ANSYS-热分析培训-热接触解析

合集下载

ANSYS中的接触分析教程

ANSYS中的接触分析教程

一般的接触分类 (2)ANSYS接触能力 (2)点─点接触单元 (3)点─面接触单元 (3)面─面的接触单元 (4)执行接触分析 (4)面─面的接触分析 (5)接触分析的步骤: (5)步骤1:建立模型,并划分网格 (5)步骤二:识别接触对 (5)步骤三:定义刚性目标面 (6)步骤4:定义柔性体的接触面 (9)步骤5:设置实常数和单元关键字 (10)步骤六: (20)步骤7:给变形体单元加必要的边界条件 (21)步骤8:定义求解和载步选项 (21)第十步:检查结果 (22)点─面接触分析 (24)点─面接触分析的步骤 (25)点-点的接触 (33)接触分析实例(GUI方法) (36)接触分析实例(命令流方式) (38)接触分析接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。

接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。

一般的接触分类接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触,另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。

ANSYS接触能力ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。

为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。

Ansys12.0 Mechanical教程-5热分析

Ansys12.0 Mechanical教程-5热分析

Workbench -Mechanical Introduction第六章热分析概念Training Manual •本章练习稳态热分析的模拟,包括:A.几何模型B B.组件-实体接触C.热载荷D.求解选项E E.结果和后处理F.作业6.1本节描述的应用般都能在ANSYS DesignSpace Entra或更高版本中使用,除了•本节描述的应用一般都能在ANSYS DesignSpace EntraANSYS Structural提示:在S S热分析的培训中包含了包括热瞬态分析的高级分析•ANSYSTraining Manual稳态热传导基础•对于一个稳态热分析的模拟,温度矩阵{T}通过下面的矩阵方程解得:()[]{}(){}T Q T T K =•假设:–在稳态分析中不考虑瞬态影响[K]可以是个常量或是温度的函数–[K] 可以是一个常量或是温度的函数–{Q}可以是一个常量或是温度的函数稳态热传导基础Training Manual •上述方程基于傅里叶定律:•固体内部的热流(Fourier’s Law)是[K]的基础;•热通量、热流率、以及对流在{Q}为边界条件;•对流被处理成边界条件,虽然对流换热系数可能与温度相关•在模拟时,记住这些假设对热分析是很重要的。

A. 几何模型Training Manual •热分析里所有实体类都被约束:–体、面、线•线实体的截面和轴向在DesignModeler中定义•热分析里不可以使用点质量(Point Mass)的特性•壳体和线体假设:–壳体:没有厚度方向上的温度梯度–线体:没有厚度变化,假设在截面上是一个常量温度•但在线实体的轴向仍有温度变化… 材料特性Training Manual •唯一需要的材料特性是导热性(Thermal Conductivity)•Thermal Conductivity在Engineering Data 中输Engineering Data入•温度相关的导热性以表格形式输入若存在任何的温度相关的材料特性,就将导致非线性求解。

Ansys热分析教程 第十章

Ansys热分析教程 第十章
– – – 瞬态温度效果可以在所有耦合场单元中使用。 瞬态电效果(电容,电感)不能包括在热-电分析中(除非只是TEMP和VOLT自由 度 被激活)。 带有磁向量势自由度的耦合场单元可以用来对瞬态磁场问题建模 (如,SOLID62). 带有标量势自由度的单元只能模拟静态现象(SOLID5)。
• 学习每种单元的自由度和允许的载荷。耦合场单元允许的相同位置 (节点,单元面等)施加多种类型的载荷 (D, F, SF, BF) 。 • 耦合场分析可以使高度非线性的。考虑使用Predictor 和 Line Search 功能改善收敛性。 • 考虑使用Multi-Plots功能将不同场的结果同时输出到多个窗口中。
1.建立,加载,求解 热模型
5c.读入热模型并进行 温度插值 (BFINT)
结束 5d. 读入结构模型并读 入体载荷文件 (/INPUT)
9. 后处理
4.定义结构材料特性
6. 指定分析类型,分 析选项和载荷步选项
7. 指定参考温度并施 加其它结构载荷
8. 存储并求解
流程细节
下面是热-应力分析的每步细节。
什么是耦合场分析? (续)
间接耦合分析是以特定的顺序求解单个物理场的模型。前一个分析的 结果作为后续分析的边界条件施加。有时也称之为序贯耦合分析。
本分析方法主要用于物理场之间单向的耦合关系。例如,一个场的响 应(如热)将显著影响到另一个物理场(如结构)的响应,反之不成 立。本方法一般来说比直接耦合方法效率高,而且不需要特殊的单元 类型。 本章中我们只讨论涉及热的耦合现象。请注意并非所有ANSYS产品都 支持所有耦合单元类型和分析选项。例如,ANSYS/Thermal产品只提 供热—电直接耦合。详细说明参见Coupled-Field Analysis Guide。

Ansys热分析教程_第二章基本概念

Ansys热分析教程_第二章基本概念
下列符号在全文中的意义如下:
t time T temperature
density
c specific heat hf film coefficient
emissivity Stefan - Boltzmann constant
K thermal conductivity Q heat flow(rate) q * heat flux q internal heat generation / volume E energy

负号表示热沿梯度的反向流动 (例如, 热从热的部分流向冷的).
q*
T
dT dn
n

对流的热流由冷却的牛顿准则得出:
q * h f (TS TB ) heat flow rate per unit area between surface and fluid Where, h f = convective film coefficient TS = surface temperature TB = bulk fluid temperature


一般来说,稳态分析中网格上结点温度比实际温度要低。也就是 说,如果加密网格,温度将增加,但加密到一定程度,结果将不 显著增加(也就是说, 结果收敛)。
T
网格密度

引起奇异性的原因
◦ 整体求解的奇异性 在稳态分析中当有热量输入(比如, 施加结点热流,热流,内部热源)而无热 流流出(指定的结点温度,对流载荷等),稳态的温度将是无限大的。 等同于结构分析中的刚体位移。 ◦ 温度梯度/热流奇异性

将区域分解(也称“划分”) 为简单的形状; 2-D模型中的四边形 和/或三角形, 3-D模型中的四面体,金字塔形或六面体。

Ansys热分析教程(全)

Ansys热分析教程(全)

章节内容概述
• 第7章-续 – 例题 6 - 低压气轮机箱的热分析
• 第 8 章 - 辐射 – 辐射概念的回顾 – 基本定义 – 辐射建模的可选择方法 – 辐射矩阵模块 – 辐射分析例题 - 使用辐射矩阵模块进行热沉分析,隐式和非隐式方 法。
• 第 9 章 - 相变 – 基本模型/术语 – 在 ANSYS中求解相变 – 相变例题 - 飞轮铸造分析
传导
• 传导的热流由传导的傅立叶定律决定:
q*
=
− Knn
∂T ∂n
=
heat
flow
rate
per
unit
area
in
direction
n
Where, Knn = thermal conductivity in direction n
T = temperature
∂T = thermal gradient in direction n ∂n
• 负号表示热沿梯度的反向流动(i.e., 热从热的部分流向冷的).
q*
T
dT
dn
n
对流
• 对流的热流由冷却的牛顿准则得出:
q* = hf (TS − TB ) = heat flow rate per unit area between surface and fluid
Where, hf = convective film coefficient TS = surface temperature TB = bulk fluid temperature
• 第 6 章 - 复杂的, 时间和空间变化的边界条件 – 表格化的热边界条件 (载荷) – 基本变量 – 用户定义的因变变量
章节内容概述

