图形的旋转练习题.doc
(完整word版)新人教版五年级下册图形的旋转练习题
人教版五年级下册图形的旋转练习题一、填空(30分)1.图形旋转有三个关键要素,一是旋转的(),二是旋转的(),三是旋转的()。
2.图形(1)是以点()为中心旋转的;图形(2)是以点()为中心旋转的;图形(3)是以点()为中心旋转的。
3.如图,指针从A开始,顺时针旋转了90°到()点,逆时针旋转了90°到()点;要从A旋转到C,可以按()时针方向旋转()°,也可以按()时针方向旋转()°。
4.观察图形,填写空格。
①号图形是绕A点按()时针方向旋转了()°;②号图形是绕()点按顺时针方向旋转了()°;③号图形是绕()点按()时针方向旋转了90°;④号图形是绕()点按()时针方向旋转了()。
5.观察图形并填空。
(1)图1绕点“O”逆时针旋转90°到达图()的位置;(2)图1绕点“O”逆时针旋转180°到达图()的位置;(3)图1绕点“O”顺时针旋转()°到达图4的位置;(4)图2绕点“O”顺时针旋转()°到达图4的位置;(5)图2绕点“O”顺时针旋转90°到达图()的位置;(6)图4绕点“O”逆时针旋转90°到达图()的位置。
二、选择(30分)1.将下面的图案绕点“O”按顺时针方向旋转90°,得到的图案是()。
2.将下列图形绕着各自的中心点旋转120°后,不能与原来的图形重合的是()。
3.由图形(1)不能变为图形(2)的方法是()。
A.图形(1)绕“O”点逆时针方向旋转90°得到图形(2)B.图形(1)绕“O”点顺时针方向旋转90°得到图形(2)C.图形(1)绕“O”点逆时针方向旋转270°得到图形(2)D.以线段OP所在的直线为对称轴画图形(1)的轴对称图形得到图形(2)4.观察下图,是怎样从图形A得到图形B的()。
A.先顺时针旋转90°,再向右平移10格B.先逆时针旋转90°,再向右平移10格C.先顺时针旋转90°,再向右平移8格D.先逆时针旋转90°,再向右平移8格5.中心对称图形是指把图形绕某一点旋转180°后的图形和原来的图形能够完全重合,下面这些美丽的轴对称图案中,中心对称的图形有()个。
中考数学元复习《图形的旋转》练习题含答案
中考数学复习图形的旋转一、选择题1.下列图形中是中心对称图形的有( B )A.1个B.2个C.3个D.4个2.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 的延长线上,连结AD.下列结论一定正确的是( C )A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=BC,第2题图),第3题图) 3.如图,在平面直角坐标系中,点B,C,E在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是( A )A.△ABC绕点C顺时针旋转90°,再向下平移3个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移1个单位D.△ABC绕点C逆时针旋转90°,再向下平移3个单位4.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B,D两点间的距离为( A )A.10 B.2 2 C.3 D.25【解析】∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD=BE2+DE2=10.故选A.,第4题图),第5题图) 5.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(-2,5)的对应点A′的坐标是( B )A.(2,5) B.(5,2) C.(2,-5) D.(5,-2)【解析】∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′-∠COA′=∠COC′-∠COA′,∴∠AOC=∠A′OC′.∴△ACO≌△A′C′O,∴AC=A′C′,CO=C′O.∵A(-2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故选B.6.如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连结AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是( D ) A.0个B.1个C.2个D.3个【解析】∵将等边△ABC绕点C顺时针旋转120°得到△EDC,∴∠ACE=120°,∠DCE =∠BCA=60°,A C=CD=DE=CE,∴∠ACD=120°-60°=60°,∴△ACD是等边三角形,∴AC=AD,AC=AD=DE=CE,∴四边形ACED是菱形,∵将等边△ABC绕点C顺时针旋转120°得到△EDC,AC=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴BD⊥AC,∴①②③都正确,故选D.二、填空题7.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是__60°__.,第7题图),第8题图) 8.如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:__将△COD绕点C顺时针旋转90°,再向左平移2个单位长度得到△AOB(答案不唯一).__.9.如图,在△ABC中,∠A=70°,AC=BC,以点B为旋转中心把△ABC按顺时针旋转α度,得到△A′BC′,点A恰好落在AC上的点A′处,连结CC′,则∠ACC′=__110°__.【解析】∵∠A=70°,AC=BC,∴∠BCA=40°,根据旋转的性质,AB=BA′,BC=BC′,∴∠α=180°-2×70°=40°,∵∠CBC′=∠α=40°,∴∠BCC′=70°,∴∠ACC′=∠ACB+∠BCC′=110°.10.如图,在正方形ABCD中,AD=23,把边BC绕点B逆时针旋转30°得到线段BP,连结AP并延长交CD于点E,连结PC,则△PCE的面积为__9-53__.【解析】∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP =60°,AP=AB=23,∵AD=23,∴AE=4,DE=2,∴CE=23-2,PE=4-23,过P作PF ⊥CD 于F ,∴PF =32PE =23-3,∴△PCE 的面积为12CE ·PF =12×(23-2)×(23-3)=9-5 3.故答案为9-5 3.,第10题图) ,第11题图)11.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,则DE 2+BG 2=__2a 2+2b 2__.【解析】连结BD ,EG ,如图所示,∴DO 2+BO 2=BD 2=BC 2+CD 2=2a 2,EO 2+OG 2=EG 2=CG 2+CE 2=2b 2,则BG 2+DE 2=DO 2+BO 2+EO 2+OG 2=2a 2+2b 2.三、解答题12. 如图,在边长为1的正方形组成的网格中,△ABC 的顶点均在格点上,点A ,B ,C 的坐标分别是A (-2,3),B (-1,2),C (-3,1),△ABC 绕点O 顺时针旋转90°后得到△A 1B 1C 1.(1)在正方形网格中作出△A 1B 1C 1;(2)在旋转过程中,点A 经过的路径AA 1︵的长度为__132π__;(3)在y 轴上找一点D ,使DB +DB 1的值最小,并求出D 点的坐标.,题图),答图)解:(1)如图所示: (2)在旋转过程中,点A 经过的路径AA 1︵的长度为90×π×13180=132π (3)∵点B ,B 1在y 轴两旁,连结BB 1交y 轴于点D ,设D′为y 轴上异于D 的点,显然D′B +D′B 1>DB +DB 1,∴当点D 是BB 1与y 轴交点时,DB +DB 1最小.设直线BB 1的解析式为y =kx +b ,依据题意得⎩⎨⎧-k +b =2,2k +b =1,解得⎩⎨⎧k =-13,b =53,∴y =-13x +53,∴D (0,53) 13.如图,已知正方形ABCD 的边长为3,E ,F 分别是AB ,BC 边上的点,且∠EDF =45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:△DEF ≌△DMF ;(2)若AE =1,求FM 的长.解:(1)∵△DAE 逆时针旋转90°得到△DCM ,∴∠FCM =∠FCD +∠DCM =180°,∴F ,C ,M 三点共线,∴DE =DM ,∠EDM =90°,∴∠EDF +∠MDF =90°,∵∠EDF=45°,∴∠MDF =∠EDF =45°,在△DEF 和△DMF 中,∵⎩⎨⎧DE =DM ,∠EDF =∠MDF ,DF =DF ,∴△DEF ≌△DMF (SAS ) (2)由(1)得EF =MF ,设EF =MF =x ,∵AE =CM =1,且BC =3,∴BM =BC +CM =3+1=4,∴BF =BM -MF =BM -EF =4-x ,∵EB =AB -AE =3-1=2,在Rt △EBF 中,由勾股定理得EB 2+BF 2=EF 2,即22+(4-x )2=x 2,解得x =52,∴FM =5214.如图①,将一个边长为2的正方形ABCD 和一个长为2,宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至CE ′F ′D ′,旋转角为α.(1)当点D ′恰好落在EF 边上时,求旋转角α的值;(2)如图②,G 为BC 中点,且0°<α<90°,求证:GD ′=E ′D ;(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,△DCD ′与△CBD ′能否全等?若能,直接写出旋转角α的值;若不能,请说明理由.解:(1)∵DC ∥EF ,∴∠DCD ′=∠CD′E =α,∵sin α=CE CD′=CE CD =12,∴α=30° (2)∵G 为BC 中点,∴GC =CE′=CE =1.∵∠D′CG =∠DCG +∠DCD′=90°+α,∠DCE ′=∠D′CE′+∠DCD′=90°+α,∴∠D ′CG =∠DCE′.又∵CD′=CD ,∴△GCD ′≌△E ′CD (SAS ),∴GD ′=E′D (3)能.α=135°或α=315°。
初中数学九年级上册《图形的旋转》基础典型练习题(整理含答案)
《图形的旋转》基础典型练习题一、选择题(每题3分,共18分)1.下列物体的运动不是旋转的是()A.坐在摩天轮里的小朋友B.正在走动的时针C.骑自行车的人D.正在转动的风车叶片2.在10分钟的时间内,分针转过的角度是()A.15°B.30°C.15°D.30°3.在10分钟的时间内,时钟的时针旋转过的角度是()A.5°B.10°C.15°D.30°4.等边三角形绕着它的中心旋转一周,可与原图形重合的次数是()A.1 B.2 C.3 D.45.在图形的旋转中,下列说法错误的是()A.图形上的每一点到旋转中心的距离都相等B.图形上的每一点转动的角度都相同C.图形上可能存在不动的点D.旋转前和旋转后的图形全等6.有一种平面图形,它绕着中心旋转,不论旋转多少度,•所得到的图形都与原图形完全重合,你觉得它可能是()A.三角形B.等边三角形C.正方形D.圆二、填空题(7题4分,11题5分,其余每题3分,共18分)7.经过旋转后的图形与原图形的关系是________,它们的对应线段_______,•对应角________,对应点到旋转中心的距离________.8.一架风车有分布均匀的四个叶片,旋转一周可与原来的位置重合______次.9.如图所示,图①沿逆时针方向旋转90°可得到图_________.10.如上图所示,图①按顺时针方向至少旋转_______度可得图③.11.如图所示,在△ABC中,∠C=90°,AB=5cm,BC=3cm,•把这个三角形在平面内绕点C逆时针旋转60°至△A′B′C′,那么AA′的长度是______cm.(•不取近似值)三、作图题(每题6分,共18分)12.如图所示,△ABC绕点A旋转后,点B与点D•重合,•作出旋转后的三角形ADE.13.把边长为2cm的正方形ABCD,绕着点D逆时针旋转45°后,变为正方形A′B•′C′D′,作出上述图形.14.如图所示是计算机操作人员用Flash设计出的美丽图案,•试把它按逆时针方向旋转180°,作出旋转后的图案.四、解答题(6分)15.如图所示,①图怎样变化可成②图呢?请你分析变化过程.参考答案:一、1.C 点拨:骑自行车的人的运动可以看作是平移.2.D 点拨:分针60分钟经过的角度为360°,则1分钟转6°,10分钟转6•°×10=60°.3 .A 点拨:时针1小时转过的角度是360°×112=30°, 则时针在10•分钟内经过30°×16=5°,故选A . 4.C 点拨:转过120°,240°,360°,均可与原图形重合.5.A 点拨:图形上的点到旋转中心的距离不一定相等,•但对应点到旋转中心的距离相等,一定要熟练掌握图形旋转的性质和定义.6.D 点拨:在平面图形中,具有这种性质的有圆,在立体图形中有球体,•这种性质叫图形的旋转不变性.二、7.全等;相等;相等;相等点拨:考查旋转图形的性质.8.四 点拨:在旋转一周的过程中,当风车旋转90°,180°,270°,360°时均可与原来的位置重合.9.⑤ 点拨:单独观察图形中的食指,原来的图案中食指向右,•当图案沿逆时针旋转90°时,食指向上,故应是图⑤.10.180 点拨:原来图案中的食指指向右,图③中的食指指向左,•故让图①按顺时针旋转180°即可.11.4 点拨:根据旋转的性质,可知AC=A ′C ,依题意∠ACA ′=60°,所以△ACA ′为等边三角形,故AA ′=AC .在Rt △ABC 中,AC=22AB BC -=2253-=4(cm),故AA ′=4cm .三、12.解:作法:①作∠DAE=∠BAC .②在∠DAE 的边AE 上取AE=AC .③连接DE . △ADE 即为所求.(如答图所示)点拨:回忆作一个角等于已知角的方法.13.解:如答图所示.点拨:作图时要注意旋转中心,旋转方向,旋转角度.14.解:如答图所示.点拨:原来的图案中“头发”向上,按逆时针方向旋转180°后,图案中“头发”向下.四、15.解:(1)先把①图向右平移直到两个大圆重合.(2)把图案按逆时针方向旋转90°即得②图.或把图案按顺时针方向旋转270°也可得到②图.点拨:先把图案向右平移,再把图案旋转即可.。
小学数学西师新版五年级上册《图形的旋转》习题.docx
小学数学西师新版五年级上册
《图形的旋转》习题
一、基础过关
1.把一个图形沿某一个点旋转,会得到一个新的图形,新图形与原图形的________和完全相同。
2.生活中有哪些物体是通过旋转得到的?
