,且单片机可拓 展性强,可以很方便的对系统进行拓展和应用。 2、使用键盘输入数据,操作简单,方便。 3、中文液晶显示所称量的物品重量,数量,单价,金额和所有物品的总金额。 4、具有去皮功能。 5、当物品重量超过电子秤量程,即过载情况或者是物品重量小于A/D 转换器所能转换的最小精度,即欠量程的时候,具有超重报警功能。 三、设计原理及设计基本思路: 电子称重技术的基本原理:称重技术的根本任务是测量各种状态下物体重量。实质上是测量被称物体质量,我们知道,质量的测量是物体在重力场下的重力测量获得的,用公式W=mg,w 是物体的重量,g 是在重力场的重力加速度,m 是物体的质量。目前无论是利用杠杆的原理,还是利用弹性元件的弹力与被测物体的重力达到平衡来测量物体的质量,都没有离开两个必须的条件:一是重力场,二是静力平衡。随着现代传感技术的发展,人们已从传统的机械杠杆原理测量物体的质量,发展到现在的电子称重,即用传感器把重力信号转变成电信号,利用电子计算机技术,根据电信号同重力信号的数学模型,间接的求出物体的质量。 系统的基本设计思路:

智能称重系统设计

智能称重系统设计 高伟朋 (陕西理工学院物理与电信工程学院电子信息工程电子1204班,陕西汉中723000) 指导教师:梁芳 [摘要]介绍基于单片机STC89C52控制的一款智能电子秤,其中物体质量信息由重力传感器进行采集。传感器将采集到的信息传送至单片机中,经过单片机处理,准确的在四位数码管显示屏上进行显示。它具有置零,去皮功能。物体的质量数值会和电子秤本身的称量范围数值进行比较,若超出了测量范围的最大值,系统就会执行报警程序。本系统设计结构简单、精确度高、功能齐全、使用方便。 [关键词]单片机;重力传感器;智能电子秤

Design of the Intelligence Electronic Scales of Microcontroller Gao Weipeng (Grade12,Class4,Major of Electronic Information Engineering,School of Physics and Electronic Information Engineering,Shaanxi University of Technology,Hanzhong 723000,Shaanxi) Tutor: Liang Fang [Abstract]Introduction based on single chip STC89C52 control of an intelligent electronic scales, wherein the object quality of the information collected by the gravity sensor. Sensor information collected will be sent to the microcontroller through the microcontroller processing, accurate display on four digital display. It has zero, tare function. Quality and value will be the object of electronic scales weighing range values themselves are compared, if the maximum value exceeds the measurement range, the alarm system will execute the program. The simple design structure, high precision, fully functional, easy to use. [Key words]Single chip ; Gravity sensor ; Intelligent electronic scales

称重仪表选型原则

称重仪表选型原则 称重传感器和仪表的选型原则: 1 电子秤传感器和仪表的选型中与衡器相关的计量参数 1.1应根据衡器的主要参数:最大秤量、最小秤量、准确度等级、最大检定分度数n、工作温度范围、承载器的静载荷、去皮重量等选择。 2 称重传感器选型 2.1准确度等级及称重传感器温度范围及湿热稳定和蠕变指标,必须满足衡器的要求。2.2如果衡器系统设计时没有规定称重传感器的误差分配系数,称重传感器的误差分配系数可以是0.3~0.8, 2.3如果衡器系统设计方案中没有规定称重传感器的工作温度范围,那么温度范围下限是-10 度及温度范围上限是40度。根据衡器系统设计方案,也可以对温度范围做出限定,但工作温度范围不得小于30度。 2.4称重传感器的最大秤量Emax应满足下述条件: 1)衡器最大秤量修正系数; 2)衡器的最大秤量; 3)衡器载荷传递装置的缩比; 4)衡器传感器支撑点的数量。 2.5传感器最小静载荷:因电子秤承载器所产生的最小载荷必须等于或大于称重传感器的最小静载荷Emin 2.6称重传感器的最大分度数应不小于衡器的检定分度数 2.7称重传感器最小检定分度值不应大于衡器检定分度值e乘以载荷传递装置的缩比R,再除以称重传感器数量n的平方根:对于多称量范围衡器,相同的传感器用于多于一个称量范围时,或多分度值衡器,e用el代替。

2.8传感器额定输出,传感器在用Emax加载后,对应输入电压下的输出信号的变化一般采用mV/V 表示。 2.9 一组的传感器额定值总和应等于或略大于最大量程及皮重的总和。订购称重传感器时需说明最大量程、皮重、需用传感器数量及加载方式拉或压。 3.电子秤称重仪表的选型 3.1准确度等级:称重仪表准确度等级,包括温度范围及湿热稳定性指标,必须满足衡器的要求。如果温度范围足够宽,并且湿热的稳定性指标只能满足较低准确度等级的要求。 3.2称重仪表的最大允许误差系数 如果衡器系统设计时没有规定称重仪表的最大允许误差系数,该系数可以为1~0.8。 3.3工作温度范围 如果衡器系统设计时没有规定称重仪表的温度范围,那么温度范围下限值Tmin=-10度,温度范围上限值Tmax=40度。根据衡器系统设计要求,可以对温度范围进行限制, 但工作温度范围不得小于30度。 3.4最大检定分度数对于每台称重仪表,其最大分度数应不小于衡器的检定分度数,对于多称量范围或多分度值衡器,该要求适用于任何单独的称量范围或局部称重范围:如果可以用于多称量范围或多分度值衡器,这些功能必须包括在受检定的称重仪表中。 4.电子秤连接电缆的选型称重仪表与传感器或传感器接线盒(使用六线制的称重仪表应具有传感器反馈补偿功能)之间的附加电缆必须根据在称重仪表说明书中规定要求来选择。 其它计量设备选型参见HG-T+20507规定 我公司计量室编制,仅供参考。

