直方图均衡化处理
图像处理中直方图均衡化的使用教程
图像处理中直方图均衡化的使用教程图像处理中的直方图均衡化是一种常用的增强图像对比度的方法。
通过对图像的像素值进行重新分布,直方图均衡化可以使图像中的明暗区域更具有对比度,从而提高图像的质量和清晰度。
本文将介绍直方图均衡化的原理、应用场景以及具体的步骤。
1. 直方图均衡化的原理直方图均衡化的原理基于对图像的灰度级进行重新分布。
它通过将原始图像的像素值映射到新的像素值上,使得直方图在整个灰度范围内得到均匀分布。
这样就能够增强图像中的低对比度区域,提高图像的视觉效果。
2. 直方图均衡化的应用场景直方图均衡化在图像处理领域有着广泛的应用。
下面列举了一些常见的应用场景:- 增强图像的对比度:直方图均衡化可以使得图像中的亮度值更加均匀分布,提高图像的对比度,使得图像变得更加清晰。
- 增强图像的细节:直方图均衡化通过增强图像中的低对比度区域,可以使得细节更加显著,提高图像的可视化效果。
- 降低图像的噪声:直方图均衡化可以将图像中的噪声分布均匀化,从而减少噪声对图像质量的影响。
3. 直方图均衡化的步骤下面是使用直方图均衡化对图像进行处理的具体步骤:步骤 1: 将彩色图像转换为灰度图像如果原始图像是彩色图像,我们需要将其转换为灰度图像。
这是因为直方图均衡化是针对灰度级进行处理的。
步骤 2: 计算原始图像的像素值分布使用图像处理工具,计算原始图像中每个像素值的出现频率。
这样可以得到一个直方图,该直方图显示了原始图像中像素值的分布情况。
步骤 3: 计算累积分布函数通过对原始图像的直方图进行累积求和,得到一个累积分布函数。
该函数显示了每个像素值的累积出现频率。
步骤 4: 计算新的像素值根据累积分布函数,计算每个像素值的新的映射像素值。
这个计算公式可以根据具体的图像处理工具而有所不同。
步骤 5: 创建均衡化后的图像使用新的像素值替换原始图像中的像素值,将得到的图像称为均衡化后的图像。
4. 注意事项在使用直方图均衡化时,需要考虑以下几个注意事项:- 直方图均衡化可能会改变图像的整体亮度。
图像直方图均衡化原理
图像直方图均衡化原理
图像直方图均衡化是一种常用的图像增强方法,通过调整图像的像素灰度分布,使得图像的对比度增强、细节更加清晰。
其原理主要分为以下几个步骤:
1. 统计像素灰度值的分布:首先,对待处理的图像,统计每个灰度级别的像素点数量,得到原始图像的灰度直方图。
2. 计算累计分布函数:根据灰度直方图,计算每个灰度级别对应的累计分布函数,即该灰度级别及其之前的像素点的累积数量比例。
3. 灰度映射:对于每个像素点,将其灰度值通过累计分布函数进行映射,得到新的灰度值。
通常情况下,可以通过线性映射或非线性映射来实现,使得图像的灰度分布变得更加均匀。
4. 重构图像:将经过灰度映射处理后的灰度值替换原始图像中的对应像素点的灰度值,从而得到均衡化后的图像。
通过图像直方图均衡化处理,可以提高图像的对比度,使暗部和亮部细节更加突出,同时抑制了图像中灰度级别分布不均匀的问题。
这种方法在图像增强、图像分析等领域都有广泛应用。
直方图的均衡化
三、例题演示
设有1幅64x64,8bit灰度图像,其直方 图见图1,所用均衡化变换函数(即累积 直方图)见图2,均衡化后的直方图见图 3。
直方图均衡化计算列表
序号
运算
1 列出原始图灰度级Sk,k=0,1,…7
0
1
2
2 统计原始直方图各灰度级象素数Nk 790 1023 850
3 用式1计算原始直方图(图1)
对图像空间域点的增强过程是通过增强函数t=EH(s)来完成的, t、s分别为目标图像和原始图像上的像素点(x,y)处的灰度值。
在进行均衡化处理时,增强函数EH需要满足两个条件: 1)、增强函数EH(s)在0≤s≤L-1的范围内是一个单调递增函数,
这个条件保证了在增强处理时没有打乱原始图像的灰度排列次序; 2)、对于0≤s≤L-1应当有0≤EH(s)≤L-1,它保证了变换过程
0 sk 1
k=0,1,…L-1
公式(2)
根据该方程可以由原图像的各像素灰度值直接得到直方图均衡化后各 像素的灰度值。
在实际处理变换时,一般先对原始图像的灰度情况进行统计分析,并
计算出原始直方图分布,然后根据计算出的累计直方图分布 t k ,按式 tkint[(L1)tk0.5]对其取整扩展并得出原灰度s k 到 t k 的灰度映
%step1:get histogram
for i=1:m;
for j=1:n;
k=plane(i,j);
tmhist(k)=tmhist(k)+1;
end
end
四、直方图均衡化的原理程序(lm2.m)
%step2:get cdf
cdf(1)=tmhist(1);
for i=2:256
▪ 其实在MATLAB中,用imhist函数求图像直方图,histeq函数可 以实现直方图均衡化操作(histogram equalization)。
数字图像处理第四章作业
第四章图像增强1.简述直方图均衡化处理的原理和目的。
拍摄一幅较暗的图像,用直方图均衡化方法处理,分析结果。
原理:直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。
也就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。
把给定图像的直方图分布改变成“均匀”分布直方图分布目的:直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。
