高考数学几何证明选讲

合集下载

高考数学专题几何证明选讲

高考数学专题几何证明选讲

编写说明:考虑到复习实际,本书将选修4-5不等式选讲与前面第六章不等式、推理与证明整合编写。

选修4-1几何证明选讲第一节相似三角形的判定及有关性质1.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.推论1:经过三角形一边的中点与另一边平行的直线必平分第三边.推论2:经过梯形一腰的中点,且与底边平行的直线平分另一腰.2.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.3.相似三角形的判定与性质(1)判定定理:(2)1.在使用平行线截割定理时易出现对应线段、对应边对应顺序混乱,导致错误. 2.在解决相似三角形的判定或应用时易出现对应边和对应角对应失误. [试一试]1.如图,F 为▱ABCD 的边AD 延长线上的一点,DF =AD ,BF 分别交DC ,AC 于G ,E 两点,EF =16,GF =12,则BE 的长为________.解析:由DF =AD ,AB ∥CD 知BG =GF =12,又EF =16知EG =4,故BE =8.答案:82.在△ABC 中,点D 在线段BC 上,∠BAC =∠ADC ,AC =8,BC =16,则CD =________. 解析:∵∠BAC =∠ADC ,∠C =∠C ,∴△ABC ∽△DAC ,∴BC AC =AC CD ,∴CD =AC 2BC =8216=4.答案:41.判定两个三角形相似的常规思路 (1)先找两对对应角相等;(2)若只能找到一对对应角相等,则判断相等的角的两夹边是否对应成比例;(3)若找不到角相等,就判断三边是否对应成比例,否则考虑平行线分线段成比例定理及相似三角形的“传递性”.2.借助图形判断三角形相似的方法 (1)有平行线的可围绕平行线找相似;(2)有公共角或相等角的可围绕角做文章,再找其他相等的角或对应边成比例; (3)有公共边的可将图形旋转,观察其特征,找出相等的角或成比例的对应边. [练一练]1.如图,D ,E 分别是△ABC 的边AB ,AC 上的点,DE ∥BC 且ADDB =2,那么△ADE 与四边形DBCE 的面积比是________.解析:∵DE ∥BC ,∴△ADE ∽△ABC ,∴S △ADE S △ABC =AD 2AB 2. ∵AD DB =2,∴AD AB =23,∴S △ADE S △ABC =49, ∴S △ADES 四边形DBCE =45.答案:452.如图,已知在△ABC 中,CD ⊥AB 于D 点,BC 2=BD ·AB ,则∠ACB =______.解析:在△ABC 与△CBD 中, 由BC 2=BD ·AB , 得BC BD =ABBC,且∠B =∠B , 所以△ABC ∽△CBD .则∠ACB =∠CDB =90°. 答案:90°平行线分线段成比例定理的应用,AE 交BD 于F ,则BF ∶FD =________.解析:∵AD =BC ,BE ∶EC =2∶3, ∴BE ∶AD =2∶5. ∵AD ∥BC ,∴BF ∶FD =BE ∶AD =2∶5.即BF ∶FD =25.答案:2∶52.(2013·惠州调研)如图,在△ABC 中,DE ∥BC ,DF ∥AC ,AE ∶AC =3∶5,DE =6,则BF =________.解析:由DE ∥BC 得DE BC =AE AC =35,∵DE =6,∴BC =10. 又因为DF ∥AC ,所以BF BC =BD AB =CE AC =25,即BF =4.答案:43.如图,在四边形ABCD 中,EF ∥BC ,FG ∥AD ,则EF BC +FGAD =________.解析:由平行线分线段成比例定理得 EF BC =AF AC ,FG AD =FC AC , 故EF BC +FG AD =AF AC +FC AC =AC AC=1. 答案:1 [类题通法]比例线段常用平行线产生,利用平行线转移比例是常用的证题技巧,当题中没有平行线条件而有必要转移比例时,也常添加辅助平行线,从而达到转移比例的目的.相似三角形的判定及性质[典例] O 内一点E ,过E 作BC 的平行线与AD 的延长线交于点P .已知PD =2DA =2,则PE =________.[解析] 由PE ∥BC 知,∠A =∠C =∠PED .在△PDE 和△PEA 中,∠APE =∠EPD ,∠A =∠PED ,故△PDE ∽△PEA ,则PD PE =PEP A,于是PE 2=P A ·PD =3×2=6,所以PE = 6.[答案]6[类题通法]1.判定两个三角形相似要注意结合图形特征灵活选择判定定理,特别要注意对应角和对应边.2.相似三角形的性质可用来证明线段成比例、角相等;也可间接证明线段相等. [针对训练](2013·佛山质检)如图,∠B =∠D ,AE ⊥BC ,∠ACD =90°,且AB =6,AC =4,AD =12,则BE =________.解析:由于∠B =∠D ,∠AEB =∠ACD ,所以△ABE ∽△ADC ,从而得AB AD =AEAC,解得AE =2,故BE =AB 2-AE 2=4 2.答案:4 2射影定理的应用[典例] AD ⊥BC 于D∠ABC 的平分线,交AD 于F ,求证:DF AF =AE EC.[证明] 由三角形的内角平分线定理得,在△ABD 中,DF AF =BDAB ,① 在△ABC 中,AE EC =ABBC,②在Rt △ABC 中,由射影定理知,AB 2=BD ·BC , 即BD AB =ABBC. ③ 由①③得:DF AF =ABBC ,④由②④得:DF AF =AEEC .[类题通法]1.在使用直角三角形射影定理时,要学会将“乘积式”转化为相似三角形中的“比例式”.2.证题时,要注意作垂线构造直角三角形是解直角三角形时常用的方法. [针对训练]在Rt △ACB 中,∠C =90°,CD ⊥AB 于D ,若BD ∶AD =1∶9,则tan ∠BCD =________. 解析:由射影定理得CD 2=AD ·BD ,又BD ∶AD =1∶9, 令BD =x ,则AD =9x (x >0).∴CD 2=9x 2,∴CD =3x . Rt △CDB 中,tan ∠BCD =BD CD =x 3x =13.答案:13第二节直线与圆的位置关系1.圆周角定理 (1)圆周角定理圆上一条弧所对的圆周角等于它所对的圆心角的一半. (2)圆心角定理圆心角的度数等于它所对弧的度数.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.2.圆内接四边形的性质与判定定理(1)性质定理1:圆内接四边形的对角互补.定理2:圆内接四边形的外角等于它的内角的对角.(2)判定判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆.推论:如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆.3.圆的切线性质及判定定理(1)性质:性质定理:圆的切线垂直于经过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点.推论2:经过切点且垂直于切线的直线必经过圆心.(2)判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.(3)弦切角定理:弦切角等于它所夹的弧所对的圆周角.4.与圆有关的比例线段(1)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.(2)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.(4)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.1.易混圆心角与圆周角,在使用时注意结合图形作出判断.2.在使用相交弦定理、割线定理、切割线定理时易出现比例线段对应不成比例而失误.[试一试]1.如图,P是圆O外一点,过P引圆O的两条割线PB、PD,P A=AB=5,CD=3,则PC=________.解析:设PC=x,由割线定理知P A·PB=PC·PD.即5×25=x(x+3),解得x=2或x=-5(舍去).故PC=2.答案:22.如图,EB ,EC 是⊙O 的两条切线,B ,C 是切点,A ,D 是⊙O 上两点,如果∠E =46°,∠DCF =32°,则∠BAD =________.解析:由已知,显然△EBC 为等腰三角形, 因此有∠ECB =180°-∠E 2=67°,因此∠BCD =180°-∠ECB -∠DCF =81°. 而由A ,B ,C ,D 四点共圆, 得∠BAD =180°-∠BCD =99°. 答案:99°1.与圆有关的辅助线的五种作法 (1)有弦,作弦心距.(2)有直径,作直径所对的圆周角. (3)有切点,作过切点的半径. (4)两圆相交,作公共弦. (5)两圆相切,作公切线. 2.证明四点共圆的常用方法(1)利用圆内接四边形的判定定理,证明四点组成的四边形的对角互补; (2)证明它的一个外角等于它的内对角; (3)证明四点到同一点的距离相等.当证明四点共圆以后,圆的各种性质都可以得到应用. 3.圆幂定理与圆周角、弦切角联合应用时,要注意找相等的角,找相似三角形,从而得出线段的比,由于圆幂定理涉及圆中线段的数量计算,所以应注意代数法在解题中的应用.[练一练]1.(2013·荆州模拟)如图,P A 是⊙O 的切线,切点为A ,过P A的中点M 作割线交⊙O 于点B 和C ,若∠BMP =110°,∠BPC =30°,则∠MPB =________.解析:由切割线定理得,MA 2=MB ·MC ,又MA =MP ,故MP 2=MB ·MC ,即MB MP =MP MC ,又∠BMP =∠PMC .故△BMP ∽△PMC ,所以∠MPB =∠MCP ,所以30°+∠MPB +∠MCP =∠AMB =180°-110°=70°,所以∠MPB =20°.答案:20°2.(2013·长沙一模)如图,过圆O 外一点P 分别作圆的切线和割线交圆于点A ,点B ,且PB =7,C 是圆上一点,使得BC =5,∠BAC =∠APB ,则AB =________.解析:由P A 为圆O 的切线可得,∠P AB =∠ACB ,又∠BAC =∠APB ,于是△APB ∽△CAB ,所以PB AB =ABBC,而PB =7,BC =5,故AB 2=PB ·BC =7×5=35,即AB =35. 答案:35圆周角、弦切角和圆的切线问题1.(2013·天津高考)如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD ∥AC . 过点A 作圆的切线与DB 的延长线交于点E ,AD 与BC 交于点F .若AB =AC ,AE =6,BD = 5,则线段CF 的长为________.解析:因为AE 是圆的切线,且AE =6,BD =5,由切割线定理可得EA 2=EB ·ED ,即36=EB ·(EB +5),解得EB =4.又∠BAE =∠ADB =∠ACB =∠ABC ,所以AE ∥BC .又AC ∥BD ,所以四边形AEBC 是平行四边形,所以AE =BC =6,AC =EB =4.又由题意可得△CAF ∽△CBA ,所以CA CB =CFCA ,CF=CA 2CB =166=83. 答案:832.(2013·广东高考)如图,AB 是圆O 的直径,点C 在圆O 上.延长BC 到D 使BC =CD ,过C 作圆O 的切线交AD 于E .若AB =6,ED =2,则BC =________.解析:连接OC ,则OC ⊥CE ,∠OCA +∠ACE =90°,∵∠OAC =∠OCA ,∴∠OAC +∠ACE =90°.易知Rt △ACB ≌Rt △ACD ,则∠OAC =∠EAC .∴∠EAC +∠ACE =90°,∴∠AEC =90°,在Rt △ACD 中,由射影定理得:CD 2=ED ·AD ①,又CD =BC ,AD =AB ,将AB =6,ED =2代入①式,得CD = 12=2 3,∴BC =2 3.答案:2 33.(2014·岳阳模拟)如图所示,⊙O 的两条切线P A 和PB 相交于点P ,与⊙O 相切于A ,B 两点,C 是⊙O 上的一点,若∠P =70°,则∠ACB =________.解析:如图所示,连接OA ,OB , 则OA ⊥P A ,OB ⊥PB .故∠AOB =110°, ∴∠ACB =12∠AOB =55°.答案:55° [类题通法]1.圆周角定理及其推论与弦切角定理及其推论多用于推出角的关系,从而证明三角形全等或相似,可求线段或角的大小.2.涉及圆的切线问题时要注意弦切角的转化;关于圆周上的点,常作直径(或半径)或向弦(弧)两端作圆周角或弦切角.圆内接四边形的性质及判定[典例]是AB 延长线上的一点,GCD 是⊙O 的割线,过点G 作AG 的垂线,交直线AC 于点E ,交直线AD 于点F ,过点G 作⊙O 的切线,切点为H .(1)求证:C ,D ,E ,F 四点共圆; (2)若GH =6,GE =4,求EF 的长.[解] (1)证明:连接DB , ∵AB 是⊙O 的直径, ∴∠ADB =90°,在Rt △ABD 与Rt △AFG 中,∠ABD =∠AFE , 又∠ABD =∠ACD , ∴∠ACD =∠AFE , ∴C ,D ,E ,F 四点共圆.(2)⎭⎪⎬⎪⎫C ,D ,E ,F 四点共圆⇒GE ·GF =GC ·GD GH 切⊙O 于点H ⇒GH 2=GC ·GD ⇒GH 2=GE ·GF , 又GH =6,GE =4,∴GF =9,EF =GF -GE =5. [类题通法]证明多点共圆,当它们在一条线段同侧时,可证它们对此线段张角相等,也可以证明它们与某一定点距离相等;如两点在一条线段异侧,则证明它们与线段两端点连成的凸四边形对角互补.[针对训练]如图所示,在四边形ABCP 中,线段AP 与BC 的延长线交于点D ,已知AB =AC 且A ,B ,C ,P 四点共圆.(1)求证:PC AC =PDBD;(2)若AC =4,求AP ·AD 的值.解:(1)证明:因为点A ,B ,C ,P 四点共圆,所以∠ABC +∠APC =180°,又因为∠DPC +∠APC =180°,所以∠DPC =∠ABC ,又因为∠D =∠D ,所以△DPC ∽△DBA ,所以PC AB =PD BD ,又因为AB =AC ,所以PC AC =PD BD. (2)因为AB =AC ,所以∠ACB =∠ABC ,又∠ACD +∠ACB =180°,所以∠ACD +∠ABC =180°.由于∠ABC +∠APC =180°,所以∠ACD =∠APC ,又∠CAP =∠DAC ,所以△APC ∽△ACD ,所以AP AC =ACAD ,所以AP ·AD =AC 2=16. 与圆有关的比例线段[典例] 是∠ACB 的平分线,△ACD 的外接圆交BC 于点E ,AB =2AC .(1)求证:BE =2AD ;(2)当AC =1,EC =2时,求AD 的长.[解] (1)证明:连接DE ,因为四边形ACED 是圆的内接四边形,所以∠BDE =∠BCA , 又∠DBE =∠CBA ,所以△BDE ∽△BCA , 所以BE BA =DE CA ,而AB =2AC , 所以BE =2DE .又CD 是∠ACB 的平分线,所以AD =DE ,从而BE =2AD . (2)由已知得AB =2AC =2,设AD =t (0<t <2),根据割线定理得, BD ·BA =BE ·BC ,即(AB -AD )·BA =2AD ·(2AD +CE ),11 所以(2-t )×2=2t (2t +2),即2t 2+3t -2=0,解得t =12,即AD =12. [类题通法]1.应用相交弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关的相似三角形等.2.相交弦定理、切割线定理主要用于与圆有关的比例线段的计算与证明.解决问题时要注意相似三角形知识与圆周角、弦切角、圆的切线等相关知识的综合应用.[针对训练](2014·郑州模拟)如图,已知⊙O 和⊙M 相交于A ,B 两点,AD 为⊙M 的直径,直线BD 交⊙O 于点C ,点G 为弧BD 的中点,连接AG 分别交⊙O ,BD 于点E ,F ,连接CE.求证:(1)AG ·EF =CE ·GD ;(2)GF AG =EF 2CE 2. 证明:(1)连接AB ,AC ,∵AD 为⊙M 的直径,∴∠ABD =90°,∴AC 为⊙O 的直径,∴∠CEF =∠AGD =90°.∵G 为弧BD 的中点,∴∠DAG =∠GAB =∠ECF .∴△CEF ∽△AGD ,∴CE AG =EF GD,∴AG ·EF =CE ·GD . (2)由(1)知∠DAG =∠GAB =∠FDG ,又∠G =∠G ,∴△DFG ∽△ADG ,∴DG 2=AG ·GF .由(1)知EF 2CE 2=GD 2AG 2,∴GF AG =EF 2CE 2.。

高中数学几何证明选讲详解

高中数学几何证明选讲详解
【规范解答】因为以AC为直径的圆与AB交于点D,所T15)如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则BD=cm.
【命题立意】本题考查几何证明选做题的解法,属送分题
【思路点拨】条件
【规范解答】因为以AC为直径的圆与AB交于点D,所以
A. B. C. D.
【解析】设半径为 ,则 ,由 得 ,从而 ,故 ,选A.
7.在 中, 分别为 上的点,且 , 的面积是 ,梯形 的面积为 ,则 的值为( )
A. B. C. D.
【解析】 ,利用面积比等于相似比的平方可得答案B.
8.半径分别为1和2的两圆外切,作半径为3的圆与这两圆均相切,一共可作( )个.
5. (2010·天津高考理科·T14)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P,若 ,则 的值为
【命题立意】考查三角形的相似性质的应用。
【思路点拨】利用相似三角形的性质进行转化。
【规范解答】由题意可知 ∽ 相似,
所以 ,由 及已知条件
可得 ,又 , 。
【答案】
6.(2010·广东高考文科·T14)如图3,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD= ,点E,F分别为线段AB,CD的中点,则EF=.
【答案】
7.(2010·广东高考理科·T14)如图3,AB,CD是半径为a的圆O的两条弦,它们相交于AB的中点P,PD= ,∠OAP=30°,则CP=______.
【命题立意】本题考察垂径定理及相交弦定理.
【思路点拨】由垂径定理得 ,算出 ,再由相交弦定理求出
【规范解答】因为 为 的中点,由垂径定理得 ,在 中, ,由相交弦定理得: ,即 ,