_______________________________________________。
二、综合训练
1.下列现象中,属于旋转的是()。
A.乘直升电梯从一楼上到二楼
B.秒针嘀嗒嘀嗒地走
C.火车在笔直的轨道上行驶
D.汽车在平坦笔直的公路上行驶
2.在 3 点和 4 之间:
(1)何时时针与分针构成直角?
(2)何时时针与分针在一条直线上?
三、拓展应用
1.汽车在公路上运动时,轮子的运动是A .平移 B .旋转(
C
) 。
.既平移又旋转
2.画出一个通过旋转得到的图形。
参考答案
一、基础过关
1.形状,大小
2.略
二、综合训练
1. B
2.略
三、拓展应用
1. C
2.略。
小学旋转测试题及答案
小学旋转测试题及答案一、选择题(每题2分,共10分)1. 一个正方形旋转90度后,它的形状会改变吗?A. 会B. 不会C. 不确定答案:B2. 一个圆在平面内旋转360度后,它的位置会改变吗?A. 会B. 不会C. 不确定答案:B3. 一个等边三角形绕着它的一个顶点旋转120度后,它的位置会改变吗?A. 会B. 不会C. 不确定答案:B4. 一个矩形绕着它的中心点旋转180度后,它的形状和位置会改变吗?A. 形状和位置都会改变B. 形状不会改变,位置会改变C. 形状和位置都不会改变答案:C5. 如果一个图形绕着一个点旋转了360度,那么这个图形的位置会回到原来的位置吗?A. 会B. 不会C. 不确定答案:A二、填空题(每题2分,共10分)1. 一个图形绕着一个点旋转____度后,会回到原来的位置。
答案:3602. 一个图形旋转后,它的形状____改变。
答案:不会3. 一个图形绕着它的中心点旋转,它的形状和位置____改变。
答案:不会4. 一个图形旋转180度后,它的位置____改变。
答案:会5. 一个图形绕着一个点旋转90度后,它的位置____改变。
答案:会三、判断题(每题2分,共10分)1. 一个正方形旋转180度后,它的形状和位置都会改变。
()答案:×2. 一个圆在平面内旋转任意角度后,它的形状都不会改变。
()答案:√3. 一个矩形绕着它的一个顶点旋转90度后,它的形状不会改变。
()答案:√4. 一个等边三角形绕着它的中心点旋转120度后,它的位置不会改变。
()答案:√5. 一个图形旋转360度后,它的位置一定会回到原来的位置。
()答案:√四、简答题(每题5分,共20分)1. 请简述旋转对称图形的特点。
答案:旋转对称图形是指一个图形绕着一个点旋转一定角度后,能够与自身重合的图形。
这样的图形在旋转过程中,其形状和大小不会发生改变,只是位置发生了变化。
2. 为什么一个圆在平面内旋转任意角度后,它的形状不会改变?答案:一个圆在平面内旋转任意角度后,它的形状不会改变,因为圆是所有点到圆心距离相等的点的集合,无论旋转多少角度,这些点到圆心的距离都保持不变,因此圆的形状不会发生改变。
图形的旋转练习题
图形的旋转
一、填空.
(1)图形旋转有三个关键要素,一是旋转的(),二是旋转的(),三是旋转的()。
(2)图形旋转后,形状、()等都没发生变化,只是()变了。
(3)指针从“12”绕点O顺时针旋转90°后指向( ).
(4)指针从“12”绕点O逆时针旋转90°后指向( ).
二、选择.将代表正确答案的字母填在括号内
(1)下列现象中,不属于平移的是( ).
A.乘直升电梯从一楼上到二楼
B.钟表的指针嘀嗒嘀嗒地走
C.火车在笔直的轨道上行驶
D.汽车在平坦笔直的公路上行驶(2)下列现象中属于旋转的有( )个
①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动.
A.2
B.3
C.4
D.5
(3)把下面的图A绕中心点顺时针旋转90度后再向下平移四个格得到图形是( ).
三、画一画.
(1)画出三角形AOB绕O点逆时针旋转90°后得到的图形.
(2)画出下图锤形图绕O点顺时针旋转90°后得到的图形.
(3)画出绕O点逆时针旋转90°后的图形.。
图形的旋转练习题
图形的旋转练习题一、选择题1. 一个图形绕某点旋转90度后,其形状和大小:A. 发生变化B. 不发生变化C. 无法确定D. 形状不变,大小变小2. 如果一个图形绕其对称中心旋转180度,其位置:A. 不变B. 改变C. 无法确定D. 形状改变3. 一个正方形绕其中心点旋转45度后,其:A. 形状和位置都不变B. 形状不变,位置改变C. 形状改变,位置不变D. 形状和位置都改变4. 一个等边三角形绕其一个顶点旋转120度后,其:A. 形状和位置都不变B. 形状不变,位置改变C. 形状改变,位置不变D. 形状和位置都改变5. 一个圆绕其圆心旋转任意角度后,其:A. 形状和位置都不变B. 形状不变,位置改变C. 形状改变,位置不变D. 形状和位置都改变二、填空题6. 一个图形绕某点旋转______度后,其形状和位置都不变。
7. 如果一个图形绕其对称中心旋转______度,其位置不变。
8. 一个图形绕某点旋转180度后,其形状______,位置______。
9. 一个图形绕某点旋转90度后,其形状______,位置______。
10. 一个图形绕其对称中心旋转任意角度后,其形状______,位置______。
三、简答题11. 描述一个正方形绕其中心点顺时针旋转90度后,其四个顶点的新位置。
12. 解释为什么一个圆在绕其圆心旋转任意角度后,其形状和位置都不变。
13. 如果一个正六边形绕其中心点旋转60度,描述其顶点的新位置。
14. 一个矩形绕其对角线中点旋转180度后,其四个顶点的新位置是什么?15. 解释为什么一个图形绕其对称中心旋转180度后,其位置不变。
四、应用题16. 一个时钟的时针在12小时内绕钟面中心点旋转了多少度?17. 如果一个图形被设计为可以围绕其对称中心旋转,那么在旋转过程中,它的对称性如何保持?18. 一个图形绕其一个顶点旋转,如果旋转角度是360度的整数倍,图形的最终位置是什么?19. 在一个平面直角坐标系中,一个点绕原点旋转θ度后,其新的坐标如何计算?20. 如果一个图形绕其对称中心旋转了θ度,那么它的对称轴会如何变化?五、综合题21. 给出一个图形的旋转矩阵,并说明如何使用它来计算图形绕某点旋转后的新位置。
(完整版)图形的旋转测试题(含答案)
MB' A'C A B 图5 图4 《图形的旋转》测试题一、选择题:1、在右边四个图形中,既是轴对称图形又是中心对称图形的是( )DA .①②③④B .①②③C .①③D .③2、如图1为旋转对称图形,要使它旋转后与自身重合,应将它绕中心逆时针方向旋转的度数至少为( )度. CA 、30 oB 、45 oC 、60 oD 、90 o图1 图2 图33、如图2,边有两个边长为4cm 的正方形,其中一个正方形的顶点在另一个正方形的中心上,那么图中阴影部分的面积是( ).A(A)4cm2 (B)8cm2 (C)16cm2 (D)无法确定4、如图4, △DEF 是由△ABC 绕着某点旋转得到的, 则这点的坐标是( B )A. (1,1)B. (0,1)C. (−1,1)D. (2,0)二、填空题5、点a 4(,)与3b (,)关于原点对称,则a b += .-76、如图3,把三角形△ABC 绕着点C 顺时针旋转350,得到△A 'B 'C ,A 'B '交AC 于点D ,若∠A 'DC=900,则∠A 的度数是__________。
5507、如图5, △ABC 中, (ACB = 90(, (B = 30(, BC = 6, 三角板绕C 逆时针旋转, 当点A的对应点A' 落在AB 边上时即停止转动, 则BM 的长为 3 .8、如图6,△ABC 中, 已知∠C=90°, ∠B=50°, 点D 在边BC 上, BD=2CD. 把△ABC 绕着点D逆时针旋转m (0(<m<180()度后, 如果点B 恰好落在初始Rt △ABC 的边上, 那么m = _______. 80(或.O A B C D E F x y2 3图6 A C BD三、解答题9、作图题(1)如图7,画出△ABC 绕点O 顺时针旋转60°所得到的图形.图7 图8(2)如图8,在直角坐标系中,点P 的坐标为(3,4),将OP 绕原点O 逆时针旋转90°得到线段OP ′,(1)在图中画出线段OP ′;(2)P ′的坐标为 ______. (-4,3)1、如图,在△ABC 中,∠B=900,∠C=300,AB=1,将△ABC 绕顶点 A 旋转1800,点C 落在C1处,则C C1的长为( )A .24B .4C .32D .522、如图,△ABC 中,∠ACB=1200,将它绕着点C 旋转300 后得到△DCE ,则∠ACE=∠A+∠E=3、如图,在Rt △ABC 中,∠ACB=90°,∠A=35°,以直角顶点C•为旋转中心,将△ABC 旋转到△A ′B ′C 的位置,其中A ′、B ′分别是A 、B 的对应点,且点B 在斜边A ′B ′上,直角边CA ′交AB 于D ,求∠BDC 的度数.E DC BA B A C O ABC B C4,如图,正方形ABCD 中,E 在BC 上,F 在AB 上且∠FDE=45°,•△DEC 按顺时针方向转动一个角度后成为△DGA .(1)图中哪一个点是旋转中心?(2)旋转了多少度?(3)指出图中的对应点,对应线段和对应角;(4)求∠GDF 的度数.5、已知如图,正方形ABCD 中,E 为CD 边上一点,F 为BC 边上一点,CE=CF:(1)EBC FDC ∠∠与相等吗?(2)△DCF 能与△BCE 重合吗?(3)试判断BE 与DF 的位置关系并说明理由,6.如图所示,四边形ABCD 中,∠BAD=∠C=90°,AB=AD ,AE ⊥BC 于E ,△BEA 旋转后能与△DFA 重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若AE=5cm ,求四边形ABCD 的面积.7,如图,K 是正方形ABCD 内一点,以AK 为一边作正方形AKLM ,使L ,M ,D 在AK 的同旁,连结BK 和DM ,试用旋转的思想说明线段BK 与DM 的关系. C FEDB A,8,.如图所示,等边△ABC中,D是AB边上的动点(不与A、B重合),以CD为一边,向上作等边△EDC。
小学旋转的练习题
小学旋转的练习题一、选择题1. 一个图形绕某一点旋转了90度,这个点被称为图形的:A. 旋转中心B. 旋转轴C. 旋转半径D. 旋转角度2. 一个正方形顺时针旋转90度后,它的四个顶点的位置:A. 保持不变B. 位置互换C. 位置不变但方向改变D. 位置和方向都改变3. 如果一个图形绕某点旋转180度,那么这个图形将:A. 回到原来的位置B. 位置不变,方向改变C. 位置改变,方向不变D. 位置和方向都不变4. 一个图形绕其一边的中点旋转180度,这个图形:A. 保持不变B. 位置互换C. 位置不变,方向改变D. 位置和方向都改变5. 一个图形绕其一个顶点旋转90度,这个图形:A. 保持不变B. 位置互换C. 位置不变,方向改变D. 位置改变,方向不变二、填空题6. 一个图形绕某点旋转____度,这个点被称为图形的旋转中心。
7. 当一个图形绕其一边的中点旋转180度时,这个图形的位置____。
8. 如果一个图形绕其一个顶点旋转90度,这个图形的位置____。
9. 一个图形顺时针旋转90度后,它的四个顶点的位置____。
10. 一个图形绕某点旋转180度,那么这个图形将____。
三、判断题11. 一个图形旋转后,它的形状和大小都不会改变。
()12. 一个图形绕其一边的中点旋转180度后,图形的每个部分都回到原来的位置。
()13. 一个正方形顺时针旋转90度后,它的面积不变。
()14. 一个图形绕某点旋转90度后,图形的每个部分都回到原来的位置。
()15. 一个图形绕其一个顶点旋转90度后,图形的面积会改变。
()四、简答题16. 描述一个图形绕其一边的中点旋转180度后,图形的哪些部分发生了变化?17. 解释为什么一个图形旋转后,它的形状和大小不会改变。
18. 如果一个图形绕其一个顶点旋转90度,图形的哪些部分保持不变?19. 为什么一个正方形顺时针旋转90度后,它的面积不会改变?20. 描述一个图形绕某点旋转90度后,图形的哪些部分发生了变化,并解释原因。
中考数学真题《图形的旋转》专项测试卷(附答案)