它通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。
通过直方图均衡化,亮度可以更好地在直方图上分布。
这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。
Matlab程序如下:clc;RGB=imread('wxf.jpg'); %输入彩色图像,得到三维数组R=RGB(:,:,1); %分别取三维数组的一维,得到红绿蓝三个分量G=RGB(:,:,2); %为R G B。
B=RGB(:,:,3);figure(1)imshow(RGB); %绘制各分量的图像及其直方图title('原始真彩色图像');figure(2)subplot(3,2,1),imshow(R);title('真彩色图像的红色分量');subplot(3,2,2), imhist(R);title('真彩色图像的红色分量直方图');subplot(3,2,3),imshow(G);title('真彩色图像的绿色分量');subplot(3,2,4), imhist(G);title(' 的绿色分量直方图');subplot(3,2,5),imshow(B);title('真彩色图像的蓝色分量');subplot(3,2,6), imhist(B);title('真彩色图像的蓝色分量直方图');r=histeq(R); %对个分量直方图均衡化,得到个分量均衡化图像g=histeq(G);b=histeq(B);figure(3),subplot(3,2,1),imshow(r);title('红色分量均衡化后图像');subplot(3,2,2), imhist(r);title('红色分量均衡化后图像直方图');subplot(3,2,3),imshow(g);title('绿色分量均衡化后图像');subplot(3,2,4), imhist(g);title('绿色分量均衡化后图像直方图');subplot(3,2,5), imshow(b);title('蓝色分量均衡化后图像');subplot(3,2,6), imhist(b);title('蓝色分量均衡化后图像直方图');figure(4), %通过均衡化后的图像还原输出原图像newimg = cat(3,r,g,b); %imshow(newimg,[]);title('均衡化后分量图像还原输出原图');程序运行结果:原始真彩色图像均衡化后分量图像还原输出原图图1.1 原始图像与均衡化后还原输出图像对比通过matlab仿真,由图1.1比较均衡化后的还原图像与输入原始真彩色图像,输出图像轮廓更清晰,亮度明显增强。
简述直方图均衡化的基本原理
简述直方图均衡化的基本原理直方图均衡化,也称为图像增强是对图像进行增强,是研究图像处理和认知计算的研究内容。
它最早诞生于一百多年前的摄影技术,到了二十世纪八十年代,随着计算机技术的发展,用于图像处理的计算机算法也被用于直方图均衡化。
直方图均衡化的基本原理是将每一个灰度级别的图像分布调整到最大概率密度,使得其灰度分布最大化,从而提高图像的对比度,增强图像的细节结构,并减少噪声的影响。
首先,要计算灰度级别的分布。
通过计算得到不同灰度级别的像素数量,就可以得到灰度级别的百分比。
然后,根据灰度级别的最低百分比和最大百分比,计算每一个灰度级别的转换值,这些转换值就是灰度级别均衡化后的灰度值。
具体的计算方法是,将最低百分比记为L,最大百分比记为H,灰度级别1的转换值记为T1,灰度级别2的转换值记为T2,那么可以推出T2 =T1+(H-L)(2-1) 。
接下来,通过转换值对原始图像进行均衡化处理。
也就是说,将原始图像的每个像素的灰度值,替换成上面计算得出的转换值。
最后,就可以得到一幅均衡化后的图像。
直方图均衡化的优点在于能够有效地提高图像的对比度,增强图像的细节结构,从而达到较好的图像增强效果。
传统的灰度图像,最终图像的细节和结构可能会受到噪声的影响,但是通过直方图均衡化,可以减少噪声的影响,提高图像的清晰度。
然而,由于直方图均衡化是一种图像处理方法,所以它还有可能增加某些图像处理过程中可能出现的锯齿,导致不理想的处理效果。
总之,直方图均衡化是一种有效的图像增强技术,它旨在增强图像的对比度和细节结构,减少噪声的影响,使图像更加清晰。
它是利用计算机算法,根据不同灰度级别的分布情况,计算出每一个像素点的转换值,最终将原始图像的灰度值替换成新的均衡化值,从而达到图像增强的效果。
直方图均衡化原理
直方图均衡化原理
直方图均衡化是一种图像处理技术,目的是提高图像对比度并增强细节。
其原理是通过重新分配图像的灰度级,使得原始图像的像素值更均匀地分布在亮度范围内。
在直方图均衡化过程中,首先计算原始图像的灰度直方图。
灰度直方图是一个统计图,用来表示不同灰度级在图像中出现的频率。
然后,根据灰度直方图的统计结果,通过累积函数计算每个灰度级的累积频率。
累积函数将原始图像的像素值映射到新的像素值范围上。
在最后一步,通过将原始图像的每个像素值映射到新的像素值范围上,完成图像的均衡化。
通过重新映射,灰度级在整个亮度范围内得到了平均分布,从而增加了对比度,并提高了图像的细节。
直方图均衡化的优点是简单易实现,并且在许多图像处理任务中都能取得良好的效果。
然而,直方图均衡化也有一些限制。
例如,在有限的灰度级范围内,图像可能仍然存在过多的低对比度区域。
此外,该方法也可能导致图像噪点的增加。
因此,在实际应用中,可根据具体情况选择合适的图像增强方法。
