七年级上册数学整式的加减单元重点练习试卷附答案 教师版

合集下载

(名师整理)数学七年级上册 第2章 《整式的加减 》单元检测测试题(含答案解析)

(名师整理)数学七年级上册 第2章 《整式的加减 》单元检测测试题(含答案解析)

《整式的加减》单元检测题一、单选题1.计算3x2﹣x2的结果是()A. 2B. 2x2C. 2xD. 4x22.下列计算中,结果是a7的是()A. a3﹣a4B. a3•a4C. a3+a4D. a3÷a43.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 94.下列运算正确的是()A. a2+a3=a5B. (a2)3=a5C. a4﹣a3=aD. a4÷a3=a5.下列运算正确的是()A. 3a2﹣2a2=a2B. ﹣(2a)2=﹣2a2C. (a+b)2=a2+b2D. ﹣2(a﹣1)=﹣2a+16.下列运算正确的是()A. (﹣x2)3=﹣x5B. x2+x3=x5C. x3•x4=x7D. 2x3﹣x3=17.下列计算正确的是()A. x2+x3=x5B. x2•x3=x5C. (﹣x2)3=x8D. x6÷x2=x38.用代数式表示:a的2倍与3 的和.下列表示正确的是()A. 2a-3B. 2a+3C. 2(a-3)D. 2(a+3)9.下列计算正确的是()A. B. C. D.10.下列运算正确的是()A. (﹣x2)3=﹣x5B. x2+x3=x5C. x3•x4=x7D. 2x3﹣x3=111.下列运算正确的是( )A. B. C. D.12.如果单项式-3x4a-b y2与x3y a+b的和是单项式,那么这两个单项式的积是()A. 3x6y4B. -3x3y2C. -3x3y2D. -3x6y4二、填空题13.单项式的次数_______.14.多项式2x+6xy-3xy2的次数是____________.15.已知代数式与是同类项,则_______,________. 16.一个多项式与﹣x2﹣2x+11的和是3x﹣2,则这个多项式为________.三、解答题17.先化简,再求值:(a+b)2+b(a﹣b)﹣4ab,其中a=2,b=﹣.18.嘉淇准备完成题目:化简:(x2+6x+8)-(6x+5x2+2),发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?19..已知A= a﹣2(a﹣b2),B=﹣a+.(1)化简:2A﹣6B;(2)已知|a+2|+(b﹣3)2=0,求2A﹣6B的值.20.先化简,再求值:3x2y-[2xy-2(xy-x2y)+x2y2],其中x=3,y=.21.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.参考答案1.B【解析】根据合并同类项的法则进行计算即可得.【详解】3x2﹣x2=(3-1)x2=2x2,故选B.【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.2.B【解析】根据同底数幂的乘、除法法则、合并同类项法则计算,判断即可.详解:A、a3与a4不能合并;B、a3•a4=a7,C、a3与a4不能合并;D、a3÷a4=.故选:B.点睛:本题考查的是同底数幂的乘、除法、合并同类项,掌握它们的运算法则是解题的关键.3.C【解析】首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.4.D【解析】根据合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.详解:A、a2、a3不是同类项不能合并,故A错误;B、(a2)3=a6,故B错误;C、a4、a3不是同类项不能合并,故C错误;D、a4÷a3=a,故D正确.故选:D.点睛:本题考查合并同类项、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.5.A【解析】利用合并同类项对A进行判断;利用积的乘方对B进行判断;利用完全平方公式对C进行判断;利用取括号法则对D进行判断.详解:A、原式=a2,所以A选项正确;B、原式=﹣4a2,所以B选项错误;C、原式=a2+2ab+b2,所以C选项错误;D、原式=﹣2a+2,所以D选项错误.故选:A.点睛:本题考查了幂的乘方与积的乘方:幂的乘方法则:底数不变,指数相乘:(a m)n=a mn(m,n是正整数);积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘:(ab)n=a n b n(n是正整数).也考查了整式的加减.6.C【解析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.详解:A、(-x2)3=-x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3-x3=x3,此选项错误;故选:C.点睛:本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.7.B【解析】直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案.详解:A、不是同类项,无法计算,故此选项错误;B、正确;C、故此选项错误;D、故此选项错误;故选:B.点睛:此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.8.B【解析】a的2倍与3的和也就是用a乘2再加上3,列出代数式即可.详解:“a的2倍与3 的和”是2a+3.故选:B.点睛:此题考查列代数式,解决问题的关键是读懂题意,找到所求的量的数量关系,注意字母和数字相乘的简写方法.9.C【解析】根据合并同类项法则;单项式乘以单项式;幂的乘方等计算法则,对各选项分析判断后利用排除法求解.详解:A、应为2x-x=x,故本选项错误;B、应为x(-x)=-x2,故本选项错误;C、,故本选项正确;D、与x不是同类项,故该选项错误.故选:C.点睛:本题考查了合并同类项法则,单项式乘以单项式;幂的乘方等计算法则,熟练掌握运算性质和法则是解题的关键.10.C【解析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.详解:A、(-x2)3=-x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3-x3=x3,此选项错误;故选:C.