小型称重系统的设计

摘要 传统的称重在市场上已经满足不了我们的需求。我们一直希望紧凑,测量准确,显示直观,便宜的电子称重装置可取代传统的称量工具。电子称重机便应运而生,凭借称重仪表无法取代传统的功能,如称量方便,准确,自动化控制,操作简单,广泛应用于人们的生活,工业生产中。 电子称重装置以MCU作为中央控制单元,由通过称重传感器进行模数转换单元,在配以键盘、显示电路及强大软件来组成。本选题采用压力传感器来收集由于通过电压放大电路产生的微弱信号的压力变化,通过A/D转换器转换成数字信号后,将数字信号送入微处理器。经微控制器的适当处理后,将模拟量转化为数字量输出,控制器接受来自A/D转换器输出的数字信号,将数字信号转换为物体的实际重量信号,并传送到显示单元。此外,项目可通过键盘涉嫌价格被设置。这种高精度智能电子称重器体积小,准确,便于携带,重量函数集的质量和价格计算功能于一体,满足商业贸易和居民家庭的需要。 关键词:电子称重器;单片机;称重传感器

Abstract Traditional weighed on the market has failed to meet our needs. We always wanted a compact , accurate measurement , intuitive display, cheap electronic weighing device can replace the traditional weighing tools. Electronic weighing machines have come into being , by virtue of weighing instruments can not replace the traditional features, such as weighing convenient, accurate , automatic control , simple operation, widely used in people's lives and industrial production. Electronic weighing means as a central control unit MCU from the load cell through the analog-digital conversion unit configured with a keyboard, a display circuit and powerful software components. The topic using pressure sensors to collect the pressure produced by the change of the voltage amplifier circuit weak signals by A / D converter into a digital signal, the digital signal is fed to the microprocessor . After appropriate treatment of the microcontroller , the analog to digital conversion of the output , the controller receives the digital signal from A / D converter outputs a digital signal is converted to the actual weight of the object signals , and transmitted to the display unit . In addition , the project can be set via the keyboard alleged price . This high-precision electronic weighing devices small smart , accurate, easy to carry , quality and price calculation of the weight function set functions, commercial trade and residents to meet the needs of families . Keywords: electronic weighing devices ; SCM ; weighing sensors

《汽车衡全自动智能称重系统》设计方案

《汽车衡全自动智能称重系统》 设 计 方 案

一、综述: 一直以来,电子衡器称重管理工作,都是煤炭、水泥、石化、粮食、饲料、冶金、化工等工业以及所有需要电子磅计量行业中的难题。往往磅房远离管理部门,司磅人员的工作得不到有效监控,而且每天大量的手工填单和计算工作极易发生错误,这些问题的存在,久而久之,日积月累下来都将给企业带来巨大的经济损失。随着新技术的发展,对称重管理要求的提高,如何有效地管理称重数据,提高工作效率,提高企业信息化管理水平,是各企业的管理人员所想的,也是我们所开发的称重管理系统所必须做的。 我公司根据热电企业、垃圾焚烧行业、大型煤电企业的实际情况,引进国内外先进的技术经验成功开发了一套汽车衡智能称重管理系统。已广泛应用在国内多家垃圾处理场、发电厂以及化工、造纸企业,受到广大用户的肯定! 汽车衡全自动称重系统是集远距离车号自动识别系统、自动语音指挥系统、称重图像即时抓拍系、红绿灯控制系统、红外防作弊系统、道闸控制系统、远程监管系统于一身的智能称重系统。在称重的整个过程里做到计量数据自动可靠采集、自动判别、自动指挥、自动处理、自动控制,最大限度的降低人工操作所带来的弊端和工作强度,提高了系统的信息化、自动化程度。对于管理部门,可以通过系统中的汇总报表了解当前的生产及物流状况;对于财务结算部门,则可以拿到清晰又准确的结算报表;仓管部门则可以了解到自己的收、发货物的情况等。这些报表数据是随时可以查阅的,因此它也加强了管理上的一致性,缩短了决策者对生产的响应时间,提高了管理效率,降低了运行成本,促进了企业信息化管理。

