时间序列分析实验报告

合集下载

时间序列分析实验报告(3)

时间序列分析实验报告(3)

时间序列分析实验报告(3)《时间序列分析》课程实验报告⼀、上机练习(P124)1.拟合线性趋势12.79 14.02 12.92 18.27 21.22 18.8125.73 26.27 26.75 28.73 31.71 33.95data a;input gov_cons@@;time=intnx('year','1jan1981'd,_n_-1);format time year2.;t=_n_;cards;12.79 14.02 12.92 18.27 21.22 18.8125.73 26.27 26.75 28.73 31.71 33.95;proc gplot;plot gov_cons*time=1;symbol1c=black v=star i=join;run;proc autoreg;model gov_cons=t;output out=out p=forecast;proc gplot data=out;plot gov_cons*time=1 forecast*time=2/overlay haxis='1jan1981'd to '1jan1993'd by year;symbol2c=red v=none i=join w=2l=3;run;分析:由上图可得DW的统计量等于2.7269,R⽅等于0.9555,SBC的值为48.3900913,AIC的值为47.420278.⼀元线性模型的截距等于9.7086,系数等于1.9829,且P<0.0001,故拒绝原假设,存在显著的线性关系。

2.拟合⾮线性趋势1.85 7.48 14.29 23.02 37.42 74.27 140.72265.81 528.23 1040.27 2064.25 4113.73 8212.21 16405.95data b;input index@@; time=intnx('year','1jan1991'd,_n_-1);format time year2.;t=_n_;t2=t**2;cards;1.85 7.48 14.29 23.02 37.42 74.27 140.72265.81 528.23 1040.27 2064.25 4113.73 8212.21 16405.95;proc gplot;plot index*time=1;symbol1c=black v=star i=join;proc reg;model index=t t2;model index=t2;output out=out p=index_cup;proc gplot data=out;plot index*time=1 index_cup*time=2/overlay ; symbol2 c =red v =none i =join w =2 l =3; run ;分析:⽅差结果显⽰,8435.02=R ,说明因变量84.35%由模型确定,P<0.0001,所以模型显著。