点睛:本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.11.D【解析】根据合并同类项法则,同底数幂的乘法、幂的乘方与积的乘方以及单项式除以单项式法则解答.详解:A、2a与3b不是同类项,不能合并,故本选项错误;B、原式=a2b2,故本选项错误;C、原式=a6,故本选项错误;D、原式=2a3,故本选项正确.故选:D.点睛:本题考查了同底数幂的乘法的性质与同类项合并同类项法则,熟练掌握性质和法则是解题的关键.12.D【解析】首先同类项的定义,即同类项中相同字母的指数也相同,得到关于a,b的方程组,然后求得a、b的值,即可写出两个单项式,从而求出这两个单项式的积.详解:由同类项的定义,得,解得.所以原单项式为:-3x3y2和x3y2,其积是-3x6y4.故选:D.点睛:本题考查同类项定义、解二元一次方程组的方法和同类项相乘的法则;要准确把握法则:同类项相乘系数相乘,指数相加.13.3【解析】根据单项式次数的定义来求解.单项式中所有字母的指数和叫做这个单项式的次数.详解:单项式5mn2的次数是:1+2=3.故答案是:3.点睛:考查了单项式,需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.14.3次【解析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】多项式2x+6xy-3xy2中三项的次数依次是1、2、3,所以2x+6xy-3xy2的次数是3次,故答案为:3次.【点睛】本题考查了多项式的次数,熟知多项式的次数是组成多项式的项的最高次数是解题的关键.15. 3 1【解析】根据同类项的定义列方程组求解即可.详解:由题意得,,解之得,.故答案为:3,1.点睛:本题考查了利用同类项的定义求字母的值,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.16.x2+5x﹣13【解析】分析: 设此多项式为A,再根据多项式的加减法则进行计算即可.详解: 设此多项式为A,∵A+(-x2-2x+11)=3x-2,∴A=(3x-2)-(-x2-2x+11)=x2+5x-13.故答案为: x2+5x-13.点睛: 本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.17.5.【解析】首先计算完全平方,计算单项式乘以多项式,然后再合并同类项,化简后,再代入a、b的值,进而可得答案.详解:原式=a2+2ab+b2+ab-b2-4ab=a2-ab,当a=2,b=-时,原式=4+1=5.点睛:此题主要考查了整式的混合运算--化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.18.(1)﹣2x2+6;(2)a=5.【解析】(1)原式去括号、合并同类项即可得;(2)设“”是a,将a看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出a的值.【详解】(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.【点睛】本题主要考查整式的加减,解题的关键是掌握去括号、合并同类项法则.19.(1) a+b2;(2)1.【解析】(1)把A,B分别代入2A﹣6B,再去括号,合并同类项即可; (2)由非负数性质求出a,b的值,再代入(1)即可.【详解】解:(1)∵A=a﹣2(a﹣b2),B=﹣a+b2,∴2A﹣6B=2(a﹣2a+b2)﹣6(﹣a+b2)=a﹣4a+b2+4a﹣b2=a+b2;(2)∵|a+2|+(b﹣3)2=0,∴a=﹣2,b=3,则原式=﹣2+3=1.【点睛】本题考核知识点:非负数性质,整式的化简求值. 解题关键点:利用整式乘法进行化简.20.化简为:,原式=-1【解析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.详解:原式=3x2y-2xy+2xy-3x2y-x2y2=-x2y2,当x=3,y=-时,原式=-1.点睛:此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.21.(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.【解析】(1)根据“极数”的概念写出即可,设任意一个“极数”为(其中1≤x≤9,0≤y≤9,且x、y为整数),整理可得由=99(10x+y+1),由此即可证明;(2)设m=(其中1≤x≤9,0≤y≤9,且x、y为整数),由题意则有D(m)=3(10x+y+1),根据1≤x≤9,0≤y≤9,以及D (m)为完全平方数且为3的倍数,可确定出D(m)可取36、81、144、225,然后逐一进行讨论求解即可得.【详解】(1)如:1188,2475,9900(答案不唯一,符合题意即可);猜想任意一个“极数”是99的倍数,理由如下:设任意一个“极数”为(其中1≤x≤9,0≤y≤9,且x、y为整数),=1000x+100y+10(9-x)+(9-y)=1000x+100y+90-10x+9-y=990x+99y+99=99(10x+y+1),∵x、y为整数,则10x+y+1为整数,∴任意一个“极数”是99点倍数;(2)设m=(其中1≤x≤9,0≤y≤9,且x、y为整数),由题意则有D(m)==3(10x+y+1),∵1≤x≤9,0≤y≤9,∴33≤3(10x+y+1)≤300,又∵D(m)为完全平方数且为3的倍数,∴D(m)可取36、81、144、225,①D(m)=36时,3(10x+y+1)=36,10x+y+1=12,∴x=1,y=1,m=1188;②D(m)=81时,3(10x+y+1)=81,10x+y+1=27,∴x=2,y=6,m=2673;③D(m)=144时,3(10x+y+1)=144,10x+y+1=48,∴x=4,y=7,m=4752;④D(m)=225时,3(10x+y+1)=225,10x+y+1=75,∴x=7,y=4,m=7425;综上所述,满足D(m)为完全平方数的m的值为1188,2673,4752,7425.【点睛】本题考查数值问题,包括:题目翻译,数位设法,数位整除,完全平方数特征,分类讨论等,易错点是容易忽略数值上取值范围及所得关系式自身特征.。