【恒心】高考数学冲刺复习-选修4-1(几何证明选讲)知识点精华总结【清华大学张云翼校对】【李炳璋提供】

【恒心】高考数学冲刺复习-选修4-1(几何证明选讲)知识点精华总结【清华大学张云翼校对】【李炳璋提供】

选修4-1几何证明选讲编者:李炳璋校对:张云翼(清华大学)【***】感激并感谢好友张云翼对此份材料一丝不苟的校对!也希望用到此份材料的童鞋们,怀揣一颗感恩之心,感谢你们张学长的认真校对,向他学习,学习他那种的严谨的态度。

他不愧是能以高分考入清华大学的学生,他不仅仅是你们的榜样,更是李炳璋我的偶像!李炳璋(原名李东升)---全国唯一一位曾经连续三年命中过高考试题中理科和文科一些试题的人平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。

经过三角形一边的中点与另一边平行的直线必平分第三边。

经过梯形一腰的中点,且与底边平行的直线平分另一腰。

平分线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例。

相似三角形的判定及性质。

平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

应相等,那么这两个三角形相似。

简述为:两角对应相等,两三角形相似。

对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似。

简述为:两边对应成比例且夹角相等,两三角形相似。

对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似。

简述为:三边对应成比例,两三角形相似。

如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

(1)如果两个直角三角形有一个锐角对应相等,那么它们相似;(1)相似三角形对应高的比、对应中线的比和对应平分线的比都等于相似比;(2)相似三角形周长的比等于相似比;(3)相似三角形面积的比等于相似比的平方。

相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方。

直角三角形的射影定理直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项。

圆周角定理(注意一条弦对应两个弧,也就对应两个圆周角。

2014届高考数学专题汇编6:几何证明选讲

2014届高考数学专题汇编6:几何证明选讲

专题6:几何证明选讲1.(2012年海淀一模理13)如图,以ABC ∆的边AB 为直径的半圆交AC 于点D ,交BC 于点E ,EF AB ^于点F ,3AF BF =,22BE EC ==,那么CDE Ð= ,CD = .2.(2012年西城一模理11) 如图,AC 为⊙O 的直径,OB AC ⊥,弦BN 交AC 于点M .若OC =1OM =,则MN =_____.3.(2012年东城一模理12)如图,AB 是⊙O 的直径,直线DE 切 ⊙O于点D ,且与AB 延长线交于点C ,若CD =,1CB =,则ADE ∠= .4.(2012年丰台一模理12)如图所示,Rt △ABC 内接于圆,60ABC ∠= ,PA 是圆的切线,A 为切点, PB 交AC 于E ,交圆于D .若PA=AE ,BD=AP= ,AC= .5.(2012年东城11校联考理10)如图,已知PA 是⊙O 的切线,A 是切点,直线PO 交⊙O 于,B C 两点,D 是OC的中点,连结AD 并延长交⊙O 于点E ,若30PA APB =∠=︒,则AE = .6.(2012年石景山一模理11)如图,已知圆中两条弦AB 与CD 相交于点F ,CE 与圆相切交AB 延长线上于点E ,若DF CF ==::4:2:1AF FB BE =,则线段CE 的长为 .7.(2012年房山一模理3)如图,PA 是圆O 的切线,切点为A ,PO 交圆O 于,B C 两点,1PA PB ==,则ABC ∠=( ) A.70︒B.60︒C.45︒D.30︒FEDC BAABCOMNED P CBA8.(2012年门头沟一模理12)如右图:点P 是O 直径AB 延长线上一点, PC 是O 的切线,C 是切点,4AC =,3BC =,则PC = .9.(2012年西城二模理11)如图,△ABC 是⊙O 的内接三角 形,PA 是⊙O 的切线,PB 交AC 于点E ,交⊙O 于点D .若PA PE =,60ABC ︒∠=,1PD =,9PB =,则PA =_____;EC =_____.10.(2012年朝阳二模理12)如图,AB 是圆O 的直径,CD AB ⊥于D ,且2AD BD =,E 为AD 的中点,连接CE并延长交圆O 于F.若CD =AB =_______,EF =_________.11.(2012年丰台二模理11)如图所示,AB 是圆的直径,点C过点B ,C 的切线交于点P ,AP 交圆于D,若AB=2,AC=1,则PC=______,PD=______.12.(2012年昌平二模理12)如图,AB 是⊙O 的直径,CD 切⊙O 于点D ,CA 切⊙O 于点A ,CD 交AB 的延长线于点E .若3AC =,2ED =,则BE =________;AO =________.13.(2012年东城二模理12) 如图,直线PC 与 O 相切于点C ,割线PAB 经过圆心O ,弦CD ⊥AB 于点E ,4PC =,8PB =,则CE = .14.(2012年海淀二模理12)如图, 圆O 的直径AB 与弦CD 交于点P ,7, 5, 15CP PD AP ===,则=∠DCB ______.15.(北京市东城区普通校2013届高三3月联考数学(理)试题 )如图,已知AB 是⊙O 的一条弦,点P 为AB 上一点, PC OP ⊥,PC 交⊙O于C ,若4AP =,2PB =,则PC 的长是( ) A .3B.C .2D16.(2013届北京大兴区一模理科)如图,在圆O 中,直径AB 与弦CD 垂直,垂足为E (E 在A ,O 之间),EF BC ^,垂足为F .若6AB =,5CF CB ?,则AE = 。

高考数学专题20 立体几何中的平行与垂直问题(解析版)

高考数学专题20 立体几何中的平行与垂直问题(解析版)

专题20 立体几何中的平行与垂直问题一、题型选讲题型一、线面平行与垂直知识点拨:证明直线与平面的平行与垂直问题,一定要熟练记忆直线与平面的平行与垂直判定定理和性质定理,切记不可缺条件。

直线与平面的平行有两种方法:一是在面内找线;二是通过面面平行转化。

直线与平面垂直关键是找两条相交直线例1、(2021南通、泰州、扬州一调〕如图,在四棱锥PABCD中,M,N分别为棱PA,PD的中点.侧面PAD⊥底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN∥平面PBC;MD⊥平面PAB.【证明】(1)在四棱锥P-ABCD中,M,N分别为棱PA,PD的中点,所以MN∥AD.(2分)又底面ABCD是矩形,所以BC∥AD.所以MN∥BC.(4分)又BC⊂平面PBC,MN⊄平面PBC,所以MN∥平面PBC. (6分)(2)因为底面ABCD是矩形,所以AB⊥AD.又侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,AB⊂底面ABCD,所以AB⊥侧面PAD.(8分)又MD⊂侧面PAD,所以AB⊥MD.(10分)因为DA=DP,又M为AP的中点,从而MD⊥PA. (12分)又PA,AB在平面PAB内,PA∩AB=A,所以MD⊥平面PAB.(14分)例2、(2021扬州期末〕如下图,在三棱柱ABCA1B1C1中,四边形AA1B1B为矩形,平面AA1B1B⊥平面ABC,点E,F分别是侧面AA1B1B,BB1C1C对角线的交点.(1) 求证:EF∥平面ABC;(2) 求证:BB1⊥AC.标准解答(1)在三棱柱ABCA1B1C1中,四边形AA1B1B,四边形BB1C1C均为平行四边形,E,F分别是侧面AA1B1B,BB1C1C对角线的交点,所以E,F分别是AB1,CB1的中点,所以EF∥AC.(4分)因为EF⊄平面ABC,AC⊂平面ABC,所以EF∥平面ABC.(8分)(2)因为四边形AA1B1B为矩形,所以BB1⊥AB.因为平面AA1B1B⊥平面ABC,且平面AA1B1B∩平面ABC=AB,BB1⊂平面AA1B1B,所以BB1⊥平面ABC.(12分)因为AC⊂平面ABC,所以BB1⊥AC.(14分)例3、(2021南京、盐城二模〕如图,在三棱柱ABCA1B1C1中,AB=AC,A1C⊥BC1,AB1⊥BC1,D,E 分别是AB1和BC的中点.求证:(1)DE∥平面ACC1A1;(2)AE⊥平面BCC1B1.标准解答(1)连结A1B,在三棱柱ABCA1B1C1中,AA1∥BB1且AA1=BB1,所以四边形AA1B1B是平行四边形.又因为D是AB1的中点,所以D也是BA1的中点.(2分)在△BA1C中,D和E分别是BA1和BC的中点,所以DE∥A1C.又因为DE⊄平面ACC1A1,A1C⊂平面ACC1A1,所以DE∥平面ACC1A1.(6分)(2)由(1)知DE∥A1C,因为A1C⊥BC1,所以BC1⊥DE.(8分)又因为BC1⊥AB1,AB1∩DE=D,AB1,DE⊂平面ADE,所以BC1⊥平面ADE.又因为AE⊂平在ADE,所以AE⊥BC1.(10分)在△ABC中,AB=AC,E是BC的中点,所以AE⊥BC.(12分)因为AE⊥BC1,AE⊥BC,BC1∩BC=B,BC1,BC⊂平面BCC1B1,所以AE⊥平面BCC1B1. (14分)例4、(2021苏锡常镇调研〕如图,三棱锥DABC中,AC⊥BC,AC⊥DC,BC=DC,E,F分别为BD,CD的中点.求证:(1) EF∥平面ABC;(2) BD⊥平面ACE..标准解答(1)三棱锥DABC中,因为E为DB的中点,F为DC的中点,所以EF∥BC,(3分)因为BC⊂平面ABC,EF⊄平面ABC,所以EF∥平面ABC.(6分)(2)因为AC⊥BC,AC⊥DC,BC∩DC=C,BC,DC⊂平面BCD所以AC⊥平面BCD,(8分)因为BD⊂平面BCD,所以AC⊥BD,(10分)因为DC=BC,E为BD的中点,所以CE⊥BD,(12分)因为AC∩CE=C,AC,CE⊂平面ACE,所以BD⊥平面ACE.(14分)例5、(2021苏州三市、苏北四市二调〕如图,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1⊥B1C1.设A1C与AC1交于点D,B1C与BC1交于点E.求证:(1) DE∥平面ABB1A1;(2) BC1⊥平面A1B1C.标准解答(1)因为三棱柱ABCA1B1C1为直三棱柱,所以侧面ACC1A1为平行四边形.又A1C与AC1交于点D,所以D为AC1的中点,同理,E为BC1的中点.所以DE∥AB.(3分)又AB⊂平面ABB1A1,DE⊄平面ABB1A1,所以DE∥平面ABB1A1.(6分)(2)因为三棱柱ABCA1B1C1为直三棱柱,所以BB1⊥平面A1B1C1.又因为A1B1⊂平面A1B1C1,所以BB1⊥A1B1.(8分)又A1B1⊥B1C1,BB1,B1C1⊂平面BCC1B1,BB1∩B1C1=B1,所以A1B1⊥平面BCC1B1.(10分)又因为BC1⊂平面BCC1B1,所以A1B1⊥BC1.(12分)又因为侧面BCC1B1为正方形,所以BC1⊥B1C.又A1B1∩B1C=B1,A1B1,B1C⊂平面A1B1C,所以BC1⊥平面A1B1C.(14分)例6、(2021苏北四市一模〕如图,在正三棱柱ABCA1B1C1中,D,E分别为BC,B1C1的中点,点F在棱CC1上,且EF⊥C1D.求证:(1) 直线A1E∥平面ADC1;(2) 直线EF⊥平面ADC1.标准解答(1) 证法1 连结ED,因为D,E分别为BC,B1C1的中点,所以B1E∥BD且B1E=BD,所以四边形B1BDE是平行四边形,(2分)所以BB1∥DE且BB1=DE.又BB1∥AA1且BB1=AA1,所以AA1∥DE且AA1=DE,所以四边形AA1ED是平行四边形,所以A1E∥AD.(4分)又因为A1E⊄平面ADC1,AD⊂平面ADC1,所以直线A1E∥平面ADC1.(7分)证法2 连结ED ,连结A 1C ,EC 分别交AC 1,DC 1于点M ,N ,连结MN ,那么因为D ,E 分别为BC ,B 1C 1的中点,所以C 1E ∥CD 且C 1E =CD ,所以四边形C 1EDC 是平行四边形,所以N 是CE 的中点.(2分) 因为A 1ACC 1为平行四边形,所以M 是A 1C 的中点,(4分) 所以MN ∥A 1E .又因为A 1E ⊄平面ADC 1,MN ⊂平面ADC 1,所以直线A 1E ∥平面ADC 1.(7分) (2) 在正三棱柱ABCA 1B 1C 1中,BB 1⊥平面ABC . 又AD ⊂平面ABC ,所以AD ⊥BB 1.又△ABC 是正三角形,且D 为BC 的中点,所以AD ⊥BC .(9分) 又BB 1,BC ⊂平面B 1BCC 1,BB 1∩BC =B , 所以AD ⊥平面B 1BCC 1,又EF ⊂平面B 1BCC 1,所以AD ⊥EF .(11分)又EF ⊥C 1D ,C 1D ,AD ⊂平面ADC 1,C 1D ∩AD =D , 所以直线EF ⊥平面ADC 1.(14分)题型二、线面与面面平行与垂直证明平面与平面的平行与垂直问题,一定要熟练记忆平面与平面的平行与垂直判定定理和性质定理,切记不可缺条件。

2015届高考数学总复习几何证明选讲第1课时相似三角形的进一步认识教学案(新人教A版选修4-1)

2015届高考数学总复习几何证明选讲第1课时相似三角形的进一步认识教学案(新人教A版选修4-1)