时间序列分析试验报告

时间序列分析试验报告

时间序列分析试验报告
一、试验简介
本次试验旨在探索时间序列分析,以分析日期变化的影响与规律。


间序列分析是数据分析的一种,目的是预测未来正确的趋势,并且分析既
有趋势的影响及其变化。

二、试验材料
本次试验使用的资料为最近12个月(即2024年1月到2024年12月)的电子商务网站销售数据。

该电子商务网站以每月总销售量、每月总销售
额及每月交易次数三个变量作为试验数据。

三、试验方法
1.首先,收集2024年1月到2024年12月的电子商务销售数据,记
录每月总销售量、总销售额及交易次数。

2.然后,编制时间序列分析图表,反映每月总销售量、总销售额及
交易次数的变化情况。

3.最后,分析每月的变化趋势,比较每月的销售数据,并进行相关
分析推断。

四、实验结果
1.通过时间序列分析图表可以看出,每月总销售量、总销售额及交
易次数均呈现出稳定上升趋势。

2.从图表中可以推断,在2024年底到2024年底,当月的总销售量、总销售额及交易次数均较上月有所增加。

3.从表中可以推断,每月的总销售量、总销售额及交易次数都在逐渐增加,最终在2024年末达到高峰。

五、结论
通过本次实验可以得出结论。

时间序列实验报告心得

时间序列实验报告心得

在本次时间序列实验中,我深刻体会到了时间序列分析在解决实际问题中的重要作用。

通过对时间序列数据的收集、处理、分析和预测,我学会了如何运用时间序列分析方法解决实际问题,以下是我在实验过程中的心得体会。

一、实验背景时间序列分析是统计学和金融学等领域的重要研究方法,通过对时间序列数据的分析,我们可以揭示现象的发展变化规律,预测未来趋势,为决策提供依据。

本次实验以我国某地区1980年1月至1995年8月每月屠宰生猪数量为研究对象,运用时间序列分析方法进行建模和预测。

二、实验步骤1. 数据收集与处理:首先,收集了某地区1980年1月至1995年8月每月屠宰生猪数量数据。

然后,对数据进行初步处理,包括去除异常值、缺失值等。

2. 时间序列图绘制:运用Excel或R等软件绘制时间序列图,观察数据的变化趋势,为后续建模提供依据。

3. 平稳性检验:对时间序列数据进行平稳性检验,以确定是否可以直接进行建模。

常用的平稳性检验方法有ADF检验、KPSS检验等。

4. 模型选择与参数估计:根据时间序列图和平稳性检验结果,选择合适的模型进行拟合。

本次实验选择了ARIMA模型,并对模型参数进行估计。

5. 模型预测与结果分析:利用估计出的模型对未来的数据进行预测,并对预测结果进行分析,评估模型的准确性。

三、实验心得1. 时间序列分析的重要性:通过本次实验,我深刻认识到时间序列分析在解决实际问题中的重要性。

在实际工作中,许多现象都呈现出时间序列特征,运用时间序列分析方法可以揭示现象的发展变化规律,为决策提供依据。

2. 数据处理的重要性:在实验过程中,数据预处理是至关重要的。

只有保证数据的准确性和完整性,才能得到可靠的实验结果。

3. 平稳性检验的必要性:时间序列建模的前提是数据平稳。

通过对数据平稳性进行检验,可以确保模型的准确性。

4. 模型选择与参数估计的重要性:选择合适的模型和参数对于时间序列分析至关重要。

不同的模型适用于不同类型的数据,需要根据实际情况进行选择。

统计实验报告时间序列

统计实验报告时间序列

一、实验背景时间序列分析是统计学中的一个重要分支,它主要研究如何对时间序列数据进行建模、预测和分析。

本实验旨在通过实际数据的时间序列分析,了解时间序列的基本特性,掌握时间序列建模的方法,并尝试进行未来趋势的预测。

二、实验目的1. 理解时间序列的基本概念和特征。

2. 掌握时间序列数据的可视化方法。

3. 学习并应用时间序列建模的基本方法,如自回归模型(AR)、移动平均模型(MA)和自回归移动平均模型(ARMA)。

4. 尝试进行时间序列数据的预测。

三、实验数据本实验选用某城市过去一年的月度降雨量数据作为分析对象。

数据包括12个月的降雨量,单位为毫米。

四、实验步骤1. 数据预处理- 读取数据:使用Python的pandas库读取降雨量数据。

- 数据检查:检查数据是否存在缺失值或异常值。

- 数据清洗:如果存在缺失值或异常值,进行相应的处理。

2. 数据可视化- 使用matplotlib库绘制降雨量时间序列图,观察数据的趋势和季节性特征。

3. 时间序列建模- 自回归模型(AR):根据自回归模型的理论,建立AR模型,并通过AIC(赤池信息量准则)和SC(贝叶斯信息量准则)进行模型选择。

- 移动平均模型(MA):建立MA模型,并使用同样的准则进行模型选择。

- 自回归移动平均模型(ARMA):结合AR和MA模型,建立ARMA模型,并选择最佳模型。

4. 模型验证与预测- 使用历史数据进行模型验证,比较不同模型的预测精度。

- 对未来几个月的降雨量进行预测。

五、实验结果与分析1. 数据可视化通过时间序列图可以看出,降雨量存在明显的季节性特征,每年的夏季降雨量较多。

2. 时间序列建模- AR模型:通过AIC和SC准则,选择AR(2)模型作为最佳模型。

- MA模型:同样通过AIC和SC准则,选择MA(3)模型作为最佳模型。

- ARMA模型:结合AR和MA模型,选择ARMA(2,3)模型作为最佳模型。

3. 模型验证与预测- 模型验证:通过比较实际值和预测值,可以看出ARMA(2,3)模型的预测精度较高。

时间序列分析实验报告

时间序列分析实验报告

引言概述:
时间序列分析是一种用于研究时间数据的统计方法,主要关注数据随时间的变化趋势、季节性和周期性等特征。

时间序列分析应用广泛,可以用于金融预测、经济分析、气象预测等领域。

本实验报告旨在介绍时间序列分析的基本概念和方法,并通过实例分析来展示其应用。

正文内容:
1.时间序列分析基本概念
1.1时间序列的定义
1.2时间序列的模式
1.3时间序列分析的目的
2.时间序列分析方法
2.1随机游走模型
2.2移动平均模型
2.3自回归移动平均模型
2.4季节性模型
2.5ARCH和GARCH模型
3.时间序列数据预处理
3.1数据平稳性检验
3.2数据平滑
3.3缺失值填补
3.4离群值检测
3.5数据变换
4.时间序列模型建立与评估
4.1模型的选择
4.2参数估计
4.3拟合优度检验
4.4模型诊断
4.5预测准确性评估
5.实例分析:某公司销售数据时间序列分析
5.1数据收集与预处理
5.2模型建立与评估
5.3预测分析与结果解释
5.4预测精度评估
5.5结果讨论与进一步改进方向
总结:
时间序列分析是一种重要的统计方法,可用于预测和分析时间相关的数据。

本报告介绍了时间序列分析的基本概念和方法,并通
过实例分析展示了其应用过程。

通过时间序列分析,可以更好地理解数据的趋势和周期性,并进行准确的预测。

时间序列分析也面临着多样的挑战,如数据质量问题和模型选择困难等。

因此,在实际应用中,需要综合考虑多种因素,灵活运用合适的方法和技巧,以提高预测准确性和分析可靠性。

时间序列分析的实验报告-实验一

时间序列分析的实验报告-实验一

2013——2014学年第二学期
实验报告
课程名称:应用时间序列分析
实验项目:Eviews软件使用初步
实验类别:综合性□设计性□验证性□√专业班级:
姓名:学号:
实验地点:
实验时间:2014.5. 4
指导教师:成绩:
吉首大学数学与统计学院
一、实验目的:
掌握应用Eviews软件完成以下任务:(1)工作文件及建立;
(2)掌握数据分析的常用操作;(3)进行OLS回归;(4)预测二、实验内容:
用拟合的线性回归模型对数据集进行线性趋势拟合;数据来源是1996年黑龙江省伊春林区16个林业局的年木材采伐量和相关伐木剩余物数据。

三、实验方案(程序设计说明)
四. 实验步骤或程序(经调试后正确的源程序)
五.程序运行结果
六、实验总结
学生签名:
年月日
七、教师评语及成绩
教师签名:
年月日
1。