中考数学真题《图形的旋转》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(30题)一 、单选题1.(2023·江苏无锡·统考中考真题)如图,ABC 中 55BAC ∠=︒ 将ABC 逆时针旋转(055),αα︒<<︒得到ADE DE 交AC 于F .当40α=︒时 点D 恰好落在BC 上 此时AFE ∠等于( )A .80︒B .85︒C .90︒D .95︒2.(2023·天津·统考中考真题)如图,把ABC 以点A 为中心逆时针旋转得到ADE 点B C 的对应点分别是点D E 且点E 在BC 的延长线上 连接BD 则,下列结论一定正确的是( )A .CAE BED ∠=∠B .AB AE =C .ACE ADE ∠=∠D .CE BD =3.(2023·四川宜宾·统考中考真题)如图,ABC 和ADE 是以点A 为直角顶点的等腰直角三角形 把ADE 以A 为中心顺时针旋转 点M 为射线BD CE 的交点.若3AB 1AD =.以下结论: ①BD CE = ①BD CE ⊥ ①当点E 在BA 的延长线上时 33MC -=①在旋转过程中 当线段MB 最短时 MBC 的面积为12. 其中正确结论有( )A .1个B .2个C .3个D .4个4.(2023·山东聊城·统考中考真题)如图,已知等腰直角ABC 90ACB ∠=︒ 2AB = 点C 是矩形ECGF 与ABC 的公共顶点 且1CE = 3CG = 点D 是CB 延长线上一点 且2CD =.连接BG DF 在矩形ECGF 绕点C 按顺时针方向旋转一周的过程中 当线段BG 达到最长和最短时 线段DF 对应的长度分别为m 和n 则,mn的值为( )A .2B .3C 10D 13二 填空题5.(2023·江苏连云港·统考中考真题)以正五边形ABCDE 的顶点C 为旋转中心 按顺时针方向旋转 使得新五边形A B CD E ''''的顶点D 落在直线BC 上则,正五边ABCDE 旋转的度数至少为______°.6.(2023·湖南张家界·统考中考真题)如图,AO 为BAC ∠的平分线 且50BAC ∠=︒ 将四边形ABOC 绕点A 逆时针方向旋转后 得到四边形AB O C ''' 且100OAC '∠=︒则,四边形ABOC 旋转的角度是______.7.(2023·湖南常德·统考中考真题)如图1 在Rt ABC △中 90ABC ∠=︒ 8AB = 6BC = D 是AB 上一点 且2AD = 过点D 作DE BC ∥交AC 于E 将ADE 绕A 点顺时针旋转到图2的位置.则图2中BDCE的值为__________.8.(2023·江苏无锡·统考中考真题)已知曲线12C C 、分别是函数2(0),(0,0)ky x y k x x x=-<=>>的图像 边长为6的正ABC 的顶点A 在y 轴正半轴上 顶点B C 在x 轴上(B 在C 的左侧) 现将ABC 绕原点O 顺时针旋转 当点B 在曲线1C 上时 点A 恰好在曲线2C 上则,k 的值为__________.9.(2023·辽宁·统考中考真题)如图,线段8AB = 点C 是线段AB 上的动点 将线段BC 绕点B 顺时针旋转120°得到线段BD 连接CD 在AB 的上方作Rt DCE ∆ 使90,30DCE E ∠=∠= 点F 为DE 的中点 连接AF 当AF 最小时 BCD ∆的面积为___________.10.(2023·江西·统考中考真题)如图,在ABCD 中 602B BC AB ∠=︒=, 将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP 连接PC PD .当PCD 为直角三角形时 旋转角α的度数为_______.11.(2023·上海·统考中考真题)如图,在ABC 中 35C ∠=︒ 将ABC 绕着点A 旋转(0180)αα︒<<︒ 旋转后的点B 落在BC 上 点B 的对应点为D 连接AD AD ,是BAC ∠的角平分线则,α=________.12.(2023·湖南郴州·统考中考真题)如图,在Rt ABC △中 90BAC ∠=︒ 3cm AB = =60B ∠︒.将ABC 绕点A 逆时针旋转 得到AB C ''△ 若点B 的对应点B '恰好落在线段BC 上则,点C 的运动路径长.....是___________cm (结果用含π的式子表示).13.(2023·内蒙古·统考中考真题)如图,在Rt ABC △中 90,3,1ACB AC BC ∠=︒== 将ABC 绕点A 逆时针方向旋转90︒ 得到AB C ''△.连接BB ' 交AC 于点D 则,ADDC的值为________.14.(2023·黑龙江绥化·统考中考真题)已知等腰ABC 120A ∠=︒ 2AB =.现将ABC 以点B 为旋转中心旋转45︒ 得到A BC ''△ 延长C A ''交直线BC 于点D .则A D '的长度为_______. 15.(2023·浙江嘉兴·统考中考真题)一副三角板ABC 和DEF 中90304512C D B E BC EF ∠=∠=︒∠=︒∠=︒==,,,.将它们叠合在一起 边BC 与EF 重合 CD 与AB 相交于点G (如图1) 此时线段CG 的长是___________ 现将DEF 绕点()C F 按顺时针方向旋转(如图2)边EF 与AB 相交于点H 连结DH 在旋转0︒到60︒的过程中 线段DH 扫过的面积是___________.三 解答题16.(2023·北京·统考中考真题)在ABC 中 ()045B C αα∠=∠=︒<<︒ AM BC ⊥于点M D 是线段MC 上的动点(不与点M C 重合) 将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1 当点E 在线段AC 上时 求证:D 是MC 的中点(2)如图2 若在线段BM 上存在点F (不与点B M 重合)满足DF DC = 连接AE EF 直接写出AEF ∠的大小 并证明.17.(2023·四川自贡·统考中考真题)如图1 一大一小两个等腰直角三角形叠放在一起 M N 分别是斜边DE AB 的中点 2,4DE AB ==.(1)将CDE 绕顶点C 旋转一周 请直接写出点M N 距离的最大值和最小值(2)将CDE 绕顶点C 逆时针旋转120︒(如图2) 求MN 的长.18.(2023·四川达州·统考中考真题)如图,网格中每个小正方形的边长均为1 ABC 的顶点均在小正方形的格点上.(1)将ABC 向下平移3个单位长度得到111A B C △ 画出111A B C △ (2)将ABC 绕点C 顺时针旋转90度得到222A B C △ 画出222A B C △ (3)在(2)的运动过程中请计算出ABC 扫过的面积.19.(2023·辽宁·统考中考真题)在Rt ABC ∆中 90°ACB ∠= CA CB = 点O 为AB 的中点 点D 在直线AB 上(不与点,A B 重合) 连接CD 线段CD 绕点C 逆时针旋转90° 得到线段CE 过点B 作直线l BC ⊥ 过点E 作EF l ⊥ 垂足为点F 直线EF 交直线OC 于点G .(1)如图,当点D 与点O 重合时 请直接写出线段AD 与线段EF 的数量关系 (2)如图,当点D 在线段AB 上时 求证:2CG BD BC +=(3)连接DE CDE 的面积记为1S ABC 的面积记为2S 当:1:3EF BC =时 请直接写出12S S 的值.20.(2023·四川乐山·统考中考真题)在学习完《图形的旋转》后 刘老师带领学生开展了一次数学探究活动【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图,将一个三角形纸板ABC 绕点A 逆时针旋转θ到达AB C ''△的位置 那么可以得到:AB AB '=AC AC '= BC B C ''= BAC B AC ''∠=∠ ABC AB C ''∠=∠ ACB AC B ''∠=∠( )刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中 即“变”中蕴含着“不变” 这是我们解决图形旋转的关键 故数学就是一门哲学. 【问题解决】(1)上述问题情境中“( )”处应填理由:____________________(2)如图,小王将一个半径为4cm 圆心角为60︒的扇形纸板ABC 绕点O 逆时针旋转90︒到达扇形纸板A B C '''的位置.①请在图中作出点O①如果=6cm BB '则,在旋转过程中 点B 经过的路径长为__________ 【问题拓展】小李突发奇想 将与(2)中完全相同的两个扇形纸板重叠 一个固定在墙上 使得一边位于水平位置 另一个在弧的中点处固定 然后放开纸板 使其摆动到竖直位置时静止 此时 两个纸板重叠部分的面积是多少呢?如图所示 请你帮助小李解决这个问题.21.(2023·浙江绍兴·统考中考真题)在平行四边形ABCD 中(顶点,,,A B C D 按逆时针方向排列) 12,10,AB AD B ==∠为锐角 且4sin 5B =.(1)如图1 求AB 边上的高CH 的长.(2)P 是边AB 上的一动点 点,C D 同时绕点P 按逆时针方向旋转90︒得点,C D ''. ①如图2 当点C '落在射线CA 上时 求BP 的长. ①当AC D ''△是直角三角形时 求BP 的长.22.(2023·四川南充·统考中考真题)如图,正方形ABCD 中 点M 在边BC 上 点E 是AM 的中点 连接EDEC .(1)求证:ED EC =(2)将BE 绕点E 逆时针旋转 使点B 的对应点B '落在AC 上 连接MB '.当点M 在边BC 上运动时(点M 不与B C 重合) 判断CMB '的形状 并说明理由.(3)在(2)的条件下 已知1AB = 当45DEB ∠'=︒时 求BM 的长.23.(2023·江苏扬州·统考中考真题)【问题情境】在综合实践活动课上 李老师让同桌两位同学用相同的两块含30︒的三角板开展数学探究活动 两块三角板分别记作ADB 和,90,30A D C ADB A D C B C ∠=∠=︒∠''''=∠=︒△ 设2AB =. 【操作探究】如图1 先将ADB 和A D C ''的边AD A D ''重合 再将A D C ''绕着点A 按顺时针...方向旋转 旋转角为()0360αα︒≤≤︒ 旋转过程中ADB 保持不动 连接BC .(1)当60α=︒时 BC =________ 当22BC = α=________︒ (2)当90α=︒时 画出图形 并求两块三角板重叠部分图形的面积(3)如图2 取BC 的中点F 将A D C ''绕着点A 旋转一周 点F 的运动路径长为________. 24.(2023·湖南·统考中考真题)(1)[问题探究]如图1 在正方形ABCD 中 对角线AC BD 、相交于点O .在线段AO 上任取一点P (端点除外) 连接PD PB 、.①求证:PD PB =①将线段DP 绕点P 逆时针旋转 使点D 落在BA 的延长线上的点Q 处.当点P 在线段AO 上的位置发生变化时 DPQ ∠的大小是否发生变化?请说明理由 ①探究AQ 与OP 的数量关系 并说明理由. (2)[迁移探究]如图2 将正方形ABCD 换成菱形ABCD 且60ABC ∠=︒ 其他条件不变.试探究AQ 与CP 的数量关系 并说明理由.25.(2023·湖北随州·统考中考真题)1643年 法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A B C 求平面上到这三个点的距离之和最小的点的位置 意大利数学家和物理学家托里拆利给出了分析和证明 该点也被称为“费马点”或“托里拆利点” 该问题也被称为“将军巡营”问题. (1)下面是该问题的一种常见的解决方法 请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空 ①处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空 ①处填写角度数 ①处填写该三角形的某个顶点)当ABC 的三个内角均小于120︒时如图1 将APC △绕 点C 顺时针旋转60︒得到A P C '' 连接PP '由60PC P C PCP ''=∠=︒, 可知PCP '△为 ① 三角形 故PP PC '= 又P A PA ''= 故PA PB PC PA PB PP A B '''++=++≥由 ① 可知 当B P P ' A 在同一条直线上时 PA PB PC ++取最小值 如图2 最小值为A B ' 此时的P 点为该三角形的“费马点” 且有APC BPC APB ∠=∠=∠= ①已知当ABC 有一个内角大于或等于120︒时 “费马点”为该三角形的某个顶点.如图3 若120BAC ∠≥︒则,该三角形的“费马点”为 ① 点.(2)如图4 在ABC 中 三个内角均小于120︒ 且3430AC BC ACB ==∠=︒,, 已知点P 为ABC 的“费马点” 求PA PB PC ++的值(3)如图5 设村庄A B C 的连线构成一个三角形 且已知4km 23km 60AC BC ACB ==∠=︒,,.现欲建一中转站P 沿直线向A B C 三个村庄铺设电缆 已知由中转站P 到村庄A B C 的铺设成本分别为a 元/km a 元/km 2a 元/km 选取合适的P 的位置 可以使总的铺设成本最低为___________元.(结果用含a 的式子表示)26.(2023·四川·统考中考真题)如图1 已知线段AB AC 线段AC 绕点A 在直线AB 上方旋转 连接BC 以BC 为边在BC 上方作Rt BDC 且30DBC ∠=︒.(1)若=90BDC ∠︒ 以AB 为边在AB 上方作Rt BAE △ 且90AEB ∠=︒ 30EBA ∠=︒ 连接DE 用等式表示线段AC 与DE 的数量关系是(2)如图2 在(1)的条件下 若DE AB ⊥ 4AB = 2AC = 求BC 的长(3)如图3 若90BCD ∠=︒ 4AB = 2AC = 当AD 的值最大时 求此时tan CBA ∠的值.27.(2023·湖北黄冈·统考中考真题)【问题呈现】CAB △和CDE 都是直角三角形 90,,ACB DCE CB mCA CE mCD ∠=∠=︒== 连接AD BE 探究ADBE 的位置关系.