选修4-1 几何证明选讲第1课时 相似三角形的进一步认识(对应学生用书(理)179~181页)1. 如图,△ABC 中, DE ∥BC, DF ∥AC ,AE ∶AC =3∶5,DE =6,求BF 的长. 解:DE BC =AE AC 6BC =35BC =10,∴ BF =10-6=4.2. 如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E ,若AD =4,DB =2,求DE 与BC 的长度比.解:因为DE ∥BC ,所以DE BC =AD AB =46=23.3. 如图,在△ABC 中,DE ∥BC ,EF ∥CD.且AB =2,AD =2,求AF 的长.解:设AF =x ,则由AD DB =AE EC =AF DF ,22-2=x2-x,解得x =1.4. 如图,四边形ABCD 中,DF ⊥AB ,垂足为F ,DF =3,AF =2FB =2,延长FB 到E ,使BE =FB.连结BD 、EC ,若BD ∥EC ,求△BCD 和四边形ABCD 的面积.解:S △BCD =S △BDE =12·BE ·DF =12×1×3=32,S 四边形ABCD =S △ADE =12·AE ·DF =12×4×3=6.5. 如图,平行四边形ABCD 中,AE ∶EB =1∶2,△AEF 的面积为6,求△ADF 的面积.解:由题意可得△AEF ∽△CDF ,且相似比为1∶3,由△AEF 的面积为6,得△CDF 的面积为54.又S △ADF ∶S △CDF =1∶3,所以S △ADF =18.1. 平行截割定理(1) 平行线等分线段定理及其推论①定理:如果一组平行线在一条直线上截得的线段相等,那么在任一条(与这组平行线相交的)直线上截得的线段也相等.②推论:经过梯形一腰的中点而平行于底边的直线平分另一腰. (2) 平行截割定理及其推论①定理:两条直线与一组平行线相交,它们被这组平行线截得的对应线段成比例. ②推论:平行于三角形一边的直线截其他两边,截得的三角形的边与原三角形的对应边成比例.(3) 三角形角平分线的性质三角形的内角平分线分对边成两段的长度比等于夹角两边长度的比. (4) 梯形的中位线定理梯形的中位线平行于两底,并且等于两底和的一半. 2. 相似三角形(1) 相似三角形的判定 ①判定定理a. 两角对应相等的两个三角形相似.b. 两边对应成比例且夹角相等的两个三角形相似.c. 三边对应成比例的两个三角形相似.②推论:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似. ③直角三角形相似的特殊判定.斜边与一条直角边对应成比例的两个直角三角形相似. (2) 相似三角形的性质相似三角形的对应线段的比等于相似比,面积比等于相似比的平方.(3) 直角三角形射影定理直角三角形一条直角边的平方等于该直角边在斜边上的射影与斜边的乘积,斜边上的高的平方等于两条直角边在斜边上射影的乘积.[备课札记]题型1平行线分线段成比例问题例1如图,在梯形ABCD中,AD∥BC,∠ADC=90°,E是AB边的中点,求证:ED=EC.证明:如图,过E点作EF∥BC交DC于点F.在梯形ABCD中,AD∥BC,∴AD∥EF∥BC.∵E是AB的中点,∴F是DC的中点.∵∠ADC=90°,∴∠DFE=90°.∴EF是DC的垂直平分线,∴ED=EC.备选变式(教师专享)如图,在△ABC中,作直线DN平行于中线AM,设这条直线交边AB于点D,交边CA的延长线于点E,交边BC于点N.求证:AD∶AB=AE∶AC.证明:∵ AM ∥EN ,∴ AD ∶AB =NM ∶MB ,NM ∶MC =AE ∶AC. ∵ MB =MC ,∴ AD ∶AB =AE ∶AC. 题型2 三角形相似的证明与应用例2 已知:如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC ,过点D 作AC 的平行线DE ,交BA 的延长线于点E.求证:(1) △ABC ≌△DCB ; (2) DE·DC =AE·BD.证明:(1) ∵ 四边形ABCD 是等腰梯形,∴ AC =DB. ∵ AB =DC ,BC =CB ,∴ △ABC ≌△BCD. (2) ∵ △ABC ≌△BCD ,∴ ∠ACB =∠DBC ,∠ABC =∠DCB ,∵ AD ∥BC ,∴ ∠DAC =∠ACB ,∠EAD =∠ABC. ∵ ED ∥AC ,∴ ∠EDA =∠DAC , ∴ ∠EDA =∠DBC ,∠EAD =∠DCB. ∴ △ADE ∽△CBD.∴ DE ∶BD =AE ∶CD , ∴ DE ·DC =AE·BD. 变式训练如图,在矩形ABCD 中,AB>12·AD ,E 为AD 的中点,连结EC ,作EF ⊥EC ,且EF交AB 于F ,连结FC.设ABBC=k ,是否存在实数k ,使△AEF 、△ECF 、△DCE 与△BCF 都相似?若存在,给出证明;若不存在,请说明理由.解:假设存在实数k 的值,满足题设. ①先证明△AEF ∽△DCE ∽△ECF. 因为EF ⊥EC ,所以∠AEF =90°-∠DEC =∠DCE. 而∠A =∠D =90°,故△AEF ∽△DCE.故得CE EF =DE AF .又DE =EA ,所以CE EF =AE AF.又∠CEF =∠EAF =90°, 所以△AEF ∽△ECF.②再证明可以取到实数k 的值,使△AEF ∽△BCF ,由于∠AFE +∠BFC ≠90°,故不可能有∠AFE =∠BFC ,因此要使△AEF ∽△BCF ,应有∠AFE =∠BFC , 此时,有AE AF =BC BF ,又AE =12BC ,故得AF =12BF =13AB.由△AEF ∽△DCE ,可知AE AF =CDDE ,因此,⎝⎛⎭⎫12BC 2=13AB 2, 所以AB 2BC 2=34,求得k =AB BC =32.可以验证,当k =32时,这四个三角形都是有一个锐角等于60°的直角三角形,故它们都相似.题型3 射影定理的应用例3 已知:如图所示,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,DE ⊥AC 于E ,DF ⊥BC 于F.求证:AE·BF·AB =CD 3.证明:∵ ∠ACB =90°,CD ⊥AB , ∴ CD 2=AD ·BD ,故CD 4=AD 2·BD 2. 又在Rt △ADC 中,DE ⊥AC , Rt △BDC 中,DF ⊥BC , ∴ AD 2=AE·AC ,BD 2=BF·BC. ∴ CD 4=AE·BF·AC·BC. ∵ AC ·BC =AB·CD , ∴ CD 4=AE·BF·AB ·CD ,即AE·BF·AB =CD 3. 备选变式(教师专享)如图,在梯形ABCD 中,AD ∥BC ,AC ⊥BD ,垂足为E ,∠ABC =45°,过E 作AD 的垂线交AD 于F ,交BC 于G ,过E 作AD 的平行线交AB 于H.求证:FG 2=AF·DF +BG·CG +AH·BH.证明:因为AC ⊥BD ,故△AED 、△BEC 都是直角三角形. 又EF ⊥AD ,EG ⊥BC , 由射影定理可知AF·DF =EF 2, BG ·CG =EG 2.又FG 2=(FE +EG)2=FE 2+EG 2+2FE·EG =AF·DF +BG·CG +2FE·EG ,∠ABC =45°,如图,过点H 、A 分别作直线HM 、AN 与BC 垂直,易知,AH =2FE ,BH =2EG ,故AH·BH=2EF·EG.所以FG2=AF·DF+BG·CG+2FE·EG=AF·DF+BG·CG+AH·BH.1. 如图,在ABCD中,BC=24,E、F为BD的三等分点,求BM-DN的值.解:∵ E、F为BD的三等分点,四边形为平行四边形,∴M为BC的中点.连CF交AD于P,则P为AD的中点,由△BCF∽△DPF及M为BC中点知,N为DP的中点,∴BM-DN=12-6=6.2. 如图,在四边形ABCD中,△ABC≌△BAD.求证:AB∥CD.证明:由△ABC≌△BAD得∠ACB=∠BDA,故A、B、C、D四点共圆,从而∠CAB=∠CDB.再由△ABC≌△BAD得∠CAB=∠DBA.因此∠DBA=∠CDB,所以AB∥CD.3. 如图,梯形ABCD中,AD∥BC,EF是中位线,BD交EF于P,已知EP∶PF=1∶2,AD=7 cm,求BC的长.解:EF是梯形中位线,得EF∥AD∥BC,∴PEAD=PE7=BEAB=12,PFBC=FDCD=12.∵PE∶PF=1∶2,∴BC=2PF=14cm.4. 如图,已知A、B、C三点的坐标分别为(0,1)、(-1,0)、(1,0),P是线段AC上一点,BP交AO于点D,设三角形ADP的面积为S,点P的坐标为(x,y),求S关于x的函数表达式.解:如图,作PE ⊥y 轴于E ,PF ⊥x 轴于F ,则PE =x ,PF =y. ∵ OA =OB =OC =1,∴ ∠ACO =∠FPC =45°, ∴ PF =FC =y ,∴ OF =OC -FC =1-y , ∴ x =1-y ,即y =1-x , ∴ BF =2-y =1+x.∵ OE ∥FP ,∴ △BOD ∽△BFP , ∴OD PF =BO BF ,即OD y =11+x, ∴ OD =y 1+x =1-x 1+x,∴ AD =1-OD =1-1-x 1+x =2x1+x ,S △ADP =12AD ·PE =12·2x 1+x ×x =x 21+x ,∴ S =x 21+x(0<x ≤1).1. 在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,求|PA|2+|PB|2|PC|2.解:不失一般性,取特殊的等腰直角三角形,不妨令|AC|=|BC|=4,则|AB|=42,|CD|=12|AB|=22,|PC|=|PD|=12|CD|=2,|PA|=|PB|=|AD|2+|PD|2=(22)2+(2)2=10,所以|PA|2+|PB|2|PC|2=10+102=10.2. 如图,在ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,DE =12CD.(1) 求证:△ABF ∽△CEB ;(2) 若△DEF 的面积为2,求ABCD 的面积. (1) 证明:∵ 四边形ABCD 是平行四边形, ∴ ∠A =∠C ,AB ∥CD , ∴ ∠ABF =∠CEB ,∴ △ABF ∽△CEB. (2) 24.3. 如图,四边形ABCD 是正方形,E 是AD 上一点,且AE =14AD ,N 是AB 的中点,NF ⊥CE 于F ,求证:FN 2=EF·FC.证明:连结NC 、NE ,设正方形的边长为a , ∵ AE =14a ,AN =12a ,∴ NE =54a.∵ BN =12a ,BC =a ,∴ NC =52a.∵ DE =34a ,DC =a ,∴ EC =54a.又NE 2=516a 2,NC 2=54a 2,EC 2=2516a 2,且NE 2+NC 2=EC 2,∴ EN ⊥NC.∵ NF ⊥CE ,∴ FN 2=EF·FC.4. 在梯形ABCD 中,点E 、F 分别在腰AB 、CD 上,EF ∥AD ,AE ∶EB =m ∶n.求证:(m +n)EF =mBC +nAD.你能由此推导出梯形的中位线公式吗?解:如图,连结AC ,交EF 于点G. ∵ AD ∥EF ∥BC , ∴ DF FC =AE EB =m n, ∴AE AB =m m +n ,CF CD =n m +n. 又EG ∥BC ,FG ∥AD , ∴AE AB =EG BC =m m +n ,CF CD =GF AD =n m +n, ∴ EG =m m +n ·BC ,GF =nm +n ·AD.又EF =EG +GF ,∴ (m +n)EF =mBC +nAD.∴ 当m =n =1时,EF =12(BC +AD),即表示梯形的中位线.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即a b =cd(或a ∶b =c ∶d)那么这四条线段叫做成比例线段,简称比例线段.注意:(1) 在求线段比时,线段单位要统一,单位不统一应先化成统一单位. (2) 当两个比例式的每一项都对应相同,两个比例式才是同一比例式.(3) 比例线段是有顺序的,如果说a 是b ,c ,d 的第四比例项,那么应得比例式为:bc =d a.请使用课时训练(A )第1课时(见活页).[备课札记]。

江苏省高考数学总复习练习:高考附加题加分练(一)几何证明选讲

江苏省高考数学总复习练习:高考附加题加分练(一)几何证明选讲

(一)几何证明选讲1.如图,O 是△ABC 外接圆的圆心,∠ACB =54°,求∠ABO 的值.解 连结OA ,因为O 是圆心,所以∠AOB =2∠ACB ,所以∠ABO =12(180°-∠AOB ) =12(180°-2∠ACB ) =90°-∠ACB =90°-54°=36°.2.如图,已知A ,B ,C 是圆O 上的三点,BE 切圆O 于点B ,D 是CE 与圆O 的交点,若∠BAC =60°,BE =2,BC =4,求线段CD 的长.解 因为BE 切圆O 于点B ,所以∠CBE =∠BAC =60°.因为BE =2,BC =4,由余弦定理得EC =2 3.又BE 2=EC ·ED ,所以DE =233, 所以CD =EC -ED =23-233=433. 3.如图,已知点C 在圆O 的直径AB 的延长线上,CD 是圆O 的一条切线,D 为切点,点D 在AB 上的射影是点E ,CB =3BE .求证:(1)DB 是∠CDE 的平分线;(2)AE =2EB .证明 (1)连结AD ,∵AB 是圆O 的直径,∴∠DAB +∠DBA =90°,∵DE ⊥AB ,∴∠BDE +∠DBA =90°,∴∠DAB =∠BDE ,∵CD 切圆O 于点D ,∴∠CDB =∠DAB ,∴∠BDE =∠CDB ,∴DB 是∠CDE 的平分线.(2)由(1)可得DB 是∠CDE 的平分线,∴CD DE =CB BE=3,即CD =3DE .设BE =m (m >0),DE =x (x >0),则CB =3m ,CD =3x ,在Rt△CDE 中,由勾股定理可得(3x )2=x 2+(4m )2,则x =2m ,由切割线定理得CD 2=CB ·CA ,(32m )2=3m ·CA , CA =6m ,AB =3m ,AE =2m ,则AE =2EB .4.(2018·江苏海安中学质检)如图,在Rt△ABC 中,∠B =90°,它的内切圆分别与边BC ,CA ,AB 相切于点D ,E ,F ,连结AD ,与内切圆相交于另一点P ,连结PC ,PE ,PF ,已知PC ⊥PF ,求证:(1)PF FD =PD DC ;(2)PE ∥BC .证明 (1)连结DE ,则△BDF 是等腰直角三角形,于是∠FPD =∠FDB =45°,故∠DPC =45°.又∠PDC =∠PFD ,则△PFD ∽△PDC ,所以PF FD =PD DC.① (2)由∠AFP =∠ADF ,∠AEP =∠ADE ,知△AFP ∽△ADF ,△AEP ∽△ADE .于是,EP DE =AP AE =AP AF =FP DF . 故由①得EP DE =PD DC,②由∠EPD=∠EDC,结合②得,△EPD∽△EDC,从而△EPD也是等腰三角形.于是,∠PED=∠EPD=∠EDC,所以PE∥BC.。

高中数学第十一章 几何证明选讲(选修4-1)

高中数学第十一章 几何证明选讲(选修4-1)