图像直方图的均衡化处理图的均衡化
图像直⽅图的均衡化处理图的均衡化图像直⽅图的均衡化处理⼀,技术要求1.1,利⽤matlab提供的函数处理 (2)1.2,利⽤matlab⾃⾏编辑代码处理 (3)⼆,基本原理 (3)2.1,直⽅图的均衡化 (3)2.2,直⽅图的标准化 (3)三,建⽴模型描述 ......................................................................... 3~43.1,利⽤matlab提供的函数处理 (4)3.2,利⽤matlab⾃⾏编辑代码 (4)四,源程序代码 ............................................................................. 5~64.1,绘制图像直⽅图的代码 (5)4.2,绘制图像均衡化后直⽅图的代码 (5)4.3,显⽰均衡化后图像的代码 (6)五,调试过程及结论 ..................................................................... 6~85.1,在编辑窗⼝键⼊绘制直⽅图的源代码得到的输出结果为图2 (6)5.2,利⽤matlab函数绘制的图像直⽅图标准化的输出结果如图3..75.3,直⽅图均衡化输出结果如图4所⽰。
(8)六,⼼得体会 (9)七,参考⽂献 (9)图像直⽅图的均衡化处理⼀,技术要求1.1,利⽤matlab提供的函数处理利⽤matlab提供的函数画出⼀幅图像的直⽅图,对其进⾏均衡化和标准化处理,并⽐较均衡化(标准化)后图像和原图像的区别。
1.2,利⽤matlab⾃⾏编辑代码处理利⽤matlab⾃⾏编辑代码,实现⼀幅图像的直⽅图显⽰和均衡化的处理,同样⽐较处理前后两幅图像的区别,了解图像均衡化的效果和实际运⽤。
⼆,基本原理直⽅图是多种空域处理技术的基础。
它能有效的⽤于图像增强。
《直方图的均衡化》课件
直方图均衡化的效果评估
直方图均衡化的效果可以通过比较处理前后的直方图、对比度和视觉效果来 评估,通常希望处理后的图像具有更均匀的像素值分布和更好的对比度。
结论和总结
直方图的均衡化是一种有效的图像增强技术,在图像处理和计算机视觉中具有广泛的应用,能够改善图 像的质量和视觉效果。
《直方图的均衡化》PPT 课件
直方图的均衡化是什么
直方图的均衡化是一种图像增强技术,通过调整图像的亮度分布,使得图像中的像素值更均匀地分布在 整个灰度范围内,从而改善图像的对比度和视觉效果。
直方图的基本概念
直方图是用于表示图像中像素值分布的统计图,横坐标表示像素值,纵坐标 表示该像素值对应的像素数量。
直方图的均衡化原理
直方图均衡化的原理是通过对图像的像素值进行变换,使得原始图像的像素值分布更均匀,同时增强图 像的对比度。
直Байду номын сангаас图均衡化的应用场景
直方图均衡化广泛应用于图像增强、图像处理、计算机视觉等领域,可以改 善图像的质量、增强图像的细节和对比度。
直方图均衡化的步骤
直方图均衡化的步骤包括计算原始图像的像素值累计分布函数、对像素值进 行映射,以及将映射后的像素值替换到原始图像中。
C语言数字图像处理之直方图均衡化
C语⾔数字图像处理之直⽅图均衡化本⽂实例为⼤家分享了C语⾔直⽅图均衡化的具体代码,供⼤家参考,具体内容如下原理直⽅图均衡化(Histogram Equalization) ⼜称直⽅图平坦化,实质上是对图像进⾏⾮线性拉伸,重新分配图像象元值,使⼀定灰度范围内象元值的数量⼤致相等。
这样,原来直⽅图中间的峰顶部分对⽐度得到增强,⽽两侧的⾕底部分对⽐度降低,输出图像的直⽅图是⼀个较平的分段直⽅图:如果输出数据分段值较⼩的话,会产⽣粗略分类的视觉效果。
直⽅图是表⽰数字图像中每⼀灰度出现频率的统计关系。
直⽅图能给出图像灰度范围、每个灰度的频度和灰度的分布、整幅图像的平均明暗和对⽐度等概貌性描述。
灰度直⽅图是灰度级的函数, 反映的是图像中具有该灰度级像素的个数, 其横坐标是灰度级r, 纵坐标是该灰度级出现的频率( 即像素的个数) pr( r) , 整个坐标系描述的是图像灰度级的分布情况, 由此可以看出图像的灰度分布特性, 即若⼤部分像素集中在低灰度区域, 图像呈现暗的特性; 若像素集中在⾼灰度区域, 图像呈现亮的特性。
灰度数字图像是每个像素只有⼀个采样颜⾊的图像。
这类图像通常显⽰为从最暗⿊⾊到最亮的⽩⾊的灰度。
灰度图像与⿊⽩图像不同,在计算机图像领域中⿊⽩图像只有⿊⽩实现流程:1)统计每个灰度级像素点的个数2)计算灰度分布密度3)计算累计直⽅图分布4)累计分布取整,保存计算出来的灰度映射关系处理图⽚规格800*600 8位灰度单通道原图直⽅图均衡化分析:本次实验中,我故意把原图调暗,进⾏直⽅图均衡化后可以明显感受到整幅图像亮度增⼤了,⽽且某些细节⽅⾯更加突出。
出现问题最初进⾏直⽅图均衡化时,输出结果如下:经分析,是没有对数组初始化置零导致的。
Hist数组是进⾏⼀个统计像素点个数的数组,最初倘若不置零,结果必然毫⽆意义。
故⽽添加数组内存置零的操作:经测试,问题解决。