(1)如图1 当1m =时 直接写出AD BE 的位置关系:____________(2)如图2 当1m ≠时 (1)中的结论是否成立?若成立 给出证明 若不成立 说明理由. 【拓展应用】(3)当3,7,4m AB DE ===时 将CDE 绕点C 旋转 使,,A D E 三点恰好在同一直线上 求BE 的长.28.(2023·内蒙古赤峰·统考中考真题)数学兴趣小组探究了以下几何图形.如图① 把一个含有45︒角的三角尺放在正方形ABCD 中 使45︒角的顶点始终与正方形的顶点C 重合 绕点C 旋转三角尺时 45︒角的两边CM CN 始终与正方形的边AD AB 所在直线分别相交于点M N 连接MN 可得CMN .【探究一】如图① 把CDM 绕点C 逆时针旋转90︒得到CBH 同时得到点H 在直线AB 上.求证:CNM CNH ∠=∠【探究二】在图①中 连接BD 分别交CM CN 于点E F .求证:CEF CNM △∽△【探究三】把三角尺旋转到如图①所示位置 直线BD 与三角尺45︒角两边CM CN 分别交于点E F .连接AC 交BD 于点O 求EFNM的值.29.(2023·湖南·统考中考真题)问题情境:小红同学在学习了正方形的知识后 进一步进行以下探究活动:在正方形ABCD 的边BC 上任意取一点G 以BG 为边长向外作正方形BEFG 将正方形BEFG 绕点B 顺时针旋转.特例感知:(1)当BG 在BC 上时 连接DF AC ,相交于点P 小红发现点P 恰为DF 的中点 如图①.针对小红发现的结论 请给出证明(2)小红继续连接EG 并延长与DF 相交 发现交点恰好也是DF 中点P 如图① 根据小红发现的结论 请判断APE 的形状 并说明理由 规律探究:(3)如图① 将正方形BEFG 绕点B 顺时针旋转α 连接DF 点P 是DF 中点 连接AP EP AEAPE 的形状是否发生改变?请说明理由.30.(2023·贵州·统考中考真题)如图① 小红在学习了三角形相关知识后 对等腰直角三角形进行了探究 在等腰直角三角形ABC 中 ,90CA CB C =∠=︒ 过点B 作射线BD AB ⊥ 垂足为B 点P 在CB 上.(1)【动手操作】如图① 若点P 在线段CB 上 画出射线PA 并将射线PA 绕点P 逆时针旋转90︒与BD 交于点E 根据题意在图中画出图形 图中PBE ∠的度数为_______度 (2)【问题探究】根据(1)所画图形 探究线段PA 与PE 的数量关系 并说明理由 (3)【拓展延伸】如图① 若点P 在射线CB 上移动 将射线PA 绕点P 逆时针旋转90︒与BD 交于点E 探究线段,,BA BP BE 之间的数量关系 并说明理由.参考答案一 单选题1.(2023·江苏无锡·统考中考真题)如图,ABC 中 55BAC ∠=︒ 将ABC 逆时针旋转(055),αα︒<<︒得到ADE DE 交AC 于F .当40α=︒时 点D 恰好落在BC 上 此时AFE ∠等于( )A .80︒B .85︒C .90︒D .95︒【答案】B【分析】根据旋转可得B ADB ADE ∠=∠=∠ 再结合旋转角40α=︒即可求解. 【详解】解:由旋转性质可得:55BAC DAE ∠=∠=︒ AB AD = ①40α=︒①15DAF ∠=︒ 70B ADB ADE ∠=∠=∠=︒ ①85AFE DAF ADE ∠=∠+∠=︒故选:B .【点睛】本题考查了几何—旋转问题 掌握旋转的性质是关键.2.(2023·天津·统考中考真题)如图,把ABC 以点A 为中心逆时针旋转得到ADE 点B C 的对应点分别是点D E 且点E 在BC 的延长线上 连接BD 则,下列结论一定正确的是( )A .CAE BED ∠=∠B .AB AE =C .ACE ADE ∠=∠D .CE BD = 【答案】A【分析】根据旋转的性质即可解答. 【详解】根据题意 由旋转的性质可得AB AD = AC AE = BC DE = 故B 选项和D 选项不符合题意=ABC ADE ∠∠=ACE ABCBAC∴=ACE ADEBAC 故C 选项不符合题意=ACB AED =ACB CAECEA=AED CEA BED∴=CAE BED 故A 选项符合题意故选:A .【点睛】本题考查了旋转的性质 熟练掌握旋转的性质和三角形外角运用是解题的关键.3.(2023·四川宜宾·统考中考真题)如图,ABC 和ADE 是以点A 为直角顶点的等腰直角三角形 把ADE 以A 为中心顺时针旋转 点M 为射线BD CE 的交点.若3AB 1AD =.以下结论: ①BD CE = ①BD CE ⊥ ①当点E 在BA 的延长线上时 33MC -=①在旋转过程中 当线段MB 最短时 MBC 的面积为12.其中正确结论有( )A .1个B .2个C .3个D .4个【答案】D【分析】证明BAD CAE ≌即可判断① 根据三角形的外角的性质得出① 证明DCM ECA ∠∠∽得出313-= 即可判断① 以A 为圆心 AD 为半径画圆 当CE 在A 的下方与A 相切时 MB 的值最小 可得四边形AEMD 是正方形 在Rt MBC 中22MC BC MB -21 然后根据三角形的面积公式即可判断①.【详解】解:①ABC 和ADE 是以点A 为直角顶点的等腰直角三角形 ①,,90BA CA DA EA BAC DAE ==∠=∠=︒ ①BAD CAE ∠=∠ ①BAD CAE ≌①ABD ACE ∠=∠ BD CE = 故①正确 设ABD ACE α∠=∠= ①45DBC α∠=︒-,①454590EMB DBC BCM DBC BCA ACE αα∠=∠+∠=∠+∠+∠=︒-+︒+=︒ ①BD CE ⊥ 故①正确当点E 在BA 的延长线上时 如图所示①DCM ECA ∠=∠ 90DMC EAC ∠=∠=︒ ①DCM ECA ∠∠∽①MC CDAC EC= ①3AB = 1AD =.①31CD AC AD =-= 222CE AE AC =+= 313-=①33MC -=故①正确 ①如图所示 以A 为圆心 AD 为半径画圆①90BMC ∠=︒ ①当CE 在A 的下方与A 相切时 MB 的值最小 90ADM DAE AEM ∠=∠=∠=︒①四边形AEMD 是矩形 又AE AD =①四边形AEMD 是正方形 ①1MD AE ==①222BD EC AC AE =- ①21MB BD MD =-= 在Rt MBC 中 22MC BC MB -①PB 取得最小值时 222MC AB AC MB +-()2332121+--①)()1112121222BMCSMB MC =⨯==故①正确 故选:D .【点睛】本题考查了旋转的性质 相似三角形的性质 勾股定理 切线的性质 垂线段最短 全等三角形的性质与判定 正方形的性质 熟练掌握以上知识是解题的关键.4.(2023·山东聊城·统考中考真题)如图,已知等腰直角ABC 90ACB ∠=︒ 2AB = 点C 是矩形ECGF与ABC 的公共顶点 且1CE = 3CG = 点D 是CB 延长线上一点 且2CD =.连接BG DF 在矩形ECGF 绕点C 按顺时针方向旋转一周的过程中 当线段BG 达到最长和最短时 线段DF 对应的长度分别为m 和n 则,mn的值为( )A .2B .3C 10D 13【答案】D【分析】根据锐角三角函数可求得1AC BC == 当线段BG 达到最长时 此时点G 在点C 的下方 且BC G 三点共线 求得4BG = 5DG = 根据勾股定理求得26DF = 即26m = 当线段BG 达到最短时 此时点G 在点C 的上方 且B C G 三点共线则,2BG = 1DG = 根据勾股定理求得2DF 即2n = 即可求得13mn【详解】①ABC 为等腰直角三角形 2AB = ①2sin 4521AC BC AB ==⋅︒== 当线段BG 达到最长时 此时点G 在点C 的下方 且B C G 三点共线 如图:则4BG BC CG =+= 5DG DB BG =+=在Rt DGF △中 22225126DF DG GF =++ 即26m =当线段BG 达到最短时 此时点G 在点C 的上方 且B C G 三点共线 如图:则2BG CG BC =-= 1DG BG DB =-=在Rt DGF △中 2222112DF DG GF =++ 即2n = 故26132m n == 故选:D .【点睛】本题考查了锐角三角函数 勾股定理等 根据旋转推出线段BG 最长和最短时的位置是解题的关键.二 填空题5.(2023·江苏连云港·统考中考真题)以正五边形ABCDE 的顶点C 为旋转中心 按顺时针方向旋转 使得新五边形A B CD E ''''的顶点D 落在直线BC 上则,正五边ABCDE 旋转的度数至少为______°.【答案】72【分析】依据正五边形的外角性质 即可得到DCF ∠的度数 进而得出旋转的角度. 【详解】解:①五边形ABCDE 是正五边形①530726DCF ∠÷=︒=︒①新五边形A B CD E ''''的顶点D 落在直线BC 上则,旋转的最小角度是72︒故答案为:72.【点睛】本题主要考查了正多边形 旋转性质 关键是掌握正多边形的外角和公式的运用.6.(2023·湖南张家界·统考中考真题)如图,AO 为BAC ∠的平分线 且50BAC ∠=︒ 将四边形ABOC 绕点A 逆时针方向旋转后 得到四边形AB O C ''' 且100OAC '∠=︒则,四边形ABOC 旋转的角度是______.【答案】75︒【分析】根据角平分线的性质可得25BAO OAC ==︒∠∠ 根据旋转的性质可得50BAC B AC ''∠=∠=︒ 25B AO O AC ''''==︒∠∠ 求得75OAO '∠=︒ 即可求得旋转的角度.【详解】①AO 为BAC ∠的平分线 50BAC ∠=︒①25BAO OAC ==︒∠∠①将四边形ABOC 绕点A 逆时针方向旋转后 得到四边形AB O C '''①50BAC B AC ''∠=∠=︒ 25B AO O AC ''''==︒∠∠①1002575OAO OAC O AC ''''∠=∠-∠=︒-︒=︒故答案为:75︒.【点睛】本题考查了角平分线的性质 旋转的性质 熟练掌握以上性质是解题的关键.7.(2023·湖南常德·统考中考真题)如图1 在Rt ABC △中 90ABC ∠=︒ 8AB = 6BC = D 是AB 上一点 且2AD = 过点D 作DE BC ∥交AC 于E 将ADE 绕A 点顺时针旋转到图2的位置.则图2中BDCE的值为__________.【答案】45【分析】首先根据勾股定理得到2210AC AB BC += 然后证明出ADE ABC △△∽ 得到AD AEAB AC= 进而得到ADABAE AC = 然后证明出ABD ACE ∽ 利用相似三角形的性质求解即可.【详解】①在Rt ABC △中 90ABC ∠=︒ 8AB = 6BC = ①2210AC AB BC +①DE BC ∥①90ADE ABC ∠=∠=︒ AED ACB ∠=∠①ADE ABC △△∽ ①ADAEAB AC = ①ADABAE AC =①BAC DAE ∠=∠①BAC CAD DAE CAD ∠+∠=∠+∠①BAD CAE ∠=∠①ABD ACE ∽ ①84105BD AB CD AC ===. 故答案为:45.【点睛】此题考查了相似三角形的性质和判定 解题的关键是熟练掌握相似三角形的性质和判定定理.8.(2023·江苏无锡·统考中考真题)已知曲线12C C 、分别是函数2(0),(0,0)k y x y k x x x=-<=>>的图像 边长为6的正ABC 的顶点A 在y 轴正半轴上 顶点B C 在x 轴上(B 在C 的左侧)现将ABC 绕原点O 顺时针旋转 当点B 在曲线1C 上时 点A 恰好在曲线2C 上则,k 的值为__________.【答案】6【分析】画出变换后的图像即可(画AOB 即可) 当点A 在y 轴上 点B C 在x 轴上时 根据ABC 为等边三角形且AO BC ⊥ 可得3OB OA = 过点A B 分别作x 轴垂线构造相似则,BFO OEA ∽ 根据相似三角形的性质得出3AOE S =△ 进而根据反比例函数k 的几何意义 即可求解.【详解】当点A 在y 轴上 点B C 在x 轴上时 连接AOABC 为等边三角形且AO BC ⊥则,30BAO ∠=︒∴tan tan30BAO ∠=︒=3OB OA = 如图所示 过点,A B 分别作x 轴的垂线 交x 轴分别于点,E FAO BO ⊥ 90BFO AEO AOB ∠=∠=∠=︒∴90BOF AOE EAO ∠=︒-∠=∠∴BFO OEA ∽ ∴213BFO AOE S OB SOA ⎛⎫== ⎪⎝⎭ ∴212BFO S -==∴3AOE S =△∴6k =.【点睛】本题考查了反比例函数的性质 k 的几何意义 相似三角形的性质与判定 正确作出辅助线构造相似三角形是解题关键.9.(2023·辽宁·统考中考真题)如图,线段8AB = 点C 是线段AB 上的动点 将线段BC 绕点B 顺时针旋转120°得到线段BD 连接CD 在AB 的上方作Rt DCE ∆ 使90,30DCE E ∠=∠= 点F 为DE 的中点 连接AF 当AF 最小时 BCD ∆的面积为___________.3【分析】连接CF BF , BF ,CD 交于点P 由直角三角形的性质及等腰三角形的性质可得BF 垂直平分CF 60ABF ∠=︒为定角 可得点F 在射线BF 上运动 当AF BF ⊥时 AF 最小 由含30度角直角三角形的性质即可求解.