ANSYS_热分析培训-热接触

ANSYS_热分析培训-热接触

HEAT TRANSFER 6.0
… 实例
5. 施加结构分析的边界条件。
培训手册
对称
固定 X 和Y方 向自由度
Inventory #01445 March 30, 2002 11-20
HEAT TRANSFER 6.0
HEAT TRANSFER 6.0
热接触
… 实例
6. 施加强迫的位移。
Y方向的位移 -0.01 in
培训手册
Inventory #01445 March 30, 2002 11-21
Inventory #01445 March 30, 2002 11-23
热接触
… 实例
10. 画节点温度云图
注意:接触面处温度的不匹配。 记住: TCC = .001.
培训手册
Inventory #01445 March 30, 2002 11-24
HEAT TRANSFER 6.0
热接触
… 实例
– SBCT为Stefan-Boltzmann常数 (由实常数输入)
– TOFFST 为由绝对温度的温度偏移(命令TOFFST )
– 接触面和目标面间的热流
0 < gap < pinball
– 自由面中接触面到环境的热流
• 自由面的确定与对流相同
培训手册
Inventory #01445 March 30, 2002 11-8
热接触
• 热传导: q = TCC * (TT - TC)
– TCC为热接触导热系数(由实常数输入) • 可以使一个表参数(压力和温度的函数)
– TT 与TC 分别为目标面及接触面温度 – 当处于接触状态时将关闭热流 – 模型温度在接触面处不连续

ansysworkbench热分析教程

ansysworkbench热分析教程

6-1A. 几何模型B. 组件-实体接触C. 热载荷D. 求解选项E. 结果和后处理F. 作业6.1• 本节描述的应用一般都能在ANSYS DesignSpace Entra或更高版本中使用,除了ANSYS Structural• 提示:在ANSYS 热分析的培训中包含了包括热瞬态分析的高级分析K T T= Q T –在稳态分析中不考虑瞬态影响–[K] 可以是一个常量或是温度的函数–{Q}可以是一个常量或是温度的函数• 固体内部的热流(Fourier’s Law)是[K]的基础;• 热通量、热流率、以及对流在{Q} 为边界条件;•对流被处理成边界条件,虽然对流换热系数可能与温度相关•在模拟时,记住这些假设对热分析是很重要的。

–体、面、线•线实体的截面和轴向在D esignModeler中定义• 热分析里不可以使用点质量(Point Mass)的特性•壳体和线体假设:–壳体:没有厚度方向上的温度梯度–线体:没有厚度变化,假设在截面上是一个常量温度• 但在线实体的轴向仍有温度变化•唯一需要的材料特性是导热性(Thermal Conductivity)•Thermal Conductivity在Engineering Data 中输入•温度相关的导热性以表格形式输入若存在任何的温度相关的材料特性,就将导致非线性求解。

–如果部件间初始就没有接触,那么就不会发生热传导(见下面对pinball的解释)。

–总结:–Pinball区域决定了什么时候发生接触,并且是自动定义的,同时还给了一个相对较小的值来适应模型里的小间距。

•如果接触是Bonded(绑定的)或no separation(无分离的),那么当面出现在pinball radius内时就会发生热传导(绿色实线表示)。

Pinball Radius右图中,两部件间的间距大于pinball区域,因此在这两个部件间会发生热传导。

• 默认情况下,假设部件间是完美的热接触传导,意味着界面上不会发生温度实际情况下,有些条件削弱了完美的热接触传导:––––压力表面温度T使用导电脂....Tx•接q = TCC target- T contact–式中T contact 是一个接触节点上的温度,T target 是对应目标节点上的温度–默认情况下,基于模型中定义的最大材料导热性KXX和整个几何边界框的对角线ASMDIAG,T CC 被赋以一个相对较大的值。

ANSYS热分析指南——ANSYS稳态热分析word精品文档59页

ANSYS热分析指南——ANSYS稳态热分析word精品文档59页

ANSYS热分析指南(第三章)第三章稳态热分析3.1稳态传热的定义ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和ANSYS/Professional这些产品支持稳态热分析。

稳态传热用于分析稳定的热载荷对系统或部件的影响。

通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。

也可以在所有瞬态效应消失后,将稳态热分析作为瞬态热分析的最后一步进行分析。

稳态热分析可以计算确定由于不随时间变化的热载荷引起的温度、热梯度、热流率、热流密度等参数。

这些热载荷包括:对流辐射热流率热流密度(单位面积热流)热生成率(单位体积热流)固定温度的边界条件稳态热分析可用于材料属性固定不变的线性问题和材料性质随温度变化的非线性问题。

事实上,大多数材料的热性能都随温度变化,因此在通常情况下,热分析都是非线性的。

当然,如果在分析中考虑辐射,则分析也是非线性的。

3.2热分析的单元ANSYS和ANSYS/Professional中大约有40种单元有助于进行稳态分析。

有关单元的详细描述请参考《ANSYS Element Reference》,该手册以单元编号来讲述单元,第一个单元是LINK1。

单元名采用大写,所有的单元都可用于稳态和瞬态热分析。

其中SOLID70单元还具有补偿在恒定速度场下由于传质导致的热流的功能。

这些热分析单元如下:表3-1二维实体单元表3-2三维实体单元表3-3辐射连接单元表3-4传导杆单元表3-5对流连接单元表3-6壳单元表3-7耦合场单元表3-8特殊单元3.3热分析的基本过程ANSYS热分析包含如下三个主要步骤:前处理:建模求解:施加荷载并求解后处理:查看结果以下的内容将讲述如何执行上面的步骤。