时间序列法实验报告

时间序列法实验报告

一、实验目的1. 了解时间序列分析方法的基本原理和应用。

2. 学习如何使用时间序列分析方法对实际数据进行预测和分析。

3. 通过实验,提高对时间序列数据处理的实际操作能力。

二、实验内容本次实验选取了一组某城市过去三年的月均降雨量数据,旨在通过时间序列分析方法预测未来一个月的降雨量。

三、实验步骤1. 数据预处理- 读取实验数据,确保数据格式正确。

- 检查数据是否存在缺失值,如有,进行插补处理。

- 对数据进行初步的描述性统计分析,了解数据的分布情况。

2. 时间序列平稳性检验- 对原始数据进行ADF(Augmented Dickey-Fuller)检验,判断时间序列是否平稳。

- 若不平稳,进行差分处理,直至序列平稳。

3. 时间序列建模- 根据平稳时间序列的特点,选择合适的模型进行拟合。

- 本实验选取ARIMA模型进行拟合,其中AR项数为1,MA项数为1,差分次数为1。

4. 模型参数估计- 使用最小二乘法对模型参数进行估计。

5. 模型检验- 对拟合后的模型进行残差分析,检查是否存在自相关或异方差。

- 若存在自相关或异方差,对模型进行修正。

6. 预测- 使用拟合后的模型对未来一个月的降雨量进行预测。

四、实验结果与分析1. 数据预处理- 实验数据共有36个观测值,无缺失值。

- 描述性统计分析结果显示,降雨量数据呈正态分布。

2. 时间序列平稳性检验- 对原始数据进行ADF检验,结果显示P值小于0.05,拒绝原假设,说明原始数据不平稳。

- 对数据进行一阶差分后,再次进行ADF检验,结果显示P值小于0.05,接受原假设,说明一阶差分后的数据平稳。

3. 时间序列建模- 根据平稳时间序列的特点,选择ARIMA(1,1,1)模型进行拟合。

4. 模型参数估计- 使用最小二乘法对模型参数进行估计,得到AR系数为0.8,MA系数为-0.9。

5. 模型检验- 对拟合后的模型进行残差分析,发现残差序列存在自相关,但不存在异方差。

- 对模型进行修正,加入自回归项,得到修正后的ARIMA(1,1,1,1)模型。

计量时间序列实验报告

计量时间序列实验报告

一、实验背景时间序列分析是统计学和数据分析领域中一个重要的分支,广泛应用于经济、金融、气象、医学等领域。

通过对时间序列数据的分析,我们可以了解现象的发展变化规律,预测未来趋势,为决策提供科学依据。

本实验旨在通过实际操作,学习时间序列分析的基本方法,并运用相关软件进行时间序列分析。

二、实验目的1. 理解时间序列的基本概念和特点;2. 掌握时间序列数据的收集和整理方法;3. 学会运用时间序列分析方法对数据进行处理和分析;4. 培养运用相关软件进行时间序列分析的能力。

三、实验内容1. 数据收集本次实验采用我国某城市近10年的居民消费水平数据作为研究对象。

数据来源于国家统计局。

2. 数据整理对收集到的数据进行整理,剔除异常值和缺失值,将数据转换为适合时间序列分析的形式。

3. 时间序列分析(1)描述性分析对整理后的数据进行描述性统计分析,包括均值、标准差、最大值、最小值等。

(2)平稳性检验运用ADF(Augmented Dickey-Fuller)检验方法对时间序列数据进行平稳性检验。

(3)自相关性分析运用自相关函数(ACF)和偏自相关函数(PACF)对时间序列数据进行自相关性分析。

(4)模型选择根据自相关性分析结果,选择合适的模型对时间序列数据进行拟合。

本次实验采用ARIMA模型。

(5)模型参数估计运用最小二乘法估计模型参数,包括自回归项、移动平均项和差分阶数。

(6)模型检验运用残差分析、AIC准则等对模型进行检验。

(7)预测根据拟合的模型,对未来一段时间内的居民消费水平进行预测。

四、实验结果与分析1. 描述性分析根据描述性统计分析,我国某城市近10年的居民消费水平呈上升趋势,但波动较大。

2. 平稳性检验运用ADF检验方法对时间序列数据进行平稳性检验,结果显示该时间序列在5%的显著性水平下是平稳的。

3. 自相关性分析运用ACF和PACF对时间序列数据进行自相关性分析,发现自回归项和移动平均项的阶数分别为1和1。

时序分析实验报告

时序分析实验报告

时间序列分析实验报告1、实验内容1.1问题描述用Eviews软件确定该序列的平稳性,根据数据的性质特征对其进行分析并适当模型拟合该序列的发展,最后利用所选取的拟合模型预测1939-1945年英国绵羊的数量。

2、判别原数据的平稳性2.1.画时序图在Eviews中建立workfile为1867-1938年的年度数据,通过file→ import 把数据导入Eviews中。

变量名命名为x。

在workfile中打开数据x,点击series:x窗口中的view→graph→line,则会出x的现时序图1。

时序图1从时序图1中可以看出数据为非平稳的,且大致呈现下降趋势。

因此为经一步说明该数据的平稳性,做相关分析。

2.2.自相关分析继续在该时序图窗口中点击view→correlogram,在弹出的correlogram Specification 的对话框中的lags to include中输入12,点击OK。

则x的自相关图2如下。

自相关图2从自相关图的autocorrelation的一栏可以看出自相大部分都关超出了(至少第三个自相关值要落入两倍的标准差中则为平稳的)两倍的标准差。

则可以进一步认为该数据为非平稳的。

为作出最终的判断,对数进行单位根检验。

2.3.单位根检验同样在自相关图2的窗口中点击view→unit root test在弹出的unit root test 的对话空中的automatic selection的下拉框中选择Schwarz Info,并在Include in test equation中选择intercept点击ok则有如下结果输出单位根表3。

单位根表3从表3中以看所有的ADF值没有都小于值临界值,因此结合时序图和自相关图可以判断出该数据为非平稳的。

3、对数据进行平稳化3.1.对数据做一阶差分在代码窗口中输入genr dx=d(x)并按回车键则在workfile窗体中新生成变量为dx的数据该数据即为x的一阶差分。

时间序列分析实验报告

时间序列分析实验报告

时间序列分析实验报告一、实验目的时间序列分析是一种用于处理和分析随时间变化的数据的统计方法。

本次实验的主要目的是通过对给定的时间序列数据进行分析,掌握时间序列分析的基本方法和技术,包括数据预处理、模型选择、参数估计和预测,并评估模型的性能和准确性。

二、实验数据本次实验使用了一组某商品的月销售量数据,数据涵盖了过去两年的时间范围,共 24 个观测值。

数据的具体形式为一个时间序列,其中每个观测值表示该商品在相应月份的销售量。

三、实验方法1、数据预处理首先,对数据进行了可视化,绘制了时间序列图,以便直观地观察数据的趋势、季节性和随机性。

然后,对数据进行了平稳性检验。

采用了 ADF(Augmented DickeyFuller)检验来判断数据是否平稳。

如果数据不平稳,则需要进行差分处理,使其达到平稳状态。

2、模型选择根据数据的特点和可视化结果,考虑了几种常见的时间序列模型,如 ARIMA(AutoRegressive Integrated Moving Average)模型、SARIMA(Seasonal AutoRegressive Integrated Moving Average)模型和HoltWinters 模型。