附代码#include <stdio.h>#include <stdlib.h>#include <memory.h>#define height 600#define width 800typedef unsigned char BYTE; // 定义BYTE类型,占1个字节int main(void){FILE *fp = NULL;//BYTE Pic[height][width];BYTE *ptr;BYTE **Pic = new BYTE *[height];for (int i = 0; i != height; ++i){Pic[i] = new BYTE[width];}fp = fopen("weiminglake_huidu.raw", "rb");ptr = (BYTE*)malloc(width * height * sizeof(BYTE));//创建内存for (int i = 0; i < height; i++){for (int j = 0; j < width; j++){fread(ptr, 1, 1, fp);Pic[i][j] = *ptr; // 把图像输⼊到2维数组中,变成矩阵型式ptr++;}}fclose(fp);int hist[256];float fpHist[256];float eqHistTemp[256];int eqHist[256];int size = height *width;int i, j;memset(&hist, 0x00, sizeof(int) * 256);memset(&fpHist, 0x00, sizeof(float) * 256);memset(&eqHistTemp, 0x00, sizeof(float) * 256);for (i = 0; i < height; i++) //计算差分矩阵直⽅图直⽅图统计每个灰度级像素点的个数{for (j = 0; j < width; j++){unsigned char GrayIndex = Pic[i][j];hist[GrayIndex] ++;}}for (i = 0; i< 256; i++) // 计算灰度分布密度{fpHist[i] = (float)hist[i] / (float)size;}for (i = 0; i< 256; i++) // 计算累计直⽅图分布{if (i == 0){eqHistTemp[i] = fpHist[i];}else{eqHistTemp[i] = eqHistTemp[i - 1] + fpHist[i];}}//累计分布取整,保存计算出来的灰度映射关系for (i = 0; i< 256; i++){eqHist[i] = (int)(255.0 * eqHistTemp[i] + 0.5);}for (i = 0; i < height; i++) //进⾏灰度映射均衡化{for (j = 0; j < width; j++){unsigned char GrayIndex = Pic[i][j];Pic[i][j] = eqHist[GrayIndex];}}fp = fopen("output.raw", "wb");for (i = 0; i < height; i++){for (j = 0; j < width; j++){fwrite(&Pic[i][j], 1, 1, fp);}}fclose(fp);return 0;}以上就是本⽂的全部内容,希望对⼤家的学习有所帮助,也希望⼤家多多⽀持。
直方图均衡化的原理和作用
直方图均衡化的原理和作用直方图均衡化是一种常见的图像处理技术,用于增强图像的对比度和视觉效果。
它的原理是通过重新分布图像的灰度级别,使得图像中的像素灰度值分布更加均匀,从而改善图像的视觉效果。
在进行直方图均衡化时,首先需要获取图像的灰度直方图,然后根据灰度直方图的累积概率密度函数对图像的像素进行重新分配。
直方图均衡化的作用主要体现在以下几个方面:1. 增强图像的对比度:直方图均衡化可以有效地增强图像的对比度,使得图像中不同区域的灰度级别更加明显,从而使得图像的细节更加清晰。
2. 提高图像的视觉效果:通过直方图均衡化,图像的灰度级别分布更加均匀,可以使得图像看起来更加自然和真实,同时增强了图像的视觉效果,使得观看者更容易理解和分析图像内容。
3. 抑制背景噪声:在图像处理中,背景噪声往往会影响图像的清晰度和质量。
通过直方图均衡化可以有效地抑制背景噪声,使得图像更加清晰和易于分析。
4. 增强图像的细节:直方图均衡化可以增强图像的细节,使得图像中的纹理和结构更加清晰和突出,同时也能够凸显出图像中的一些微弱的特征。
直方图均衡化的原理是基于图像的灰度级别分布的重新分配,其具体操作过程如下:1. 获取图像的灰度直方图:首先需要对图像进行灰度化处理,然后统计不同灰度级别的像素点数量,从而得到图像的灰度直方图。
2. 计算灰度直方图的累积概率密度函数:根据图像的灰度直方图,可以计算出每个灰度级别对应的累积概率密度函数,即将原始的灰度级别映射到新的灰度级别上。
3. 根据累积概率密度函数对像素进行重新分配:根据计算得到的累积概率密度函数,可以将图像中的每个像素的灰度级别重新映射到新的灰度级别上,从而得到均衡化后的图像。
通过以上操作,可以实现直方图均衡化,从而改善图像的对比度和视觉效果。
需要注意的是,直方图均衡化可能会增强图像中的噪声和细小的纹理,因此在实际应用中需要结合具体的图像特性进行调整,以达到最佳的效果。
总之,直方图均衡化是一种有效的图像处理技术,通过重新分配图像的灰度级别,可以增强图像的对比度,改善图像的视觉效果,并抑制背景噪声,使得图像更加清晰和易于分析。
直方图均衡的基本原理及流程