【详解】解:连接CF BF , BF ,CD 交于点P 如图,①90DCE ∠= 点F 为DE 的中点①FC FD =①30E ∠=①60FDC ∠=︒,①FCD 是等边三角形①60DFC FCD ∠=∠=︒①线段BC 绕点B 顺时针旋转120°得到线段BD①BC BD =①FC FD =①BF 垂直平分CF 60ABF ∠=︒①点F 在射线BF 上运动①当AF BF ⊥时 AF 最小此时9030FAB ABF ∠=︒-∠=︒ ①142BF AB == ①1302BFC DFC ∠=∠=︒ ①90FCB BFC ABF ∠=∠+∠=︒①122BC BF == ①112PB BC == ①由勾股定理得223PC BC PB - ①223CD PC == ①11231322BCD S CD PB =⋅=⨯△3【点睛】本题考查了等腰三角形性质 含30度直角三角形的性质 斜边中线性质 勾股定理 线段垂直平分线的判定 勾股定理 旋转的性质 确定点F 的运动路径是关键与难点.10.(2023·江西·统考中考真题)如图,在ABCD 中 602B BC AB ∠=︒=, 将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP 连接PC PD .当PCD 为直角三角形时 旋转角α的度数为_______.【答案】90︒或270︒或180︒【分析】连接AC 根据已知条件可得90BAC ∠=︒ 进而分类讨论即可求解.【详解】解:连接AC 取BC 的中点E 连接AE 如图所示①在ABCD 中 602B BC AB ∠=︒=, ①12BE CE BC AB ===①ABE 是等边三角形①60BAE AEB ∠=∠=︒ AE BE =①AE EC = ①1302EAC ECA AEB ∠=∠=∠=︒ ①90BAC ∠=︒①AC CD ⊥如图所示 当点P 在AC 上时 此时90BAP BAC ∠=∠=︒则,旋转角α的度数为90︒当点P 在CA 的延长线上时 如图所示则,36090270α=︒-︒=︒当P 在BA 的延长线上时则,旋转角α的度数为180︒ 如图所示①PA PB CD == PB CD ∥①四边形PACD 是平行四边形①AC AB ⊥①四边形PACD 是矩形①90PDC ∠=︒即PDC △是直角三角形综上所述 旋转角α的度数为90︒或270︒或180︒故答案为:90︒或270︒或180︒.【点睛】本题考查了平行四边形的性质与判定 等边三角形的性质与判定 矩形的性质与判定 旋转的性质 熟练掌握旋转的性质是解题的关键.11.(2023·上海·统考中考真题)如图,在ABC 中 35C ∠=︒ 将ABC 绕着点A 旋转(0180)αα︒<<︒ 旋转后的点B 落在BC 上 点B 的对应点为D 连接AD AD ,是BAC ∠的角平分线则,α=________.【答案】1103⎛⎫︒ ⎪⎝⎭【分析】如图,AB AD = BAD ∠=α 根据角平分线的定义可得CAD BAD α∠=∠= 根据三角形的外角性质可得35ADB α∠=︒+ 即得35B ADB α∠=∠=︒+ 然后根据三角形的内角和定理求解即可.【详解】解:如图,根据题意可得:AB AD = BAD ∠=α①AD 是BAC ∠的角平分线①CAD BAD α∠=∠=①35ADB C CAD α∠=∠+∠=︒+ AB AD =①35B ADB α∠=∠=︒+则在ABC 中 ①180C CAB B ∠+∠+∠=︒①35235180αα︒++︒+=︒ 解得:1103α⎛⎫=︒ ⎪⎝⎭故答案为:1103⎛⎫︒ ⎪⎝⎭【点睛】本题考查了旋转的性质 等腰三角形的性质 三角形的外角性质以及三角形的内角和等知识 熟练掌握相关图形的性质是解题的关键.12.(2023·湖南郴州·统考中考真题)如图,在Rt ABC △中 90BAC ∠=︒ 3cm AB = =60B ∠︒.将ABC 绕点A 逆时针旋转 得到AB C ''△ 若点B 的对应点B '恰好落在线段BC 上则,点C 的运动路径长.....是___________cm (结果用含π的式子表示).3π【分析】由于AC 旋转到AC ' 故C 的运动路径长是CC '的圆弧长度 根据弧长公式求解即可.【详解】以A 为圆心作圆弧CC ' 如图所示.在直角ABC 中 =60B ∠︒则,30C ∠=︒则()2236cm BC AB ==⨯=. ①)22226333cm AC BC AB =--.由旋转性质可知 AB AB '= 又=60B ∠︒①ABB '是等边三角形.①60BAB '∠=︒.由旋转性质知 60CAC '∠=︒.故弧CC '的长度为:()602333cm 3603AC πππ⨯⨯⨯=⨯ 3π【点睛】本题考查了含30︒角直角三角形的性质 勾股定理 旋转的性质 弧长公式等知识点 解题的关键是明确C 点的运动轨迹.13.(2023·内蒙古·统考中考真题)如图,在Rt ABC △中 90,3,1ACB AC BC ∠=︒== 将ABC 绕点A 逆时针方向旋转90︒ 得到AB C ''△.连接BB ' 交AC 于点D 则,AD DC 的值为________.【答案】5【分析】过点D 作DF AB ⊥于点F 利用勾股定理求得10AB根据旋转的性质可证ABB ' DFB △是等腰直角三角形 可得DF BF = 再由1122ADB SBC AD DF AB =⨯⨯=⨯⨯ 得=10AD DF 证明AFD ACB 可得DF AF BC AC = 即3AF DF = 再由=10AF DF 求得10=DF 从而求得52AD = 12CD = 即可求解. 【详解】解:过点D 作DF AB ⊥于点F①90ACB ∠=︒ 3AC = 1BC = ①223110AB +①将ABC 绕点A 逆时针方向旋转90︒得到AB C ''△ ①==10AB AB ' 90BAB '∠=︒①ABB '是等腰直角三角形①45ABB '∠=︒又①DF AB ⊥①45FDB ∠=︒①DFB △是等腰直角三角形①DF BF = ①1122ADB S BC AD DF AB =⨯⨯=⨯⨯ 即=10AD DF ① 90C AFD ∠=∠=︒ CAB FAD ∠=∠①AFD ACB ①DF AF BC AC= 即3AF DF = 又①=10AF DF ①10=DF ①105=10=2AD 51=3=22CD - ①52==512AD CD 故答案为:5.【点睛】本题考查旋转的性质 等腰三角形的判定与性质 相似三角形的判定与性质 三角形的面积 熟练掌握相关知识是解题的关键.14.(2023·黑龙江绥化·统考中考真题)已知等腰ABC 120A ∠=︒ 2AB =.现将ABC 以点B 为旋转中心旋转45︒ 得到A BC ''△ 延长C A ''交直线BC 于点D .则A D '的长度为_______. 【答案】423423+-或【分析】根据题意 先求得23BC = 当ABC 以点B 为旋转中心逆时针旋转45︒ 过点B 作BE A B '⊥交A D '于点E 当ABC 以点B 为旋转中心顺时针旋转45︒ 过点D 作DF BC '⊥交BC '于点F 分别画出图形 根据勾股定理以及旋转的性质即可求解.【详解】解:如图所示 过点A 作AM BC ⊥于点M①等腰ABC 120BAC ∠=︒ 2AB =. ①30ABC ACB ∠=∠=︒ ①112AM AB == 223BM CM AB AM =- ①23BC =如图所示 当ABC 以点B 为旋转中心逆时针旋转45︒ 过点B 作BE A B '⊥交A D '于点E①120BAC ∠=︒①60DA B '∠=︒ 30A EB '∠=︒在Rt A BE '中 24A E A B ''== 2223BE A E A B ''-= ①等腰ABC 120BAC ∠=︒ 2AB =. ①30ABC ACB ∠=∠=︒①ABC 以点B 为旋转中心逆时针旋转45︒ ①45ABA '∠=︒①180********DBE ∠=︒-︒-︒-︒=︒ 1804530105A BD '∠=︒-︒-︒=︒ 在A BD '中 1801806010515D DA B A BD ∠=︒-∠-∠=︒-︒-︒=''︒, ①D EBD ∠=∠ ①23EB ED ==①423A D A E DE ''=+=+如图所示 当ABC 以点B 为旋转中心顺时针旋转45︒ 过点D 作DF BC '⊥交BC '于点F在BFD △中 45BDF CBC ∠'=∠=︒ ①DF BF =在Rt DC F '中 30C '∠=︒ ①3'DF ①33BC BF BF ==①33DF BF ==①2623DC DF '==-①6232423A D C D A C ''''=-=-=- 综上所述 A D '的长度为423-423+ 故答案为:43-43+【点睛】本题考查了旋转的性质 勾股定理 含30度角的直角三角形的性质 熟练掌握旋转的性质 分类讨论是解题的关键.15.(2023·浙江嘉兴·统考中考真题)一副三角板ABC 和DEF 中90304512C D B E BC EF ∠=∠=︒∠=︒∠=︒==,,,.将它们叠合在一起 边BC 与EF 重合 CD 与AB 相交于点G (如图1) 此时线段CG 的长是___________ 现将DEF 绕点()C F 按顺时针方向旋转(如图2) 边EF 与AB 相交于点H 连结DH 在旋转0︒到60︒的过程中 线段DH 扫过的面积是___________.【答案】6662 1218318π-【分析】如图1 过点G 作GH BC ⊥于H 根据含30︒直角三角形的性质和等腰直角三角形的性质得出3BH GH = GH CH = 然后由12BC =可求出GH 的长 进而可得线段CG 的长 如图2 将DEF 绕点C 顺时针旋转60︒得到11D E F 1FE 与AB 交于1G 连接1D D 1AD 22D E F 是DEF 旋转0︒到60︒的过程中任意位置 作1DN CD ⊥于N 过点B 作1BM D D ⊥交1D D 的延长线于M 首先证明1CDD 是等边三角形 点1D 在直线AB 上 然后可得线段DH 扫过的面积是弓形12D D D 的面积加上1D DB 的面积 求出DN 和BM 然后根据线段DH 扫过的面积111121D DBCD DD DBD D D CD D S SS SS=+=-+弓形扇形列式计算即可.【详解】解:如图1 过点G 作GH BC ⊥于H①3045ABC DEF DFE ∠=︒∠=∠=︒, 90GHB GHC ∠=∠=︒ ①3BH GH = GH CH = ①312BC BH CH GH GH =+=+= ①36GH =①()226366662CG GH ===如图2 将DEF 绕点C 顺时针旋转60︒得到11D E F 1FE 与AB 交于1G 连接1D D 由旋转的性质得:1160E CB DCD ∠=∠=︒ 1CD CD = ①1CDD 是等边三角形①30ABC ∠=︒ ①190CG B ∠=︒ ①112CG BC =①1CE BC =①1112CG CE = 即AB 垂直平分1CE①11CD E 是等腰直角三角形 ①点1D 在直线AB 上连接1AD 22D E F 是DEF 旋转0︒到60︒的过程中任意位置 则线段DH 扫过的面积是弓形12D D D 的面积加上1D DB 的面积 ①12BC EF == ①22DC DB === ①1162DC D D == 作1DN CD ⊥于N 则,132ND NC == ①()()222211623236DN D D ND =-=-过点B 作1BM D D ⊥交1D D 的延长线于M 则,90M ∠=︒ ①160D DC ∠=︒ 90CDB ∠=︒①118030BDM D DC CDB ∠=︒-∠-∠=︒ ①1322BM BD == ①线段DH 扫过的面积112D DBD D D S S =+弓形111CD DD DBCD D S S S=-+扇形(260621123623236022π⋅=-⨯⨯ 1218318π=-故答案为:6662 1218318π-.【点睛】本题主要考查了旋转的性质 含30︒直角三角形的性质 二次根式的运算 解直角三角形 等边三角形的判定和性质 勾股定理 扇形的面积计算等知识 作出图形 证明点1D 在直线AB 上是本题的突破点 灵活运用各知识点是解题的关键.三 解答题16.(2023·北京·统考中考真题)在ABC 中 ()045B C αα∠=∠=︒<<︒ AM BC ⊥于点M D 是线段MC 上的动点(不与点M C 重合) 将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1 当点E 在线段AC 上时 求证:D 是MC 的中点(2)如图2 若在线段BM 上存在点F (不与点B M 重合)满足DF DC = 连接AE EF 直接写出AEF ∠的大小 并证明. 【答案】(1)见解析 (2)90AEF ∠=︒ 证明见解析【分析】(1)由旋转的性质得DM DE = 2MDE α∠= 利用三角形外角的性质求出C DEC α∠=∠= 可得DE DC = 等量代换得到DM DC =即可(2)延长FE 到H 使FE EH = 连接CH AH 可得DE 是FCH 的中位线 然后求出B ACH ∠∠= 设DM DE m == CD n = 求出2BF m CH == 证明()SAS ABF ACH ≅ 得到AF AH = 再根据等腰三角形三线合一证明AE FH ⊥即可.。