二、系统设计原则 1 可靠 本系统是一个长期运行的系统,保证系统稳定可靠的运行是首先要考虑的。设计时充分考虑了系统在部分出现故障时仍然能够提供对用户的服务,并且能够很快的排除故障恢复正常运行。 2 可扩展 企业的发展是有一个过程的,相应的需求也是一个由小到大的过程,在系统方案中按照系统分析、统筹规划的观点将系统规划成一个扩展性很强且在扩容升级时浪费最少的系统。中心系统采用叠加式模块升级方式,逐步实现平滑扩容;降低系统维护升级的复杂程度,提高系统更新、维护和升级的效率;软件系统使用先进的网络开发平台,以客户机/服务器体系结构为框架,结合模块化和结构化的设计思想,既考虑到当前使用的易用性,更具有适当的超前性。同时系统具有与其他信息系统进行数据交换和数据共享的能力;计算机网络系统适应将来的广域扩展。 3 标准化和优势确立 系统实现时尽量采用符合工业标准的技术,保证技术实现的质量,便于日常维护和系统的扩展。 系统采用成熟的高新科技,以目前较为先进的方法实现需要的功能,既反应当今科技的先进水平,又具有发展潜力,保证系统在相当长的时间内不被淘汰。 4 开放 系统设计遵循开放性原则,整个系统的操作以方便、简捷、高效为目标,多操作平台整体设计统一操作,既充分体现快速反应的特点又能便于工作人员进行业务处理和综合管理,便于领导层、管理层及时了解各项统计信息和决策信息。

基于专家系统的轴组式动态称重仪表的研究与设计

目录 第一章绪论 (1) 1.1课题研究背景 (1) 1.2动态称重系统及仪表国内外现状 (2) 1.2.1国外现状 (2) 1.2.2国内现状 (3) 1.2.3称重系统及仪表存在的问题 (4) 1.3本文研究内容 (5) 1.4本章小结 (5) 第二章轴组式动态称重系统概述及仪表硬件设计 (7) 2.1轴组式动态称重系统布局 (7) 2.2系统功能说明 (8) 2.2.1轴组式动态称重承载器 (8) 2.2.2测轮器 (9) 2.2.3轴识别板 (10) 2.2.4光幕 (10) 2.2.5地感线圈 (11) 2.2.6轴组式称重仪表 (11) 2.3仪表设计要求 (13) 2.4仪表硬件结构 (14) 2.5仪表硬件设计 (15) 2.3.1主板 (15) 2.3.2模拟量采集卡 (17) 2.3.3电源模块 (18) 2.3.4通讯模块设计 (18) 2.3.5信号采集模块 (19) 2.6本章小结 (20) 第三章轴组式动态称重仪表软件设计 (21) 3.1开发平台及程序结构 (21) 3.2监控程序 (21) 3.3主程序流程 (22)

3.4主程序设计 (23) 3.4.1UI通讯线程 (23) 3.4.2AD中断线程 (24) 3.4.3车辆信息处理线程 (25) 3.4.4上位机通讯线程 (26) 3.4.5Dbg调试线程、参数保存线程 (27) 3.5触摸显示屏组态程序设计 (27) 3.5.1MCGS组态软件 (27) 3.5.2仪表基本界面设计 (28) 3.6本章小结 (29) 第四章称重数据的处理及专家系统的设计 (31) 4.1轴识别信号数据的分析处理 (31) 4.1.1车轴上下秤判断及行车方向判断 (31) 4.1.2联轴识别和车速计算 (32) 4.2称重信号数据的分析处理 (33) 4.2.1称重信号的滤波处理 (33) 4.2.2称重信号有效称量段的选取及轴组载荷的计算 (35) 4.3专家系统概述 (36) 4.4车辆轴型识别知识库 (38) 4.5轴组动态称重知识库 (40) 4.6推理机制 (43) 4.7数据库 (45) 4.8本章小结 (46) 第五章现场测试 (47) 5.1动态测试评定标准 (47) 5.2现场测试数据 (48) 5.3本章小结 (50) 第六章总结与展望 (51) 6.1总结 (51) 6.2展望 (52) 参考文献 (53) 致谢 (55)

LP7510电子称重仪表国内版说明书

LP7510 称重显示控制器 用户使用说明书 (国内版) Edition:10052202A

安全须知为保证安全操作,请遵守以下的常规安全注意事项。 警告 警告 警告

目录 一、概述 (1) 1.1 主要功能 (1) 1.2 技术参数 (1) 1.3外形及安装图 (2) 1.4蓄电池的使用 (3) 二、安装和调试 (4) 2.1开箱检查 (4) 2.2电源连接 (4) 2.3秤台连接 (4) 2.4通讯口连接 (5) 2.5 4~20mA输出功能连接 (6) 2.6继电器输出控制信号功能连接 (7) 三、基本操作 (9) 3.1按键和显示 (9) 3.2开机 (11) 3.3置零功能 (11) 3.4去皮功能 (11) 3.5累计功能 (12) 3.6打印功能 (12) 3.7保持功能 (12) 3.8计数功能 (13) 3.9切换分度值功能 (13) 3.10放大十倍显示功能 (13) 四、标定操作和参数设置 (13) 4.1进入设置 (13) 4.2标定操作步骤: (14) 4.3应用功能参数设置表 (15) 五、数据输出格式 (19) 六、维护保养 (21) 6.1常见故障排除 (21) 6.2日常维护 (22) 6.3恢复缺省参数 (22) 6.4装箱清单 (24)