直方图均衡的基本原理及流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!直方图均衡化是一种提高图像对比度的图像处理方法,它的基本原理是通过调整图像的灰度级分布,使得图像的直方图尽可能均匀地分布,从而达到增强图像中细节的目的。
数字图像处理中的直方图均衡化使用注意事项
数字图像处理中的直方图均衡化使用注意事项直方图均衡化是一种通过分布调整来改善图像对比度的方法。
它通过重新分布图像的像素值以增强其视觉效果。
在数字图像处理中,直方图均衡化是一项常用的技术,但在使用过程中需要注意以下几个方面。
首先,直方图均衡化可能会导致图像细节丢失的问题。
因为直方图均衡化会根据像素值的分布进行调整,从而扩展像素值的范围,使得亮度范围更广。
但这也可能导致低对比度区域的细节消失,从而影响图像细节。
因此,在进行直方图均衡化时,应该密切关注图像的细节信息,尽量避免过度调整图像的对比度。
其次,直方图均衡化可能引起噪声的增加。
在直方图均衡化的过程中,图像的亮度分布被调整,可能会增加图像的噪声。
这是因为噪声通常与图像的低亮度区域有关,当低亮度区域被调整时,噪声也可能被放大。
为了减少噪声的影响,可以在均衡化之前对图像进行去噪处理,或者采用自适应的直方图均衡化方法,以避免过度增加图像噪声。
另外,直方图均衡化也可能导致图像的颜色失真问题。
因为直方图均衡化是基于像素值的灰度分布进行调整,对彩色图像来说,它可能会改变图像的颜色分布,从而造成颜色失真。
为了避免这种情况,可以在进行直方图均衡化前将图像转换为HSV颜色空间,并只对亮度(Value)通道进行均衡化,这样可以避免颜色的偏移。
此外,直方图均衡化的效果可能受到图像的动态范围限制。
在某些情况下,图像的动态范围可能不足以支持完整的直方图均衡化。
比如,当图像的某些区域非常亮或非常暗时,直方图可能会在动态范围两端产生剧烈的波动,从而导致图像的细节丢失或噪声增加。
为了解决这个问题,可以采用自适应的直方图均衡化方法,以根据图像的局部动态范围来进行调整,减少对整体图像的影响。
最后,直方图均衡化的选择需要根据具体的应用需求来确定。
直方图均衡化可以改善图像的对比度,使图像更加清晰和易于处理。
但对于一些特定的图像处理任务,如目标检测、图像识别等,直方图均衡化可能并不适用。
直方图均衡化处理
实验1.直方图均衡化程序的原理及步骤直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某灰度区间变成在全部灰度范围内的均匀分布。
直方图均衡化的原理:直方图均衡化是把原图像的直方图通过灰度变换函数修正为灰度均匀分布的直方图,然后按均衡直方图修正原图像,其变换函数取决于图像灰度直方图的累积分布函数。
概括地说,就是把一已知灰度概率分布的图像,经过一种变换,使之演变成一幅具有均匀概率分布的新图像。
当图像的直方图为一均匀分布时,图像的信息熵最大,此时图像包含的信息量最大,图像看起来更清晰。
灰度直方图用各灰度值出现的相对频数(该灰度级的像素数与图像总像素数之比)表示。
直方图表示数字图像中每一灰度级与其出现频数的的统计关系,用横坐标表示灰度级,纵坐标表示频数。
直方图就能给出该图像的概貌性描述,例如图像的灰度范围、每个灰度级的频数和灰度的分布、整幅图像的亮度和平均明暗对比度等,由此可得出进一步处理的重要依据。
计算每个灰度级出现的概率为:P r (r k )=N k /N k=0,1,2,…,L-1上式中, P r (r k )表示第k 个灰度级出现的概率,N k 为第 k 个灰度级出现的频数,N 为图像像素总数,L 为图像中可能的灰度级总数。
由此可得直方图均衡化变换函数,即图像的灰度累积分布函数Sk 为:1,...,2,1,0)()(00-====∑∑==L k r P r T s kj NN k j j r k k j 上式中, S k 为归一化灰度级。
这个变换映射称做直方图均衡化或直方图线性化。
直方图均衡化过程如下:(1) 输出原图像;(2) 根据公式P r (r k )=n k /m*n ( k=0,1,2,…,L-1)计算对应灰度级出现的概率,绘制原图像的直方图。
(3) 计算原图象的灰度级累积分布函数:sk=Σp r (r k );(4) 取整Sk=round((S1*256)+0.5);将Sk 归一到相近的灰度级,绘制均衡化后的直方图。
图像处理:数字图像的灰度直方图均衡化
图像处理:数字图像的灰度直方图均衡化简介在数字图像处理中,灰度直方图均衡化是一种常用的图像增强技术。
它通过重新分配图像中各个灰度级的像素值,使得最终的灰度直方图呈现出更均匀分布的特点,从而提高图像的对比度和视觉效果。
原理灰度直方图是描述一幅图像中每个灰度级出现频次的统计直方图。
在灰度直方图均衡化过程中,首先需要计算原始图像的累积概率密度函数(CDF),然后利用CDF进行线性变换将原始像素值映射到新的像素值上。
这个线性变换可以通过以下公式表示:G' = (G_max - G_min) \times CDF(G) + G_min其中G'是新的像素值,G是原始的像素值,G_max和G_min分别为像素值范围最大和最小值,而CDF(G)则是原始图像中小于或等于G的累积概率密度函数。
实现步骤1.读取待处理的数字图像。
2.将彩色或多通道图转化为灰度图。
3.计算原始灰度图像的像素值的频次统计,得到原始灰度直方图。
4.计算原始灰度直方图的累积概率密度函数。
5.根据累积概率密度函数进行线性变换,将原始像素值映射到新的像素值上。
6.生成处理后得到的均衡化后的图像。
7.输出均衡化后的图像。