通过对不同模型的参数进行估计,并比较它们在训练数据上的拟合效果和预测误差,选择了最适合的模型。

3、参数估计对于选定的模型,使用最大似然估计或最小二乘法等方法来估计模型的参数。

通过对参数的估计值进行分析,判断模型的合理性和稳定性。

4、预测使用估计得到的模型参数,对未来一段时间内的销售量进行预测。

为了评估预测的准确性,采用了均方根误差(RMSE)、平均绝对误差(MAE)等指标来衡量预测值与实际值之间的差异。

四、实验过程1、数据可视化通过绘制时间序列图,发现数据呈现出明显的季节性和上升趋势。

同时,数据的波动范围也较大,存在一定的随机性。

2、平稳性检验对原始数据进行 ADF 检验,结果表明数据是非平稳的。

实验报告关于时间序列(3篇)

实验报告关于时间序列(3篇)

第1篇一、实验目的1. 了解时间序列的基本概念和特性;2. 掌握时间序列的常用分析方法;3. 学会运用时间序列分析方法解决实际问题。

二、实验内容1. 时间序列数据收集2. 时间序列描述性分析3. 时间序列平稳性检验4. 时间序列模型构建5. 时间序列预测三、实验方法1. 时间序列数据收集:通过查阅相关文献、统计数据网站等方式获取实验所需的时间序列数据。

2. 时间序列描述性分析:对时间序列数据进行统计分析,包括均值、标准差、偏度、峰度等。

3. 时间序列平稳性检验:运用单位根检验(ADF检验)判断时间序列的平稳性。

4. 时间序列模型构建:根据时间序列的平稳性,选择合适的模型进行构建,如ARIMA模型、季节性分解模型等。

5. 时间序列预测:利用构建好的时间序列模型进行预测,并评估预测结果的准确性。

四、实验步骤1. 数据收集:选取我国某地区近十年的GDP数据作为实验数据。

2. 描述性分析:计算GDP数据的均值、标准差、偏度、峰度等统计量。

3. 平稳性检验:对GDP数据进行ADF检验,判断其平稳性。

4. 模型构建:根据ADF检验结果,选择合适的模型进行构建。

5. 预测:利用构建好的模型对GDP数据进行预测,并评估预测结果的准确性。

五、实验结果与分析1. 数据收集:获取我国某地区近十年的GDP数据,数据如下:年份 GDP(亿元)2010 200002011 230002012 260002013 290002014 320002015 350002016 380002017 410002018 440002019 470002. 描述性分析:计算GDP数据的均值、标准差、偏度、峰度等统计量,结果如下:均值:39600亿元标准差:4900亿元偏度:-0.2峰度:-1.83. 平稳性检验:对GDP数据进行ADF检验,结果显示ADF统计量在1%的显著性水平下拒绝原假设,说明GDP数据是非平稳的。

4. 模型构建:由于GDP数据是非平稳的,我们可以对其进行差分处理,使其变为平稳序列。

时间序列分析试验报告

时间序列分析试验报告
则得:
季平均值为:7058。1 5649.3 4909。6 6597.7
年平均值为:5873.0 5875.0 5853.3 6073.7 6262。5 6384。5
每个季度的数据的散点图:
图1城市居民季度用煤消耗量散点图
(2)分解回归直线趋势。由于数据有缓慢的上升趋势,可以试用回归直线表示趋势项,这时认为( 满足一元线性回归模型
end
Rt=dx-St;%求随机项估计
plot(1:24,St,’*—’,1:24,Rt,'<—’)%画出季节项和随机项图形
图2季节项和随机项散点图
预测:为得到1997年的预报值,可以利用公式

这里, 是用例中的24个观测数据对第 个数据的预测值,利用MATLAB编写命令:
for i=25:28
m=5780.1+21。9*(i)+s(i-24)%计算1997年四个季度的预测值
1.0371 —0.3936 -1.1552 0.5110
即季节项估计为
分解随机项:利用原始数据 减去趋势项的估计 和季节项的估计 后得到的数据就是随机项的估计 .
在Matlab命令窗口中继续输入下列命令:
for j=1:6
for k=1:4
St(k+4*(j—1))=s(k);%求季节项值St
end
6384.5
季平均
7058。1
5649。3
4909.6
6597。7
(1)由表8.1.1中每年每季的数据计算年平均值与季平均值,并绘出1991~1996年中每个季度的数据的散点图。
(2)用回归直线趋势法对序列进行分解。
(3)若1997年四季的数据分别为:7720。5 5973。3 5304。4 7075。1,运用(2)对1997年数据作预测并分析误差。

时间序列实验报告

时间序列实验报告

一、实验目的本次实验旨在通过时间序列分析方法,对一组实际数据进行建模、分析和预测。

通过学习时间序列分析的基本理论和方法,提高对实际问题的分析和解决能力。

二、实验内容1. 数据来源及预处理本次实验所使用的数据集为某地区近十年的年度GDP数据。

数据来源于国家统计局,共包含10年的数据。

2. 数据可视化首先,我们将使用Excel软件绘制年度GDP的时序图,观察数据的基本趋势和周期性特征。

3. 平稳性检验根据时序图,我们可以初步判断数据可能存在非平稳性。

为了进一步验证,我们将使用ADF(Augmented Dickey-Fuller)检验对数据进行平稳性检验。

4. 模型选择由于数据存在非平稳性,我们需要对数据进行差分处理,使其变为平稳序列。

然后,根据自相关函数(ACF)和偏自相关函数(PACF)图,选择合适的模型。

5. 模型参数估计使用最大似然估计法(MLE)对所选模型进行参数估计。

6. 模型拟合与检验将估计出的模型参数代入模型,对数据进行拟合,并计算残差序列。

接着,使用Ljung-Box检验对残差序列进行白噪声检验,以验证模型的有效性。

7. 预测利用拟合后的模型,对未来几年的GDP进行预测。

三、实验过程及结果1. 数据可视化通过Excel绘制年度GDP时序图,发现数据呈现明显的上升趋势,但同时也存在一定的波动性。

2. 平稳性检验对数据进行一阶差分后,使用ADF检验进行平稳性检验。

结果显示,差分后的序列在5%的显著性水平下拒绝原假设,说明序列是平稳的。

3. 模型选择根据ACF和PACF图,选择ARIMA(1,1,1)模型。

4. 模型参数估计使用MLE法对ARIMA(1,1,1)模型进行参数估计,得到参数值:- AR系数:-0.864- MA系数:-0.652- 常数项:392.4765. 模型拟合与检验将估计出的模型参数代入模型,对数据进行拟合,并计算残差序列。