旋转试题及答案
旋转试题及答案一、选择题1. 旋转变换不改变图形的:A. 形状B. 大小C. 面积D. 所有选项答案:D2. 一个图形绕某点旋转180°后,与原图形:A. 完全重合B. 不同C. 部分重合D. 无法确定答案:A二、填空题1. 旋转中心是旋转变换中的________。
答案:固定点2. 旋转角度的正负表示旋转的方向,顺时针旋转角度为________。
答案:正三、简答题1. 请简述旋转的性质。
答案:旋转的性质包括:(1)旋转不改变图形的形状和大小;(2)旋转后图形的位置发生变化,但与原图形保持相同的角度和距离;(3)旋转可以是顺时针或逆时针。
2. 描述一个图形绕某点旋转90°后可能发生的变化。
答案:当一个图形绕某点旋转90°后,其位置会发生变化,图形的四个顶点会分别沿顺时针或逆时针方向移动90°。
图形的形状和大小保持不变,但方向发生改变。
四、计算题1. 假设有一个正方形ABCD,中心点为O,如果正方形绕O点顺时针旋转45°,求旋转后A点的新位置。
答案:旋转后A点的新位置可以通过计算得出。
首先确定A点相对于O点的坐标,然后应用旋转矩阵进行坐标变换。
假设A点的初始坐标为(x1, y1),旋转45°后的坐标为(x2, y2),则有:x2 = x1 * cos(45°) - y1 * sin(45°)y2 = x1 * sin(45°) + y1 * cos(45°)2. 如果一个图形绕原点旋转θ角度,求该图形上任意一点P(x, y)旋转后的新坐标。
答案:设点P的初始坐标为(x, y),旋转θ角度后的坐标为(x',y'),则有:x' = x * cos(θ) - y * sin(θ)y' = x * sin(θ) + y * cos(θ)五、论述题1. 论述旋转在几何学中的重要性及其应用。
专题20图形的旋转(共38题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】
备战2023年中考数学必刷真题考点分类专练(全国通用)专题20图形的旋转(共38题)一.选择题(共21小题)1.(2022•遵义)在平面直角坐标系中,点A(a,1)与点B(﹣2,b)关于原点成中心对称,则a+b的值为()A.﹣3B.﹣1C.1D.32.(2022•内江)2022年2月第24届冬季奥林匹克运动会在我国北京成功举办,以下是参选的冬奥会会徽设计的部分图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(2022•哈尔滨)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(2022•临沂)剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题.以下关于鱼的剪纸中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(2022•长沙)在平面直角坐标系中,点(5,1)关于原点对称的点的坐标是()A.(﹣5,1)B.(5,﹣1)C.(1,5)D.(﹣5,﹣1)6.(2022•包头)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针旋转得到△A'B'C,其中点A'与点A是对应点,点B'与点B是对应点.若点B'恰好落在AB边上,则点A到直线A'C的距离等于()A.3B.2C.3D.27.(2022•雅安)在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则ab的值为()A.﹣4B.4C.12D.﹣128.(2022•永州)剪纸是我国具有独特艺术风格的民间艺术,反映了劳动人民对现实生活的深刻感悟.下列剪纸图形中,是中心对称图形的有()A.①②③B.①②④C.①③④D.②③④9.(2022•宜昌)将四个数字看作一个图形,则下列四个图形中,是中心对称图形的是()A.B.C.D.10.(2022•天津)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是()A.AB=AN B.AB∥NC C.∠AMN=∠ACN D.MN⊥AC11.(2022•常德)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A,B的对应点分别是D,E,点F是边AC的中点,连接BF,BE,FD.则下列结论错误的是()A.BE=BC B.BF∥DE,BF=DEC.∠DFC=90°D.DG=3GF12.(2022•内江)如图,在平面直角坐标系中,点B、C、E在y轴上,点C的坐标为(0,1),AC=2,Rt△ODE是Rt△ABC经过某些变换得到的,则正确的变换是()A.△ABC绕点C逆时针旋转90°,再向下平移1个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移3个单位D.△ABC绕点C顺时针旋转90°,再向下平移3个单位13.(2022•杭州)如图,在平面直角坐标系中,已知点P(0,2),点A(4,2).以点P为旋转中心,把点A按逆时针方向旋转60°,得点B.在M1(﹣,0),M2(﹣,﹣1),M3(1,4),M4(2,)四个点中,直线PB经过的点是()A.M1B.M2C.M3D.M414.(2022•南充)如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′为()A.90°B.60°C.45°D.30°15.(2022•绥化)如图,线段OA在平面直角坐标系内,A点坐标为(2,5),线段OA绕原点O逆时针旋转90°,得到线段OA',则点A'的坐标为()A.(﹣5,2)B.(5,2)C.(2,﹣5)D.(5,﹣2)16.(2022•黑龙江)下列图形是汽车的标识,其中是中心对称图形但不是轴对称图形的是()A.B.C.D.17.(2022•大庆)观察下列图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.18.(2022•齐齐哈尔)下面四个交通标志中,是中心对称图形的是()A.B.C.D.19.(2022•桂林)下列图形中,是中心对称图形的是()A.等边三角形B.圆C.正五边形D.扇形20.(2022•遂宁)下面图形中既是轴对称图形又是中心对称图形的是()A.科克曲线B.笛卡尔心形线C.阿基米德螺旋线D.赵爽弦图21.(2022•毕节市)下列垃圾分类标识的图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.二.填空题(共8小题)22.(2022•吉林)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角α(0°<α<360°)后能够与它本身重合,则角α可以为度.(写出一个即可)23.(2022•贺州)如图,在平面直角坐标系中,△OAB为等腰三角形,OA=AB=5,点B到x轴的距离为4,若将△OAB绕点O逆时针旋转90°,得到△OA′B′,则点B′的坐标为.24.(2022•怀化)已知点A(﹣2,b)与点B(a,3)关于原点对称,则a﹣b=.25.(2022•云南)点A(1,﹣5)关于原点的对称点为点B,则点B的坐标为.26.(2022•泸州)点(﹣2,3)关于原点的对称点的坐标为.27.(2022•无锡)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD与直线AE 交于点F.如图,若点D在△ABC内,∠DBC=20°,则∠BAF=°;现将△DCE绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是.28.(2022•永州)如图,图中网格由边长为1的小正方形组成,点A为网格线的交点.若线段OA绕原点O 顺时针旋转90°后,端点A的坐标变为.29.(2022•丽水)一副三角板按图1放置,O是边BC(DF)的中点,BC=12cm.如图2,将△ABC绕点O顺时针旋转60°,AC与EF相交于点G,则FG的长是cm.三.解答题(共9小题)30.(2022•武汉)如图是由小正方形组成的9×6网格,每个小正方形的顶点叫做格点.△ABC的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D,E分别是边AB,AC与网格线的交点.先将点B绕点E旋转180°得到点F,画出点F,再在AC上画点G,使DG∥BC;(2)在图(2)中,P是边AB上一点,∠BAC=α.先将AB绕点A逆时针旋转2α,得到线段AH,画出线段AH,再画点Q,使P,Q两点关于直线AC对称.31.(2022•温州)如图,在2×6的方格纸中,已知格点P,请按要求画格点图形(顶点均在格点上).(1)在图1中画一个锐角三角形,使P为其中一边的中点,再画出该三角形向右平移2个单位后的图形.(2)在图2中画一个以P为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P旋转180°后的图形.32.(2022•安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.33.(2022•黑龙江)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△DEF关于点O成中心对称,△ABC与△DEF的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O的位置.(2)将△ABC先向右平移4个单位长度,再向下平移2个单位长度,得到△A1B1C1,请画出△A1B1C1;(3)在网格中画出格点M,使A1M平分∠B1A1C1.34.(2022•广元)在Rt△ABC中,AC=BC,将线段CA绕点C旋转α(0°<α<90°),得到线段CD,连接AD、BD.(1)如图1,将线段CA绕点C逆时针旋转α,则∠ADB的度数为;(2)将线段CA绕点C顺时针旋转α时①在图2中依题意补全图形,并求∠ADB的度数;②若∠BCD的平分线CE交BD于点F,交DA的延长线于点E,连结BE.用等式表示线段AD、CE、BE之间的数量关系,并证明.35.(2022•连云港)【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中∠ACB =∠DEB=90°,∠B=30°,BE=AC=3.【问题探究】小昕同学将三角板DEB绕点B按顺时针方向旋转.(1)如图2,当点E落在边AB上时,延长DE交BC于点F,求BF的长.(2)若点C、E、D在同一条直线上,求点D到直线BC的距离.(3)连接DC,取DC的中点G,三角板DEB由初始位置(图1),旋转到点C、B、D首次在同一条直线上(如图3),求点G所经过的路径长.(4)如图4,G为DC的中点,则在旋转过程中,点G到直线AB的距离的最大值是.36.(2022•重庆)在△ABC中,∠BAC=90°,AB=AC=2,D为BC的中点,E,F分别为AC,AD 上任意一点,连接EF,将线段EF绕点E顺时针旋转90°得到线段EG,连接FG,AG.(1)如图1,点E与点C重合,且GF的延长线过点B,若点P为FG的中点,连接PD,求PD的长;(2)如图2,EF的延长线交AB于点M,点N在AC上,∠AGN=∠AEG且GN=MF,求证:AM+AF =AE;(3)如图3,F为线段AD上一动点,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将△BEH沿EH翻折至△ABC所在平面内,得到△B′EH,连接B′G,直接写出线段B′G的长度的最小值.37.(2022•成都)如图,在矩形ABCD中,AD=nAB(n>1),点E是AD边上一动点(点E不与A,D重合),连接BE,以BE为边在直线BE的右侧作矩形EBFG,使得矩形EBFG∽矩形ABCD,EG交直线CD于点H.【尝试初探】(1)在点E的运动过程中,△ABE与△DEH始终保持相似关系,请说明理由.【深入探究】(2)若n=2,随着E点位置的变化,H点的位置随之发生变化,当H是线段CD中点时,求tan∠ABE 的值.【拓展延伸】(3)连接BH,FH,当△BFH是以FH为腰的等腰三角形时,求tan∠ABE的值(用含n的代数式表示).38.(2022•重庆)如图,在锐角△ABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想;(3)若AB=AC,且BD=AE,将△ABC沿直线AB翻折至△ABC所在平面内得到△ABP,点H是AP 的中点,点K是线段PF上一点,将△PHK沿直线HK翻折至△PHK所在平面内得到△QHK,连接PQ.在点D,E运动过程中,当线段PF取得最小值,且QK⊥PF时,请直接写出的值.。
图形旋转测试题及答案
图形旋转测试题及答案一、选择题1. 一个图形绕某点旋转了90°,下列说法正确的是:A. 图形的大小不变B. 图形的形状不变C. 图形的位置不变D. 以上说法都不正确答案:A、B2. 下列哪个图形旋转180°后与原图形完全重合?A. 正方形B. 圆形C. 长方形D. 三角形答案:B二、填空题3. 若一个图形绕中心点O旋转____度,可以得到与原图形关于点O对称的图形。