七年级上册数学整式的加减重点难点题型全覆盖试卷附详细答案

七年级上册数学整式的加减重点难点题型全覆盖试卷附详细答案

七年级上册数学整式的加减重点难点题型全覆盖试卷附详细答案姓名:__________ 班级:__________考号:__________一、单选题(共21题;共42分)1.下列结论中,正确的是()A. 单项式的系数是3,次数是2.B. 单项式m的次数是1,没有系数.C. 单项式﹣xy2z的系数是﹣1,次数是4.D. 多项式5x2-xy+3是三次三项式.2.单项式﹣2πx2y的系数和次数分别是( )5A. ﹣π,3B. ,4C. π,4D. ﹣,43.多项式8x2-3x+5与多项式3x3+2mx2-5x+7相加后,不含二次项,则常数m的值是()A. 2B. -4C. -2D. -84.把多项式按的降幂排列是( )A. B.C. D.5.一个多项式与x2-2x+1的和是3x-2,则这个多项式为()A. x2-5x+3B. -x2+x-1C. -x2+5x-3D. x2-5x-136.已知代数式x2+ax-2y+7-(bx2-2x+9y-1)的值与x的取值无关,则a+b的值为( )A. -1B. 1C. -2D. 27.长方形的一边长等于3x+2y ,另一边长比它长x-y ,这个长方形的周长是()A. 4x+yB. 12x+2yC. 8x+2yD. 14x+6y8.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22015﹣1的末位数字是()A. 0B. 3C. 4D. 89.下列说法正确的是()A. 单项式 −34xy 的系数是-3 B. 单项式 2πa 3 的次数是4 C. 多项式 x y 22−2x 2+3 是四次三项式 D. 多项式 x −22x +6 的项分别是 x2、2x 、310.给出下列式子:0,3a ,π,x−y2,1,3a 2+1,-xy11, 1x +y.其中单项式的个数是( )A. 5个B. 1个C. 2个D. 3个11.某商店在甲批发市场以每包m 元的价格进了20包茶叶,又在乙批发市场以每包n 元(m >n )的价格进了同样的40包茶叶,如果商家以每包 m+n2元的价格卖出这种茶叶,卖完后,这家商店( ).A. 盈利了B. 亏损了C. 不赢不亏D. 盈亏不能确定 12.观察下列等式 31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561… ,则 32015 的个位数字是( )A. 3B. 9C. 7D. 1 13.若代数式 2x 2-3x 的值为5,则代数式 -4x 2+6x +9 的值是( ). A. -1 B. 14 C. 5 D. 4 14.一组按规律排列的多项式: ,,,,…,其中第10个式子是( )A.B.C.D.15.在求 1+6+62+63+64+65+66+67+68+69 的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设: S =1+6+62+63+64+65+66+67+68+69 ……① 然后在①式的两边都乘以6,得: 6S =6+62+63+64+65+66+67+68+69+610 ……② ②-①得 6S −S =610−1 ,即 5S =610−1 ,所以 S =610−15.得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出 1+a +a 2+a 3+a 4+...+a 2018 的值?你的答案是( )A. a 2018−1a−1B. a 2019−1a−1C. a 2018−1aD. a 2019−116.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是( )A. nB. 2nC. n(n+2)D. n(n 一1) 17.