使用Ljung-Box检验对残差序列进行白噪声检验,结果显示在5%的显著性水平下拒绝原假设,说明模型拟合效果较好。

时间序列_实验报告

时间序列_实验报告

一、实验目的1. 了解时间序列分析的基本原理和方法;2. 掌握时间序列数据的平稳性检验、模型识别和参数估计等基本操作;3. 通过实例,学习使用ARIMA模型进行时间序列预测。

二、实验环境1. 操作系统:Windows 102. 软件环境:EViews 9.0、R3.6.1三、实验数据1. 数据来源:某城市1980年1月至2020年12月每月的GDP数据;2. 数据格式:Excel表格。

四、实验步骤1. 数据预处理(1)导入数据:将Excel表格中的GDP数据导入EViews软件;(2)观察数据:绘制GDP时间序列图,观察数据的趋势、季节性和周期性;(3)平稳性检验:使用ADF检验判断GDP序列是否平稳。

2. 模型识别(1)自相关函数(ACF)和偏自相关函数(PACF)图:观察ACF和PACF图,初步确定ARIMA模型的阶数;(2)模型选择:根据ACF和PACF图,选择合适的ARIMA模型。

3. 模型估计(1)模型估计:使用EViews软件中的ARIMA过程,对选择的模型进行参数估计;(2)模型检验:对估计出的模型进行残差检验,包括残差的平稳性检验、白噪声检验等。

4. 时间序列预测(1)预测:使用估计出的ARIMA模型,对2021年1月至2025年12月的GDP进行预测;(2)预测结果分析:对预测结果进行分析,评估预测的准确性。

五、实验结果与分析1. 数据预处理(1)导入数据:将Excel表格中的GDP数据导入EViews软件;(2)观察数据:绘制GDP时间序列图,发现GDP序列存在明显的上升趋势和季节性;(3)平稳性检验:使用ADF检验,发现GDP序列在5%的显著性水平下拒绝原假设,序列是平稳的。

2. 模型识别(1)自相关函数(ACF)和偏自相关函数(PACF)图:根据ACF和PACF图,初步确定ARIMA模型的阶数为(1,1,1);(2)模型选择:根据ACF和PACF图,选择ARIMA(1,1,1)模型。

时间序列实验报告

时间序列实验报告

第三章平稳时间序列分析选择合适的模型拟合1950-2008年我国邮路及农村投递线路每年新增里程数序列,见表1:表1 1950-2008年我国邮路及农村投递线路每年新增里程数序列单位:万公里一、时间序列预处理(一)时间序列平稳性检验1.时序图检验(1)工作文件的创建。

打开EViews6.0软件,在主菜单中选择File/New/Workfile, 在弹出的对话框中,在Workfile structure type中选择Dated-regular frequency(时间序列数据),在Date specification下的Frequency中选择Annual(年度数),在Start date中输入“1950”(表示起始年份为1950年),在End date中输入“2008”(表示样本数据的结束年份为2008年),然后单击“OK”,完成工作文件的创建。

(2)样本数据的录入。

选择菜单中的Quick/Empty group(Edit Series)命令,在弹出的Group对话框中,直接将数据录入,并分别命名为year(表示年份),X(表示新增里程数)。

(3)时序图。

选择菜单中的Quick/graph…,在弹出的Series List中输入“year x”,然后单击“确定”,在Graph Options中的Specifi中选择“XYLine”,然后按“确定”,出现时序图,如图1所示:图1 我国邮路及农村投递线路每年新增里程数序列时序图从图1中可以看出,该序列始终在一个常数值附近随机波动,而且波动的范围有界,因而可以初步认定序列是平稳的。

为了进一步确认序列的平稳性,还需要分析其自相关图。

2.自相关图检验选择菜单中的Quick/Series Statistics/Correlogram...,在Series Name中输入x(表示作x序列的自相关图),点击OK,在Correlogram Specification 中的Correlogram of 中选择Level,在Lags to include中输入24,点击OK,得到图2:图2 我国邮路及农村投递线路每年新增里程数序列自相关图和偏自相关图从图2可以看出,序列的自相关系数一直都比较小,除滞后1阶和3阶的自相关系数落在2倍标准差范围以外,其他始终控制在2倍的标准差范围以内,可以认为该序列自始至终都在零轴附近波动,因而认定序列是平稳的。

时间序列分析综合分析实验报告

时间序列分析综合分析实验报告

时间序列分析综合分析一、数据处理1)将GDP、XF、TZ分别除以价格指数P,生成的新序列分别命名为GDPP、XFP、TZP;2)将GDPP、XFP、TZP分别取对数,生成的新序列分别命名为LNGP、LNXF、LNTZ。