首先,对每一步的任务进行总体的介绍,然后通过一个管接处的稳态热分析的实例来引导读者如何按照GUI路径逐步完成一个稳态热分析。

最后,本章提供了该实例等效的命令流文件。

ANSYS高级接触分析

ANSYS高级接触分析

ANSYS高级接触分析ANSYS是一种工程仿真软件,可以用于进行各种结构、流体和多物理场的仿真分析。

其中,高级接触分析是ANSYS的一项强大功能,可以用于模拟两个或多个物体之间的接触行为,包括刚性接触、弹性接触和非线性接触。

本文将介绍ANSYS高级接触分析的基本原理、应用领域和实例。

ANSYS高级接触分析的基本原理是通过数值方法来求解接触问题。

其基本思想是将接触问题分解为两个或多个物体之间的几何约束和力学方程,并通过离散化和迭代求解来得到接触状态和接触力。

在求解过程中,可以考虑物体之间的几何形状、材料特性、摩擦力和接触刚度等因素,以模拟真实接触行为。

ANSYS高级接触分析的应用领域非常广泛,例如机械工程、汽车工程、电子工程和生物医学工程等。

在机械工程领域,可以用于模拟齿轮传动、轴承接触和摩擦等问题。

在汽车工程领域,可以用于模拟刹车片与刹车盘之间的接触行为。

在电子工程领域,可以用于模拟芯片与散热器之间的接触热阻。

在生物医学工程领域,可以用于模拟骨骼和关节之间的接触力和摩擦力。

下面以模拟齿轮传动为例,介绍ANSYS高级接触分析的实例。

假设有两个齿轮,需要分析它们之间的接触行为。

首先,在ANSYS中建立齿轮的几何模型,并定义材料特性和接触边界条件。

然后,设置求解器和参数,运行仿真计算。

最后,通过结果分析和后处理,得到齿轮之间的接触力、接触应力和接触变形等信息。

在该实例中,ANSYS高级接触分析可以帮助工程师评估齿轮传动的安全性和可靠性。

通过模拟齿轮之间的接触行为,可以得到接触力的分布和接触应力的大小,进而判断齿轮是否会发生磨损、疲劳和断裂等问题。

如果发现问题,可以进一步优化齿轮设计,以提高传动效率和使用寿命。

总的来说,ANSYS高级接触分析是一种强大的工程仿真技术,可以用于模拟各种接触问题。

通过该技术,工程师可以评估接触行为的性能和可靠性,优化设计方案,提高产品的质量和竞争力。

因此,掌握ANSYS高级接触分析技术对于工程师来说是非常重要的。

ANSYS Workbench12.0培训教程之热分析

ANSYS Workbench12.0培训教程之热分析

Workbench -Mechanical Introduction第六章热分析概念Training Manual •本章练习稳态热分析的模拟,包括:A.几何模型B B.组件-实体接触C.热载荷D.求解选项E E.结果和后处理F.作业6.1本节描述的应用般都能在ANSYS DesignSpace Entra或更高版本中使用,除了•本节描述的应用一般都能在ANSYS DesignSpace EntraANSYS Structural提示:在S S热分析的培训中包含了包括热瞬态分析的高级分析•ANSYSTraining Manual稳态热传导基础•对于一个稳态热分析的模拟,温度矩阵{T}通过下面的矩阵方程解得:()[]{}(){}T Q T T K =•假设:–在稳态分析中不考虑瞬态影响[K]可以是个常量或是温度的函数–[K] 可以是一个常量或是温度的函数–{Q}可以是一个常量或是温度的函数稳态热传导基础Training Manual •上述方程基于傅里叶定律:•固体内部的热流(Fourier’s Law)是[K]的基础;•热通量、热流率、以及对流在{Q}为边界条件;•对流被处理成边界条件,虽然对流换热系数可能与温度相关•在模拟时,记住这些假设对热分析是很重要的。

A. 几何模型Training Manual •热分析里所有实体类都被约束:–体、面、线•线实体的截面和轴向在DesignModeler中定义•热分析里不可以使用点质量(Point Mass)的特性•壳体和线体假设:–壳体:没有厚度方向上的温度梯度–线体:没有厚度变化,假设在截面上是一个常量温度•但在线实体的轴向仍有温度变化… 材料特性Training Manual •唯一需要的材料特性是导热性(Thermal Conductivity)•Thermal Conductivity在Engineering Data 中输Engineering Data入•温度相关的导热性以表格形式输入若存在任何的温度相关的材料特性,就将导致非线性求解。

ANSYS基础教程—热分析

ANSYS基础教程—热分析

ANSYS基础教程—热分析关键字:ANSYS ANSYS教程ANSYS热分析信息化调查找茬投稿收藏评论好文推荐打印社区分享本文简述了进行稳态热分析的过程.有两方面的目的:重申第4章所介绍的典型分析步骤;介绍热荷载与边界条件.包括的主题有:概述、分析过程、专题讨论。

A. 概述·热分析用于确定结构中温度分布、温度梯度、热流以及其它类似的量.·热分析可能是稳态的或瞬态的.–稳态是指荷载条件已被“设置”成稳定状态,几乎不随时间变化. 如: 铁获得了预先设置的温度.–瞬态* 指条件随时间变化而变化. 如: 铸造中金属从熔融状态变为固态的冷却过程.·热荷载条件可能是:温度模型区温度已知.对流表面的热传递给周围的流体通过对流。

输入对流换热系数h和环境流体的平均温度Tb热通量* 单位面积上的热流率已知的面.热流率* 热流率已知的点.热生成率* 体的生热率已知的区域.热辐射* 通过辐射产生热传递的面. 输入辐射系数, Stefan-Boltzmann常数, “空间节点”的温度作为可选项输入.绝热面“完全绝热”面,该面上不发生热传递.B. 分析过程·稳态热分析过程和静力分析类似:–分析过程·几何尺寸(模型)·划分网格–求解·荷载条件·求解–后处理·查看结果·检查结果是否正确·通过(Main Menu > Preferences)把图形用户界面的优先级设置成热分析. 前处理几何尺寸(模型)·既可用ANSYS建立模型,也可用其它方法建好模型后导入.·模型建好后,以上两种建模方法的具体过程将不再显示.-划分网格·首先定义单元属性: 单元类型, 实常数, 材料属性.-单元类型·下表给出了常用的热单元类型.·每个结点只有一个自由度: 温度常用的热单元类型-材料属性–必须输入导热系数, KXX.–如果施加了内部热生成率,则需指定比热(C).–ANSYS提供的材料库(/ansys57/matlib)包括几种常用材料的结构属性和热属性, 但是建议用户创建、使用自己的材料库.–把优先设置为“热分析”,使材料模型图形用户界面只显示材料的热属性.-实常数–主要应用于壳单元和线单元.·划分网格.–存储数据文件.–使用MeshTool划分网格. 使用缺省的智能网格划分级别6可以生成很好的初始网格.·至此完成前处理,下面开始求解.求解荷载·指定的温度–热分析的自由度约束–Solution > -Loads-Apply > Temperature–或D命令系列(DA, DL, D)·热流–这些是面荷载–Solution > -Loads-Apply > Convection–或SF命令系列(SFA, SFL, SF, SFE)·绝热面–“完全绝热”面,该面上不发生热传递.–这是缺省条件, 如,没有指定边界条件的任何一个面都被自动作为绝热面处理.·其它可能的热荷载:–热通量(BTU / (hr-in2)–热流(BTU / hr)–热生成率(BTU / (hr-in3)–热辐射(BTU / hr)求解·首先存储数据库文件.·然后输入SOLVE命令或点击菜单Solution > -Solve-Current LS.–结果被写入结果文件, jobname.rth, 该结果文件同时也写入内存中的数据库文件.·至此完成求解过程. 下面进入后处理部分.后处理查看结果·典型的等值线绘图包括温度等值线,温度梯度等值线和热通量等值线–General Postproc> Plot Results > Nodal Solu…(或Element Solu…)–或用PLNSOL(或PLESOL)·对3-D 实体模型绘制云图时,选项isosurfaces(等值面)是非常有用的. 用/CTYPE命令或Utility Menu > PlotCtrls> Style > Contours > Contour Style.·检查结果是否正确·温度是否在预期的范围内?–在指定温度和热流边界的基础上,估计预期的范围.·网格大小是否满足精度?–和受力分析一样,可以画出非均匀分布的温度梯度(单元解) 并找出高梯度的单元. 这些区域可作为重新定义网格时的参考.–若节点温度梯度(平均的)和单元温度梯度(非平均的)之间的差别很大,则可能是网格划分太粗糙.。