应用场景灰度直方图均衡化在许多领域都有广泛应用,例如医学影像分析、计算机视觉和数字摄影等。
其主要作用是增强图像对比度、改善细节和提升视觉效果。
同时,该技术也能够在一些特定场景下帮助识别和检测对象。
总结通过使用灰度直方图均衡化技术,可以使得数字图像中各个灰度级的像素值更加均匀分布,从而提高图像对比度和视觉效果。
这种方法在数字图像处理中具有广泛的应用,并且简单易实现。
然而,需要注意的是,在某些特定情况下,采用该方法可能会产生过度增强或引入噪声等问题,因此在实际应用中需要谨慎使用并结合其他处理方法进行综合处理。
简述直方图均衡化的基本原理。
简述直方图均衡化的基本原理。
直方图均衡化是图像处理领域广泛使用的一种技术,它主要用来平衡图像中各个亮度区域。
它可以改善图像的质量,提高图像的局部对比度,而且,这种技术很简单,易于实现。
1.什么是直方图均衡化直方图均衡化是一种用于改善图像质量的算法,能够提高图像的局部对比度和细节,这也是为什么会有这么大的流行度的原因之一。
按照其基本思想,直方图均衡化的目的是改善图像中暗部和亮部的区分度,使其直方图更平坦,从而改善图像的局部对比度。
2.直方图均衡化的原理直方图均衡化是基于直方图概率分布转换(HDPT)实现的,它使原本呈现出偏好的直方图(例如不均衡或不清晰)变得更加均匀。
具体来说,直方图均衡化通过对图像的每个像素的亮度值进行重新映射,以实现直方图的均衡化。
首先,计算出每个像素的累积直方图(CDH),并将其映射到(0,255)的范围内。
然后,将每个像素的亮度值重新映射为与 CDH应的亮度值,从而实现直方图的均衡化。
3.方图均衡化的优势直方图均衡化具有很多优点,下面列举其中几点:(1)改善图像质量:直方图均衡化可以提高图像的局部对比度,可以改善图像的质量;(2)易于实现:直方图均衡化算法非常简单,它只需要更改图像的像素值,而不需要昂贵的计算资源;(3)对不同亮度区域均衡:直方图均衡化可以使不同亮度区域之间的光照差异更加均衡,从而提高图像的整体质量;(4)减少图像噪声:由于直方图均衡化可以改变图像中各个亮度区域之间的差异,因此可以减少图像噪声的影响,从而提高图像质量。
4.直方图均衡化的应用直方图均衡化主要用于图像处理,有助于改善图像的质量,尤其是失真或模糊的图像。
此外,它还可以用于多媒体处理,如视频传输,视频压缩,图像压缩等,以提高这些多媒体文件的质量。
此外,直方图均衡化还可以用于计算机视觉,机器学习等领域。
以上是关于直方图均衡化的基本原理和其相关应用的简单介绍。
随着技术的进步,直方图均衡化将会得到更加深入的研究,以提高图像处理技术的效率和质量。
用MATLAB实现直方图均衡化和中值滤波
一、直方图均衡化1.直方图均衡化直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。
直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。
直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。
2.Matlab中直方图均衡化程序clear all ;close all ;tuu=imread('picture1.JPG');tu=rgb2gray(tuu); %将彩色图片转换为灰度图graydis=zeros(1,256);%设置矩阵大小graydispro=zeros(1,256);new_graydis=zeros(1,256);new_graydispro=zeros(1,256);[h, w]=size(tu);new_tu=zeros(h,w);% 计算原始直方图各灰度级像素个数graydisfor x=1:hfor y=1:wgraydis(1,(tu(x,y)+1))=graydis(1,(tu(x,y)+1))+1;endend%计算原始直方图graydisprograydispro=graydis./sum(graydis);subplot(1,2,1);plot(graydispro);title('灰度直方图');xlabel('灰度值');ylabel('像素的概率密度');%计算原始累计直方图for i=2:256graydispro(1,i)=graydispro(1,i)+graydispro(1,i-1);end%计算和原始灰度对应的新的灰度t[],建立映射关系for i=1:256t(1,i)=floor(255*graydispro(1,i)+0.5);end%统计新直方图各灰度级像素个数new_graydisfor i=1:256new_graydis(1,t(1,i)+1)=new_graydis(1,t(1,i)+1)+graydis(1,i); end%计算新的灰度直方图new_graydispronew_graydispro=new_graydis./sum(new_graydis);subplot(1,2,2);plot(new_graydispro);title('均衡化后的灰度直方图');xlabel('灰度值');ylabel('像素的概率密度');%计算直方图均衡后的新图new_tufor x=1:hfor y=1:wnew_tu(x,y)=t(1,tu(x,y)+1);endendfigure,imshow(tu,[]);title('原图');figure,imshow(new_tu,[]);title('直方图均衡化后的图');3.程序运行结果图1 原始图像图2 直方图均衡化后的图从图1和图2中明显可以看出,原始图像中树下的暗区几乎看不清有什么,而经过直方图均衡化以后可以看到有两只猴子,不但如此,均衡化后的途中树枝和树干也变得更加清晰。