答案:1804. 一个等腰三角形绕底边的中点旋转____度,可以得到与原图形完全重合的图形。
答案:180三、简答题5. 描述一个正方形绕其一个顶点旋转90°后,图形的位置变化情况。
答案:正方形绕其一个顶点旋转90°后,其四个顶点的位置将分别移动到原来对角线的顶点位置。
具体来说,如果原正方形的顶点分别为A、B、C、D,且A为旋转中心,则旋转后,A点位置不变,B点移动到C点位置,C点移动到D点位置,D点移动到B点位置。
四、计算题6. 已知一个正六边形绕其中心点O旋转60°后,求旋转后顶点的新位置。
答案:正六边形的每个顶点绕中心点O旋转60°后,每个顶点的新位置将沿着正六边形的外接圆的圆周上移动,每个顶点相对于原来的位置旋转了60°的弧度。
五、论述题7. 论述图形旋转的性质及其在几何学中的应用。
答案:图形旋转是一种几何变换,它保持图形的大小和形状不变,只改变图形的位置。
旋转的性质包括旋转角度的可加性,即连续旋转两个角度相当于旋转这两个角度的和。
在几何学中,图形旋转常用于证明图形的对称性,解决几何构造问题,以及在变换几何中研究图形的不变性质等。
上海教育版数学七年级上册11.2《图形的旋转》练习题1.doc
上海教育版数学七年级上册11.2 《图形的旋转》练习题1x一. 选择题1.下列图不是中心对称图形的是()A.①③B.②④C.①④D.②③2.如右图,四边形ABCD是正方形,ADE绕着点 A 旋转900后到达ABF 的位置,连接EF,则AEF的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形3.下列图形中,既是轴对称图形又是中心对称图形的是()A B C D4.如图 , 将正方形图案绕中心O旋转180°后,得到的图案是()5.下列命题中的真命题是( ) A.全等的两个图形是中心对称图形; B.关于中心对称的两个图形全等;C.中心对称图形都是轴对称图形; D.轴对称图形都是中心对称图形.6.图( 1)中,可以经过旋转和翻折形成图案(2)的梯形符合条件为()A.等腰梯形 ; B.上底与两腰相等的等腰梯形;C.底角为60°且上底与两腰相等的等腰梯形;D.底角为60°的等腰梯形7.顺次连接矩形各边中点所得的四边形()A.是轴对称图形而不是中心对称图形; B .是中心对称图形而不是轴对称图形;C.既是轴对称图形又是中心对称图形; D .没有对称性8.如图,直线 y = 3x+3与 y 轴交于点 P,将它绕着点 P 旋转 90?°所得的直线的解析式为().3 3A. y= 3x+3B . y=-3x+31 1C. y= 3 x+ 3D . y=- 3 x+39.如图,△ ABC中,∠ B=90°,∠ C=30°, AB=1,将△ ABC?绕顶点 A 旋转 180°,点 C 落在 C′处,则 CC′的长为()A . 4 B.4 2C.23D .25(第 9图)二. 填空题1.如图,△ABC以点A为旋转中心,按逆时针方向旋转60 ,得△ AB C ,则△ ABB 是三角形。
2. 如图所示,图(1)经过变化成图(2),图(2 )经过变化成图(3).3.绕一定点旋转 180°后与原来图形重合的图形是中心对称图形,正六边形就是这样的图形。
小学图形旋转练习题
小学图形旋转练习题一、选择题1. 下列哪个图形经过旋转后,形状不变?A. 正方形B. 圆形C. 长方形D. 三角形2. 一个图形绕某点旋转了180度,这个图形会:A. 位置不变B. 形状改变C. 位置和形状都不变D. 位置改变,形状不变3. 一个图形绕中心点旋转90度后,图形的:A. 面积不变B. 周长不变C. 面积和周长都不变D. 面积和周长都改变二、填空题4. 一个正方形绕其中心点旋转____度,可以回到原来的位置。
5. 如果一个图形绕某点旋转360度,那么这个图形的位置____。
三、判断题6. 所有图形旋转后,其面积都会改变。
()7. 一个图形旋转后,其周长不会改变。
()四、简答题8. 请描述一个图形旋转的过程,并说明旋转前后图形的特点。
五、操作题9. 请画出一个等边三角形,并标出旋转中心点。
然后,描述如何旋转这个三角形,使其回到原位。
六、计算题10. 假设有一个边长为10厘米的正方形,计算它绕中心点旋转90度后,边长的变化。
七、综合题11. 给定一个半径为5厘米的圆,计算它绕中心点旋转任意角度后,圆的面积和周长。
八、拓展题12. 如果一个图形可以绕某点旋转任意角度后回到原位,我们称这个点为图形的旋转中心。
请列举出几个常见的旋转中心,并说明它们的特点。
九、应用题13. 一个风车有四个等长的叶片,当风车旋转时,叶片的旋转中心是哪里?如果风车旋转了一周,叶片会回到原来的位置吗?十、创新题14. 设计一个图形,它在旋转一定角度后,形状会发生变化,但旋转360度后,形状和位置都回到原位。
请画出这个图形,并描述其旋转过程。
十一、思维题15. 在一个正方形的四个顶点上各放置一个相同的小圆,这些小圆绕正方形的中心旋转,当正方形旋转90度时,这些小圆的位置会如何变化?十二、探索题16. 观察生活中的物体,找出哪些物体在旋转时,形状和位置都不会改变。
请列举至少三个例子,并简要说明原因。
通过这些练习题,学生可以更好地理解图形旋转的基本概念,掌握旋转的性质和特点,提高空间想象能力和解决问题的能力。
《图形旋转》经典好题
16/9/21旋转构图,聚拢条件(1)姓名舟1.正三角形类型在正A ABC中,P为AABC内一点,将△ ABP绕A点按逆时针方向旋转60°,使得AB与AC 重合。
经过这样旋转变化,将图(l-1-a)中的PA、PB> PC三条线段集中于图(l-1-b)中的一个AP'CP中,此时AP'AP也为正三角形。
例1・图1T,设P是等边AABC内的一点,PA=3, PB=4, PC二5,求ZAPB的度数解:将AAPC绕A点逆时针旋转60°,使得AC与AB重合并连接PP',2•正方形类型图(1」) 在正方形ABCD中,P为正方形ABCD内一点,将△ ABP绕B点按顺时针方向旋转90",使得BA与BC重合。
经过旋转变化,将图(2-l-a)中的PA、PB、PC三条线段集中于图(2-1-b) 中的ACPP'中,此时ABPP'为等腰直角三角形。
例2•如图(2-1) , P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1, PB=2, PC二3。
求ZAPB 的度数。
图(2-1-a) 图(2-l-b> a图2-13•等腰直角三角形类型在等腰直角三角形AABC中,zC二90° , P为AABC内一点,将△ APC绕C点按逆时针方向旋转90°,使得AC与BC重合。
经过这样旋转变化,在图(3-1-b)中的一个AP' CP为等腰直角三角形。
例3・如下图,在 A ABC 中,z ACB 二90°, BC 二AC, P 为AABC 内一点,且PA 二3, PB 二1, PC 二2。
求z BPC的度数。
解:练习:在RtAABC 中,ZC=90° , AC二1, ZABC二聖°,点0 为RtAABC 内一点,连接AO. BO、CO, 且ZA0C 二ZC0B二BOA二120° ,(1)按下列要求画图(保留画图痕迹):以点B为旋转中心,将AAOB绕点B顺时针方向旋转60°,得到O' B (得到A、0的对应点分别为点A'、0,),(2)分别求ZA‘ BC、OA+OB+OC的大小。
图形的旋转九年级试卷【含答案】
图形的旋转九年级试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 图形绕某点旋转90°,相当于图形绕同一点旋转_________。
A. 45°B. 180°C. 270°D. 360°2. 一个正方形绕其中心旋转,每次旋转_________度,图形与原图形重合。
A. 30°B. 45°C. 60°D. 90°3. 下列哪个图形绕中心点旋转180°后,能与原图形重合?A. 等边三角形B. 等腰三角形C. 长方形D. 正五边形4. 一个点绕另一个点旋转,旋转角为_________时,两点位置不变。
A. 0°B. 90°C. 180°D. 270°5. 下列哪个图形绕中心旋转90°后,不能与原图形重合?A. 正方形B. 正五边形C. 正六边形D. 正八边形二、判断题(每题1分,共5分)1. 旋转前后图形的大小和形状都不会改变。
()2. 旋转角是指旋转中心与旋转后的图形的对应点之间的夹角。
()3. 任何图形绕中心旋转180°后,都能与原图形重合。
()4. 一个图形绕中心旋转360°后,一定回到原来的位置。
()5. 旋转前后图形的面积一定相等。
()三、填空题(每题1分,共5分)1. 图形绕某点旋转_________度,相当于图形绕同一点旋转270°。
2. 一个正方形绕其中心旋转,每次旋转_________度,图形与原图形重合。
3. 下列哪个图形绕中心点旋转180°后,能与原图形重合?_________4. 一个点绕另一个点旋转,旋转角为_________时,两点位置不变。
5. 下列哪个图形绕中心旋转90°后,不能与原图形重合?_________四、简答题(每题2分,共10分)1. 简述旋转的基本性质。
《图形的旋转》练习题
《图形的旋转》练习题一、判断题1、图形的旋转是图形沿着某个点旋转一定的角度。
()2、图形的旋转是由旋转中心、旋转方向和旋转角度所决定的。
()3、图形的旋转改变了图形的形状和大小。
()4、图形的旋转不改变图形的形状和大小。
()5、一个图形围绕某一点旋转一定角度后,只要与原来的图形重合,那么这个图形就被旋转对称了。
()6、一个图形围绕某一点旋转一定角度后,只要与原来的图形不重合,那么这个图形就不是旋转对称的。
()7、旋转对称图形是旋转对称的。
()8、旋转对称的图形是旋转对称的。
()9、一个图形如果和另一个图形是旋转对称的,那么这两个图形一定也是轴对称的。
()10、一个图形如果和另一个图形是轴对称的,那么这两个图形一定是旋转对称的。
()二、填空题1、在平面内,将一个图形绕某点转动一个角度,这样的图形运动称为__________。
2、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
3、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
4、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
5、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
6、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
7、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
8、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
9、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
10、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
《图形的平移与旋转》复习全攻略【介绍】《图形的平移与旋转》是初中数学中的重要一课,它涉及到平面几何的基本概念和变换方法。
在这篇复习全攻略中,我们将一起回顾图形的平移和旋转的基本概念、考点、解题技巧以及难点解析,帮助大家充分掌握这一课的内容。
初中数学:《图形的旋转》测试题及答案