第十一章⎪⎪⎪几何证明选讲(选修4-1)第一节 相似三角形的判定及有关性质1.平行线的截割定理 (1)平行线等分线段定理定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.推论1:经过三角形一边的中点与另一边平行的直线必平分第三边. 推论2:经过梯形一腰的中点,且与底边平行的直线平分另一腰. (2)平行线分线段成比例定理定理:三条平行线截两条直线,所得的对应线段成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例. 2.相似三角形的判定定理(1)判定定理1:两角对应相等,两三角形相似.(2)判定定理2:两边对应成比例且夹角相等,两三角形相似. (3)判定定理3:三边对应成比例,两三角形相似. 3.相似三角形的性质定理(1)性质定理:相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.(2)推论:相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方.4.直角三角形相似的判定定理(1)判定定理1:如果两个直角三角形有一个锐角对应相等,那么它们相似. (2)判定定理2:如果两个直角三角形的两条直角边对应成比例,那么它们相似. (3)判定定理3:如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.5.直角三角形射影定理直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项.[小题体验]1.(教材习题改编)如图,AB ∥EM ∥DC ,AE =ED ,EF ∥BC ,EF=12 cm ,则BC 的长为________ cm.解析:由⎭⎪⎬⎪⎫AB ∥EM ∥DC AE =ED ⇒E 为AD 中点,M 为BC 的中点, 又EF ∥BC ⇒EF =MC =12 cm. ∴BC =2MC =24 cm. 答案:242.(教材习题改编)如图,D ,E 分别是△ABC 的边AB ,AC 上的点,DE ∥BC 且ADDB=2,那么△ADE 与四边形DBCE 的面积比是________.解析:∵DE ∥BC ,∴△ADE ∽△ABC , ∴S △ADE S △ABC =AD 2AB 2. ∵AD DB =2,∴AD AB =23,∴S △ADE S △ABC =49,故S △ADE S 四边形DBCE =45. 答案:451.在使用平行线截割定理时易出现对应边的对应顺序混乱,导致错误. 2.在解决相似三角形的判定或应用时易出现对应边和对应角的对应失误.3.射影定理是直角三角形中的一个重要结论,其实质就是三角形的相似.但要注意满足直角三角形射影定理结论的三角形不一定是直角三角形,所以要搞清楚定理中的条件和结论之间的关系,不能乱用.[小题纠偏]1.(2016·鞍山模拟)如图,在▱ABCD 中,E 是BC 上一点,BE ∶EC =2∶3,AE 交BD 于点F ,则BF ∶FD 的值为________.解析:因为AD =BC ,BE ∶EC =2∶3, 所以BE ∶AD =2∶5,因为AD ∥BC , 所以BF ∶FD =BE ∶AD =2∶5, 所以BF ∶FD 的值为25.答案:252.如图,在Rt △ABC 中 ,∠BAC =90°,AD 是斜边BC 上的高,若AB ∶AC =2∶1,则AD ∶BC 为________.解析:设AC =k ,则AB =2k ,BC =5k , ∵∠BAC =90°,AD ⊥BC , ∴AC 2=CD ·BC , ∴k 2=CD ·5k ,∴CD =55k , 又BD =BC -CD =455k , ∴AD 2=CD ·BD =55k ·455k =45k 2, ∴AD =255k ,∴AD ∶BC =2∶5. 答案:2∶5考点一 平行线分线段成比例定理的应用(基础送分型考点——自主练透)[题组练透]1.如图,在梯形ABCD 中,AD ∥BC ,BD 与AC 相交于点O ,过点O 的直线分别交AB ,CD 于E ,F ,且EF ∥BC ,若AD =12,BC =20,求EF 的值.解:∵AD ∥BC , ∴OB OD =BC AD =2012=53, ∴OB BD =58.∵OE ∥AD ,∴OE AD =OB BD =58.∴OE =58AD =58×12=152,同理可求得OF =38BC =38×20=152,∴EF =OE +OF =15.2.如图,在△ABC 中,点D 是AC 的中点,点E 是BD 的中点,AE 交BC 于点F ,求BFFC 的值.解:如图,过点D 作DM ∥AF 交BC 于点M . ∵点E 是BD 的中点,∴在△BDM 中,BF =FM . 又点D 是AC 的中点, ∴在△CAF 中,CM =MF , ∴BF FC =BF FM +MC =12.[谨记通法]平行线分线段成比例定理及推论的应用的一个注意点及一种转化(1)一个注意点:利用平行线分线段成比例定理来计算或证明,首先要观察平行线组,再确定所截直线,进而确定比例线段及比例式,同时注意合比性质、等比性质的运用.(2)一种转化:解决此类问题往往需要作辅助的平行线,要结合条件构造平行线组,再应用平行线分线段成比例定理及其推论转化比例式解题.考点二 相似三角形的判定及性质 (重点保分型考点——师生共研)[典例引领]如图,在△ABC 中,AB =AC ,∠BAC =90°,D ,E ,F 分别在AB ,AC ,BC 上,AE =13AC ,BD =13AB ,且CF =13BC .求证:(1)EF ⊥BC ; (2)∠ADE =∠EBC . 证明:设AB =AC =3a , 则AE =BD =a ,CF =2a . (1)CE CB =2a 32a =23,CF CA =2a 3a =23. 又∠C 为公共角, 故△BAC ∽△EFC ,由∠BAC =90°,得∠EFC =90°, 故EF ⊥BC .(2)由(1)得EF =FC AC ·AB =2a , 故AE EF =a 2a =22,AD BF =2a 22a =22,∴AE EF =AD BF, ∴△ADE ∽△FBE , 所以∠ADE =∠EBC .[由题悟法]证明相似三角形的一般思路(1)先找两对内角对应相等.(2)若只有一个角对应相等,再判定这个角的两邻边是否对应成比例. (3)若无角对应相等,就要证明三边对应成比例.[即时应用]如图,已知在△ABC 中,D 是BC 边的中点,且AD =AC ,DE ⊥BC ,DE 与AB 相交于点E ,EC 与AD 相交于点F .(1)求证:△ABC ∽△FCD ;(2)若S △FCD =5,BC =10,求DE 的长.解:(1)证明:因为DE ⊥BC ,D 是BC 的中点,所以EB =EC ,所以∠B =∠BCE .又因为AD =AC ,所以∠ADC =∠ACB.所以△ABC ∽△FCD.(2)如图,过点A 作AM ⊥BC , 垂足为点M .因为△ABC ∽△FCD ,BC =2CD , 所以S △ABC S △FCD =⎝⎛⎭⎫BC CD 2=4.又因为S △FCD =5,所以S △ABC =20. 因为S △ABC =12BC ·AM ,BC =10,所以20=12×10×AM ,所以AM =4.因为DE ∥AM ,所以DE AM =BDBM . 因为DM =12DC =52,BM =BD +DM ,所以DE 4=55+52,解得DE =83.考点三 直角三角形中的射影定理 (重点保分型考点——师生共研)[典例引领]如图所示,CD 垂直平分AB ,点E 在CD 上,DF ⊥AC ,DG ⊥BE ,F ,G 分别为垂足.求证:AF ·AC =BG ·BE . 证明:因为CD 垂直平分AB , 所以∠ADC =∠BDC =90°,AD =D B.在Rt △ADC 中,因为DF ⊥AC , 所以AD 2=AF ·AC . 同理BD 2=BG ·BE . 所以AF ·AC =BG ·BE .[由题悟法]对射影定理的理解和应用(1)利用直角三角形的射影定理解决问题首先确定直角边与其射影.(2)要善于将有关比例式进行适当的变形转化,有时还要将等积式转化为比例式或将比例式转化为等积式,并且注意射影定理的其他变式.(3)注意射影定理与勾股定理的结合应用.[即时应用]在Rt △ACB 中,∠C =90°,CD ⊥AB 于D ,若BD ∶AD =1∶9,求tan ∠BCD 的值. 解:由射影定理得CD 2=AD ·BD , 又BD ∶AD =1∶9, 令BD =x ,则AD =9x (x >0). ∴CD 2=9x 2, ∴CD =3x .Rt △CDB 中,tan ∠BCD =BD CD =x 3x =13.1.如图,在四边形ABCD 中,EF ∥BC ,FG ∥AD ,求EF BC +FGAD 的值.解:由平行线分线段成比例定理得 EF BC =AF AC ,FG AD =FC AC ,故EF BC +FG AD =AF AC +FC AC =AC AC =1.2.如图,等边三角形DEF 内接于△ABC ,且DE ∥BC ,已知AH ⊥BC 于点H ,BC =4,AH =3,求△DEF 的边长.解:设DE =x ,AH 交DE 于点M ,显然MH 的长度与等边三角形DEF 的高相等,又DE ∥BC ,则DE BC =AM AH =AH -MH AH , 所以x4=3-32x 3=2-x 2,解得x =43.故△DEF 的边长为43.3.如图,M 是平行四边形ABCD 的边AB 的中点,直线l 过点M 分别交AD ,AC 于点E ,F ,交CB 的延长线于点N .若AE =2,AD =6,求AFAC的值. 解:∵AD ∥BC , ∴△AEF ∽△CNF , ∴AF CF =AE CN , ∴AF AF +CF =AEAE +CN.∵M 为AB 的中点,∴AE BN =AMBM =1,∴AE =BN , ∴AF AC =AF AF +CF =AE AE +BN +BC =AE 2AE +BC. ∵AE =2,BC =AD =6, ∴AF AC =22×2+6=15.4.如图,AD ,BE 是△ABC 的两条高,DF ⊥AB ,垂足为F ,交BE 于点G ,交AC 的延长线于H ,求证:DF 2=GF ·HF .证明:在△AFH 与△GFB 中, 因为∠H +∠BAC =90°, ∠GBF +∠BAC =90°,所以∠H =∠GBF .因为∠AFH =∠BFG =90°, 所以△AFH ∽△GFB , 所以HF BF =AF GF , 所以AF ·BF =GF ·HF .因为在Rt △ABD 中,FD ⊥AB , 所以DF 2=AF ·BF . 所以DF 2=GF ·HF .5.(2016·大连模拟)如图,已知D 为△ABC 中AC 边的中点,AE ∥BC ,ED 交AB 于G ,交BC 延长线于F ,若BG ∶GA =3∶1,BC =8,求AE 的长.解:因为AE ∥BC ,D 为AC 的中点, 所以AE =CF ,AE BF =AG BG =13.设AE =x ,又BC =8, 所以x x +8=13,所以x =4. 所以AE =4.6.(2016·大连模拟)如图,在△ABC 中,D 是AC 的中点,E 是BD 的中点,AE 的延长线交BC 于F .(1)求BFFC 的值;(2)若△BEF 的面积为S 1,四边形CDEF 的面积为S 2,求S 1∶S 2的值. 解:(1)过点D 作DG ∥BC ,并交AF 于点G ,因为E 是BD 的中点,所以BE =DE . 又因为∠EBF =∠EDG ,∠BEF =∠DEG , 所以△BEF ≌△DEG ,则BF =DG , 所以BF ∶FC =DG ∶FC .又因为D 是AC 的中点,则DG ∶FC =1∶2, 则BF ∶FC =1∶2,即BF FC =12.(2)若△BEF 以BF 为底,△BDC 以BC 为底, 则由(1)知BF ∶BC =1∶3,又由BE ∶BD =1∶2,可知h 1∶h 2=1∶2, 其中h 1,h 2分别为△BEF 和△BDC 的高, 则S △BEF S △BDC =13×12=16, 则S 1∶S 2=1∶5. 故S 1∶S 2的值为15.7.如图,在△ABC 中,AB =AC ,过点A 的直线与其外接圆交于点P ,交BC 的延长线于点D.(1)求证:PC AC =PDBD ;(2)若AC =3,求AP ·AD 的值.解:(1)证明:因为∠CPD =∠ABC ,∠PDC =∠PDC , 所以△DPC ∽△DBA ,所以PC AB =PD BD . 又AB =AC ,所以PC AC =PD BD. (2)因为∠ABC +∠APC =180°,∠ACB +∠ACD =180°, ∠ABC =∠ACB , 所以∠ACD =∠APC .又∠CAP =∠DAC ,所以△APC ∽△ACD , 所以AP AC =AC AD. 所以AP ·AD =AC 2=9.8.△ABC 中,D ,E ,F 分别是BC ,AB ,AC 上的点,AD ,EF 交于点P ,若BD =DC ,AE =AF .求证:AB AC =PF PE .证明:过F 作MN ∥AD 交BA 的延长线及DC 于M ,N .对△MEF ,有PF PE =AMAE ,因为AE =AF ,所以PF PE =AM AF. 对△MBN ,有AB AM =BDDN , 因为BD =DC ,所以AB AM =DCDN . 对△ADC ,有AC AF =DC DN ,所以AB AM =ACAF . 所以AB AC =AM AF ,所以AB AC =PF PE .第二节 直线与圆的位置关系1.圆周角(1)定理:圆上一条弧所对的圆周角等于它所对的圆心角的一半. (2)推论1:①同弧或等弧所对的圆周角相等; ②同圆或等圆中,相等的圆周角所对的弧也相等. (3)推论2:①半圆(或直径)所对的圆周角是直角; ②90°的圆周角所对的弦是直径. 2.圆的切线(1)判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. (2)性质定理:圆的切线垂直于经过切点的半径.(3)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.3.弦切角定理及其推论(1)定理:弦切角等于它所夹的弧所对的圆周角. (2)推论:弦切角的度数等于它所夹的弧的度数的一半. 4.圆中的比例线段(1)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.(2)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.[小题体验]1.(教材习题改编)如图,已知AB ,BC 是⊙O 的两条弦,AO ⊥BC ,AB =3,BC =22,则⊙O 的半径等于________.解析:设垂足为D ,⊙O 的半径等于R , ∵AB ,BC 是⊙O 的两条弦, AO ⊥BC ,AB =3,BC =22, ∴AD =1,∴R 2=2+(R -1)2, ∴R =1.5.故⊙O 的半径为1.5. 答案:1.52.如图,AC 为⊙O 的直径,OB ⊥AC ,弦BN 交AC 于点M .若OC =3,OM =1,则MN 的长为________.解析:由题意得: CM =CO +OM =3+1, AM =AO -OM =3-1, BM 2=OB 2+OM 2=4,BM =2, 根据相交弦定理有CM ·AM =BM ·MN ,代入数值可解得MN =CM ·AM BM =(3+1)(3-1)2=1.答案:13.如图,⊙O 的直径AB =6 cm ,P 是AB 延长线上的一点,过P 点作⊙O 的切线,切点为C ,连接AC ,若∠CPA =30°,PC =________ cm.解析:连接OC ,则OC ⊥PC .又OC =3,∠CPA =30°, ∴CP =OCtan 30°=3 3.答案:3 31.解决圆周角、圆心角及弦切角问题时,角之间关系易于混淆导致错误.2.使用相交弦定理与切割线定理时,注意对应线段成比例及相似三角形知识的应用.[小题纠偏]1.如图所示,CD 是圆O 的切线,切点为C ,点B 在圆O 上,BC =2,∠BCD =30°,则圆O 的面积为________.解析:设圆O的半径为r,过B作⊙O的直径BA,连接AC,则∠ACB=90°.又由弦切角定理得∠CAB=∠BCD=30°,∴AB=2BC=4.∴r=2,∴S=πr2=4π.答案:4π2.如图所示,已知⊙O的割线PAB交⊙O于A,B两点,割线PCD经过圆心,若PA=3,AB=4,PO=5,则⊙O的半径为________.解析:设⊙O的半径为r.由割线定理得PA·PB=PC·PD,3×7=(PO-r)(PO+r),即21=25-r2,∴r2=4,∴r=2.答案:2考点一圆周角、弦切角和圆的切线问题(基础送分型考点——自主练透)[题组练透]1.(2016·黄冈模拟)已知点C在圆O的直径BE的延长线上,直线CA与圆O相切于A,∠ACB的平分线分别交AB,AE于D,F两点,求∠AFD的大小.解:因为AC为圆O的切线,由弦切角定理,得∠B=∠EAC.又因为CD平分∠ACB,则∠ACD=∠BCD,所以∠B+∠BCD=∠EAC+∠ACD.根据三角形外角定理,∠ADF=∠AFD.因为BE是圆O的直径,则∠BAE=90°,所以△ADF是等腰直角三角形.所以∠ADF=∠AFD=45°.2.(2015·广东高考改编)如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于点D和点P,求OD的长.解:由题意得OP =12BC =12,OA =2,于是PA =CP =22-⎝⎛⎭⎫122=152. 因为∠DCP =∠B =∠POA ,又∠DPC =∠APO ,所以△DCP ∽△AOP , 故PD PA =PCPO, 即PD =15212×152=152,所以OD =152+12=8.[谨记通法]1.圆周角定理及其推论与弦切角定理及其推论多用于推出角的关系,从而证明三角形全等或相似,可求线段或角的大小.2.涉及圆的切线问题时要注意弦切角的转化;关于圆周上的点,常作直径(或半径)或向弦(弧)两端作圆周角或弦切角.考点二 圆内接四边形的性质及判定 (重点保分型考点——师生共研)[典例引领](2016·昆明模拟)如图所示,已知D 为△ABC 的BC 边上一点,⊙O 1经过点B ,D ,交AB 于另一点E ,⊙O 2经过点C ,D ,交AC 于另一点F ,⊙O 1与⊙O 2的另一交点为G .(1)求证:A ,E ,G ,F 四点共圆;(2)若AG 切⊙O 2于G ,求证:∠AEF =∠ACG . 证明:(1)如图,连接GD ,四边形BDGE ,四边形CDGF 分别内接于⊙O 1,⊙O 2, ∴∠AEG =∠BDG , ∠AFG =∠CDG ,又∠BDG +∠CDG =180°, ∴∠AEG +∠AFG =180°,∴A,E,G,F四点共圆.(2)∵A,E,G,F四点共圆,∴∠AEF=∠AGF,∵AG与⊙O2相切于点G,∴∠AGF=∠ACG,∴∠AEF=∠ACG.[由题悟法]证明四点共圆的常用方法(1)若四个点到一定点等距离,则这四个点共圆.(2)若一个四边形的一组对角的和等于180°,则这个四边形的四个顶点共圆.(3)若一个四边形的一个外角等于它的内对角,则这个四边形的四个顶点共圆.(4)若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆.[即时应用](2016·吉林实验中学)如图,圆周角∠BAC的平分线与圆交于点D,过点D的切线与弦AC的延长线交于点E,AD交BC于点F.(1)求证:BC∥DE;(2)若D,E,C,F四点共圆,且AC=BC,求∠BAC.解:(1)证明:因为DE为圆的切线,所以∠EDC=∠DAC.又因为∠DAC=∠DAB,∠DAB=∠DCB,所以∠EDC=∠DCB,所以BC∥DE.(2)因为D,E,C,F四点共圆,所以∠CFA=∠CED,由(1)知∠ACF=∠CED,所以∠CFA=∠ACF.设∠DAC=∠DAB=x,因为AC=BC,所以∠CBA=∠BAC=2x,所以∠CFA=∠FBA+∠FAB=3x,在等腰△ACF中,180°=∠CFA+∠ACF+∠CAF=7x,则x≈25.7°,所以∠BAC=2x≈51.4°.考点三 与圆有关的比例线段 (重点保分型考点——师生共研)[典例引领](2015·陕西高考)如图,AB 切⊙O 于点B ,直线AO 交⊙O 于D ,E 两点,BC ⊥DE ,垂足为C .(1)证明:∠CBD =∠DBA;(2)若AD =3DC ,BC =2,求⊙O 的直径. 解:(1)证明:因为DE 为⊙O 的直径, 所以∠BED +∠EDB =90°.又BC ⊥DE ,所以∠CBD +∠EDB =90°, 从而∠CBD =∠BED.又AB 切⊙O 于点B ,得∠DBA =∠BED , 所以∠CBD =∠DBA . (2)由(1)知BD 平分∠CBA , 则BA BC =ADCD=3. 又BC =2,从而AB =3 2. 所以AC =AB 2-BC 2=4, 所以AD =3.由切割线定理得AB 2=AD ·AE , 即AE =AB 2AD =6,故DE =AE -AD =3, 即⊙O 的直径为3.[由题悟法]与圆有关的比例线段解题思路(1)见到圆的两条相交弦就要想到相交弦定理. (2)见到圆的两条割线就要想到割线定理. (3)见到圆的切线和割线就要想到切割线定理.[即时应用]1.(2015·天津高考改编)如图,在圆O 中,M ,N 是弦AB 的三等分点,弦CD ,CE 分别经过点M ,N ,若CM =2,MD =4,CN =3,求线段NE 的长.解:由题意可得CM ·MD =AM ·MB , 则2×4=2AM 2,AM =2. 又CN ·NE =AN ·NB , 即3NE =4×2,解得NE =83.2.(2015·湖北高考改编)如图,PA 是圆的切线,A 为切点,PBC 是圆的割线,且BC =3PB ,求ABAC的值. 解:因为PA 是圆的切线, A 为切点,PBC 是圆的割线,由切割线定理,知PA 2=PB ·PC =PB (PB +BC ), 因为BC =3PB ,所以PA 2=4PB 2,即PA =2PB. 由弦切角定理,得∠PAB =∠PCA , 又∠APB =∠CPA ,故△PAB ∽△PCA , 所以AB AC =PB PA =12.1.(2015·重庆高考改编)如图,圆O 的弦AB ,CD 相交于点E ,过点A 作圆O 的切线与DC 的延长线交于点P ,若PA =6,AE =9,PC =3,CE ∶ED =2∶1,求BE 的长.解:由切割线定理,知PA 2=PC ·PD , 即62=3PD , 解得PD =12,所以CD =PD -PC =9, 所以CE =6,ED =3.由相交弦定理,知AE ·EB =CE ·ED ,即9BE =6×3,解得BE =2.2.(2016·兰州双基测试)如图,在正△ABC 中,点D ,E 分别在BC ,AC 上,且BD =13BC ,CE =13CA ,AD ,BE 相交于点P .求证:(1)P ,D ,C ,E 四点共圆; (2)AP ⊥CP .证明:(1)在正△ABC 中,由BD =13BC ,CE =13CA ,知:△ABD ≌△BCE ,∴∠ADB =∠BEC ,即∠ADC +∠BEC =180°, ∴P ,D ,C ,E 四点共圆.(2)连接DE ,在△CDE 中,CD =2CE ,∠ACD =60°, 由正弦定理知∠CED =90°,由P ,D ,C ,E 四点共圆知,∠DPC =∠DEC , ∴AP ⊥CP .3.(2016·陕西一检)如图,设AB 为⊙O 的任一条不与直线l 垂直的直径,P 是⊙O 与l 的公共点,AC ⊥l ,BD ⊥l ,垂足分别为C ,D ,且PC =PD.(1)求证:l 是⊙O 的切线;(2)若⊙O 的半径OA =5,AC =4,求CD 的长.解:(1)证明:连接OP , ∵AC ⊥l ,BD ⊥l , ∴AC ∥BD.又OA =OB ,PC =PD , ∴OP ∥BD ,从而OP ⊥l .∵点P 在⊙O 上,∴l 是⊙O 的切线. (2)由(1)可得OP =12(AC +BD ),∴BD =2OP -AC =10-4=6. 过点A 作AE ⊥BD ,垂足为E , 则BE =BD -AC =6-4=2. ∴在Rt △ABE 中,AE =AB 2-BE 2=102-22=4 6. ∴CD =4 6.4.(2015·全国卷Ⅰ)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC交⊙O 于点E .(1)若D 为AC 的中点,证明:DE 是⊙O 的切线; (2)若OA =3CE ,求∠ACB 的大小. 解:(1)证明:如图,连接AE ,由已知得AE ⊥BC ,AC ⊥AB. 在Rt △AEC 中,由已知得DE =DC ,故∠DEC =∠DCE . 连接OE ,则∠OBE =∠OEB. 又∠ACB +∠ABC =90°, 所以∠DEC +∠OEB =90°,故∠OED =90°,即DE 是⊙O 的切线. (2)设CE =1,AE =x .由已知得AB =23,BE =12-x 2. 由射影定理可得AE 2=CE ·BE , 所以x 2=12-x 2,即x 4+x 2-12=0. 解得x =3,所以∠ACB =60°.5.(2015·沈阳一模)如图所示,已知AB 为圆O 的直径,C ,D 是圆O 上的两个点,CE ⊥AB 于E ,BD 交AC 于G ,交CE 于F ,CF =FG .(1)求证:C 是劣弧BD 的中点; (2)求证:BF =FG .证明:(1)∵CF =FG ,∴∠CGF =∠FCG . ∵AB 是圆O 的直径,∴∠ACB =∠ADB =π2.∵CE ⊥AB ,∴∠CEA =π2.∵∠CBA =π2-∠CAB ,∠ACE =π2-∠CAB ,∴∠CBA =∠ACE .∵∠CGF =∠DGA ,∠DGA =∠ABC , ∴π2-∠DGA =π2-∠ABC , ∴∠CAB =∠DAC , ∴C 为劣弧BD 的中点.(2)∵∠GBC =π2-∠CGB ,∠FCB =π2-∠GCF ,∴∠GBC =∠FCB ,∴CF =FB ,∴BF =FG .6.(2016·贵州七校联考)如图,⊙O 1和⊙O 2的公切线AD 和BC 相交于点D ,A ,B ,C 为切点,直线DO 1交⊙O 1于E ,G 两点,直线DO 2交⊙O 2于F ,H 两点.(1)求证:△DEF ∽△DHG ;(2)若⊙O 1和⊙O 2的半径之比为9∶16,求DEDF 的值. 解:(1)证明:∵AD 是两圆的公切线, ∴AD 2=DE ·DG ,AD 2=DF ·DH , ∴DE ·DG =DF ·DH ,∴DE DH =DF DG , 又∵∠EDF =∠HDG , ∴△DEF ∽△DHG .(2)连接O 1A ,O 2A , ∵AD 是两圆的公切线, ∴O 1A ⊥AD ,O 2A ⊥AD , ∴O 1,A ,O 2共线,∵AD 和BC 是⊙O 1和⊙O 2的公切线, DG 平分∠ADB ,DH 平分∠ADC , ∴DG ⊥DH ,∴AD 2=O 1A ·O 2A .设⊙O 1和⊙O 2的半径分别为9x 和16x ,则AD =12x , ∵AD 2=DE ·DG ,AD 2=DF ·DH ,∴144x 2=DE (DE +18x ),144x 2=DF (DF +32x ), ∴DE =6x ,DF =4x , ∴DE DF =32.7.(2016·沈阳模拟)如图,已知圆O 1与圆O 2外切于点P ,直线AB 是两圆的外公切线,分别与两圆相切于A ,B 两点,AC 是圆O 1的直径,过C 作圆O 2的切线,切点为D.(1)求证:C ,P ,B 三点共线; (2)求证:CD =CA .证明:(1)连接PC ,PA ,PB ,BO 2,∵AC是圆O1的直径,∴∠APC=90°.连接O1O2必过点P,∵AB是两圆的外公切线,A,B为切点,∴设∠BAP=∠ACP=α,∴∠AO1P=2α.由于O1A⊥AB,O2B⊥AB,∴∠BO2P=π-2α,∴∠O2BP=α.又∠ABP+∠O2BP=90°,∴∠ABP+∠BAP=90°,∴C,P,B三点共线.(2)∵CD切圆O2于点D,∴CD2=CP·CB.在△ABC中,∠CAB=90°,又∵AP⊥BC,∴CA2=CP·CB,故CD=CA.8.(2015·全国卷Ⅱ)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=23,求四边形EBCF的面积.解:(1)证明:由于△ABC是等腰三角形,AD⊥BC,所以AD是∠CAB的平分线.又因为⊙O分别与AB,AC相切于点E,F,所以AE=AF,故AD⊥EF,从而EF∥BC.(2)由(1)知,AE=AF,AD⊥EF,故AD是EF的垂直平分线.又EF为⊙O的弦,所以O在AD上.连接OE,OM,则OE⊥AE.由AG等于⊙O的半径得AO=2OE,所以∠OAE =30°.因此△ABC 和△AEF 都是等边三角形. 因为AE =23,所以AO =4,OE =2.因为OM =OE =2,DM =12MN =3, 所以OD =1.于是AD =5,AB =1033. 所以四边形EBCF 的面积为12×⎝⎛⎭⎫10332×32-12×(23)2×32=1633.。