Ansys热分析教程(全)

Ansys热分析教程(全)

目录第1章–介绍–概述–相关讲座&培训–其他信息来源第2章–基本概念第3章–稳态热传导(n o m a s s t r a n s p o r t o f h e a t)第4章–附加考虑非线性分析第5章–瞬态分析1-3 1-5 1-12 1-132-13-14-15-1第6章–复杂的,时间和空间变化的边界条件第7章–附加对流/热流载荷选项和简单的热/流单元第8章–辐射热传递–例题-使用辐射矩阵的热沉分析第9章–相变分析–相变分析例题-飞轮铸造分析第10章–耦合场分析6-1 7-18-1 8-43 9-1 9-14 10-1目录(续)第1章先决条件1章节内容概述12章节内容概述213章节内容概述310124章节内容概述43546章节内容概述6571章节内容概述7689章节内容概述1072相关讲座&培训2tT c h K Q qq E============t i m e t e m p e r a t u r e d e n s i t y s p e c i f i c h e a t f i l m c o e f f i c i e n t e m i s s i v i t y S t e f a n -B o l t z m a n n c o n s t a n t t h e r m a l c o n d u c t i v i t y h e a t f l o w (r a t e ) h e a t f l u x i n t e r n a l h e a t g e n e r a t i o n /v o l u m e e n e r g y ρεσ*&&&fA N S Y S()3223注,对于结构热容量,密度/G c和比热*G c经常使用该单位。

其中G c=386.4(l b m-i n c h)/(l b f-s e c2)A N S Y S(S I)3223–传导–对流–辐射•传导的热流由传导的傅立叶定律决定�•负号表示热沿梯度的反向流动(i .e ., 热从热的部分流向冷的).q K T n K T T n n n n n *=−∂∂=∂∂=h e a t f l o w r a t e p e r u n i t a r e a i n d i r e c t i o n n Wh e r e , = t h e r m a l c o n d u c t i v i t y i n d i r e c t i o n n= t e m p e r a t u r e t h e r m a l g r a d i e n t i n d i r e c t i o n n Tnq*dT d n•对流的热流由冷却的牛顿准则得出:•对流一般作为面边界条件施加qh T T h T T f S B f S B *()=−=h e a t f l o w r a t e p e r u n i t a r e a b e t w e e n s u r f a c e a n d f l u i d W h e r e , = c o n v e c t i v e f i l m c o e f f i c i e n t= s u r f a c e t e m p e r a t u r e = b u l k f l u i d t e m p e r a t u r e TB Ts•从平面i 到平面j 的辐射热流由施蒂芬-玻斯曼定律得出: •在A N S Y S 中将辐射按平面现象处理(i .e ., 体都假设为不透明的)。