GDPP XFP TZP LNGP LNXF LNTZ36.45218 22.39100 8.125000 3.596001127 3.108659092 2.09494572839.86829 25.70559 8.479882 3.685581382 3.246708623 2.13769656341.51255 27.17900 8.318721 3.725995742 3.302444448 2.11850857243.57808 29.49287 8.565062 3.774554379 3.384148535 2.14769141646.59485 31.79983 10.75524 3.84149005 3.459460792 2.3753935251.29007 34.45159 12.25450 3.937497238 3.539555013 2.50589311260.41494 39.15346 15.28691 4.10123648 3.667488828 2.72699662968.96061 44.03509 19.39893 4.233535542 3.784986764 2.96521801973.59870 46.86246 22.35387 4.298627429 3.847217018 3.1069993880.44469 49.74099 25.31175 4.387569912 3.906829301 3.23126867584.52402 52.61439 26.72175 4.437035744 3.962989659 3.28547798380.99533 50.29300 21.01191 4.394391459 3.917865836 3.0450894486.49872 55.87107 20.87338 4.460129584 4.023046752 3.03847478997.52547 62.96649 24.99777 4.580113539 4.142602647 3.218786455113.1343 72.25241 33.93574 4.728575596 4.280165751 3.524468774 129.1103 80.19004 47.86635 4.860667128 4.384399321 3.868412738 141.8710 86.23474 50.25686 4.9549182 4.457073101 3.917146983 150.6942 92.58806 50.43915 5.015252638 4.528160164 3.920767727 163.1600 102.1621 53.29960 5.094731424 4.626561068 3.975928912 180.6128 111.3850 57.70731 5.196355522 4.712992731 4.05538388 191.5208 119.0039 65.52757 5.254996575 4.779156447 4.182470914 203.8690 128.1956 68.78963 5.31747773 4.853557395 4.231053026 224.2573 140.7689 75.32654 5.412794198 4.947119387 4.321832591 246.5060 152.6777 84.88481 5.507386243 5.028329109 4.441295142 271.4741 163.7030 99.15637 5.603866753 5.098053725 4.59669811 305.8927 175.7988 125.7448 5.723234327 5.169340292 4.834254148 350.1246 192.0856 154.6236 5.858288972 5.257940918 5.040993537 395.7295 213.4726 191.3224 5.980730991 5.363508624 5.253960035 458.3523 239.1335 233.5418 6.127638174 5.477022164 5.453361187 539.7306 266.4305 278.2089 6.291070117 5.585113461 5.628372175 607.4657 293.5387 333.0027 6.409295749 5.682009584 5.808150591 653.1499 316.6765 429.6897 6.481806726 5.757880709 6.063063293 752.2103 348.6389 518.7874 6.623015975 5.85403664 6.251494075 835.6018 423.9604 534.3949 6.728152177 6.049640113 6.281135017二、平稳时间序列建模1)将LNTZ进行差分,生成的序列命名为DLNTZ;2)根据DLNTZ序列的自相关图判断该序列的平稳性;DLNTZ是平稳的,因为自相关图迅速衰减。

时间序列分析实验报告 (4)

时间序列分析实验报告 (4)

基于matlab的时间序列分析在实际问题中的应用时间序列分析(Time series analysis)是一种动态数据处理的统计方法。

该方法基于随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题。

时间序列分析不仅可以从数量上揭示某一现象的发展变化规律或从动态的角度刻画某一现象和其他现象之间的内在的数量关系及其变化规律性,而且运用时间序列模型可以预测和控制现象的未来行为,以达到修正或重新设计系统使其达到最优状态。

时间序列是指观察或记录到的一组按时间顺序排列的数据。

如某段时间内。

某类产品产量的统计数据,某企业产品销售量,利润,成本的历史统计数据;某地区人均收入的历史统计数据等实际数据的时间序列。

展示了研究对象在一定时期内的发展变化过程。

可以从中分析寻找出其变化特征,趋势和发展规律的预测信息。

时间序列预测方法的用途广泛,它的基本思路是,分析时间序列的变化特征,选择适当的模型形式和模型参数以建立预测模型,利用模型进行趋势外推预测,最后对模型预测值进行评价和修正从而得到预测结果。

目前最常用的拟合平稳序列模型是ARMA模型,其中AR和MA模型可以看成它的特例。

一.时间序列的分析及建模步骤(1)判断序列平稳性,若平稳转到(3),否则转到(2)。

平稳性检验是动态数据处理的必要前提,因为时间序列算法的处理对象是平稳性的数据序列,若数据序列为非平稳,则计算结果将会出错。

在实际应用中,如某地区的GDP,某公司的销售额等时间序列可能是非平稳的,它们在整体上随着时间的推移而增长,其均值随时间变化而变化。

通常将GDP等非平稳序列作差分或预处理。

所以获得一个时间序列之后,要对其进行分析预测,首先要保证该时间序列是平稳化的。

平稳性检验的方法有数据图、逆序检验、游程检验、自相关偏相关系数、特征根、参数检验等。

本实验中采用数据图法,数据图法比较直观。

(2)对序列进行差分运算。

一般而言,若某序列具有线性趋势,则可以通过对其进行一次差分而将线性趋势剔除掉。

时间应用序列实验报告

时间应用序列实验报告

一、实验背景时间序列分析是统计学和数据分析领域的一个重要分支,广泛应用于经济、金融、气象、生物等多个领域。

本实验旨在通过实际案例,学习时间序列分析方法,并运用相关模型进行预测和解释。

二、实验目的1. 掌握时间序列数据的基本特征和常见模型。

2. 学习时间序列数据的平稳性检验、模型识别和参数估计。

3. 熟悉时间序列预测方法,并进行实际应用。

三、实验数据本次实验选用某城市近五年月均气温数据作为研究对象,数据来源为气象局官方网站。

四、实验步骤1. 数据预处理- 将数据导入统计软件,进行数据清洗和整理。

- 绘制时间序列图,观察数据的基本特征,如趋势、季节性、周期性等。

2. 平稳性检验- 对数据进行单位根检验(ADF检验),判断数据是否平稳。

- 对非平稳数据,进行差分处理,使其达到平稳。

3. 模型识别- 根据时间序列图和自相关图、偏自相关图,初步判断模型类型。

- 对候选模型进行参数估计,比较不同模型的拟合优度。

4. 模型验证- 对模型进行残差分析,检验模型是否合适。

- 利用预测指标(如均方误差、均方根误差等)评估模型的预测性能。

5. 模型应用- 利用训练好的模型,对未来一段时间内的气温进行预测。

- 分析预测结果,解释气温变化趋势和原因。

五、实验结果与分析1. 数据预处理- 数据清洗:删除异常值,填补缺失值。

- 数据整理:将数据转换为时间序列格式。

2. 平稳性检验- 对原始数据进行ADF检验,结果显示P值小于0.05,拒绝原假设,说明数据是非平稳的。

- 对数据进行一阶差分,再次进行ADF检验,结果显示P值大于0.05,接受原假设,说明一阶差分后的数据是平稳的。

3. 模型识别- 根据时间序列图和自相关图、偏自相关图,初步判断模型为ARIMA模型。

- 对ARIMA模型进行参数估计,比较不同模型的拟合优度,最终选择ARIMA(1,1,1)模型。

4. 模型验证- 对模型进行残差分析,发现残差基本符合正态分布,说明模型合适。

时间序列分析实验报告

时间序列分析实验报告

时间序列分析实验报告时间序列分析实验报告一、引言时间序列分析是一种用于研究时间序列数据的统计方法,通过对时间序列数据的分析和建模,可以揭示数据背后的规律和趋势,为预测和决策提供依据。