高考数学一轮复习 几何证明选讲 第1课时 相似三角形的判定及有关性质课件 理(选修41)

高考数学一轮复习 几何证明选讲 第1课时 相似三角形的判定及有关性质课件 理(选修41)
______第三边. •平推分论2:经过梯形一腰的中点,且与底边平行的直线_____
另一腰.
平分
• 2.平行线分线段成比例定理 • 三条平行线截两条直线,所得的___对__应线段成比例. • 推论:平行于三角形一边的直线截其他两边(或两边的延长
线)所得的对应线段成_______. • 3.相似三角形的判定 比例 • 判定定理1:两角对应_____,两三角形相似. • 判定定理2:两边对应___相__等___且夹角______,两三角形相 • 似判.定定理3:三边对应___成__比__例_,两三角形相相等似.
【解析】 (1)证明:∵OE∥BC, ∴AAEB=AAOC.又∠BAC=∠CAB,∴△EAO∽△BAC. ∴OBCE=AAEB,同理OBCF=DDCF. ∵AD∥EF∥BC,∴AABE=DDCF,∴OBCE=OBCF. ∴OE=OF.
(2)∵OE∥AD,∴BBOD=BBEA,∴△EBO∽△ABD. ∴OADE=BBOD,同理OBCE=AAOC. 又 AD∥BC,∴BBOD=CAOC,∴OADE+OBCE=CAOC+AAOC=1. • 【答案】 (1)略 (2)1
• 答案 6
解析 由直角三角形射影定理,得 AC2=AD·AB. ∴AB=AACD2=422=8,∴BD=AB-AD=8-2=6.
授人以渔
题型一 平行线分线成比例
例1 如图,在梯形 ABCD 中,AD∥BC,EF 经过梯形对角线 的交点 O,且 EF∥AD. (1)求证:OE=OF; (2)求OADE+OBCE的值.
即6-3x=3
x
,所以 3
x2-6x+9=0,解得
x=3.
(2)若△ADP∽△BCP,则ABDC=BAPP,
即 3
33=6-x x,解得 x=23.

2019-2020年高三数学一轮复习第十三篇几何证明选讲第2节直线与圆的位置关系课件理

2019-2020年高三数学一轮复习第十三篇几何证明选讲第2节直线与圆的位置关系课件理
第2节 直线与圆的位置关系
解析:由切割线定理得 PA2=PC·PD,
得 PD= PA 2 = 6 2 =12,
PC
3
所以 CD=PD-PC=12-3=9,即 CE+ED=9,
因为 CE∶ED=2∶1,所以 CE=6,ED=3.
由相交弦定理得 AE·EB=CE·ED,
即 9EB=6×3,得 EB=2.
所以 CH⊥AD.又 AB 为圆的直径,
所以∠ACB=90°,
所以 CB2=BH·BA. 因为∠BCF=∠CAB=∠D,
所以△BCF∽△BDC,所以 BC = BF
BD
BC
,
所以 BC2=BF·BD,所以 BH·BA=BF·BD.
审题点拨
关键点
所获信息
AC 是☉O1 的切线,割线 DE 与 AC 交于点 P
定义、定理 及推论
内容
定义 判定定理
如果一条直线与一个圆有唯一公共点,则这条直线叫做这 个圆的切线,公共点叫做切点 经过半径的外端并且 垂直于 这条半径的直线是圆的切线
性质定理
性质定理 的推论
圆的切线 垂直于 经过切点的半径 经过圆心且垂直于切线的直线必经过 切点 . 经过切点且垂直于切线的直线必经过 圆心 .
(2)若AB=4,AE=2,求CD的长.
【例 2】 (2015 沈阳一模)如图,已知 AB 是圆 O 的直径,C,D 是圆 O 上的两 个点,CE⊥AB 于 E,BD 交 AC 于 G,交 CE 于 F,CF=FG. (1)求证:C 是劣弧 BD的中点;
证明:(2)因为∠GBC= π -∠CGB,∠FCB= π -∠GCF, 22
(B)①②④
(C)③⑤
(D)①③⑤
解析:①错误,若弧不一样,则圆心角与圆周角的关系不确定;②错误,只有在同 圆或等圆中,相等的圆周角所对的弧才相等;③正确,可以推出等腰梯形的对角 互补,所以有外接圆;④错误,弦切角等于它所夹的弧所对的圆周角,所夹的弧 的度数等于该弧所对圆心角的度数,所以弦切角所夹弧的度数等于弦切角度 数的2倍;⑤正确,圆内接四边形ABCD的对角互补.

2011年高考试题解析数学(文科)分项版之专题16 选修系列:几何证明选讲

2011年高考试题解析数学(文科)分项版之专题16 选修系列:几何证明选讲

2011年高考试题解析数学(文科)分项版16 选修系列:几何证明选讲一、填空题:1. (2011年高考天津卷文科13)如图,已知圆中两条弦AB 与CD 相交于点F,E 是AB 延长线上一点,且,AF:FB:BE=4:2:1.若CE 与圆相切,则线段CE 的长为 .【解析】设AF=4x,BF==2x,BE=x,则由相交弦定理得:2DF AF FB =⋅,即282x =,即214x =,由切割线定理得:2CE EB EA =⋅=2774x =,所以CE =.2.(2011年高考广东卷文科15)(几何证明选讲选做题)如图4,在梯形ABCD 中,AB ∥CD ,AB =4,CD =2,E 、F 分别为AD 、BC 上点,且EF =3,EF ∥AB ,则梯形ABFE 与梯形EFCD 的面积比为.【答案】.75【解析】由题得EF 是梯形的中位线,75)43(21)32(21=∙+∙+=∴h hS S EFCDABFE 梯形梯形 3.(2011年高考陕西卷文科15) B.(几何证明选做题)如图,,,B D AE BC ∠=∠⊥090,ACD ∠=且6AB =,4AC =,12,AD =则AE =_______. 【答案】2【解析】:Rt ABE Rt ADC ≅ 所以AB AEAD AC=, 即64212AB AC AE AD ⨯⨯===二、解答题:4.(2011年高考江苏卷21)选修4-1:几何证明选讲(本小题满分10分) 如图,圆1O 与圆2O 内切于点A ,其半径分别为1r 与212()r r r >,21-A 第图圆1O 的弦AB 交圆2O 于点C (1O 不在AB 上), 求证::AB AC 为定值。

解析:考察圆的切线的性质、三角形相似的判定及其性质,容易题。

证明:由弦切角定理可得11212,O B r AB AO C AO B AC O C r∴== 5. (2011年高考全国新课标卷文科22)(本小题满分10分)选修4-1几何证明选讲 如图,D ,E 分别是AB,AC 边上的点,且不与顶点重合,已知AB AD n AC m AE ,,,==为方程0142=+-mn x x 的两根, (1) 证明 C,B,D,E 四点共圆;(2) 若6,4,90==︒=∠n m A ,求C,B,D,E 四点所在圆的半径。

高考数学大一轮复习配套课时训练:第十二篇 几何证明选讲 第2节 直线与圆的位置关系(含答案)

高考数学大一轮复习配套课时训练:第十二篇 几何证明选讲 第2节 直线与圆的位置关系(含答案)

第2节直线与圆的位置关系课时训练练题感提知能【选题明细表】A组填空题1.圆内接平行四边形一定是.解析:由于圆内接四边形对角互补,而平行四边形的对角相等,故该平行四边形的内角为直角,即该平行四边形为矩形.答案:矩形2.(2013珠海市5月高三综合)如图,圆内的两条弦AB,CD相交于圆内一点P,已知PA=4,PB=2,4PC=PD,则CD的长为.解析:根据相交弦定理:PA·PB=PC·PD,设PC=x,则PD=4x,所以2×4=4x2,解得x=,因此CD=PC+PD=5x=5.答案:53.(2013大朗中学高三1月测试)如图,PM为圆O的切线,T为切点, ∠ATM=,圆O的面积为2π,则PA= .解析:连接OT,∵圆O的面积为2π,∴OA=OT=.∵∠ATM=,∴∠TOP=,∴PO=2OT,∴PA=3OA=3.答案:34.(2013广州六校高三第四次联考)如图,在Rt△ABC中,斜边AB=12,直角边AC=6,如果以C为圆心的圆与AB相切于D,则☉C的半径长为.解析:连接C,D;则∠B=∠DCA=30°,在Rt△ADC中,CD=ACsin∠DAC,CD=6×=3.答案:35.如图所示,已知☉O的直径AB与弦AC的夹角为30°,过C点的切线与AB的延长线交于P,PC=5,则☉O的半径为.解析:连接OC,则OC⊥CP,∠POC=2∠CAO=60°,Rt△OCP中,PC=5,则OC===.答案:6.(2013华南师大附中高三综合测试)如图,已知P是☉O外一点,PD 为☉O的切线,D为切点,割线PEF经过圆心O,若PF=12,PD=4,则☉O的半径长为.解析:由PD2=PE·PF得PE===4,∴EF=PF-PE=8,∴☉O的半径r=4.答案:47.如图所示,四边形ABCD是☉O的内接四边形,延长BC到E,已知∠BCD∶∠ECD=3∶2,那么∠BOD等于.解析:由圆内接四边形的性质可知∠A=∠DCE,而∠BCD∶∠ECD=3∶2,故∠ECD=72°,即∠A=72°,故∠BOD=2∠A=144°.答案:144°8.(2013高新一中、交大附中、师大附中、西安中学(五校)高三第三次模拟)以Rt△ABC的直角边AB为直径的圆O交斜边AC于点E,点D 在BC上,且DE与圆O相切.若∠A=56°,则∠BDE= .解析:连接OE,因为∠A=56°,所以∠BOE=112°,又因为∠ABC=90°,DE与圆O相切,所以O、B、D、E四点共圆,所以∠BDE=180°-∠BOE=68°.答案:68°9.(2012年高考湖北卷)如图,点D在☉O的弦AB上移动,AB=4,连接OD,过点D作OD的垂线交☉O于点C,则CD的最大值为.解析:圆的半径一定,在Rt△ODC中解决问题.当D为AB中点时,OD⊥AB,OD最小,此时DC最大,所以DC最大值=AB=2.答案:210.(2012年高考陕西卷)如图所示,在圆O中,直径AB与弦CD垂直,垂足为E,EF⊥DB,垂足为F,若AB=6,AE=1,则DF·DB= .解析:由相交弦定理可知ED2=AE·EB=1×5=5,又由射影定理,得DF·DB=ED2=5.答案:511.(2012宝鸡市高三质检)已知PA是☉O的切线,切点为A,PA=2 cm,AC是☉O的直径,PC交☉O于点B,AB= cm,则△ABC的面积为cm2.解析:∵AC是☉O的直径,∴AB⊥PC,∴PB==1.∵PA是☉O的切线,∴PA2=PB·PC,∴PC=4,∴BC=3,∴S△ABC=AB·BC=(cm2).答案:12.(2013东阿一中调研)如图所示,AB是☉O的直径,P是AB延长线上的一点,过P作☉O的切线,切点为C,PC=2,若∠CAP=30°,则PB= .解析:连接OC,因为PC=2,∠CAP=30°,所以OC=2tan 30°=2,则AB=2OC=4,由切割线定理得PC2=PB·PA=PB·(PB+BA),解得PB=2.答案:2B组13.(2013年高考天津卷)如图所示,△ABC为圆的内接三角形,BD为圆的弦,且BD∥AC.过点A作圆的切线与DB的延长线交于点E,AD与BC 交于点F.若AB=AC,AE=6,BD=5,则线段CF的长为.解析:∵AE为圆的切线,∴由切割线定理,得AE2=EB·ED.又AE=6,BD=5,可解得EB=4.∵∠EAB为弦切角,且AB=AC,∴∠EAB=∠ACB=∠ABC.∴EA∥BC.又BD∥AC,∴四边形EBCA为平行四边形.∴BC=AE=6,AC=EB=4.由BD∥AC,得△ACF∽△DBF,∴==.又CF+BF=BC=6,∴CF=.答案:14.(2013年高考广东卷)如图,AB是圆O的直径,点C在圆O上,延长BC到D使BC=CD,过C作圆O的切线交AD于E.若AB=6,ED=2,则BC= .解析:连接OC,因CE是☉O的切线,所以OC⊥CE,即∠OCE=90°,又因AB是直径,所以∠ACB=∠ACD=90°,即∠OCA+∠ACE=∠ACE+∠ECD =90°,得∠OCA=∠DCE,又因OC=OA,所以∠OCA=∠OAC,则∠BAC=∠DCE,又因AC⊥BD,BC=CD,易证AB=AD,得∠ABC=∠ADC, 即∠ABC=∠CDE,所以△ABC∽△CDE,所以=,即BC2=AB·ED=12,所以BC=2.答案:2。