一、概述 本产品是专为台秤和地上衡的应用最新开发设计的称重显示仪表。其显示界面友好、操作简单、性能稳定,不仅具有基本的称重功能、累计、计数、打印和通信功能,而且可以选配分度值切换、动物称重等功能。 1.1 主要功能 称重功能 >> 置零功能 >> 去皮功能 >> 开机置零功能 >> 毛重\净重显示功能 >> 动物秤功能 >> 超载提示功能 选配称重功能 >> 打印功能 >> 大屏幕、计算机通讯(RS232\RS485)功能 >> 4-20mA输出功能 >> 继电器输出控制功能 1.2 技术参数 精度等级6000 e 分辨率显示: 30, 000 内码:2,000,000 零点漂移 TK0 < 0.1μV//K 增溢漂移TK spn < ± 6 ppm//K 灵敏度0. 3 μV /d 信号范围-30~30 mV DC 供桥电路 5 VDC,4 线制接线,最多可接6只350Ω传感器 交流电源 AC100~250V 使用温度、湿度 -10~40℃;≤90%RH 储运温度 - 40 °C ~ + 70 °C

动态称重系统的设计_魏鲁原

确受力,提高系统的称量精度。 ③改进传统的导向柱与衬套刚性配合限位设计,而是依靠新装置(称量箱)的活动承载压柱和缓冲衬套之间的柔性配合限位来精确完成对力的引导,避免秤体由于受承重冲击偏载和侧向力容易产生的卡碰现象,以解决系统称量失准、使用失常等技术难题。 ④秤台采用整体箱式厚板结构,并在一侧设置活动盖板门,密闭性好,可有效抵抗高温辐射和钢水飞溅。秤体设计采用16只M20的高强度螺栓与臂叉大梁连接成一体,所以秤体倾覆的可能性几乎为零,传感器检查或更换只需打开秤体一侧盖板(活动门),维护简单方便,使用安全可靠。 ⑤采用国产高温传感器,节省投资;自行设计研制称量装置,风险系数小,效益好。 4 效益分析 本文介绍的炼钢工艺钢包称量装置的改进与设计,完全可应用在涟钢所有的连铸机钢包旋转台和车载钢包主体设备上。随着管理水平的提高,在完善配备化铁炉、转炉和电炉的投入产出计量手段的同时,为降低消耗,节约成本,近期,涟钢决定在一炼钢和三炼钢1#、2#共4套连铸机钢包放置台上应用国产钢包称量装置,并对原有的精炼炉车载钢包秤进行技术改造,使炼钢生产过程中钢水有了可靠的计量手段,使提高产品质量和节能降耗有一定保障。通过钢水称量显示操作人员可精确控制钢水不剩余,特别是对控制回炉钢水效益最好。根据涟钢炼钢回炉钢水统计分析,一年中由于钢水衔接不好,回炉钢水平均吨钢减少约10kg,按年产连铸方坯150万t计算,仅钢水衔接回炉钢水减少15万t。有了先进的称量装置和计量手段,按节省每吨钢水800元计算,1年就可创经济效益1200万元左右。 收稿日期:2001-07-21。 作者莫良智,男,1953年生,1978年毕业于湖南省国防企业系统锻造职工大学,工程师;主要从事计量检测和过程控制,发表论文14篇。 动态称重系统的设计 The Design of Dynamic W eighing System 魏鲁原 伍 斌 崔 霞 (徐州师范大学工学院,江苏徐州 221011) 摘 要 介绍一种动态称重系统的结构和实现方法,主要功能是动态测量行驶车辆的轮胎受力,并计算相应静态车辆重量,实现全自动、不停车计量。硬件设计中重点介绍数字电路的构成,A/D转换器、信号放大与偏置电路和LCD偏置电路。软件设计中提出了根据实际采样波形而设计的独特数据处理方法。 关键词 称重系统设计 动态称重 静态重量 车辆重量 A bs tract The structure and implementation of a d ynamic weighin g s ystem are presented.The main function is dynamically meas uring the force on tyre of on going vehicle an d calculating related static weight of vehicle to accomplish full y automatic n on-stop meterin g.In hardware design the composition of d igital circuit,A/D con verter,signal am plif ying and bias circuit as well as LCD bias circuit.In software design the unique data processing m ethod d e-sign ed in accord ance with real ti me sam plin g waveform is stated. Key w ords Design of weighing s ystem Dynamic weighing Static weighin g Weight of the vehicle 1 概述 随着我国市场经济的发展,公路交通量迅速增长,各种载货车、大平板车、带挂汽车和集装箱运输车的数量和比重逐年递增,特别是一些运输单位或个人不顾车辆、公路承载能力及行车安全,擅自对车辆进行改装,增加弹簧钢板,更换高强度轮胎,加高、加宽、加长车厢栏板,栏板上再加围篱,围篱上又堆尖等超载现象较为普遍,使公路、桥梁及其附属设施遭受到严重破坏,且由此而引发的交通事故日益增多。因此,为了维护国家财产和人民生命安全,保护公路完好畅通,严格限制超载运输车辆迫在眉睫。动态称重系统是交通执 《自动化仪表》第23卷第8期 2002年8月D OI:10.16086/https://www.360docs.net/doc/284477471.html, ki.issn1000-0380.2002.08.012

毕业论文电子体重秤测试系统设计与实现.