ansys中的热分析

ansys中的热分析

ansys中的热分析【转】热-结构耦合分析知识掌握篇2022-05-3114:09:19阅读131评论0字号:大中小订阅热-结构耦合问题是结构分析中通常遇到的一类耦合分析问题.由于结构温度场的分布不均会引起结构的热应力,或者结构部件在高温环境中工作,材料受到温度的影响会发生性能的改变,这些都是进行结构分析时需要考虑的因素.为此需要先进行相应的热分析,然后在进行结构分析.热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失,热梯度,热流密度(热通量)等.本章主要介绍在ANSYS中进行稳态,瞬态热分析的基本过程,并讲解如何完整的进行热-结构耦合分析.21.1热-结构耦合分析简介热-结构耦合分析是指求解温度场对结构中应力,应变和位移等物理量影响的分析类型.对于热-结构耦合分析,在ANSYS中通常采用顺序耦合分析方法,即先进行热分析求得结构的温度场,然后再进行结构分析.且将前面得到的温度场作为体载荷加到结构中,求解结构的应力分布.为此,首先需要了解热分析的基本知识,然后再学习耦合分析方法.21.1.1热分析基本知识ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数.ANSYS热分析包括热传导,热对流及热辐射三种热传递方式.此外,还可以分析相变,有内热源,接触热阻等问题.热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换.热对流是指固体的表面和与它周围接触的流体之间,由于温差的存在引起的热量的交换.热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换过程.如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:q流入+q生成-q流出=0,则系统处于热稳态.在稳态热分析中任一节点的温度不随时间变化.瞬态传热过程是指一个系统的加热或冷却过程.在这个过程中系统的温度,热流率,热边界条件以及系统内能随时间都有明显变化.ANSYS热分析的边界条件或初始条件可分为七种:温度,热流率,热流密度,对流,辐射,绝热,生热.热分析涉及到的单元有大约40种,其中纯粹用于热分析的有14种,它们如表21.1所示.表21.1热分析单元列表单元类型名称说明线性LINK32LINK33LINK34LINK31两维二节点热传导单元三维二节点热传导单元二节点热对流单元二节点热辐射单元二维实体PLANE55PLANE77PLANE35PLANE75PLANE78四节点四边形单元八节点四边形单元三节点三角形单元四节点轴对称单元八节点轴对称单元三维实体SOLID87SOLID70SOLID90六节点四面体单元八节点六面体单元二十节点六面体单元壳SHELL57四节点四边形壳单元点MASS71节点质量单元21.1.2耦合分析在ANSYS中能够进行的热耦合分析有:热-结构耦合,热-流体耦合,热-电耦合,热-磁耦合,热-电-磁-结构耦合等,因为本书主要讲解结构实例分析,所以着重讲解热-结构耦合分析.在ANSYS中通常可以用两种方法来进行耦合分析,一种是顺序耦合方法,另一种是直接耦合方法.顺序耦合方法包括两个或多个按一定顺序排列的分析,每一种属于某一物理分析.通过将前一个分析的结果作为载荷施加到下一个分析中的方式进行耦合.典型的例子就是热-应力顺利耦合分析,热分析中得到节点温度作为\体载荷\施加到随后的结构分析中去.直接耦合方法,只包含一个分析,它使用包含多场自由度的耦合单元.通过计算包含所需物理量的单元矩阵或载荷向量矩阵或载荷向量的方式进行耦合.典型的例子是使用了SOLID45,PLANE13或SOLID98单元的压电分析.进行顺序耦合场分析可以使用间接法和物理环境法.对于间接法,使用不同的数据库和结果文件,每个数据库包含合适的实体模型,单元,载荷等.可以把一个图21.1间接法顺序耦合分析数据流程图21.2稳态热分析稳态传热用于分析稳定的热载荷对系统或部件的影响.通常在进行瞬态热分析以前,需要进行稳态热分析来确定初始温度分布.稳态热分析可以通过有限元计算确定由于稳定的热载荷引起的温度,热梯度,热流率,热流密度等参数.ANSYS稳态热分析可分为三个步骤:前处理:建模求解:施加载荷计算后处理:查看结果21.2.1建模稳态热分析的模型和前面的结构分析模型建立过程基本相同.不同的就是需要在菜单过虑对话框中将分析类型指定为热分析,这样才能使菜单选项为热分析选项,单元类型也为热分析的单元类型,另外在材料定义时需要定义相应的热性能参数,下面为大概操作步骤.1.确定jobname,title,unit;2.进入PREP7前处理,定义单元类型,设定单元选项;3.定义单元实常数;4.定义材料热性能参数,对于稳态传热,一般只需定义导热系数,它可以是恒定的,也可以随温度变化;5.创建几何模型并划分网格,请参阅结构分析的建模步骤.21.2.2施加载荷计算热分析跟前面讲解的结构分析相比,区别在于指定的载荷为温度边条.通常可施加的温度载荷有恒定的温度,热流率,对流,热流密度和生热率五种.另外在分析选项中也包含非线性选项,结果输出选项等需要根据情况进行设置.1.定义分析类型(1)如果进行新的热分析,则使用下面命令或菜单路径:COMMAND:ANTYPE,STATIC,NEWGUI:Mainmenu|Solution|-AnalyiType-|NewAnalyi|Steady-tate(2)如果继续上一次分析,比如增加边界条件等,则需要进行重启动功能:COMMAND:ANTYPE,STATIC,RESTGUI:Mainmenu|Solution|AnalyiType-|Retart2.施加载荷可以直接在实体模型或单元模型上施加五种载荷(边界条件).(1)恒定的温度:通常作为自由度约束施加于温度已知的边界上.COMMAND:D GUI:MainMenu|Solution|-Load-Apply|-Thermal-Temperature(2)热流率:热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量.如果温度与热流率同时施加在一节点上,则ANSYS读取温度值进行计算.注意:如果在实体单元的某一节点上施加热流率,则此节点周围的单元要密一些,在两种导热系数差别很大的两个单元的公共节点上施加热流率时,尤其要注意.此外,尽可能使用热生成或热流密度边界条件,这样结果会更精确些.COMMAND:FGUI:MainMenu|Solution|-Load-Apply|-Thermal-HeatFlow(3)对流:对流边界条件作为面载施加于实体的外表面,计算与流体的热交换.它仅可施加于实体和壳模型上,对于线模型,可以通过对流线单元LINK34考虑对流.COMMAND:SFGUI:MainMenu|Solution|-Load-Apply|-Thermal-Convection(4)热流密度:热流密度也是一种面载荷.当通过单位面积的热流率已知或通过FLOTRANCFD计算得到时,可以在模型相应的外表面施加热流密度.如果输入的值为正,代表热流流入单元.热流密度也仅适用于实体和壳单元.热流密度与对流可以施加在同一外表面,但ANSYS仅读取最后施加的面载荷进行计算.COMMAND:FGUI:MainMenu|Solution|-Load-Apply|-Thermal-HeatFlu某(5)生热率:生热率作为体载施加于单元上,可以模拟化学反应生热或电流生热.它的单位是单位体积的热流率.COMMAND:BFGUI:MainMenu|Solution|-Load-Apply|-Thermal-HeatGenerat3.确定载荷步选项对于一个热分析,可以确定普通选项,非线性选项以及输出控制.热分析的载荷不选项和结构静力分析中的载荷步相同,读者可以参阅本书结构静力分析部分的相关内容或基本分析过程中关于载荷步选项的内容.这里就不再详细讲解了.4.确定分析选项GUI:MainMenu|Solution|AnalyiOption5.求解GUI:MainMenu|Solution|CurrentLS21.2.3后处理ANSYS将热分析的结果写入某.rth文件中,它包含如下数据信息:(1)基本数据:节点温度(2)导出数据:节点及单元的热流密度节点及单元的热梯度单元热流率节点的反作用热流率其它对于稳态热分析,可以使用POST1进行后处理.关于后处理的完整描述,可参阅本书第四章中关于利用通用后处理器进行结果观察分析的讲解.下面是几个关键操作的命令和菜单路径.1.进入POST1后,读入载荷步和子步:COMMAND:SETGUI:MainMenu|GeneralPotproc|-ReadReult-ByLoadStep2.在热分析中可以通过如下三种方式查看结果:彩色云图显示COMMAND:PLNSOL,PLESOL,PLETAB等GUI:MainMenu|GeneralPotproc|PlotReult|NodalSolu,ElementSolu, ElemTable矢量图显示COMMAND:PLVECTGUI:MainMenu|GeneralPotproc|PlotReult|Pre-definedorUerdefined列表显示COMMNAD:PRNSOL,PRESOL,PRRSOL等GUI:MainMenu|GeneralPotproc|LitReult|NodalSolu,ElementSolu,R eactionSolu21.3瞬态传热分析瞬态热分析用于计算一个系统随时间变化的温度场及其它热参数.在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析.瞬态热分析的基本步骤与稳态热分析类似.主要的区别是瞬态热分析中的载荷是随时间变化的.为了表达随时间变化的载荷,首先必须将载荷~时间曲线分为载荷步.载荷~时间曲线中的每一个拐点为一个载荷步,如下图所示.图21.2瞬态热分析载荷-时间曲线对于每一个载荷步,必须定义载荷值荷对应的时间值,同时必须指定载荷步的施加方式为渐变或阶越.21.3.1建模一般瞬态热分析中,定义材料性能时要定义导热系数,密度及比热,其余建模过程与稳态热分析类似,这里就不再赘述.21.3.2加载求解和其它ANSYS中进行的分析一样,瞬态热分析进行加载求解时同样需要完成如下的工作.包括定义分析类型,定义初始条件,施加载荷,指定载荷步选项,指定结果输出选项以及最后进行求解.1.定义分析类型指定分析类型为瞬态分析,通用可以进行新的分析或进行重启动分析.2.获得瞬态热分析的初始条件(1)定义均匀温度场GUI:MainMenu|Solution|-Load-|Setting|UniformTempGUI:MainMenu|Solution|-Load-|Apply|-Thermal-|Temperature|OnNodeGUI:MainMenu|Solution|-Load-|Delete|-Thermal-Temperature|OnNode(2)设定非均匀的初始温度GUI:MainMenu|Solution|Load|Apply|-InitialCondit'n|Define如果初始温度场是不均匀的且又是未知的,就必须首先作稳态热分析确定初始条件.GUI:MainMenu|Preproceor|Load|-LoadStepOpt-Time/Frequenc|TimeIntegrationGUI:MainMenu|Preproceor|Load|-LoadStepOpt-Time/Frequenc|TimeandSubtp写入载荷步文件:GUI:MainMenu|Preproceor|Load|WriteLSFile或先求解:GUI:MainMenu|Solution|Solve|CurrentLS注意:在第二载荷步中,要删去所有设定的温度,除非这些节点的温度在瞬态分析与稳态分析相同.3.设定载荷步选项进行瞬态热分析需要指定的载荷步选项和进行瞬态结构分析相同,主要有普通选项,非线性选项和输出控制选项.(1)普通选项GUI:MainMenu|Solution|-LoadStepOpt-Time/Frequenc|TimeandSubtp每个载荷步的载荷子步数,或时间增量.对于非线性分析,每个载荷步需要多个载荷子步.时间步长的大小关系到计算的精度.步长越小,计算精度越高,同时计算的时间越长.根据线性传导热传递,可以按如下公式估计初始时间步长:ITS=δα24GUI:MainMenu|Solution|-LoadStepOpt-|Time/Frequenc|TimeandSubtp如果载荷值在这个载荷步是恒定的,需要设为阶越选项;如果载荷值随时间线GUI:MainMenu|Solution|-LoadStepOpt-|Time/Frequenc|TimeandSubtp(2)非线性选项GUI:MainMenu|Solution|-LoadStepOpt-|Time/Frequenc|TimeIntegrationGUI:MainMenu|Solution|-LoadStepOpt-|OutputCtrl|DB/ReultFile4.在定义完所有求解分析选项后,进行结果求解.21.3.3结果后处理对于瞬态热分析,ANSYS提供两种后处理方式.通用后处理器POST1,可以对整个模型在某一载荷步(时间点)的结果进行后处理;GUI:MainMenu|GeneralPotproc.GUI:MainMenu|TimeHitPotproc1.用POST1进行后处理GUI:MainMenu|GeneralPotproc|ReadReult|ByTime/Freq如果设定的时间点不在任何一个子步的时间点上,ANSYS会进行线性插值.此外,还可以读出某一载荷步的结果.GUI:MainMenu|GeneralPotproc|ReadReult|ByLoadStep然后,就可以采用与稳态热分析类似的方法,对结果进行彩色云图显示,矢量图显示,打印列表等后处理.2,用POST26进行后处理首先,要定义变量.GUI:MainMenu|TimeHitPotproc|GraphVariable或列表输出GUI:MainMenu|TimeHitPotproc|LitVariable21.4热-结构耦合分析前面讲了热-结构耦合分析是一种间接法顺序耦合分析的典型例子.其主要分三步完成:1.进行热分析,求得结构的的温度场;2.将模型中的单元转变为对应的结构分析单元,并将第一步求得的热分析结构当作体载荷施加到节点上;3.定义其余结构分析需要的选项,并进行结构分析.前面已经介绍了如何单独进行热分析和结构分析,下面介绍如何转换模型并将第一步求解的结果施加到节点上.1.完成必要的热分析,并进行相应的后处理,对结果进行查看分析.2.重新进入前处理器,并指定新的分析范畴为结构分析.选择菜单路径MainMenu|Preference,在弹出的对话框中选择\选项,使所有菜单变为结构分析的选项.3.进行单元转换.选择菜单路径MainMenu|Preproceor|ElementType|SwitchElemType,将弹出SwithchElemType(转换单元类型)对话框,如图21.3所示.图21.3转换单元类型对话框4.在对话框中的Changeelementtype(改变单元类型)下拉框中选择\然后单击关闭对话框,ANSYS程序将会自动将模型中的热单元转换为对应的结构单元类型.5.定义材料的性能参数.跟通常的结构分析不同的是,除了定义进行结构静力分析需要的材料弹性模量,密度,或强化准则的定义之外.在热-结构耦合分析的第二个分析中,还需要定义材料的热膨胀系数,而且材料性能应该随温度变化的.6.将第一次分析得到的温度结果施加到结构分析模型上.选取菜单路径MainMenu|Solution|DefineLoad|Apply|Structural|Temperature|FromThermAn aly,将弹出ApplyTEMPfromThemalAnalyi(从已进行的热分析结果中施加温度载荷)对话框,如图21.4所示.单击对话框中的按钮,选择前面热分析的结果文件某.rth,作为结构分析的热载荷加到节点上.图21.4从已进行的热分析结果中施加温度载荷对话框7.定义其它结构分析的载荷步选项和求解分析选项,并进行结构分析求解.8.进行结果后处理,观察分析所求得的结果.。