备战高考数学(精讲+精练+精析)专题13.1几何证明选讲试题文(含解析)

备战高考数学(精讲+精练+精析)专题13.1几何证明选讲试题文(含解析)

专题1 几何证明选讲(文科)【三年高考】1. 【2016高考天津】如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为__________.【答案】2.【2016高考新课标1卷】如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(I)证明:直线AB与O相切;(II)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【解析】(Ⅰ)设是的中点,连结,因为,所以,.在中,,即到直线的距离等于圆的半径,所以直线与⊙相切.(Ⅱ)因为,所以不是四点所在圆的圆心,设是四点所在圆的圆心,作直线.由已知得在线段的垂直平分线上,又在线段的垂直平分线上,所以.同理可证,.所以.3.【2016高考新课标2】如图,在正方形中,分别在边上(不与端点重合),且,过点作,垂足为.(Ⅰ) 证明:四点共圆;(Ⅱ)若,为的中点,求四边形的面积.4.【2016高考新课标3】如图,中的中点为,弦分别交于两点.(I)若,求的大小;(II)若的垂直平分线与的垂直平分线交于点,证明.【解析】(Ⅰ)连结,则.因为,所以,又,所以.又,所以,因此.(Ⅱ)因为,所以,由此知四点共圆,其圆心既在的垂直平分线上,又在的垂直平分线上,故就是过四点的圆的圆心,所以在的垂直平分线上,又也在的垂直平分线上,因此.5.【2015高考新课标2,】如图,为等腰三角形内一点,圆与的底边交于、两点与底边上的高交于点,与、分别相切于、两点.(Ⅰ)证明:;(Ⅱ)若等于的半径,且,求四边形的面积.【解析】(Ⅰ)由于是等腰三角形,,所以是的平分线.又因为分别与、相切于、两点,所以,故.从而.(Ⅱ)由(Ⅰ)知,,,故是的垂直平分线,又是的弦,所以在上.连接,,则.由等于的半径得,所以.所以和都是等边三角形.因为,所以,.因为,,所以.于是,.所以四边形的面积.6.【2015高考陕西,】如图,切于点,直线交于,两点,,垂足为.(I )证明:;(II )若,,求的直径.7.【2015高考新课标1】如图,AB是O的直径,AC是O的切线,BC交O于E.(Ⅰ)若D为AC的中点,证明:DE是O的切线;(Ⅱ)若,求∠ACB的大小.【解析】(Ⅰ)连结AE,由已知得,AE⊥BC,AC⊥AB,在Rt△AEC中,由已知得DE=DC,∴∠DEC=∠DCE,连结OE,∠OBE=∠OEB,∵∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE是圆O的切线. (Ⅱ)设CE=1,AE=,由已知得AB=,,由射影定理可得,,∴,解得=,∴∠ACB=60°.8.【2015高考湖南】如图,在圆中,相交于点的两弦,的中点分别是,,直线与直线相交于点,证明:(1);(2)【解析】(1)如图所示,∵,分别是弦,的中点,∴,,即,,,又四边形的内角和等于,故;(2)由(I)知,,,,四点共圆,故由割线定理即得9. 【2014高考辽宁第22题】如图,EP交圆于E、C两点,PD切圆于D,G为CE上一点且,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(Ⅰ)求证:AB为圆的直径;(Ⅱ)若AC=BD,求证:AB=ED.【解析】(Ⅰ)因为PD=PG,所以∠PDG=∠PGD. 由于PD为切线,故∠PDA=∠DBA, 又由于∠PGD=∠EGA,故∠DBA=∠EGA,所以∠DBA+∠BAD=∠EGA+∠BAD,从而∠BDA=∠PFA.由于AF垂直EP,所以∠PFA=90°,于是∠BDA=90°,故AB是直径.(Ⅱ)连接BC,DC.由于AB是直径,故∠BDA=∠ACB=90°,在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,从而Rt△BDA≌Rt△ACB,于是Rt△BDA与∠DAB=∠CBA.又因为∠DCB=∠DAB,所以∠DCB=∠CBA,故DC∥AB. 由于ED是直径,由(Ⅰ)得ED=AB.10. 【2014高考全国2第22题】如图,P是O外一点,PA是切线,A为切点,割线PBC与O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交O于点E.证明:(Ⅰ)BE=EC;(Ⅱ)AD DE=2【解析】(Ⅰ)连结AB,AC,由题意知PA=PD,故,因为,,,所以,从而,因此BE=EC. (Ⅱ)由切割线定理得:,因为,所以,,由相交弦定理得:===,所以等式成立.11. 【2014高考全国1第22题】如图,四边形是的内接四边形,的延长线与的延长线交于点,且.(Ⅰ)证明:;(Ⅱ)设不是的直径,的中点为,且,证明:为等边三角形.【三年高考命题回顾】纵观前三年各地高考试题, 高考对几何证明的考查,主要考查有关三角形相似、全等、面积、线段长度及角相等的求解及证明,以平行线等分线段定理,平行线截割定理,相似三角形的判定与性质定理,直角三角形射影定理,圆心角、圆周角定理,圆内接四边形的性质定理及判定定理,圆的割线定理,切割线定理,弦切角定理,相交弦定理等为主要考查内容,题目难度一般为中、低档,备考中应严格控制训练题的难度.【2017年高考复习建议与高考命题预测】由前三年的高考命题形式可以看出, 高考对这部分要求不是太高,要求会以圆为几何背景,利用直角三角形射影定理,圆周角定理、圆的切线的判定定理及性质定理,相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理证明三角形相似,全等,求线段长等,预测2017年高考还会以圆为几何背景,考查相交线定理,切割线定理,以及圆内接四边形的性质定理与判定定理,考查学生的数形结合的能力.“几何证明选讲”是选修系列4的一个专题,该专题在高考中只考查“相似三角形”和“圆”这两部分平面几何内容,且与另三个选修4的专题一起命题,供考生选择作答.其核心内容为:线段成比例与相似三角形,圆的切线及其性质,与圆有关的相似三角形等.对同学们来说,“几何证明选讲”是初中所学知识的深化,因而倍感亲切.试题题型为解答题,且难度不大.题型以比例问题为主,平行线分线段成比例定理、相似形、角平分线定理、直角三角形中的射影定理、圆中的割线定理、切割线定理和相交弦定理等,都涉及线段成比例,因此比例问题是本专题中所占比重最大的题型.解决这类问题,主要方法就是设法利用上述定理,并灵活变形.复习建议:圆内接四边形的重要结论:内接于圆的平行四边形是矩形;内接于圆的菱形是正方形;内接于圆的梯形是等腰梯形.应用这些性质可以大大简化证明有关几何题的推证过程.与圆有关的比例线段的证明要诀:相交弦、切割线定理是法宝,相似三角形中找诀窍,联想射影定理分角线,辅助线来搭桥,第三比作介绍,代数方法不可少,分析综合要记牢,十有八九能见效.【2017年高考考点定位】几何证明选讲的内容涉及的考点可归纳为:①相似三角形的定义与性质;②平行线截割定理;③直角三角形射影定理;④圆周角与圆心角定理;⑤圆的切线的判定定理及性质定理;⑥弦切角的性质;⑦相交弦定理;⑧圆内接四边形的性质定理和判定定理;⑨切割线定理.【考点1】相似三角形的判定与性质【备考知识梳理】1.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.推论1:经过三角形一边的中点与另一边平行的直线必平分第三边.推论2:经过梯形一腰的中点,且与底边平行的直线平分另一腰.2.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.3.相似三角形的判定与性质(1)判定定理:结论相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方射影定理直角三角形中,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项;斜边上的高是两条直角边在斜边上的射影的比例中项【规律方法技巧】1.判定两个三角形相似的常规思路(1)先找两对对应角相等;(2)若只能找到一对对应角相等,则判断相等的角的两夹边是否对应成比例;(3)若找不到角相等,就判断三边是否对应成比例,否则考虑平行线分线段成比例定理及相似三角形的“传递性”.2.借助图形判断三角形相似的方法(1)有平行线的可围绕平行线找相似;(2)有公共角或相等角的可围绕角做文章,再找其他相等的角或对应边成比例;(3)有公共边的可将图形旋转,观察其特征,找出相等的角或成比例的对应边.3.比例线段常用平行线产生,利用平行线转移比例是常用的证题技巧,当题中没有平行线条件而有必要转移比例时,也常添加辅助平行线,从而达到转移比例的目的.4.判定两个三角形相似要注意结合图形特征灵活选择判定定理,特别要注意对应角和对应边.在一个题目中,相似三角形的判定定理和性质定理可能多次用到.相似三角形的性质可用来证明线段成比例、角相等;也可间接证明线段相等.5..在使用直角三角形射影定理时,要学会将“乘积式”转化为相似三角形中的“比例式”.证题时,要注意作垂线构造直角三角形是解直角三角形时常用的方法.6.相似关系的证明中,经常要应用比例的性质:若,则①;②;③;④;⑤;⑥.7.辅助线作法:几何证明题的一个重要问题就是作出恰当的辅助线,相似关系的基础就是平行截割定理,故作辅助线的主要方法就是作平行线,见中点取中点连线利用中位线定理,见比例点取等比的分点构造平行关系,截取等长线段构造全等关系,立体几何中通过作平行线或连结异面直线上的点化异为共等等都是常用的作辅助线方法.【考点针对训练】1.【2016届河南省郑州一中高三考前冲刺四】如图所示,已知圆O外有一点P,作圆O的切线PM,M为切点,过PM的中点N作割线NAB,交圆O于A,B两点,连接PA并延长,交圆O于点C,连接PB交圆O于点D,若MC=BC.(1)求证:△APM△ABP;(2)求证:四边形PMCD是平行四边形.2.【2016年山西省右玉一中高考冲刺压轴卷三】如图,已知⊙和⊙相交于两点,为⊙的直径,直线交⊙于点,点为弧中点,连结分别交⊙、于点,连结.(Ⅰ)求证:;(Ⅱ)求证:.【解析】(Ⅰ)连结,∵为⊙的直径,∴,∵为⊙的直径,∴,∵,∴,∵为弧中点,∴,∵,∴,∴,∴,∴.(Ⅱ)由(Ⅰ)知,,∴,∴,由(Ⅰ)知,∴.【考点2】圆的有关问题【备考知识梳理】1.圆周角定理(1)圆周角:顶点在圆周上且两边都与圆相交的角.(2)圆周角定理:圆上一条弧所对的圆周角等于它所对的圆心角的一半.(3)圆心角定理:圆心角的度数等于它所对弧的度数.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.2.圆内接四边形的性质与判定定理(1)性质:定理1:圆内接四边形的对角互补.定理2:圆内接四边形的外角等于它的内角的对角.(2)判定:判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆.推论:如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆.另外:若两点在一条线段同侧且对该线段张角相等,则此两点与线段两个端点共圆,特别的,对定线段张角为直角的点共圆.3.圆的切线(1)直线与圆的位置关系直线与圆交点的个数直线到圆心的距离d与圆的半径r的关系相交两个d<r相切一个d=r相离无d>r性质定理:圆的切线垂直于经过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点.推论2:经过切点且垂直于切线的直线必经过圆心.判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.(3)切线长定理:从圆外一点引圆的两条切线长相等.3.弦切角(1)弦切角:顶点在圆上,一边与圆相切,另一边与圆相交的角.(2)弦切角定理及推论①定理:弦切角的度数等于所夹弧的度数的一半.②推论:同弧(或等弧)上的弦切角相等,同弧(或等弧)上的弦切角等于它所夹的弧所对的圆周角. 4.与圆有关的比例线段定理名称基本图形条件结论应用相交弦定理弦AB、CD相交于圆内点P(1)PA·PB=PC·PD;(2)△ACP∽△DBP(1)在PA、PB、PC、PD四线段中知三求一;(2)求弦长及角切割线定理PA切⊙O于A,PBC是⊙O的割线(1)PA2=PB·PC;(2)△PAB∽△PCA(1)已知PA、PB、PC知二可求一;(2)求解AB、AC割线定理PAB、PCD是⊙O的割线(1)PA·PB=PC·PD;(2)△PAC∽△PDB(1)求线段PA、PB、PC、PD及AB、CD;(2)应用相似求AC、BD(1)(2)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.(4)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.【规律方法技巧】1. 与圆有关的比例线段: (1)应用相交弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关的相似三角形等.(2)相交弦定理、切割线定理主要是用于与圆有关的比例线段的计算与证明.解决问题时要注意相似三角形知识及圆周角、弦切角、圆的切线等相关知识的综合应用.(3)相交弦定理、切割线定理、割线定理、切线长定理统称为圆幂定理:圆的两条弦或其延长线若相交,各弦被交点分成的两条线段长的积相等.当两交点在圆内时为相交弦定理,当两交点在圆外时为割线定理,两交点重合时为切线,一条上两点重合时为切割线定理,两条都重合时为切线长定理,应用此定理一定要分清两条线段是指哪两条.2. 弦切角定理及推论的应用(1)圆周角定理及其推论与弦切角定理及其推论多用于推出角的关系,从而证明三角形全等或相似,可求线段或角的大小.(2)涉及圆的切线问题时要注意弦切角的转化;关于圆周上的点,常作直线(或半径)或向弦(弧)两端画圆周角或作弦切角.3. 证明多点共圆,当两点在一条线段同侧时,可证它们对此线段张角相等,也可以证明它们与某一定点距离相等;如两点在一条线段异侧,则证明它们与线段两端点连成的凸四边形对角互补.4.涉及圆的切线问题时要注意弦切角的转化;关于圆周上的点,常作直径(或半径)或向弦(弧)两端画圆周角或作弦切角.5.一般地,涉及圆内两条相交弦时首先要考虑相交弦定理,涉及两条割线时要想到割线定理,涉及切线和割线时要注意应用切割线定理,要注意相交弦定理中线段之间的关系与切割线定理线段关系之间的区别.6.在平面几何的有关计算中往往要使用比例线段,产生比例线段的一个主要根据是两三角形相似.在涉及两圆的公共弦时,通常是作出两圆的公共弦.如果有过公共点的切线就可以使用弦切角定理.在两个圆内实现角的等量代换,这是解决两个圆相交且在交点处有圆的切线问题的基本思考方向.【考点针对训练】1.【2016届湖北七市教研协作体高三4月联考】已知中,,是外接圆劣弧上的点(不与点重合),延长至,延长至.(1)求证:;(2)若,中边上的高为,求外接圆的面积.2.【2016届陕西省高三下学期教学质检二】如图,已知圆与相交于两点,过点作圆的切线交圆于点,过点作两圆的割线,分别交圆、圆于点、,与相交于点. (Ⅰ)求证:;(Ⅱ)若是圆的切线,且,求的长.【解析】(Ⅰ)连接.∵是圆的切线,∴.又∵,∴,∴.(Ⅱ)证明:设,∵,∴.又∵,∴,∴.又∵,联立上述方程得到,∴.∵是圆的切线,∴.∴.【应试技巧点拨】1.辅助线作法:几何证明题的一个重要问题就是作出恰当的辅助线,相似关系的基础就是平行截割定理,故作辅助线的主要方法就是作平行线,见中点取中点连线利用中位线定理,见比例点取等比的分点构造平行关系,截取等长线段构造全等关系,立体几何中通过作平行线或连结异面直线上的点化异为共等等都是常用的作辅助线方法.2.比例的性质的应用相似关系的证明中,经常要应用比例的性质:若,则①;②;③;④;⑤;⑥.3.同一法:先作出一个满足命题结论的图形,然后证明图形符合命题已知条件,确定所作图形与题设条件所指的图形相同,从而证明命题成立.4.证明多点共圆,当两点在一条线段同侧时,可证它们对此线段张角相等,也可以证明它们与某一定点距离相等;如两点在一条线段异侧,则证明它们与线段两端点连成的凸四边形对角互补.5.与圆有关的比例线段(1)应用相交弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关的相似三角形等.(2)相交弦定理、切割线定理主要是用于与圆有关的比例线段的计算与证明.解决问题时要注意相似三角形知识及圆周角、弦切角、圆的切线等相关知识的综合应用.二年模拟1. 【2016年山西榆林高三二次模考】如图所示,在中,是的平分线,的外接圆交于点,.(1)求证:;(2)当时,求的长.2. 【2016年湖北八校高三四次联考】如图,在锐角三角形中,,以为直径的圆与边另外的交点分别为,且于.(Ⅰ)求证:是的切线;(Ⅱ)若,,求的长.【解析】(Ⅰ)连结则又,∴为的中点,而为中点,∴,又,∴,而是半径,∴是的切线.(Ⅱ)连,则,则,∴,设,则,由切割线定理得:,即,解得:(舍),∴EFDOC BA3. 【2016年安徽安庆二模】如图,以的边为直径作圆,圆与边的交点恰为边的中点,过点作于点.(I )求证:是圆的切线;(II )若,求的值.【解析】(Ⅰ)如图,连接.因为是的中点,是的中点,所以//.因为,所以,所以是⊙的切线. (Ⅱ)因为是⊙的直径,点在⊙上,所以. 又是的中点,所以. 故.因为,所以. 在直角三角形中,;在直角三角形中,. 于是.4.【2016年江西高三九校联考】如图所示,为的直径,为的中点,为的中点.(1)求证:;(2)求证:.5. 【2016年安徽淮北一中高三模考】如图,是圆上的两点,为圆外一点,连结分别交圆于点,且,连结并延长至,使.(1)求证:;(2)若,且,求.【解析】(1)连结,因为,又因为,所以,所以,由已知,所以,且,所以,所以.(2)因为,所以,则,所以,又因为,所以,所以,所以.6. 【2016年江西南昌高三一模】如图,圆M与圆N交于A, B两点,以A为切点作两圆的切线分别交圆M和圆N于C、D两点,延长DB交圆M于点E,延长CB交圆N于点F.已知BC=5, DB=10. (I)求AB的长;(II)求.【解析】(Ⅰ)根据弦切角定理,知,,∴△∽△,则,故.(Ⅱ)根据切割线定理,知,,两式相除,得(*).由△∽△,得,,又,由(*)得.7. 【2016年河南八市高三三模】已知,内接于圆,延长到点,使得交圆于点.(1)求证:;(2)若,求证:.【解析】(1)如图,连结..又(2)8.【2016届河北省石家庄市高三二模】如图,内接于⊙,,弦交线段于,为的中点,在点处作圆的切线与线段的延长线交于,连接.(I)求证:;(II)若,⊙的半径为,求切线的长.【解析】(I)证明:在中,弦相交于E,,又E为AC的中点,所以,又因为,,根据射影定理可得,;(II)因为为直径,所以,又因为,所以为等腰直角三角形.,根据勾股定理得,解得,所以,由(I)得所以,所以.9.【2016届陕西省高三高考全真模拟四】如下图,是圆的两条互相垂直的直径,是圆上的点,过点作圆的切线交的延长线于.连结交于点.(1)求证:;(2)若圆的半径为,求的长.【解析】(1)证明:连接,由弦切角定理知,又,即.由切割线定理得,所以.(2)由知,.在中,由得,.在中,由得,于是.10.【2016届山西右玉一中高三下学期模拟】已知如图,四边形是圆的内接四边形,对角线交于点,直线是圆的切线,切点为,.(1)若,求的长;(2)在上取一点,若,求的大小.11. 【2015届陕西西安西北工大附中高三下学期5月模拟】如图,和相交于A,B两点,过A 作两圆的切线分别交两圆于两点,连结并延长交于点.证明:(Ⅰ);(Ⅱ).【解析】(1)由与相切于,得,同理,所以从而,即(2)由与相切于,得,又,得从而,即,综合(1)的结论,12.【2015届陕西省西工大附中高三下学期模拟考试一】如图,⊙的直径的延长线与弦的延长线相交于点,为⊙上一点,AE=AC ,交于点,且,(Ⅰ)求的长度.(Ⅱ)若圆F 与圆内切,直线PT与圆F切于点T,求线段PT的长度【解析】(Ⅰ)连结,由同弧对应的圆周角与圆心角之间的关系结合题中条件弧长等于弧长可得,又,,从而,故∽,∴, 由割线定理知,故.(Ⅱ)若圆F 与圆内切,设圆的半径为,因为即,所以是圆的直径,且过点圆的切线为,则,即.13.【2015届吉林省吉林市高三第三次模拟考试】如图,在△ABC 中,,以为直径的⊙O 交于,过点作⊙O 的切线交于,交⊙O 于点.(Ⅰ)证明:是的中点;(Ⅱ)证明:.【解析】(Ⅰ)证明:连接,因为为⊙O 的直径,所以,又,所以CB切⊙O于点B ,且ED 切于⊙O 于点E ,因此,,所以,得,因此,即是的中点(Ⅱ)证明:连接BF ,可知BF 是△ABE 斜边上的高,可得△ABE ∽△AFB ,于是有,即,同理可证,所以.14.【2015届辽宁省师大附中高三模拟考试】如图,圆周角的平分线与圆交于点,过点的切线与弦的延长线交于点,交于点.(1)求证:;(2)若四点共圆,且弧与弧相等,求【解析】(1)因为与圆相切,,平方,所以,,所以(2)弧与弧相等,设,,,.15.【2015届陕西省西安市第一中学高三下学期自主命题二】如图,在中,是的角平分线,的外接圆交于点,.EDCA B(Ⅰ)求证:; (Ⅱ)当,时,求的长.【解析】(Ⅰ)连接,因为是圆内接四边形,所以又∽,即有,又因为,可得因为是的平分线,所以,从而(Ⅱ)由条件知,设,则,根据割线定理得,即即,解得或(舍去),则.EDCA B拓展试题以及解析 1. 如图,内接于⊙,弦AE 交BC 于点D ,已知,,OD =1,. (Ⅰ)求;(Ⅱ)求中BC 边上的高.【入选理由】本题主要考查平面几何的相关知识,同时考查考生的逻辑推理能力.高考对平面几何的考查主要是通过三角形全等或三角形相似进行边角转化,并综合运用圆的切割线定理、相交弦定理等 进行证明计算.以圆为背景是基本不变的,因而灵活应用圆的几何性质,找准有关的对应三角形、对应边和对应角是解题的关键.本题构思巧妙,难度不大,故选此题.2.如图,过圆外一点作圆的切线,切点为,割线、割线分别交圆于与、与.已知的垂直平分线与圆相切.(1)求证:;(2)若,,求的长.【解析】(1)证明:连结,∵与圆相切,∴.又为的垂直平分线,∴,∴,∴.(2)由(1)知且为的中点,∴为的中点,且,∴.∵为圆的切线,∴,∴,∴,∴.【入选理由】本题考查圆的切割线定理,弦切角定理等基础知识,意在考查逻辑思维能力和推理论证能力. 切割线定理、三角形相似、四点共圆的性质,是高考重点考查知识点,本题难度不大,故选此题.3.如图,直线AB过圆心O,交圆O于A、B,直线AF交圆O于F(不与B重合),直线与圆O相切于C,交AB于E,且与AF垂直,垂足为G,连接AC.求证:(Ⅰ);(Ⅱ).【证明】(Ⅰ)连接,是直径,,.切圆于,..(Ⅱ)连接,切圆于,.又∽..【入选理由】本题考查圆的弦切角定理、三角形相似等基础知识,意在考查逻辑思维能力和推理论证能力.本题由弦切角定理入手,得出三角形相似,从而可证,本题难度不大,故选此题.4.如图,是⊙的直径,是圆上两点,交于点,若,.(Ⅰ)求证:;(Ⅱ)求线段的长度.【入选理由】本题考查平面几何的证明,具体涉及圆的性质,四点共圆,割线定理等基础知识,意在考察学生推理证明和逻辑思维能力.本题考查知识基础,综合性强,是高考出题方向,故选此题.5.如图,圆内接四边形满足∥,在的延长线上,且. 若,.(Ⅰ)证明:;(Ⅱ)求的长.【解析】(Ⅰ)由知是圆的切线. ∴由弦切线角定理得,又,∴,∴;(Ⅱ)由(Ⅰ)知,又,∴∽,∴,又,,∴,∵,∴. 【入选理由】本题考查圆的切线的性质,圆內接四边形的性质,三角形相似等基础知识,意在考察学生推理证明和逻辑思维能力.本题考查知识基础,难度不大,故选此题.6.如图,点P是△ABC的外接圆O在C点的切线与直线AB的交点.(Ⅰ)若∠ACB=∠APC,证明:BC⊥PC;(Ⅱ)若D是圆O上一点,∠BPC=∠DAC,AC=,AB=,PC=4,求CD的长.【证明】(Ⅰ)由弦切角定理知,∠ABC=∠ACP,∵∠ACB=∠APC,∴△ACB∽△APC,∴∠BAC=∠CAP,∵∠BAC+∠CAP=,∴∠BAC=∠CAP=90°,∴BC是圆O的直径,又PC是圆O的切线,∴BC⊥PC. (Ⅱ)由切割线定理知,,即,即,解得(负值舍去),由弦切角定理及同弧所对的圆周角相等知,∠ACP=∠ABC=∠CDA,∵∠BPC=∠DAC,∴△CAD∽△APC,∴,∴=.【入选理由】本题考查三角形相似的判定与性质、弦切角定理、切割线定理等基础知识,意在考查学生推理证明和逻辑思维能力.本题第一问由弦切角入手,得三角形相似,从而得结论,第二问由切割线定理入手,结合弦切角定理及同弧所对的圆周角相等,得三角形相似,像这种题型考查知识基础,综合性强,是高考出题方向,故选此题.7.如图所示,在四边形中,交于点,.(Ⅰ)求证:、、、四点共圆;(Ⅱ)过作四边形外接圆的切线交的延长线于,,求证:平分.【证明】(Ⅰ)∵,∴,,∵,, ∴,,∴=,=,=,=,∴=+++=+++==,∴、、、四点共圆;(Ⅱ)由弦切角定理可知:∠=∠,∵,∴∽,∴=,∵,∴=,∴=,∴=,∴=,∴=∠,∴平分.。