本报告旨在通过对某一时间序列数据的分析和建模,展示时间序列分析的基本原理和方法。

二、数据描述本次实验所使用的时间序列数据为某公司每月销售额的数据,共计12个月的数据。

下面是数据的具体描述:月份销售额(万元)1 102 123 154 145 166 187 208 229 2510 2411 26三、数据可视化为了更好地了解数据的特点和趋势,我们首先对数据进行可视化分析。

下图展示了月份与销售额之间的关系:(插入柱状图)从图中可以看出,销售额呈现出逐渐增长的趋势,但并不是完全线性增长,而是有一定的波动。

四、平稳性检验在进行时间序列分析之前,需要先对数据的平稳性进行检验。

平稳性是指时间序列数据的均值和方差在时间上保持不变的性质。

我们使用单位根检验来检验数据的平稳性。

对于本次实验的数据,我们使用ADF检验进行单位根检验。

检验结果显示,数据的ADF统计量为-2.456,显著性水平为0.05时的临界值为-3.605。

由于ADF统计量大于临界值,我们无法拒绝原假设,即数据存在单位根,不具备平稳性。

五、差分处理由于数据不具备平稳性,我们需要对数据进行差分处理,以消除趋势和季节性的影响。

差分处理可以通过计算当前观测值与前一观测值之间的差异来实现。

对本次实验的数据进行一阶差分处理后,得到的差分序列如下:月份差分销售额(万元)2 23 34 -16 27 28 29 310 -111 212 2六、建立ARIMA模型差分处理后的数据满足平稳性的要求,我们可以开始建立ARIMA模型来对数据进行拟合和预测。

ARIMA模型是一种常用的时间序列模型,它包括自回归(AR)、差分(I)和移动平均(MA)三个部分。

通过对差分序列的自相关图(ACF)和偏自相关图(PACF)的分析,我们选择了ARIMA(1,0,1)模型来拟合数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时间序列分析SAS软件实验报告:以我国2002第一季度到2012年第一季度国内生产总值数据(季节效应模型)分析班级:统计系统计0姓名:学号:指导老师:20 年月日时间序列分析报告一、前言【摘要】2012年3月5日温家宝代表国务院向大会作政府工作报告。

温家宝在报告中提出,2012年国内生产总值增长7.5%。

这是我国国内生产总值(GDP)预期增长目标八年来首次低于8%。

温家宝说,今年经济社会发展的主要预期目标是:国内生产总值增长7.5%;城镇新增就业900万人以上,城镇登记失业率控制在4.6%以内;居民消费价格涨幅控制在4%左右;进出口总额增长10%左右,国际收支状况继续改善。

同时,要在产业结构调整、自主创新、节能减排等方面取得新进展,城乡居民收入实际增长和经济增长保持同步。

他指出,这里要着重说明,国内生产总值增长目标略微调低,主要是要与“十二五”规划目标逐步衔接,引导各方面把工作着力点放到加快转变经济发展方式、切实提高经济发展质量和效益上来,以利于实现更长时期、更高水平、更好质量发展。

提出居民消费价格涨幅控制在4%左右,综合考虑了输入性通胀因素、要素成本上升影响以及居民承受能力,也为价格改革预留一定空间。

对于这一预期目标的调整,温家宝解释说,主要是要与“十二五”规划目标逐步衔接,引导各方面把工作着力点放到加快转变经济发展方式、切实提高经济发展质量和效益上来,以利于实现更长时期、更高水平、更好质量发展。

央行货币政策委员会委员李稻葵表示,未来若干年中国经济增长速度会有所放缓,这个放缓是必要的,是经济发展方式转变的一个必然要求。

【关键词】“十二五”规划目标国内生产总值增长率增速放缓提高发展质量附表:国内生产总值(2012年1季度)绝对额(亿元)比去年同期增长(%)国内生产总值107995.0 8.1第一产业6922.0 3.8第二产业51450.5 9.1第三产业49622.5 7.5注1:绝对额按现价计算,增长速度按不变价计算。

注2:该表为初步核算数据。

GDP环比增长速度环比增长速度(%)2011年1季度 2.22季度 2.33季度 2.44季度 1.92012年1季度 1.8注:环比增长速度为经季节调整与上一季度对比的增长速度。

此表是我国2012年第一季度国内生产总值及与2011年同期比较来源:前瞻网为此,我系根据专业课学习情况组织学生分组学习我国经济发展情况,利用统计专业软件SAS 软件分析我国经济发展情况,特此,本人从同花顺数据库中心查找我国经济数据,以我国国内生产总值数据(从2002第一季度到2012年第一季度共11年41个数值)代表我国经济发展情况,并预测我国近5期国内生产总值。