ANSYS热分析指南

ANSYS热分析指南

ANSYS热分析指南——————————————————————————————————————————————第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。

热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。

二、ANSYS的热分析·在ANSYS/Multiphysics 、ANSYS/Mechanical 、ANSYS/Thermal 、ANSYS/FLOTRAN 、ANSYS/ED 五种产品中包含热分析功能,其中ANSYS/FLOTRAN 不含相变热分析。

· ANSYS 热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。

· ANSYS 热分析包括热传导、热对流及热辐射三种热传递方式。

此外,还可以分析相变、有内热源、接触热阻等问题。

三、ANSYS 热分析分类·稳态传热:系统的温度场不随时间变化·瞬态传热:系统的温度场随时间明显变化四、耦合分析·热-结构耦合·热-流体耦合·热-电耦合·热-磁耦合·热-电-磁-结构耦合等PDF 文件使用"pdfFactory Pro" 试用版本创建No Boundaries ANSYS热分析指南——————————————————————————————————————————————第二章基础知识一、符号与单位项目国际单位英制单位ANSYS 代号长度m ft时间s s质量Kg lbm温度℃oF力N lbf能量(热量)J BTU功率(热流率)W BTU/sec热流密度W/m2 BTU/sec-ft2生热速率W/m3 BTU/sec-ft3导热系数W/m-℃BTU/sec-ft-oF KXX对流系数W/m2-℃BTU/sec-ft2-oF HF密度Kg/m3 lbm/ft3 DENS比热J/Kg-℃BTU/lbm-oF C焓J/m3 BTU/ft3 ENTH二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:l 对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q D + D + D = -式中: Q ——热量;W ——作功;DU ——系统内能;DKE——系统动能;DPE ——系统势能;l 对于大多数工程传热问题:0 ==PE KE D D ;l 通常考虑没有做功:0 = W , 则:U Q D = ;l 对于稳态热分析:0 = D = U Q ,即流入系统的热量等于流出的热量;l 对于瞬态热分析:dtdU q = ,即流入或流出的热传递速率q 等于系统内能的变化。

ANSYS热分析详解解析

ANSYS热分析详解解析

A N S Y S热分析详解解析-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。

热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。

二、ANSYS的热分析在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。

ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。

ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。

此外,还可以分析相变、有内热源、接触热阻等问题。

三、ANSYS 热分析分类稳态传热:系统的温度场不随时间变化瞬态传热:系统的温度场随时间明显变化四、耦合分析热-结构耦合热-流体耦合热-电耦合热-磁耦合热-电-磁-结构耦合等第二章基础知识一、符号与单位W/m 2-℃二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:●对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q ∆+∆+∆=-式中: Q —— 热量;W —— 作功;∆U ——系统内能; ∆KE ——系统动能; ∆PE ——系统势能;● 对于大多数工程传热问题:0==PE KE ∆∆; ● 通常考虑没有做功:0=W , 则:U Q ∆=;●对于稳态热分析:0=∆=U Q ,即流入系统的热量等于流出的热量; ●对于瞬态热分析:dtdUq =,即流入或流出的热传递速率q 等于系统内能的变化。

三、热传递的方式1、热传导热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。

热传导遵循付里叶定律:dxdT kq -='',式中''q 为热流密度(W/m 2),k 为导热系数(W/m-℃),“-”表示热量流向温度降低的方向。

ANSYS热分析指南

ANSYS热分析指南

ANSYS热分析指南第五章热辐射一、什么是热辐射辐射是一种通过电磁波传递能量的方式。

电磁波以光速传播且无需任何介质。

热辐射仅为电磁波谱中的一小段。

因为由于热辐射引起的热流与物体表面绝对温度的四次方成正比,因此热辐射分析是高度非线性的。

二、分析热辐射问题ANSYS 提供了三种方法分析热辐射问题:· 用LINK31,辐射线单元,分析两个点或多对点之间的热辐射;· 用表面效应单元SURF19 或SURF22,分析点对面的热辐射;· 用AUX12,热辐射矩阵生成器,分析面与面之间的热辐射以上三种方法既可用于稳态热分析,也可用于瞬态热分析。