已知在线段上依次添加1个点,2个点,3个点,……,原线段上所成线段的总条数如下表:若在原线段上添加n个点,则原线段上所有线段总条数为( )A. n+2B. 1+2+3+…+n+n+1C. n+1D. n(n+1)2 18.下列式子中是单项式的个数为( )① -13x5y2,② 3y2x,③ 0,④ 23x2y7,⑤ -x7,⑥ 2x2−1,⑦ -5x2y46,⑧ -1.96,⑨ m−2,⑩ -mn2A. 5个B. 6个C. 7个D. 8个19.计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳计算结果中的个位数字的规律,猜测32009+1的个位数字是()A. 0B. 2C. 4D. 820.代数式A和B都是5次多项式,则A+B一定是( ).A. 5次多项式B. 10次多项式C. 次数不高于5次的多项式D. 次数不低于5次的多项式21.下图(1)表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放20张餐桌需要的椅子张数是()A. 82B. 86C. 88D. 120二、填空题(共6题;共8分)22.已知a+b=1, b+c=3, a+c=6,则a+b+c=________.23.按一定规律排列的一列数依次为:45,12,411,27,…,按此规律,这列数中的第10个数与第16个数的积是 ________.24.有一道题目是一个多项式减去x2+14x-6,小强误当成了加法计算,结果得到2x2-x+3,则原来的多项式是________.25.观察下列单项式:−2x,22x2,−23x3,24x4… −25x5,26x6…请观察它们的构成规律,写出第n个式子________.26.如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由 ________个组成的,依此,第n个图案是由 ________个组成的.27.如图,将正偶数按照图中所示的规律排列下去,若用有序实数对(a,b)表示第a行的第b个数.如(3,2)表示偶数10.(1)图中(8,4)的位置表示的数是,偶数42对应的有序实数对是________ ;(2)第n行的最后一个数用含n的代数式表示为________ ,并简要说明理由.三、计算题(共10题;共80分)28.3(ab2+a2b)-2(ab2-2)-2a2b-4 ,其中a=-1,b= 12.29.先化简,在求值: 2x2−(2x−4y)−2(x2−y),其中x=−1,y=230.已知单项式2x3y m和单项式-23x n-1y2m-3的和是单项式,求这两个单项式的和.31.先化简,再求值:5(3a2b−ab2)−4(−ab2+3a2b),其中a=−12,b=13.32.先化简,再求值:2(x2y﹣xy)﹣3(x2y﹣2xy)+4x2y,其中x=﹣1,y=2.33.若A=﹣2a2+ab﹣2b3,B=a2﹣2ab+b3,求A+2B的值.34.先化简,后求值:(1)2x−y+3x−2y+1 ,其中x=1,y=2 .(2)(2ab+3b2−5)−(3ab+3b2−8) ,其中a=2,b=3 .(3)3a2+(4a2-2a+1)-2(3a2-a+1),其中a=-1 .(4)4a2b−[−3ab2−2(5a2b−1)]−2ab2,其中a=1,b=−1 .35.已知:A=8xy−x2+y2,B=x2−y2+8xy求:(1)A+B(2)2A-3B36. 合并同类项:(1)x-5y+3y-2x;(2)a3+3a2-5a-4+5a+a2;(3)12m2-3mn2+4n2+12m2+5mn2-4n2;(4)-2a3b-12a3b-ab2-12a2b-a3b.37.已知多项式A=2x2-xy+my-8,B=-nx2+xy+y+7,A-2B中不含有x2项和y项,求n m+mn的值.四、解答题(共8题;共43分)38.已知A=3x2-ax+6x-2,B=-3x2+4ax-7,若A+B的值不含x项,求a的值.39.已知A=a2-2ab+b2,B=-a2-3ab-b2,求:2A-3B。