初中数学:《图形的旋转》测试题及答案一、选择题1.在图形旋转中,下列说法错误的是()A.图形上的每一点到旋转中心的距离相等B.图形上的每一点转动的角度相同C.图形上可能存在不动点D.图形上任意两点的连线与其对应两点的连线相等2.下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()A.B. C.D.3.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是()A.60°B.90°C.72°D.120°4.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)()A.左上角的梅花只需沿对角线平移即可B.右上角的梅花需先沿对角线平移后,再顺时针旋转45°C.右下角的梅花需先沿对角线平移后,再顺时针旋转180D.左下角的梅花需先沿对角线平移后,再顺时针旋转90°5.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,则旋转角等于()A.50°B.210°C.50°或210°D.130°二、填空题6.在图形的平移、旋转、轴对称变换中,其相同的性质是______.7.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是______,它们之间的关系是______,其中BD=______.8.如图,将△OAB绕点O按逆时针方面旋转至△0A′B′,使点B恰好落在边A′B′上.已知AB=4cm,BB′=1cm,则A′B长是______cm.9.如图,在平面直角坐标系中,点A的坐标为(1,4),将线段OA绕点O顺时针旋转90°得到线段OA′,则点A′的坐标是______.10.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+DF与EF 的关系是______.11.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①,②,③,④…,则三角形⑩的直角顶点的坐标为______.三、综合提高题12.观察下列图形,它可以看作是什么“基本图形”通过怎样的旋转而得到的?13.如图:若∠AOD=∠BOC=60°,A、O、C三点在同一条线上,△AOB与△COD是能够重合的图形.求:(1)旋转中心;(2)旋转角度数;(3)图中经过旋转后能重合的三角形共有几对?若A、O、C三点不共线,结论还成立吗?为什么?(4)求当△BOC为等腰直角三角形时的旋转角度;(5)若∠A=15°,则求当A、C、B在同一条线上时的旋转角度.14.作图:(1)如图甲,以点O为中心,把点P顺时针旋转45°.(2)如图乙,以点O为中心,把线段AB逆时针旋转90°.(3)如图丙,以点O为中心,把△ABC顺时针旋转120°.(4)如图丁,以点B为中心,把△ABC旋转180°.15.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L,M,D在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.16.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值.17.如图在Rt△OAB中,∠OAB=90°,OA=AB=6.(1)请你画出将△OAB绕点O沿逆时针方向旋转90°,得到的△OA1B1;(2)线段OA1的长度是______,∠AOB1的度数是______;(3)连接AA1,求证:四边形OAA1B1是平行四边形.《图形的旋转》参考答案与试题解析一、选择题1.在图形旋转中,下列说法错误的是()A.图形上的每一点到旋转中心的距离相等B.图形上的每一点转动的角度相同C.图形上可能存在不动点D.图形上任意两点的连线与其对应两点的连线相等【解答】解:A、在图形旋转中,根据旋转的性质,图形上对应点到旋转中心的距离相等,故本选项错误;B、图形上的每一点转动的角度都等于旋转角,正确;C、以图形上一点为旋转中心,则这个点不动,正确;D、旋转前后两个图形全等,则图形上任意两点的连线与其对应两点的连线相等,正确.故选A.2.下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()A.B. C.D.【解答】解:A、只包含图形的旋转,不符合题意;B、只是轴对称图形,不符合题意;C、只是轴对称图形,不符合题意;D、既包含图形的旋转,又包含图形的轴对称,符合题意.故选:D.3.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是()A.60°B.90°C.72°D.120°【解答】解:该图形被平分成五部分,因而每部分被分成的圆心角是72°,并且圆具有旋转不变性,因而旋转72度的整数倍,就可以与自身重合.故选C.4.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)()A.左上角的梅花只需沿对角线平移即可B.右上角的梅花需先沿对角线平移后,再顺时针旋转45°C.右下角的梅花需先沿对角线平移后,再顺时针旋转180D.左下角的梅花需先沿对角线平移后,再顺时针旋转90°【解答】解:由平移和旋转可得,D选项中左下角的梅花需先沿对角线平移后,再逆时针旋转90°,所以D选项错误.故选:B.5.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,则旋转角等于()A.50°B.210°C.50°或210°D.130°【解答】解:∵∠BAC′=130°,∠BAC=80°,∴如图1,∠CAC′=∠BAC′﹣∠BAC=50°,如图2,∠CAC′=∠BAC′+∠BAC=210°.∴旋转角等于50°或210°.故选C.二、填空题6.在图形的平移、旋转、轴对称变换中,其相同的性质是图形的形状、大小不变,只改变图形的位置.【解答】解:在图形的平移、旋转、轴对称变换中,其相同的性质是图形的形状、大小不变,只改变图形的位置.7.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是△ACE ,它们之间的关系是全等,其中BD= CE .【解答】解:△ABD绕点A逆时针旋转42°得到△ACE,它们之间的关系是全等,其中BD=CE.8.如图,将△OAB绕点O按逆时针方面旋转至△0A′B′,使点B恰好落在边A′B′上.已知AB=4cm,BB′=1cm,则A′B长是 3 cm.【解答】解:根据旋转的性质,得:A′B′=AB=4cm.∴A′B=A′B′﹣BB′=4﹣1=3(cm).9.如图,在平面直角坐标系中,点A的坐标为(1,4),将线段OA绕点O顺时针旋转90°得到线段OA′,则点A′的坐标是(4,﹣1).【解答】解:由图知A点的坐标为(1,4),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(4,﹣1).故答案为:(4,﹣1).10.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+DF与EF 的关系是BE+DF=EF .【解答】解:如图,延长CD到M,使DM=BE,连接AM、EF;∵四边形ABCD为正方形,∴∠B=∠ADC=90°,AB=AD;在△ABE与△ADM中,,∴△ABE≌△ADM(SAS),∴∠BAE=∠DAM,AE=AM;∴∠BAE+DAF=∠DAM+∠DAF=∠MAF;∵∠EAF=45°,∴∠BAE+DAF=90°﹣45°=45°,∴∠EAF=∠MAF=45°;在△EAF与△MAF中,,∴△EAF≌△MAF(SAS),∴MF=EF,而MF=MD+DF=BE+DF,∴BE+DF=EF,故答案为BE+DF=EF.11.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①,②,③,④…,则三角形⑩的直角顶点的坐标为(36,0).【解答】解:由原图到图③,相当于向右平移了12个单位长度,象这样平移三次直角顶点是(36,0),再旋转一次到三角形⑩,直角顶点仍然是(36,0),则三角形⑩的直角顶点的坐标为(36,0).故答案为:(36,0).三、综合提高题12.观察下列图形,它可以看作是什么“基本图形”通过怎样的旋转而得到的?【解答】解:图形(1)是通过一条线段绕点O旋转360°而得到的;图形(2)可以看作是“一个Rt△ABC”绕线段AC旋转360°而得到的;图形(3)将矩形ABCD绕AD旋转一周而得到的.13.如图:若∠AOD=∠BOC=60°,A、O、C三点在同一条线上,△AOB与△COD是能够重合的图形.求:(1)旋转中心;(2)旋转角度数;(3)图中经过旋转后能重合的三角形共有几对?若A、O、C三点不共线,结论还成立吗?为什么?(4)求当△BOC为等腰直角三角形时的旋转角度;(5)若∠A=15°,则求当A、C、B在同一条线上时的旋转角度.【解答】解:(1)∵△AOB与△COD是能够重合的图形,∴旋转中心是点O;(2)根据题意得:旋转角是∠AOD或∠BOC,∴旋转角度数是60°,(3)经过旋转后能重合的三角形有△AOB与△DOC,△AOE与△DOF,△BOE与△COF 共三对,若A、O、C三点不共线,△AOE与△DOF,△BOE与△COF不一定重合,结论不一定成立,∵若A、O、C三点不共线,∠DOB≠60°,∴∠AOD=∠BOC=60°≠∠DOB,∴△BOE与△COF不一定重合,结论不一定成立;(4)∵△BOC为等腰直角三角形,∴∠BOC=∠AOD=90°,∴旋转角度为:90°,(5)∵180°﹣∠BOC=180°﹣60°=120°,∴旋转角度为120°.14.作图:(1)如图甲,以点O为中心,把点P顺时针旋转45°.(2)如图乙,以点O为中心,把线段AB逆时针旋转90°.(3)如图丙,以点O为中心,把△ABC顺时针旋转120°.(4)如图丁,以点B为中心,把△ABC旋转180°.【解答】解:(1)如图甲,点P′为所求;(2)如图乙,线段A′B′为所求;(3)如图丙,△A′B′C′为所求;(4)如图丁,△A′BC′为所求.15.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L,M,D在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.【解答】解:BK与DM的关系是互相垂直且相等.∵四边形ABCD和四边形AKLM都是正方形,∴AB=AD,AK=AM,∠BAK=90°﹣∠DAK,∠DAM=90°﹣∠DAK,∴∠BAK=∠DAM,∴△ABK≌△ADM(SAS).把△ABK绕A逆时针旋转90°后与△ADM重合,∴BK=DM且BK⊥DM.16.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值.【解答】解:(1)在△ABC中,∵AC=1,AB=x,BC=3﹣x.∴,解得1<x<2.(4分)(2)①若AC为斜边,则1=x2+(3﹣x)2,即x2﹣3x+4=0,无解.②若AB为斜边,则x2=(3﹣x)2+1,解得,满足1<x<2.③若BC为斜边,则(3﹣x)2=1+x2,解得,满足1<x<2.∴或.17.如图在Rt△OAB中,∠OAB=90°,OA=AB=6.(1)请你画出将△OAB绕点O沿逆时针方向旋转90°,得到的△OA1B1;(2)线段OA1的长度是 6 ,∠AOB1的度数是135°;(3)连接AA1,求证:四边形OAA1B1是平行四边形.【解答】(1)解:△OA1B1如图所示.(2)解:根据旋转的性质知,OA1=OA=6.∵将△OAB绕点O沿逆时针方向旋转90°,得到的△OA1B1 ,∴∠BOB1=90°.∵在Rt△OAB中,∠OAB=90°,OA=AB=6, ∴∠BOA=∠OBA=45°,∴∠AOB1=∠BOB1+∠BOA=90°+45°=135°,即∠AOB1的度数是135°.故答案是:6,135°;(3)证明:根据旋转的性质知,△OA1B1≌△OAB,则∠OA1B1=∠OAB=90°,A1B1=AB,∵将△OAB绕点O沿逆时针方向旋转90°,得到的△OA1B1 ,∴∠A1OA=90°,∴∠OA1B1=∠A1OA,∴A1B1∥OA.又∵OA=AB,∴A1B1=OA,∴四边形OAA1B1是平行四边形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的旋转练习题
一、复习
1、我们曾学过那些图形的变换?(
2、什么叫平移?平移的性质是什么?
答:
3、什么叫轴对称?轴对称的性质是什么?
二、感知旋转,总结图形旋转的定义。
1、你见过的生活中图形的旋转有哪些?
答:
旋转中心
图23.2 图23.3
30
度
图23.1
2、如图23.1射线绕着点—顺时针旋转得到射线・
3、如图23.2. A OAB绕点0 方向旋转度,得到△.
4、总结图形旋转的定义:
在同一平面内,把一个图形绕着某一定点。
转动一定角度的图形变换叫做.这个定点。
叫,转动的角叫做.如果图形上的点P经过旋转变为点P',那么点P和P'叫做这个旋转的・
4、图形的旋转是由什么决定的?
图形的旋转由、和决定,我们称之为旋转三要素。
三、巩固练习
1、下列现象中属于旋转的有()个
①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动.
A.2
B.3
C.4
D.5
2、如
图23.2所示,△ABO绕点。
旋转得到△CDO,在这个旋转过程中:(1)旋转中心()旋转教师(
)。
(2)经过旋转,点A、B 分别移()。
(3)若AO=3cm,贝lj CO= ()。
(5) ABOD
是
______ 三角形。
3、下列图形23.3中,不能通过旋转方式得到的是()
4、例1 :钟表的分针匀速旋转一周需要60分.(1 )指出它的旋转中心;
(2 )经过20分,分针旋转了多少度?—
5、如图:^ABC是等边三角形,D是BC边上的一点,AABD经过旋转后到达AACE的位置.
(1)旋转中心是哪一点?(2)旋转了多少度?
(3)如果M是AB ±中点,那么经过上述的旋转后,点M到了什么位置?
M
E
B D C
6、议一议,做一做。
本图案可以看做是一个花瓣通过几次旋转得到的?
7、时钟的时针在不停地转动,从上午6时到上午9时,时针旋转的旋转角是多少度?从上午9时到上午10时呢?
8、如图,杠杆绕支点转动撬起重物,杠杆的旋转中心在哪里?旋转角是哪个角?
9、如图,如果正方形CDEF旋转后能与正方形ABCD重合,那么图形所在的平面上可以作为旋转中心的点共有个.
仑 D 气
B------------------- 7- --------------------- F
10、如图:P是等边AABC内的一点,把AABP按不同的方向通过旋转得到ABQC和AACR,
(1)指出旋转中心、旋转方向和旋转角度?
(2)AACR是否可以直接通过把ABQC旋转得到?。