热辐射分析要注意温度的单位制,因为计算热辐射使用的温度单位是绝对温度。

如果在加载时使用的是华氏温度,就要设置460 的差值;如果为摄氏温度,差值为273。

Command:TOFFSTGUI: Main Menu>Preprocessor>Loads>Analysis OptionsGUI: Main Menu>Solution>Analysis Options三、使用LINK31—辐射线单元LINK31 是一个两节点非线性线单元,用于计算由辐射引起的两点之间的热传递。

此单元要求输入如下的实常数:· 有效的热辐射面积;· 形状系数· 辐射率· Stefan-Boltzmann 常数四、使用表面效应单元表面效应单元可以方便地分析点与面之间的辐射传热。

SURF19 用于两维模型,SURF22 用于三维模型。

单元应设置为包含辐射KEYOPT(9)。

五、使用AUX12—辐射矩阵生成器此方法用于计算多个辐射面之间的辐射传热。

这种方法生成辐射面之间形状系数矩阵,并将此矩阵作为超单元用于热分析。

PDF 文件使用"pdfFactory Pro" 试用版本创建No Boundaries ANSYS热分析指南——————————————————————————————————————————————AUX12 方法由三个步骤组成:· 定义辐射面· 生成辐射矩阵· 在热分析中使用辐射矩阵1?¢定义辐射面£¨1£?在PREP7 中建模、划分网格。

ansys热分析

ansys热分析
386
第六章 热分析
387
热流密度也是一种面载荷。当通过单位面积的热流率已知或通过 FLOTRAN CFD 计 算 得 到 时 ,可 以 在 模 型 相 应 的 外 表 面 施 加 热 流 密 度 。如 果 键 入 的 值 为 正 ,代 表 热 流 流 入 单 元 。热 流 密 度 也 仅 适 用 于 实 体 和 壳 单 元 。热 流 密 度 与 对 流 可 以 施 加 在 同 一 外 表 面,但 ANSYS 仅读取最后施加的面载荷进行计算。
387
第二章 有限元分析基础
Ø 收敛误差选项 命令:NCNV GUI:Main Menu > Solution > Analysis Type > Sol'n Controls > advanced nl 使求解器可根据温度 、热流率等检验热 分析的收敛性 Ø 迭代次数选项 命 令 : NCNV GUI:Main Menu > Solution > Analysis Type > Sol'n Controls > advanced nl 如果在规定的迭代次数内, 达不到收敛, ANSYS 可以停止求解或到下一载荷步 继续求解 Ø 线性搜索选项 命 令 : LNSRCH GUI:Main Menu > Solution > Analysis Type > Sol'n Controls 设置本选项可使 ANSYS 用 Newton-Raphson 方法进行线性搜索 。 Ø 预测矫正选项 命 令 : PRED GUI:Main Menu > Solution > Analysis Type > Sol'n Controls > nonlinear 选项可激活每一子步第一次迭代对自由度求解的预测矫正。 ( 3) 打 印 输 出 选 项 下面介绍载荷步选项中的输出选项及其设定方式: Ø 控制打印输出选项 命 令 : OUTPR GUI:Main Menu > Solution > Load Step Opts > Output Ctrls > Solu Printout 本选项可将任何结果 数据输出到 Jobname.out 文件中。 Ø 控制结果文件选项 命 令 : OUTRES GUI:Main Menu > Solution > Analysis Type > Sol'n Controls > basic 选项控制 Jobname.rth 的内容。 5. 确 定 分 析 选 项 确 定 分 析 选 项 就 是 选 项 稳 态 热 分 析 所 用 的 求 解 器,下 面 介 绍 求 解 选 项 及 其 设 定 方 式: Ø Newton-Raphson 选项 命 令 : NROPT GUI:Main Menu > Solution > Analysis Options 此项仅对非 线性分析有用。 Ø 选择求解器选项 命 令 : EQSLV GUI:Main Menu > Solution > Analysis Options 选择可选择如下求解器中一个进行求解:Frontal solver(默认)、JCG solver、ICCG solver、PCG solver 和 Iterative。