2015年高考数学专题十一:几何证明选讲

2015年高考数学专题十一:几何证明选讲

2015年高考数学专题十一:几何证明选讲(教师版含14年高考题)一、考纲要求(1)了解平行线截割定理,会证明并应用直角三角形摄影定理。

⑵会证明并应用圆周角定理,圆的切线的判定地理及性质定理。

⑶会证明并应用相交弦定理,圆内接四边形的性质定理与判定定理,切割线定理。

⑷了解平行投影的含义,通过援助与平面的位置关系了解平行投影;会证平面与圆柱面的截线是椭圆(特殊情形是圆)。

(5)了解下面定理。

定理:在空间中,取直线l为轴,直线l’与l相较于O,其夹角为α,l’围绕l旋转得到以O为顶点,l’为母线的圆锥面,任取平面π,若它与轴l交角为β(π与l平行,记β=0),则:①β>α,平面π与圆锥的交线为圆锥,②β=α,平面π与圆锥的交线为抛物线③β<α平面π与圆锥的交线为双曲线。

(6)会利用丹迪林(Dandelin)双球(如下面所示,这两个球位于圆锥内部,一个位于平面π的上方,一个位于平面π的下方,并且与平面π及圆锥面均相切,其切点分别为F,E)正面上述定理①的情形:当时α>β时,平面π与圆锥的相交线为椭圆。

(图中上,下两球与圆锥切面相切的切点分别为B和C,线段BC与平面π相交于A)(7)会证明以下结果:①在(6)中,一个丹迪林球与圆锥的交线为一个圆,并与圆锥的 底面平行,记这个圆所在平面为π’.②如果平面π与平面π’的交线为m ,在(5)①中椭圆上任取一点A ,该丹迪林球与平面π的切点为F ,则点A 到点F 的距离与点A 到直线m 的距离比是小于1的常熟e(称点F 为这个椭圆的焦点直线m 为椭圆的准线,常数e 为离心率)。

(8)了解定理(5)③中的证明,了解当β无线接近α时,平面π的极限结果。

二、高考试题感悟1、15.[2014·广东卷] (几何证明选讲选做题)如图1-1所示,在平行四边形ABCD 中,点E在AB 上且EB =2AE ,AC 与DE 交于点F ,则△CDF 的周长△AEF 的周长=________.图1-115.32、21.[2014·江苏卷] A .[选修4-1:几何证明选讲]如图1-7所示,AB 是圆O 的直径,C ,D 是圆O 上位于AB 异侧的两点.证明:∠OCB =∠D .图1-7证明:因为B ,C 是圆O 上的两点,所以OB =OC ,所以∠OCB =∠B .又因为C ,D 是圆O 上位于AB 异侧的两点,所以∠B ,∠D 为同弧所对的两个圆周角,所以∠B =∠D ,因此∠OCB =∠D .3、22.[2014·辽宁卷] 选修4-1:几何证明选讲图1-6如图1-6,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG 并延长交圆于点A,作弦AB垂直EP,垂足为F.(1)求证:AB为圆的直径;(2)若AC=BD,求证:AB=ED.22.证明:(1)因为PD=PG,所以∠PDG=∠PGD.由于PD为切线,故∠PDA=∠DBA.又由于∠PGD=∠EGA,故∠DBA=∠EGA,所以∠DBA+∠BAD=∠EGA+∠BAD,从而∠BDA=∠PF A.因为AF⊥EP,所以∠PF A=90°,所以∠BDA=90°,故AB为圆的直径.(2)连接BC,DC.由于AB是直径,故∠BDA=∠ACB=90°.在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,从而Rt△BDA≌Rt△ACB,所以∠DAB =∠CBA.又因为∠DCB=∠DAB,所以∠DCB=∠CBA,故DC∥AB.因为AB⊥EP,所以DC⊥EP,∠DCE为直角.所以ED为直径.又由(1)知AB为圆的直径,所以ED=AB.4、22.[2014·新课标全国卷Ⅱ] 选修4-1:几何证明选讲如图1-5,P是⊙O外一点,P A是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2P A,D为PC的中点,AD的延长线交⊙O于点E.证明:(1)BE=EC;(2)AD·DE=2PB2.图1-522.证明:(1)连接AB,AC.由题设知P A=PD,故∠P AD=∠PDA.因为∠PDA=∠DAC+∠DCA,∠P AD=∠BAD+∠P AB,∠DCA=∠P AB,所以∠DAC=∠BAD,从而BE=EC.因此BE=EC.(2)由切割线定理得P A2=PB·PC.因为P A=PD=DC,所以DC=2PB,BD=PB.由相交弦定理得AD·DE=BD·DC,所以AD·DE=2PB2.5、22.[2014·全国新课标卷Ⅰ] 选修4-1:几何证明选讲如图1-5,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.图1-5(1)证明:∠D=∠E;(2)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.22.证明:(1)由题设知A,B,C,D四点共圆,所以∠D=∠CBE.由已知得∠CBE=∠E,故∠D=∠E.(2)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,故点O在直线MN上.又AD不是⊙O的直径,M为AD的中点,故OM⊥AD,即MN⊥AD,所以AD∥BC,故∠A=∠CBE.又∠CBE=∠E,故∠A=∠E.由(1)知,∠D=∠E,所以△ADE为等边三角形.6、15.[2014·陕西卷]B.(几何证明选做题)如图1-3所示,△ABC中,BC=6,以BC为直径的半圆分别交AB,AC于点E,F,若AC=2AE,则EF=________.图1-315.37、7.[2014·天津卷] 如图1-1所示,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC于点E,过点B的圆的切线与AD的延长线交于点F.在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD·F A;③AE·CE=BE·DE;④AF·BD=AB·BF.则所有正确结论的序号是()A.①②B.③④C.①②③D.①②④7.D。

高考数学选修部分几何证明选讲第1讲相似三角形的判定及有关性质知能选修4_122-

高考数学选修部分几何证明选讲第1讲相似三角形的判定及有关性质知能选修4_122-

第1讲 相似三角形的判定及有关性质1.如图,AB ∥EM ∥DC ,AE =ED ,EF ∥BC ,EF =12 cm ,求BC 的长.解:⎭⎪⎬⎪⎫AB ∥EM ∥DC AE =ED ⇒E 为AD 的中点,M 为BC 的中点.又EF ∥BC ⇒EF =MC =12 cm , 所以BC =2MC =24 cm.2.在平行四边形ABCD 中,点E 在边AB 上,且AE ∶EB =1∶2,DE 与AC 交于点F ,若△AEF 的面积为6 cm 2,求△ABC 的面积.解:在平行四边形ABCD 中,AB 綊CD .因为AE ∶EB =1∶2,所以AE ∶DC =1∶3,所以△AEF 与△CDF 对应边AE 与DC 上的高的比为1∶3, 所以△AEF 与△ABC ,AE 与AB 边上的高的比为1∶4. 因为AE ∶AB =1∶3,所以S △AEF ∶S △ABC =1∶12,所以S △ABC =6×12=72(cm 2). 3.如图,在△ABC 中,D 是AC 的中点,E 是BC 延长线上一点,过A 作AH ∥BE .连接ED 并延长,交AB 于F ,交AH 于H .若AB =4AF ,EH =8,求DF 的长. 解:因为AH ∥BE ,所以HF HE =AF AB. 因为AB =4AF ,所以HF HE =14.因为HE =8,所以HF =2.因为AH ∥BE ,所以HD DE =AD DC. 因为D 是AC 的中点,所以HDDE=1.因为HE =HD +DE =8,所以HD =4. 所以DF =HD -HF =4-2=2.4.如图所示,在△ABC 中,AD 为BC 边上的中线,F 为AB 上任意一点,CF 交AD 于点E .求证:AE ·BF =2DE ·AF .证明:取AC 的中点M ,连接DM 交CF 于点N .在△BCF 中,D 是BC 的中点,DN ∥BF ,所以DN =12BF .因为DN ∥AF ,所以△AFE ∽△DNE , 所以AE AF =DE DN. 又因为DN =12BF ,所以AE AF =2DEBF,即AE ·BF =2DE ·AF . 5.如图,在△ABC 中,AB =AC ,AD 是中线,P 为AD 上一点,CF ∥AB ,BP 的延长线交AC 、CF 于E 、F 两点,求证:PB 2=PE ·PF . 证明:如图,连接PC .易证PC =PB ,∠ABP =∠ACP . 因为CF ∥AB , 所以∠F =∠ABP . 从而∠F =∠ACP .又∠EPC 为△CPE 与△FPC 的公共角,从而△CPE ∽△FPC ,所以CP FP =PE PC. 所以PC 2=PE ·PF .又PC =PB ,所以PB 2=PE ·PF . 6.已知在△ABC 中,D 是BC 边的中点,且AD =AC ,DE ⊥BC ,DE 与AB 相交于点E ,EC 与AD 相交于点F .(1)求证:△ABC ∽△FCD ;(2)若S △FCD =5,BC =10,求DE 的长.解:(1)证明:因为DE ⊥BC ,D 是BC 的中点,所以EB =EC ,所以∠B =∠1.又因为AD =AC ,所以∠2=∠ACB .所以△ABC ∽△FCD .(2)如图,过点A 作AM ⊥BC ,垂足为点M .因为△ABC ∽△FCD ,BC =2CD ,所以S △ABC S △FCD =⎝⎛⎭⎫BC CD 2=4.又因为S △FCD =5,所以S △ABC =20.因为S △ABC =12BC ·AM ,BC =10,所以20=12×10×AM ,所以AM =4.因为DE ∥AM ,所以DE AM =BD BM .因为DM =12DC =52,BM =BD +DM ,BD =12BC =5,所以DE 4=55+52,解得DE =83.。