电子体重秤测试系统设计与实现 [ 摘要] 分析了电子体重秤的现状,提出了一种简单电子体重秤的设计方案。本课题设计了以单片机为核心的智能人体电子秤,详述了该系统硬件和软件的设计方法。该系统集称重和显示体重指数于一体,以STC12 单片机为主控芯片,选用应变式传感器,外围附以称重电路、显示电路、按键电路。制作了实物体重秤,实现了自动称重系统的功能。 [关键词] 应变式传感器;STC12 单片机;体重指数计算 Design and Implementation of Electronic Weighing Scale System Abstract: The current situation of electronic weighing scale is analyzed in this paper, while one simple electronic weighing scale design plan is put forward. The intelligent human electronic scale is designed with the core of SCM, hardware and software of the system are also elaborated. This system gathers weighing and showing body mass index and is mainly controlled by STC12 single chip, the periphery is consists of strain gauge sensor with weighing circuit, display circuit, buttons circuit. The object weighing scale is made and the function of auto weighing system is achieved. Key words: strain gauge sensor; stc12 single chip; body mass index 目录 1绪论 (1)

d2008f电子称重仪表使用说明书

D2008F(A/P/P1)电子称重仪表 使用说明书 2012年04月版 ●使用前请仔细阅读本产品说明书 ●请妥善保管本产品说明书,以备查阅 宁波柯力传感科技股份有限公司

目录 第一章技术参数 (1) 第二章安装联接 (2) 一、仪表与数字传感器的连接 (2) 三、仪表与大屏幕的连接使用 (2) 四、仪表与电脑的连接使用 (2) 五、仪表与蓄电池的连接使用 (2) 第三章称重记录的贮存与打印 (2) 一.称重记录的贮存 (2) 二. 皮重存储的输入方法: (3) 三. 称重记录的打印 (3) 四. 统计报表的打印 (4) 五.称重记录的查询 (6) 六.称重记录的删除 (7) 七.查询打印 (8) 附录A:打印操作举例: (8) 附录B:明细表及统计报表示例 (10)

第一章技术参数 1、型号:D2008F (A/P/P1) 2、数字传感器接口: 通信方式RS485 信号传输距离最长1000米 传输波特率9600、19200 bps 激励电源DC12V 数字接口能力最多16个数字传感器或数字模块 3、显示:7位白光LED数码管,7个状态指示符。 4、键盘 数字键0 ~ 9 功能键30个(10个与数字键复合) 5、时钟:可显示年、月、日、时、分、秒,自动闰年、闰月; 6、大屏幕显示接口 传输方式串行输出方式,电流环和RS232 传输波特率600bps 7、串行通讯接口 传输方式RS232/RS485 波特率600/1200/2400/4800/9600/19200可选 8、打印接口配置标准并行打印接口,可配接ESPON LQ-300K+Ⅱ、ESPON LQ-300K、ESPON LQ-680K 、ESPON LQ-730K 、ESPON LQ-1600K(+)、KX-P1131、KX-P1121、 DS-300等宽行打印机,D2008FP带热敏微打,D2008FP1带针式微打。 9、数据贮存 可贮存1500组车号皮重,201组货号和中英文货物名,100组客户号及中英 文客户名,100组数字或中英文备注信息,可贮存2400组称重记录,20组 过载记录。 10、使用环境 电源输入AC110~220V 50~60HZ DC 12V 使用温度0℃~ 40℃ 储运温度-25℃~ 55℃ 相对湿度≤85%RH 11、外型339×110×230 mm 12、自重约3.7公斤

智能PLC小粉料自动称量系统的设计

摘要 目前,PLC已经被广泛应用于生活和工业生产中。但在我们的炼胶系统中,对使用相对较少的小粉料,有的还不太重视,仍存在小作坊配料的形式。本文就是针对我们炼胶系统中的小粉(粒)料,设计的智能PLC小粉料自动称量系统。采用电磁振动加料器、双螺杆加料器分别对小粒料、小粉料进行自动称量;称重仪表采用智能型的称重显示控制器;PLC的CPU选用西门子新型的CPU315-2PN/DP;工控机控制监控,远程电脑联网监控;实现小粉料自动称量的智能化。 关键词:智能,PLC,小粉料,自动称量

目录 一、绪论 (4) (一)设计来源与现实意义 (4) (二)设计方案确定 (4) 二、PLC 的基本知识 (4) (一)PLC的基本概念 (4) (二)PLC的产生与发展 (4) (三)PLC的特点与应用领域 (4) (四)PLC的工作原理 (5) 三、PLC的控制系统设计 (6) (一)PLC控制系统的设计内容与步骤 (6) (二)PLC控制系统的硬件设计 (7) (三)PLC控制系统的软件设计 (7) (四)PLC控制系统的通信联网 (7) 四、智能PLC小粉料自动称量系统总体设计 (7) (一)智能PLC小粉料自动称量系统简介 (8) (二)小粉料自动称量系统 (10) (三)PLC小粉料自动称量系统 (13) (四)智能PLC小粉料自动称量系统 (22) 五、总结 (24) 六、参考文献 (24)