基于直方图均衡化的图像增强算法
基于直方图均衡化的图像增强算法图像增强是数字图像处理领域中的一个重要任务,其目标是提高图像的视觉质量、增强图像的细节信息,使得图像更具观赏性和可辨识度。
直方图均衡化是一种常用的图像增强算法,通过重新分配图像的像素值,增强图像的对比度和动态范围。
本文将详细介绍基于直方图均衡化的图像增强算法的原理、步骤和应用。
一、直方图均衡化的原理直方图均衡化是一种通过拉伸图像的像素值分布来增强图像对比度的方法。
其基本原理是将原始图像中的像素经过变换后,使其灰度级分布更加均匀,从而增强图像的细节和对比度。
直方图均衡化的核心思想是将图像的像素累积函数进行非线性变换,使得原始图像中灰度级分布不均匀的区域得到均匀化,从而实现图像的增强效果。
二、直方图均衡化的步骤直方图均衡化算法主要包括以下几个步骤:1. 计算原始图像的灰度直方图:通过统计每个灰度级对应的像素个数,得到原始图像的灰度直方图。
2. 计算原始图像的累积分布函数(CDF):对灰度直方图做累积求和,得到原始图像的累积分布函数。
3. 计算像素值映射函数:将CDF进行归一化处理,得到像素值的映射函数,该映射函数描述了原始图像像素值与增强后图像像素值的对应关系。
通过该映射函数,可以将原始图像的每个像素值映射到增强后的像素值。
4. 对原始图像进行像素值映射:根据像素值映射函数,将原始图像的每个像素值进行映射,得到增强后的图像。
5. 输出增强后的图像:将经过像素值映射后的图像进行输出显示或保存,得到最终的增强图像。
三、基于直方图均衡化的图像增强应用直方图均衡化算法在图像增强领域有着广泛的应用。
下面介绍几个典型的应用场景。
1. 医学图像增强:医学图像通常需要提高图像的对比度和细节信息,以便医生更好地进行诊断。
直方图均衡化可以增强医学图像中的血管、肿瘤等细节信息,提升图像的识别能力。
2. 目标检测与识别:图像中的目标通常需要具备清晰的边缘和丰富的纹理信息,以便目标检测和识别算法能够准确地进行处理。
【数字图像处理】直方图均衡化
【数字图像处理】直⽅图均衡化全局直⽅图均衡化直⽅图均衡化通过调整图像的直⽅图来增强图像的对⽐度,经常使⽤在医学图像分析中。
例如⼀幅8*8图像像素值如下:对各个像素值进⾏计数:得到累计概率分布:其中均衡化后的像素值计算公式为:前⾯的标题全局直⽅图均衡化,代表着直⽅图在整个图像计算,这样会有⼀个缺点,图像的部分区域会显得过暗或者过亮。
这个时候就需要使⽤⾃适应直⽅图均衡化(Adaptive histogram equalization)。
⾃适应直⽅图均衡化,⾸先将图像分为⼏个部分,然后对每个部分分别计算直⽅图进⾏均衡化,同时对边缘像素进⾏插值处理。
由图中可以看出⾃适应直⽅图均衡化对⾼亮区域的处理要⽐常规的直⽅图均衡化好的多。
1import os2from PIL import Image3from skimage import exposure4import numpy as np5import matplotlib.pyplot as plt678 img = Image.open('/home/vincent/Pictures/work/Unequalized_Hawkes_Bay_NZ.jpg')9 img = np.array(img)10 img_eq = exposure.equalize_hist(img)11 img_adapteq = exposure.equalize_adapthist(img, clip_limit=0.04)1213 plt.figure(0)14 plt.imshow(img)15 plt.title('low contrast image')16 plt.figure(1)17 plt.imshow(img_eq)18 plt.title('high constrast image using normal histogram equalization')19 plt.figure(2)20 plt.imshow(img_adapteq)21 plt.title('high constract image using adaptive histogram euqalization')22 plt.show()。
数字图像处理---直方图均衡化
数字图像处理---直⽅图均衡化直⽅图均衡化的英⽂名称是Histogram Equalization. 图像对⽐度增强的⽅法可以分成两类:⼀类是直接对⽐度增强⽅法;另⼀类是间接对⽐度增强⽅法。
直⽅图拉伸和直⽅图均衡化是两种最常见的间接对⽐度增强⽅法。
直⽅图拉伸是通过对⽐度拉伸对直⽅图进⾏调整,从⽽“扩⼤”前景和背景灰度的差别,以达到增强对⽐度的⽬的,这种⽅法可以利⽤线性或⾮线性的⽅法来实现;直⽅图均衡化则通过使⽤累积函数对灰度值进⾏“调整”以实现对⽐度的增强。
直⽅图均衡化处理的“中⼼思想”是把原始图像的灰度直⽅图从⽐较集中的某个灰度区间变成在全部灰度范围内的均匀分布。
直⽅图均衡化就是对图像进⾏⾮线性拉伸,重新分配图像像素值,使⼀定灰度范围内的像素数量⼤致相同。
直⽅图均衡化就是把给定图像的直⽅图分布改变成“均匀”分布直⽅图分布。
缺点: 1)变换后图像的灰度级减少,某些细节消失; 2)某些图像,如直⽅图有⾼峰,经处理后对⽐度不⾃然的过分增强。