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析1.(本小题满分10分)选修4-1:几何证明选讲如图,是圆的直径,是半径的中点,是延长线上一点,且,直线与圆相交于点、(不与、重合),与圆相切于点,连结,,.(Ⅰ)求证:;(Ⅱ)若,求.【答案】(Ⅰ)详见解析(Ⅱ)【解析】(Ⅰ)证明目标可看做线段成比例,即证明思路确定为证明三角形相似:利用切割线定理得:,又由与相似,得;所以(Ⅱ)由(1)知,,与相似,则,所以试题解析:(1)连接,,,为等边三角形,则,可证与相似,得;又,则(2)由(1)知,,与相似,则因为,所以【考点】三角形相似,切割线定理2.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系中,直线的参数方程为为参数),以该直角坐标系的原点为极点,轴的正半轴为极轴的极坐标系下,圆的方程为.(Ⅰ)求直线的普通方程和圆的圆心的极坐标;(Ⅱ)设直线和圆的交点为、,求弦的长.【答案】(Ⅰ)的普通方程为,圆心;(Ⅱ).【解析】(Ⅰ)消去参数即可将的参数方程化为普通方程,在直角坐标系下求出圆心的坐标,化为极坐标即可;(Ⅱ)求出圆心到直线的距离,由勾股定理求弦长即可.试题解析:(Ⅰ)由的参数方程消去参数得普通方程为 2分圆的直角坐标方程, 4分所以圆心的直角坐标为,因此圆心的一个极坐标为. 6分(答案不唯一,只要符合要求就给分)(Ⅱ)由(Ⅰ)知圆心到直线的距离, 8分所以. 10分【考点】1.参数方程与普通方程的互化;2.极坐标与直角坐标的互化.:的焦点,且抛物线3.(本题满分12分)如图,O为坐标原点,点F为抛物线C1C1上点P处的切线与圆C2:相切于点Q.(Ⅰ)当直线PQ的方程为时,求抛物线C1的方程;(Ⅱ)当正数变化时,记S1,S2分别为△FPQ,△FOQ的面积,求的最小值.【答案】(Ⅰ);(Ⅱ).【解析】第一问要求抛物线的方程,任务就是求的值,根据导数的几何意义,设出切点坐标,从而求得,再根据切点在切线上,得,从而求得,进而得到抛物线的方程,第二问根据三角形的面积公式,利用题中的条件,将两个三角形的面积转化为关于和切点横坐标的关系式,从而有,利用基本不等式求得最值.试题解析:(Ⅰ)设点,由得,,求导,……2分因为直线PQ的斜率为1,所以且,解得,所以抛物线C1的方程为.(Ⅱ)因为点P处的切线方程为:,即,根据切线又与圆相切,得,即,化简得,由,得,由方程组,解得,所以,点到切线PQ的距离是,所以,,所以,当且仅当时取“=”号,即,此时,,所以的最小值为.【考点】导数的几何意义,三角形的面积,基本不等式.4.(本小题满分12分)已知椭圆的左、右焦点分别为F1(-3,0),F2(3,0),直线y=kx与椭圆交于A、B两点.(Ⅰ)若三角形AF1F2的周长为,求椭圆的标准方程;(Ⅱ)若,且以AB为直径的圆过椭圆的右焦点,求椭圆离心率e的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)直接由题意和椭圆的概念可列出方程组,进而可求出椭圆的标准方程即可;(Ⅱ)首先设出点,然后联立直线与椭圆的方程并整理可得一元二次方程,进而由韦达定理可得,再结合可列出等式并化简即可得到等式,最后结合已知,即可求出参数的取值范围,进而得出椭圆离心率e的取值范围即可.试题解析:(Ⅰ)由题意得,得.结合,解得,.所以,椭圆的方程为.(Ⅱ)由得.设.所以,易知,,因为,,所以.即,将其整理为.因为,所以,即,所以离心率.【考点】1、椭圆的标准方程;2、直线与椭圆的相交综合问题;5.(本小题满分12分)椭圆()的上顶点为,是上的一点,以为直径的圆经过椭圆的右焦点.(1)求椭圆的方程;(2)动直线与椭圆有且只有一个公共点,问:在轴上是否存在两个定点,它们到直线的距离之积等于?如果存在,求出这两个定点的坐标;如果不存在,说明理由.【答案】(1);(2)存在两个定点,.【解析】(1)由题设可得①,又点P在椭圆C上,可得②,又③,由①③联立解得c,b2,即可得解.(2)设动直线l的方程为y=kx+m,代入椭圆方程消去y,整理得(﹡),由△=0,得,假设存在,满足题设,则由对任意的实数k恒成立.由即可求出这两个定点的坐标.试题解析:(1),,由题设可知,得①又点在椭圆上,,②③①③联立解得,,故所求椭圆的方程为(2)当直线的斜率存在时,设其方程为,代入椭圆方程,消去,整理得()方程()有且只有一个实根,又,所以,得假设存在,满足题设,则由对任意的实数恒成立,所以,解得,或当直线的斜率不存在时,经检验符合题意.总上,存在两个定点,,使它们到直线的距离之积等于.……12分【考点】1、直线与圆锥曲线的关系;2、椭圆的标准方程.【方法点晴】本题主要考查了椭圆的标准方程的解法,考查了直线与圆锥曲线的关系,综合性较强,属于中档题.处理直线与圆锥曲线的关系问题时,注意韦达定理的应用,同时还得特别注意直线斜率不存在时的情况的验证.6.直线被圆截得的弦长为()A.1B.2C.4D.【答案】C【解析】圆心,圆心到直线的距离,半径,所以最后弦长为.故选C.【考点】点到直线的距离.7.(本小题12分)己知、、是椭圆:()上的三点,其中点的坐标为,过椭圆的中心,且,。

【备战】高考数学 历届真题专题17 几何证明选讲 理

【备战】高考数学 历届真题专题17 几何证明选讲 理

历届真题专题【2011年高考试题】一、选择题:1.(2011年高考北京卷理科5)如图,AD,AE,BC分别与圆O切于点D,E,F,延长AF与圆O交于另一点G。

给出下列三个结论:①AD+AE=AB+BC+CA;②AF·AG=AD·AE③△AFB ~△ADG其中正确结论的序号是A.①② B.②③C.①③ D.①②③【答案】A【解析】由切线长定理得AD=AE,BD=BF,CE=CF,所以AB+BC+CA=AB+BD+CE=AD+AE,故①正确;答案:332解析:如图2中,连接EC,AB,OB,由A,E是半圆周上的两个三等分点可知:∠EBC=30°,且⊿ABO是正三角形,所以EC=2,BE=32,BD=1,且AF=BF=332.故填332 评析:本小题主要考查平面几何中直线与圆的位置关系问题,涉及与圆有关的定理的运用.三、解答题:1.(2011年高考辽宁卷理科22)(本小题满分10分)选修4-1:几何证明选讲(II )延长CD 到F ,延长DC 到G ,使得EF=EG ,证明:A ,B ,G ,F 四点共圆.2. (2011年高考全国新课标卷理科22)(本小题满分10分) 选修4-1几何证明选讲 如图,D ,E 分别是AB,AC 边上的点,且不与顶点重合,已知AB AD n AC m AE ,,,== 为方程0142=+-mn x x 的两根, (1) 证明 C,B,D,E 四点共圆;(2) 若6,4,90==︒=∠n m A ,求C,B,D,E 四点所在圆的半径。

分析:(1)按照四点共圆的条件证明;(2)运用相似三角形与圆、四边形、方程的性质及关系计算。

解:(Ⅰ)如图,连接DE ,依题意在ACB ADE ∆∆,中,点评:此题考查平面几何中的圆与相似三角形及方程等概念和性质。

注意把握判定与性质的作用。

3.(2011年高考江苏卷21)选修4-1:几何证明选讲(本小题满分10分)如图,圆1O 与圆2O 内切于点A ,其半径分别为1r 与212()r r r >,圆1O 的弦AB 交圆2O 于点C (1O 不在AB 上), 求证::AB AC 为定值。

2013届高考数学复习--最新3年高考2年模拟(12)几何证明选讲

2013届高考数学复习--最新3年高考2年模拟(12)几何证明选讲

【3年高考2年模拟】第十二章系列4第一节4-1几何证明选讲第一部分 三年高考荟萃2012年高考数学 几何证明选讲一、填空题选择题错误!未指定书签。

.(2012年高考(天津文))如图,已知AB 和AC 是圆的两条弦,过点B 作圆的切线与AC 的延长线相交于D .过点C 作BD 的平行线与圆交于点E ,与AB 相交于点F ,3AF =,1FB =,32EF =,则线段CD 的长为____________.错误!未指定书签。

.(2012年高考(陕西文))如图,在圆O 中,直径AB 与弦CD 垂直,垂足为E,EF DB ⊥,垂足为F,若6AB =,1AE =,则DF DB ⋅=___ ______.错误!未指定书签。

.(2012年高考(广东文))(几何证明选讲)如图3所示,直线PB 与圆O 相切于点B ,D 是弦AC 上的点,PBA D BA ∠=∠.若AD m =,AC n =,则AB =_______.错误!未指定书签。

.(2012年高考(江西理))在直角三角形ABC中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则222||||||PA PB PC += ( )A .2B .4C .5D .10 错误!未指定书签。

.(2012年高考(北京理))如图,∠ACB=90°,CD⊥AB 于点D,以BD 为直径的圆与BC 交于点E,则 ( ) A .CE·CB=AD·DB B .CE·CB=AD·ABC .AD·AB=2CDDB错误!未指定书签。

.(2012年高考(陕西理))如图,在圆O 中, 直径AB 与弦CD 垂直,垂足为E,EF DB ⊥, 垂足为F,若6AB =,1AE =, 则DF DB ⋅=__________. 错误!未指定书签。

.(2012年高考(湖南理))如图2,过点P 的直线与圆O 相交于A,B 两点.若PA=1,AB=2,PO=3,则圆O 的半径等于_______.错误!未指定书签。

高考数学几何证明选讲中有关圆的问题的解决策略

高考数学几何证明选讲中有关圆的问题的解决策略

判定定理、 割线定理 、 切 弦切 角 定 理 等 几 何 定 理 的探 究 和 证 明 , 以使 学 生 通 过 这 些 定 理 的 探 究 , 一 步 学 习几 何 证 明 可 进
的 基 本 方 法 , 养 数 学 能 力. 文 从 以 往 学 生 的备 考 题 中的 培 本 易 错 题 出 发 , 平 面 几 何 中 圆 的 问 题 提 出 若 干 典 型 考 题 的 就



● 臻


高考数学几何证明选讲中有关圆的问题的解决策略
◎胡 勇进 ( 圳 市 龙 岗 区平 冈 中 学 深 34 0 ) 3 70 几何 证 明 是 培 养 学 生 逻 辑 思 维 能 力 的 一 条 重 要 途 径.

/ COD =60。, _CBD = _ / 1
此 题 考 查 圆周 角 定 理 和 割 线 定 理 — — 从 圆 外 一 点 引 圆
的两 条 割 线 , 点 到 每 条 割 线 与 圆 的交 点 的两 条 线 段 长 的 该
积相等. 例 4 ( 0 0年 天 津 文 )如 图 , 21 四 边 形 A D 是 圆 O 的 内 接 四边 形 , BC 延

。 . ‘
。 . .
E =4 . 6。

B C=14 , O 3。
鲋 D = BAC 十
c= /B C= 7 , ÷ O 6 。
DAC =99。 .
例 6 ( 0 7年 广 东 ) 图, 0 20 如 圆
‘ .

的 直 径 A = C 为 圆 周 上 一 点 , C =3, B 6, B
此 题 考 查 圆周 角 定 理 和 圆 内接 四 边 形 的性 质 定 理 ——
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何证明选讲
沙市五中高三数学组
一、填空题(每小题6分,共48分)
1.如图所示,l1∥l2∥l3,下列比例式正确的有________(填序号).
(1)AD
DF

CE
BC
;(2)
AD
BE

BC
AF
;(3)
CE
DF

AD
BC
;(4)
AF
DF

BE
CE
.
2.如图所示,D是△ABC的边AB上的一点,过D点作DE∥BC交AC于E.已
知AD
DB

2
3
,则
S
△ADE
S
四边形BCED

__________________________________________________________________.
3.如图,在四边形ABCD中,EF∥BC,FG∥AD,则EF
BC

FG
AD
=________.
4.在直角三角形中,斜边上的高为6,斜边上的高把斜边分成两部分,这两部分的比为3∶2,则斜边上的中线的长为________.
5.(2010·苏州模拟)如图,在梯形ABCD中,AD∥BC,BD与AC相交于点O,过点O的直线分别交AB,CD于E,F,且EF∥BC,若AD=12,BC=20,则EF=________.
6.如图所示,在△ABC中,AD⊥BC,CE是中线,DC=BE,DG⊥CE于G,EC 的长为4,则EG=________.
7.(2010·天津武清一模)如图,在△ABC中,AD平分∠BAC,DE∥AC,EF ∥BC,AB=15,AF=4,则DE=________.
8.如图所示,BD、CE是△ABC的中线,P、Q分别是BD、CE的中点,则PQ BC =
________.
二、解答题(共42分)
9.(14分)如图所示,在△ABC中,∠CAB=90°,AD⊥BC于D,BE是∠ABC
的平分线,交AD于F,求证:DF
AF

AE
EC
.
10.(14分)如图,△ABC中,D是BC的中点,M是AD上一点,BM、CM的延长线分别交AC、AB于F、E.
求证:EF∥BC.
11.(14分)(2010·苏州模拟)如图,在四边形ABCD中,AC与BD相交于O 点,直线l平行于BD且与AB,DC,BC,AD及AC的延长线分别相交于点M,N,R,S和P,
求证:PM·PN=PR·PS.
1.(4)
解析由平行线分线段成比例定理可知(4)正确.
2.
4 21
解析由AD
DB

2
3
知,
AD
AB

2
5

S
△ADE
S
△ABC

4
25


S
△ADE
S
四边形BCED

4
21
.
3.1
解析∵EF∥BC,∴EF
BC

AF
AC

又∵FG∥AD,∴FG
AD

CF
AC


EF BC +FG AD =AF AC +CF AC =AC
AC
=1. 4.562
解析 设斜边上的两段的长分别为3t,2t ,由直角三角形中的射影定理知:62=3t ·2t ,解得t =6(t >0,舍去负根),所以斜边的长为56,故斜边上的
中线的长为56
2
.
5.15
解析 ∵AD ∥BC ,∴OB OD =BC AD =2012=53,∴OB BD =5
8

∵OE ∥AD ,∴OE AD =OB BD =5
8,
∴OE =58AD =58×12=15
2

同理可求得OF =38BC =38×20=15
2

∴EF =OE +OF =15. 6.2
解析 连结DE ,因为AD ⊥BC ,所以△ADB 是直角三角形,则DE =1
2
AB =BE
=DC .又因为DG ⊥CE 于G ,所以DG 平分CE ,故EG =2.
7.6
解析 设DE =x ,∵DE ∥AC , ∴BE 15=x x +4,解得BE =15x x +4
. ∴BD DC =BE EA =BE 15-BE =x 4
. 又∵AD 平分∠BAC ,∴BD DC =BA AC =15x +4=x
4

解得x =6. 8.14
解析 连结DE ,延长QP 交AB 于N , 则⎩⎪⎨
⎪⎧
NP =12ED =14BC ,NP +PQ =1
2BC .
得PQ =14
BC .
9.证明 由三角形的内角平分线定理得,
在△ABD 中,DF AF =BD
AB , ①
在△ABC 中,AE EC =AB
BC
, ② (4分)
在Rt △ABC 中,由射影定理知,AB 2=BD ·BC , 即BD AB =AB
BC
. ③ (8分) 由①③得:DF AF =AB
BC , ④ (12分)
由②④得:DF AF =AE
EC
. (14分)
10.证明 延长AD 至G ,使DG =MD ,连结BG 、CG . ∵BD =DC ,MD =DG ,
∴四边形BGCM 为平行四边形. (4分)
∴EC ∥BG ,FB ∥CG ,

AE AB =AM AG ,AF AC =AM AG , ∴AE AB =AF
AC
, (12分)
∴EF ∥BC .
(14分)
11.证明 ∵BO ∥PM ,
∴PM
BO

PA
OA
,(4分)
∵DO∥PS,
∴PS
DO

PA
OA
,∴
PM
BO

PS
DO
. (6分)
即PM
PS

BO
DO

由BO∥PR得PR
BO

PC
CO
. (10分)
由DO∥PN得PN
OD

PC
CO
. (12分)
∴PR
BO

PN
DO
,即
PR
PN

BO
DO

∴PR
PN

PM
PS
.
∴PM·PN=PR·PS. (14分)。

相关文档
最新文档