一、绪论 (一)设计来源与现实意义 目前,自动称量系统在用量大的物料(固体或液体)称量中,被广泛使用,实现了称量、配料的自动化,实现自动化生产。而我所见的塑料炼胶中,对使用相对较少的小粉料,有的还不太重视,仍存在小作坊配料的形式。人工按照配方用台秤、电子称对各项小粉料称量,混合,包装。这样的配料方式,人员的劳动强度大,作业环境差,称量精度差,易配错,不易满足快速、连续的生产,给生产带来不良因素。我现在设计的是在炼胶系统中使用的智能PLC小粉料自动称量系统。它也可以在类似的称量系统中使用。 (二)设计方案确定 智能PLC小粉料自动称量系统:由工控机(电脑),把配方发送到PLC,称重显示控制器通过PROFIBUS(现场总线),实时与PLC通信,PLC控制整个配方的自动称量。电脑通过软件包对整个自动称量过程进行实时监控。从而实现智能化的自动称量。 二、PLC 的基本知识 (一)PLC的基本概念 可编程逻辑控制器(Programmable Logic Controller ),简称PLC,是为工业控制应用而设计制造的。早期的PLC主要用来代替继电器实现逻辑控制。随着技术的发展,它已经大大超过了逻辑控制的范围。 (二)PLC的产生与发展 在PLC出现前,在工业电气控制领域中,继电器控制占主导地位,应用广泛。但是继电器控制系统存在体积大、可靠性低、查找和排除故障困难等缺点,特别是其接线复杂、不易更改,对生产工艺变化的适应性差。 1969年美国数字设备公司成功研制了世界上第一台可编程控制器,这种新型的工业控制装置以其简单易懂,操作方便,可靠性高,通用灵活,体积小,使用寿命长等一系列优点,这项技术很快发展起来。 20世纪80年代以后,随着大规模、超大规模集成电路等微电子技术的迅速发展,使PLC得到迅速发展。PLC成为把自动化技术、计算机技术、通讯技术融为一体的新型工业控制装置。PLC不仅控制功能增强,而且具有通信和联网、数据处理和图象显示等功能。 (三)PLC的特点与应用领域 1、PLC的特点 PLC技术之所以高速发展,除了自动化的客观需要外,主要是因为它具有许多独特优点:可靠性高、抗干扰能力强;编程简单、使用方便;功能完善、通用性强;设计安装简单、维护方便;体积小、重量轻、能耗低等。它

称重系统设计

杭州电子科技大学 设计报告 课程名称:短学期PCB电路设计 学生姓名: 学生学号: 学生班级: 专业: 实验日期: 基于51单片机的称重系统设计 设计要求: 1.89C52单片机最小系统的构成及设计;(包括:时钟、复位、电源、单片 机、按键和显示等) 2.在此基础上完成称重系统的设计,称重量程为0~80吨,误差正负100kg。 A为称重系统选择合适的4个压力传感器,注意量程和误差。 B设计放大电路,以便单片机对其信号进行后续处理。 C用7段数码管或其他显示模块进行重量的显示,单位为:kg。 D根据应用场合设计扩展功能(加分选做设计部分) 系统流程图: 压力传感器采集 信号 51单片机 放大器放大模拟 信号MAX232 上位机 电源系统

主要设计内容和功能: 本设计研究的是一基于51单片机的称重系统,称重范围为0到80吨,承重范围较大,可以广泛地运用于汽车过磅,货物称重,也可以用来测体重。本设计主要通过压力传感器采集货物重量信息,产生电压信号,通过运算放大器的放大,再经过一系列的A/D 转换、单片机的处理,把货物的重量显示到数码管上。如果有需要,也可以通过串口通信模块把数据到PC 上位机中,再由计算机分析处理数据。 本设计可以通过按键来选择称重的最大量程,如果超过选择的最大量程,则会有蜂鸣器发出警报。 方案论证: 传感器: 压力传感器选用MPX2200 压强为200KPa 时对应的最大电压为40mv ,所以传感器底座面积设置为1平方米。40mv 时对应的重量为20吨。 放大器设计: 量程为80吨,最大电压对应20吨,故需要4个放大器,由于器件及参数限制,输出电压为4V 左右,最大输入电压40mV,故放大倍数为100倍。故电阻成100倍关系。 传感器采集的信号从Header2端口输入。 仿真结果: 从图中可以看到增益为101倍。 A/D 转换: 因为设计要求为误差100kg,最大电压时对应重量为20吨,20×1000/100=200。2^8=256>200。故采用8位A/D 转换器。本设计可以采用ADC0809转换器。 ADC0809各引脚说明: IN0~IN3:从四个运放接四路模拟量输入。 D0~D7:8位数字量的输出,D0~D7分别接单片机的P10~P17端。 ADDA 、ADDB 、ADDC :3位地址输入线,用于选通8路模拟输入中的一路。 ALE :地址锁存允许信号,输入端,高电平有效。 START :A/D 转换启动脉冲输入端,输入一个正脉冲(至少100ns 宽)使其启动(脉冲上升沿使0809复位,下降沿启动A/D 转换)。 EOC :A/D 转换结束信号,输出端,当A/D 转换结束时,此端输出一个高电平(转换期间一直为低电平)。 OE :数据输出允许信号,输入端,高电平有效。当A/D 转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。 CLK :时钟脉冲输入端。要求时钟频率不高于640KHz 。 REF (+)、REF (-):基准电压。 按键调节 晶振 复位 A/D 转换 数码管显示 蜂鸣器