ANSYS接触分析精华

ANSYS接触分析精华

ANSYS接触分析精华ANSYS是一款广泛应用于工程领域的有限元分析软件,可以帮助工程师进行各种结构和材料的力学性能分析。

在ANSYS中,接触分析是一个重要的模块,它可以模拟在不同物体之间的接触行为。

本文将介绍ANSYS接触分析的精华内容及其应用。

1. 接触分析的基本原理接触分析是通过建立不同物体之间的节点接触来模拟物体间的接触行为。

在ANSYS中,通过采用节点到节点的接触关系,来模拟物体之间的接触和相互影响。

接触分析的基本原理是基于虚功原理和平衡方程,利用迭代计算方法求解出物体之间的接触压力、接触应力分布、接触区域等参数。

2. 接触问题的分类在ANSYS中,接触问题可分为无接触和有接触两类。

无接触问题是指物体之间不存在接触行为,而有接触问题则包括有限元模型中物体间的相互接触。

有接触问题又可细分为针对不同接触类型的分析,如点对面接触、面对面接触或多物体接触等。

ANSYS提供了不同类型接触分析的功能模块,可以根据实际情况选择合适的接触类型进行模拟。

3. 接触分析的关键步骤3.1 几何建模:在进行接触分析前,需要首先进行几何建模。

ANSYS提供了丰富的几何建模工具,可以创建各种复杂形状的模型。

3.2 网格划分:在进行接触分析前,需要将模型进行网格划分。

合适的网格划分能够保证分析结果的准确性和计算效率。

3.3 材料属性定义:在ANSYS中,需要对物体的材料属性进行定义,包括材料的弹性模量、泊松比、压力限制等。

3.4 边界条件设定:在接触分析中,需要对物体的边界条件进行设定,包括约束条件和加载条件等。

3.5 接触参数设定:在进行接触分析前,需要对接触参数进行设定,如摩擦系数、接触模型类型等。

3.6 求解与后处理:设置好模型后,可以进行求解和后处理。

ANSYS提供强大的求解器用于求解接触问题,并可根据需要进行后处理和结果分析。

4. ANSYS接触分析的应用领域ANSYS接触分析广泛应用于机械、土木、航空航天、汽车等工程领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热接触
… 实例
1. 使用输入文件 “th_contact.inp”,读入模型。 2. 使用接触向导创建接触对。
培训手册
HEAT TRANSFER 6.0
Inventory #01445 March 30, 2002 11-13
热接触
… 实例
– 选择下方实体的顶部的线作为目标面。
培训手册
HEAT TRANSFER 6.0
– TC 为接触面的温度
– 接触面和目标面间的热流
0 < gap < pinball
– 自由面中接触面到环境的热流
• 自由面由下面的条件确定:
– 开放的环境的接触
(gap > pinball)
– 只存在接触单元(忽略目标单元)
– 如果存在目标单元,其Keyopt(3)=1
培训手册
Inventory #01445 March 30, 2002 11-7
培训手册
HEAT TRANSFER 6.0
Inventory #01445 March 30, 2002 11-18
热接触
… 实例
• 本例使用常数 TCC = .001.
若接触选项
培训手册
Inventory #01445 March 30, 2002 11-19
HEAT TRANSFER 6.0
热接触
DT
T
x
Inventory #01445 March 30, 2002 11-2
HEAT TRANSFER 6.0
热接触
培训手册
• ANSYS能够模拟这种情况以及其他复杂的热问题,通过使用….
– 结构-热接触的耦合场分析 • 支持通用的热接触分析能力。 • 典型应用: – 金属成形 – 装配接触 – 燃气涡轮
11. 现在,修改TCC = 1,并再次求解。
培训手册
HEAT TRANSFER 6.0
Inventory #01445 March 30, 2002 11-25
热接触
… 实例
12. 画节点温度云图
注意:温度在接触面处连续。 记住: TCC = 1.
培训手册
Inventory #01445 March 30, 2002 11-26
HEAT TRANSFER 6.0
热接触
• 辐射:
q = RDVF * EMIS * SBCT * [(TE + TOFFST)4 - (TC + TOFFST)4] – RDVF为辐射的形状系数(由实常数输入)
• RDVF 可以为表参数(时间、温度,间隙的函数)
– EMIS 为面的辐射率(材料属性)
热接触
• 热传导: q = TCC * (TT - TC)
– TCC为热接触导热系数(由实常数输入) • 可以使一个表参数(压力和温度的函数)
– TT 与TC 分别为目标面及接触面温度 – 当处于接触状态时将关闭热流 – 模型温度在接触面处不连续
没有 DT (连续材料)
DT (接触面)
培训手册
Inventory #01445 March 30, 2002 11-5
– SBCT为Stefan-Boltzmann常数 (由实常数输入)
– TOFFST 为由绝对温度的温度偏移(命令TOFFST )
– 接触面和目标面间的热流
0 < gap < pinballຫໍສະໝຸດ – 自由面中接触面到环境的热流
• 自由面的确定与对流相同
培训手册
Inventory #01445 March 30, 2002 11-8
Inventory #01445 March 30, 2002 11-9
HEAT TRANSFER 6.0
热接触
培训手册
• 热接触技巧
– 接触导热系数 TCC • 单位为 热 / (时间*度*面积) • 一般小于相应的接触实体的导热系数
– 对摩擦生热,TIME 必须有真实的时间单位 • 但是,如果结构的惯性和阻尼不重要,可以关闭瞬态效应以加速求 解TIMINT,STRUC,OFF
Inventory #01445 March 30, 2002 11-14
热接触
… 实例
– 选择上方实体的底部的两根线作为接触面。
培训手册
HEAT TRANSFER 6.0
Inventory #01445 March 30, 2002 11-15
热接触
… 实例
– 使用缺省设置创建接触对。
培训手册
– 接触面间的热传导 – 摩擦耗能所导致的热生成 – 热对流和/或热辐射
• 具有小间隙的接触面 • 从自由面到环境 – 开放的间隙处的热流输入
注意: 本课程主要讲述接触面之间的热传导。有关热接触其他功能的情 况请参考ANSYS相关文档。
Inventory #01445 March 30, 2002 11-4
… 实例
5. 施加结构分析的边界条件。
培训手册
对称
固定 X 和Y方 向自由度
Inventory #01445 March 30, 2002 11-20
HEAT TRANSFER 6.0
HEAT TRANSFER 6.0
热接触
… 实例
6. 施加强迫的位移。
Y方向的位移 -0.01 in
培训手册
Inventory #01445 March 30, 2002 11-21
HEAT TRANSFER 6.0
HEAT TRANSFER 6.0
热接触
培训手册
• 外部的热流密度输入
– SFE 只能施加在接触面上(不能施加在目标面上) • 只有接触状态为开时,热流密度才起作用 • 对近距离的接触,热流密度同时作用在接触面和目标面上 • 对于自由面的情况,热流密度只作用在接触面上 – 自由面的确定与对流相同
– 不能同时在某个单元上施加对流
培训手册
车轮的刹车垫
Inventory #01445 March 30, 2002 11-6
HEAT TRANSFER 6.0
热接触
• 对流: q = CONV * (TE - TC)
– CONV 为对流换热系数(可由SFE 施加表参数荷载)
– TE 为目标面的温度,或者为自由面的环境温度 (SFE)
热接触
… 实例
7. 施加热边界条件。
培训手册
Temp = 200 F
HEAT TRANSFER 6.0
Temp = 70 F
Inventory #01445 March 30, 2002 11-22
热接触
… 实例
8. 求解 9. 画出Y方向的变形云图以检验结构分析的结果。
培训手册
HEAT TRANSFER 6.0
HEAT TRANSFER 6.0
HEAT TRANSFER 6.0
热接触
• 摩擦导致的热生成 : q = FHTG * t * v
– FHTG 为能量转换为热的百分比(由实常数输入) – t 为相应的摩擦应力 – v 为滑动状态 – 热可能被不均等得分配给接触面和目标面:
qc = FWGT * FHTG * t * v qt = (1-FWGT) * FHTG * t * v
Inventory #01445 March 30, 2002 11-23
热接触
… 实例
10. 画节点温度云图
注意:接触面处温度的不匹配。 记住: TCC = .001.
培训手册
Inventory #01445 March 30, 2002 11-24
HEAT TRANSFER 6.0
热接触
… 实例
HEAT TRANSFER 6.0
Inventory #01445 March 30, 2002 11-16
热接触
… 实例
3. 修改接触单元的选项来包括温度自由度。
培训手册
HEAT TRANSFER 6.0
Inventory #01445 March 30, 2002 11-17
热接触
… 实例
4. 修改接触单元实常数来包括接触导热系数(TCC)。
热装配
摩擦生热
Inventory #01445 March 30, 2002 11-3
热接触
培训手册
HEAT TRANSFER 6.0
• 耦合场单元(PLANE13,SOLID5)和KEYOPT(1) = 1的面-面接 触单元
– 也可以使用单纯的热分析单元 • 固定接触单元所有的结构自由度
• 重要特性:
培训手册
Inventory #01445 March 30, 2002 11-11
HEAT TRANSFER 6.0
热接触
… 实例
• 本实例将会简化为平面应变,对称模型来求解。 • 顶面具有 0.01 inches 向下的变形。 • 接触单元包括固定的热传导系数。
培训手册
Inventory #01445 March 30, 2002 11-12
第 11 章
热接触
热接触
培训手册
HEAT TRANSFER 6.0
接触阻抗
• 温度不同的两个面处于接触状态时,在其界面上温度将会下降;这 是由于两个面之间的接触不完全。 这种不完全的接触以及由此而
产生的接触阻抗会被很多因素所影响,如:
– 面的平整程度 – 面的光滑程度 – 氧化物的存在 – 流体的渗入 – 接触压力 – 面的温度 – 传导油脂的使用
– 不对称的求解选项会对摩擦滑动有利
• NROPT,UNSYM
Inventory #01445 March 30, 2002 11-10
HEAT TRANSFER 6.0
相关文档
最新文档