直⽅图均衡化是图像处理领域中利⽤图像直⽅图对对⽐度进⾏调整的⽅法。
这种⽅法通常⽤来增加许多图像的局部对⽐度,尤其是当图像的有⽤数据的对⽐度相当接近的时候。
通过这种⽅法,亮度可以更好地在直⽅图上分布。
这样就可以⽤于增强局部的对⽐度⽽不影响整体的对⽐度,直⽅图均衡化通过有效地扩展常⽤的亮度来实现这种功能。
这种⽅法对于背景和前景都太亮或者太暗的图像⾮常有⽤,这种⽅法尤其是可以带来X光图像中更好的⾻骼结构显⽰以及曝光过度或者曝光不⾜照⽚中更好的细节。
这种⽅法的⼀个主要优势是它是⼀个相当直观的技术并且是可逆操作,如果已知均衡化函数,那么就可以恢复原始的直⽅图,并且计算量也不⼤。
这种⽅法的⼀个缺点是它对处理的数据不加选择,它可能会增加背景杂讯的对⽐度并且降低有⽤信号的对⽐度。
1.连续灰度值r:待处理图像的灰度。
假设r的取值区间[0,L-1], r = 0表⽰⿊⾊,r = L - 1表⽰⽩⾊。
直方图均衡化实验报告
直方图均衡化实验报告直方图均衡化实验报告引言:直方图均衡化是一种常用的图像处理技术,它可以增强图像的对比度和细节,使得图像更加清晰明亮。
本实验旨在通过实际操作验证直方图均衡化的效果,并探讨其在不同场景下的应用。
实验步骤:1. 图像获取与预处理:选择一张高对比度的彩色图像作为实验对象,通过图像处理软件将其转换为灰度图像。
确保图像的亮度范围适中,避免过亮或过暗的情况。
2. 直方图均衡化算法:实现直方图均衡化算法的代码,可以使用Python等编程语言。
算法的核心思想是将原始图像的像素值映射到新的像素值,使得新图像的直方图均匀分布在整个灰度范围内。
3. 实验结果展示:将经过直方图均衡化处理后的图像与原始图像进行对比展示。
通过观察图像的对比度、亮度和细节等方面的变化,评估直方图均衡化算法的效果。
实验结果与分析:经过直方图均衡化处理后,图像的对比度明显增强,细节更加清晰可见。
原本过亮或过暗的区域得到了适当的修正,使得整个图像的亮度分布更加均匀。
同时,图像中的细节也得到了突出,使得观察者能够更好地识别和分析图像中的内容。
在实际应用中,直方图均衡化可以用于图像增强、目标检测、图像匹配等领域。
例如,在安防监控系统中,直方图均衡化可以提高图像的对比度,使得目标物体更加明显,有利于目标检测和识别。
在医学图像处理中,直方图均衡化可以增强图像的细节,有助于医生对病灶的判断和诊断。
然而,直方图均衡化也存在一些局限性。
首先,直方图均衡化是一种全局操作,对整个图像进行处理,可能会导致某些局部细节的损失。
其次,直方图均衡化对于亮度变化较大的图像效果较差,可能会导致过度亮化或过度暗化的问题。
因此,在实际应用中,需要根据具体情况选择合适的图像处理方法。
结论:通过本次实验,我们验证了直方图均衡化在图像处理中的有效性。
直方图均衡化可以增强图像的对比度和细节,使得图像更加清晰明亮。
然而,直方图均衡化也存在一些局限性,需要根据具体情况选择合适的图像处理方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验1.直方图均衡化程序的原理及步骤
直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某灰度区间变成在全部灰度范围内的均匀分布。
直方图均衡化的原理:
直方图均衡化是把原图像的直方图通过灰度变换函数修正为灰度均匀分布的直方图,然后按均衡直方图修正原图像,其变换函数取决于图像灰度直方图的累积分布函数。
概括地说,就是把一已知灰度概率分布的图像,经过一种变换,使之演变成一幅具有均匀概率分布的新图像。
当图像的直方图为一均匀分布时,图像的信息熵最大,此时图像包含的信息量最大,图像看起来更清晰。
灰度直方图用各灰度值出现的相对频数(该灰度级的像素数与图像总像素数之比)表示。
直方图表示数字图像中每一灰度级与其出现频数的的统计关系,用横坐标表示灰度级,纵坐标表示频数。
直方图就能给出该图像的概貌性描述,例如图像的灰度范围、每个灰度级的频数和灰度的分布、整幅图像的亮度和平均明暗对比度等,由此可得出进一步处理的重要依据。
计算每个灰度级出现的概率为:
P r(r k)=N k/N k=0,1,2,…,L-1
上式中,P r(r k)表示第k个灰度级出现的概率,N k为第k个灰度级出现的频数,N为图像像素总数,L 为图像中可能的灰度级总数。
由此可得直方图均衡化变换函数,即图像的灰度累积分布函数Sk 为:上式中, S k 为归一化灰度级。
这个变换映射称做直方图均衡化或直方图线性化。
直方图均衡化过程如下:
(1)输出原图像;
(2)根据公式P r(r k)=n k/m*n(k=0,1,2,…,L-1)计算对应灰度级出现的概率,绘制原图像的直方图。
(3)计算原图象的灰度级累积分布函数:sk=Σp r(r k);
(4)取整Sk=round((S1*256)+0.5);将Sk归一到相近的灰度级,绘制均衡化后的直方图。
(5)将每个像素归一化后的灰度值赋给这个像素,画出均衡化后的图像。
2.根据直方图均衡化步骤对输入的原图象进行处理,输出的图像如下图所示。
由上图可以看出,采用直方图均衡化后,可使图像的灰度间距拉开或使灰度均匀分布,从而增大反差,使图像更加清晰,达到增强的目的。
但直方图均衡在对灰度呈现两端分布,同时在图像的低灰度区域有较多像素点的图像进行处理后, 得不到满意的效果,达不到突出图像细节的目的。
针对上述直方图均衡化的弊端,可以先计算出图像的灰度直方图,然后将其灰度进行拉伸,以便改善图像增强效果。