电子称重仪表实验方法及规程

一、抗干扰性能实验 1)包括:短时电源电压跌落和中断、电快速瞬间脉冲群、静电放电、浪涌、抗辐射电磁场和抗传导射频场。 2)电磁辐射(RS):用于考察仪表对外界高频电磁场干扰的,高频电磁波的干扰是通过空间传输。输入10d或除零点外最小负荷值进行实验。干扰源为场强是10V/m,频率范围为80-2000MHz,调制80%AM,1kHz的正弦电磁波。将仪表放置于规定的电磁场中,观察仪表的示值变化应不产生大于1d的变差或能处理的显著增差。 3)射频场传导(CS):指外界低频电磁场通过耦合在电缆上产生感应电流或电压,沿着电缆进入仪表内部,考察仪表抗干扰能力,相当于在将仪表电源加入规定的电磁波信号。10d或除零点外最小负荷值进行实验。干扰源为射频幅值(50Ω)10V(e.m.f),频率范围为0.15-80MHz,调制80%AM,1kHz的正弦电磁波。 4)浪涌(冲击)(surge):用来模拟自然雷击或者电网中接入大容性负载所产生的脉冲对仪表的影响。输入10d或除零点外最小负荷值进行实验。差模:L-N( 0.5kV、60s、3次),;共模:L-PE、N-PE、LN-PE(1kV、60s、3次),受试仪表应不产生大于1d的变差或能处理的显著增差。 5)电快速瞬间脉冲群(EFT/B):模拟设备附近或电网中发生感性负载时导致的脉冲干扰。输入10d或除零点外最小负荷值进行实验。严酷等级2级(脉冲幅度1 kV),测试实施于供电回路,分别进行正负极性试验;实验持续时间不少于30s(或100个脉冲群);实验应在室温下进行。受试仪表应不产生大于1d的变差或能处理的显著增差。 6)短时电源电压跌落(DIP/i):模拟电网中接入大功率的设备引起的电网电压和短时中断现象,仪表的性能稳定性。分别输入10d及接近max的信号进行试验;每隔10s使试验电压发生器在半周期将供电电压跌落到“0”,进行10次;每隔10s使试验电压发生器在半周期将供电电压跌落到“50”,进行10次;受试仪表应不产生大于1d的变差或能处理的显著增差 7)静电放电(ESD):模拟仪表在接收外界静电(如人体或设备带电)产生的放电或静电场干扰时的抵抗能力。分别输入10d及接近max的信号进行试验。严酷等级为3级(空气放电8 kV,接触放电6 kV);放电至少10次,时间间隔1s。受试仪表应不产生大于1d的变差或能处理的显著增差。 8)判断标准:当仪表处于干扰场合时,判断其合格的标准为不发生显著增差或检测出显著增差但没有跟其他信息混淆。此规定可理解为发生显著增差时,增差的变化量不计,仪表能迅速恢复,恢复后示值变化量不大于e,恢复时间不太长,可判定为合格;若不能迅速恢复或连续出现显著增差则判定为不合格。 9)工频磁场发生器(PMS):模拟工频电力线所构成的磁场(如大型变压设备附近的磁场)对仪表产生的影响。 二、电气安全性测试 1、分Ⅰ类和Ⅱ类:区别具有防电击安全保护接地; 2、实验前提:应在湿热试验后; 3、绝缘电阻:直流500V条件下绝缘电阻不低于5MΩ(Ⅱ类10 MΩ); 4、交流漏电流:交流供电电源电压上限(110%242V)条件下交流漏电不大于3.5mA(Ⅱ类0.25 mA); 5、耐压:仪表施加1500V交流电压下1min不击穿(Ⅱ类3000V); 6、接地电阻测试:施加10倍的标称切断电流(20A);仪表保护接地端与各个可能触及的导电性零部件之间的电阻不大于0.1Ω(电源线不损坏)。 三、温度测试 1、温度测试包括温度对量程的影响和温度对零点的影响,温度点选择20℃、40℃、-10℃、5℃、20℃,测试流程参照GB/T 23111-2008中图A.3。温度对量程的影响允差等同常温允差(0.5e* Pi、1.0e* Pi、1.5e* Pi ;Pi取0.5)。温度对零点的影响测试相邻温度,计算每5℃(级标准)的零点误差变化,变化量不大于e·Pi,Pi取0.5。 2、注意事项:温度测试前不允许预加载;如果仪表有自动置零或零点跟踪装置应关闭;对纯数字模块及数字仪表只考核在工作温度的上下限能否工作正常,不考核误差;级仪表温度范围不小于30℃; 四、运输包装测试 1、包装跌落测试:方法参照GB/T4857.5和GB/T7724-2008中6.15.1,测试后检查包装及内装仪表的情况。外包装不应破裂,仪表外观不应损伤。接通电源检查,仪表的计量性能和功能正常。现用国际运输标准(ISTA_2A)