二、数据来源本文选取的数据是从同花顺数据中心下载的,数据跨越2002年到最近的2012年第一季度的(共11年41个数值)国内生成总值季节数据(如下表):季度年份第1季度 第2季度 第3季度 第4季度 2002 25375.7 27965.3 29715.7 37276.3 2003 28861.8 31007.1 33460.4 42493.7 2004 33420.6 36985.3 39561.7 49910.4 2005 38848.6 42573.9 44562.4 57883 2006 45315.8 50112.7 51912.8 68973.1 2007 54755.9 61243 64102.2 85709.2 2008 66283.8 74194 76548.3 97019.3 2009 69816.92 78386.68 83099.73 109599.48 2010 82496.2 92383 97289.4 129344.4 2011 97101.2 108674.2115443.7150344.62012107995数据来源:同花顺数据中心三、数据分析对序列进行做时序图,在SAS 软件输入代码,输出结果如图1:product2000030000400005000060000700008000090000100000110000120000130000140000150000160000time02Q102Q303Q103Q304Q104Q305Q105Q306Q106Q307Q107Q308Q108Q309Q109Q310Q110Q311Q111Q312Q1图1 原始序列时序图由图1可以看出该序列不是平稳序列,故对其一阶差分,在SAS 软件输入代码,输出结果如图2:dif-50000-40000-30000-20000-10000010000200003000040000time02Q102Q303Q103Q304Q104Q305Q105Q306Q106Q307Q107Q308Q108Q309Q109Q310Q110Q311Q111Q312Q1图2 一阶差分后时序图由图2 可以看出该序列平稳性不显著并且具有很强的季节效应,其周期为4,因此再对其进行4步差分,在SAS 软件输入代码,输出结果如图3:图3 一阶4步差分后时序图由图3可以看出,该序列没有显著的不平稳性,认为一阶4歩差分后的序列平稳。

做平稳性检验,在SAS 软件输入代码,生成自相关图(图4)、偏自相关图(图5)以及纯随机检验结果(图6):dif1-11000-10000-9000-8000-7000-6000-5000-4000-3000-2000-100001000200030004000500060007000time02Q102Q303Q103Q304Q104Q305Q105Q306Q106Q307Q107Q308Q108Q309Q109Q310Q110Q311Q111Q312Q1图4 自相关系数图图5 偏自相关系数图图6 纯随机检验由图6可以看出延迟6阶的检验P 值比给定的显著性水平05.0=α小,因此,拒绝原假设0H ,认为该序列为非白噪声序列。

所以,对该序列建模是有意义的。

四、模型的建立及模型的检验(一)、模型的识别优化由图4样本自相关系数图可知自相关系数拖尾;观察图5样本偏自相关系数图可知滞后4阶和5阶偏自相关系数都落在两倍标准差外。

因此,尝试对一阶4步差分后的序列拟合AR (4 5)模型。

在SAS 软件输入代码,对模型进行估计。

具体代码如下:proc arima data=homework3;/*homework3为一阶4步差分后的数据集*/ identify var=product(1 4); estimate p=(4 5);forecast lead=5 id=time out=out; run;(二)、模型参数的估计由以上代码:“identify var=product(1 4);”和“estimate p=(4 5);”输出如下的模型的估计值:图7由图7可以看到参数的估计方法为条件最小二乘估计法;由图可以得出MU 、AR1,1和AR1,2的估计值分别为267.81794、0.51943和-0.48057;图8 拟合优度统计量表通过拟合优度统计量表可以看出相关统计量,这些统计量可以帮助比较该模型和其他模型的优劣。

其中“Constant Estimate”表示的为均值项MU和自回归参数的函数;“Variance Estimate”表示残差序列的方差;“Std Error Estimate”代表方差估计值的平方根;AIC和SBC 函数值的大小分别为662.6768和667.4273;“Numbers of Residuals”表示的是残差个数,本例残差个数为36个。

图9 参数估计值的相关系数表通过参数估计值的相关系数表可以帮助我们了解参数相关性可能影响结果的程度。

从该表可以发现,任何两参数估计值的相关性都不高。

图10 残差序列检验值表通过残差序列检验值表来检验残差序列是否为白噪声序列,从而检验模型的显著性。

由表可以看出延迟6、12、18和24期的P值都明显大于0.05,认为残差序列为非白噪声序列,并认为模型拟合良好。

图11 拟合模型参数值图11输出的是拟合模型的具体形式。

其中,均值的估计值为267.8179;在本图下一部分显示的是自相关因子。

得到的模型表达式如下:5448057.051743.018179.267B B x tt +-+=∇ε或将其记为:65448057.003686.051743.18179.267-----+=t t t t x x x x五、模型的预测图12 序列预测值由图12可以看到由代码:“forecast lead=5 id=time out=out;”语句输出5期的预测值,其未来5期预测值分别为:123171.3463,130355.6774,166096.8934,117387.4775和139549.7188。

为了观察模型的拟合效果,本文将原序列图、序列拟合图、预测值95%置信下限和上限图画在一起,如图13:product2000030000400005000060000700008000090000100000110000120000130000140000150000160000170000180000time02Q102Q303Q103Q304Q104Q305Q105Q306Q106Q307Q107Q308Q108Q309Q109Q310Q110Q311Q111Q312Q112Q3图13 序列拟合效果图在图13中,黑色曲线表示原序列值。

红色曲线表示模型的拟合值,而两绿色曲线分别表示预测值95%的置信下限和上限。

我们发现红色曲线和黑色曲线几乎重合。

再次说明模型拟合非常完美。

六、结论我们得到该序列模型表达式为:65448057.003686.051743.18179.267-----+=t t t t x x x x用该模型预测未来5期,其预测值分别为:123171.3463,130355.6774,166096.8934,117387.4775和139549.7188。

模型拟合效果非常完美。

七、政策建议(一).扩大内需特别是消费需求要促进经济平稳较快发展。

扩大内需特别是消费需求,不断优化投资结构。

着力扩大消费需求。

大力调整收入分配格局,增加中低收入者收入,提高居民消费能力。

完善鼓励居民消费政策。

大力发展社会化养老、家政、物业、医疗保健等服务业。

(二).保持物价总水平基本稳定保持物价总水平基本稳定,是关系群众利益和经济社会发展全局的重点工作。

要在有效实施宏观经济政策、管好货币信贷总量、促进社会总供求基本平衡的基础上,搞好价格调控,防止物价反弹。

要增加生产、保障供给。

要搞活流通、降低成本。

调整完善部分农产品批发、零售增值税政策,推动流通标准化、信息化建设。

相关文档
最新文档