智能称重系统的制作方法

本技术新型提供了一种智能称重系统,包括储料仓、机器视觉摄像头、机械臂、机械铲、称重传感器、远程终端、中控模块和搅拌装置,所述机械臂的一端固定于所述称重传感器的顶部,所述机械臂的另一端连接所述机械铲和所述机器视觉摄像头,所述储料仓设置有多个用于储粉料的料仓,多个所述料仓相互独立地设置有位置标示,所述机器视觉摄像头用于识别所述料仓的位置标示以及所述料仓中的物料种类,所述储料仓和所述搅拌装置位于所述机械臂上机械铲的运动范围之内,所述机器视觉摄像头、所述称重传感器和所述机械臂均电连接所述中控模块,所述远程终端与所述中控模块有线或无线通讯。本技术新型提供的智能称重系统能够实现混凝土的自动化称重搅拌,有效避免人为失误,同时降低了人工成本。 权利要求书 1.一种智能称重系统,其特征在于,包括储料仓、机器视觉摄像头、机械臂、机械铲、称重传感器、远程终端、中控模块和搅拌装置,所述机械臂的一端固定于所述称重传感器的顶部,所述机械臂的另一端连接所述机械铲和所述机器视觉摄像头,所述储料仓设置有多个用于储粉料的料仓,多个所述料仓相互独立地设置有位置标示,所述机器视觉摄像头用于识别所述料仓的位置标示以及所述料仓中的物料种类,所述储料仓和所述搅拌装置位于所述机械臂上机械铲的运动范围之内,所述机器视觉摄像头、所述称重传感器和所述机械臂均电连接所述中控模块,所述远程终端与所述中控模块有线或无线通讯。 2.根据权利要求1所述的智能称重系统,其特征在于,所述远程终端为电脑。 3.根据权利要求1所述的智能称重系统,其特征在于,所述智能称重系统还包括有触摸显示屏,所述触摸显示屏电连接所述中控模块。 4.根据权利要求1所述的智能称重系统,其特征在于,所述机器视觉摄像头选自OpenMV摄像头。 5.根据权利要求1所述的智能称重系统,其特征在于,所述称重传感器选自LC401称重传感

小型称重系统的设计

第一章小型称重系统的意义及任务 1.1 小型称重系统的概述及意义 定义:称重系统——把现有各个生产环节的称重设备有机的组合到一个控制系统中,利用现代网络技术进行控制和管理。 狭义的称重系统:利用简单的电子衡器(如:电子台秤,大型汽车衡等)增加控制系统和计算机称重管理软件实现某个生产环节的自动控制和管理功能。比如:企业生产中的配料、包装系统,进行控制、管理,实现称重数据的保存、管理、打印输出等功能。 广义的称重系统:整个工厂的所有称重设备,通过现场总线或局域网方式进行控制和管理,它还可以向上位的MRPII或ERP系统提供数据和预留数据接口。 现在,已经有许多自动化程度较高的企业应用了称重系统,例如:食品加工、石油化工、水泥制造、电力供应等行业。 电子秤基于PLC的称重系统 随着社会科技的发展,称重技术也得到了广泛的应用。称重工具已经从过去的“杆秤”、“磅秤”、“度盘指针秤”发展到现在的“电

子秤”,以后称重工具的发展方向是利用核子技术“非接触测量”的核子秤。现在利用电子秤的多种智能接口和计算机的应用软件技术就可以组成一个功能强大的称重系统。利用这个称重系统就可以有效的提高企业智能化的科学管理,从而提高企业生产过程的管理和科学决策水平,提高企业的综合效益。 1.2 虚拟仪器 虚拟仪器是随着计算机技术、电子测量技术和通信技术发展起来的一种新型仪器.在国外,虚拟仪器技术已经比较成熟了,由于其很强的灵活性,使得该技术非常适用于现代复杂的测试测量系统中。近几年,虚拟仪器技术在国内的发展趋势也越来越收到重视。成熟的虚拟仪器技术由三大部分组:高效的软件编程环境,模块化仪器和一个支持模块化I/O集成的开放的硬件构架,该课程设计的目的就是,通过一些功能简单的仪表系统的设计,要在这三个方面上有更深一步的了解。 1.3 小型称重系统设计的任务 利用金属箔式应变片设计一个小型称重装置。 首先在multisim中设计出应变片的仿真模型和测量电路,然后在labview中利用G语言编程设计显示模块,直接显示称重值,最后把设计好的子VI导入到multisim中以完成整个设计。 本课程设计分为两部分:一、测量电路的原理与设计二:LabVIEW虚拟仪器的设计。这两部分具体要求和功能如下:

相关文档
最新文档