北师大版七年级数学上册《第三章整式及其加减》单元测试卷及答案

北师大版七年级数学上册《第三章整式及其加减》单元测试卷及答案

北师大版七年级数学上册《第三章整式及其加减》单元测试卷及答案(时间:120分钟满分:120分)班级: 姓名: 成绩:一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是()A. mm23的系数是−3 B. −m2m2的次数是3C. mm2−63的常数项是2 D. −5m2m与mm2是同类项2.代数式m+mm的意义是()A. m与m除以m的和B. m与m,m的商的和C. m与m除以m的商的和D. m与m的和除以m的商3.下列各式运算正确的是()A. 3m+2m=5mmB. 3m2m−3mm2=0C. m2+m2=m4D. −mm+3mm=2mm4.多项式−m2−12m−1的各项分别是()A. −m2,12m,1 B. −m2,−12m,−1 C. m2,12m,1 D. m2,−12m,−15.下列各组中的两个单项式能合并的是()A. 4和4mB. 3m2m3和−m2m3C. 2mm2和100mm2mD. m和m26.下列去括号的过程(1)m−(m+m)=m−m−m,(2)m−(m−m)=m−m+m,(3)m+(m−m)= m+m−m,(4)m−(m−m)=m+m+m,其中正确的个数为()A. 4B. 3C. 2D. 17.多项式4mm−3m2−mm+m2+m2与多项式3mm+2m−2m2的差的值()A. 与m,m有关B. 与m,m无关C. 只与m有关D. 只与m有关8.实数m,m在数轴上的对应点的位置如图所示,计算|m−m|的结果为()A. m+mB. m−mC. m−mD. −m−m9.元旦在中国也被称为“阳历年”.为庆祝元旦,郑州某商场举行促销活动,促销的方法是“消费超过300元时,所购买的商品按原价打8折后,再减50元”.若某商品的原价为m元(m>300),则活动期间购买该商品实际付的钱数是()A. (80%m−50)元B. [80%(m−50)]元C. (50%m−80)元D. [50%(m−80)]元10.下列图形都是用同样大小的闪电图案按一定规律组成的,其中第①个图形中共有5个闪电图案,第②个图形中共有9个闪电图案,第③个图形中共有13个闪电图案,按此规律摆放下去,则第⑦个图形中闪电图案的个数为()A. 29B. 30C. 31D. 32二、填空题(本大题共5小题,每小题3分,共15分)11.多项式−3mm+5m3m−2m2m3+5的次数是____,最高次项的系数是________,常数项是________.12.已知m,m是常数,若3mm m和−m m m3是同类项,则2m−m=____.13.一桶方便面为m元,一瓶矿泉水比一桶方便面便宜2元,小明准备买2桶方便面和3瓶矿泉水,小明一共花的钱数为____________元.14.有一个多项式与3m2−m−1的和是−m2+m+3,则这个多项式是____________________.15.一列有理数按照以下规律排列:-1,2,-2,0,3,-1,1,4,0,2,⋯,根据以上你发现的规律,请问第2 024个数是____.三、解答题(一):本大题共3小题,每小题3分,共21分.16.计算:(1)−3m2m+3mm2−2mm2+2m2m;(2)2m2−5m+m2+6+4m−3m2.17.先化简,再求值:(3m2−4mm−4m2)−4(m2−mm+2m2),其中m=2,m=−1.218.张华在一次测验中计算一个多项式加上5mm−3mm+2mm时,误认为减去此式,计算出错误结果为2mm−6mm+mm,试求出正确答案.四、解答题(二):本大题共3小题,每小题9分,共27分.19.已知某轮船顺水航行3小时,逆水航行2小时.(1)设轮船在静水中前进的速度是m千米/时,水流的速度是m千米/时,则轮船共航行多少千米?(2)若轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?20.为了节约用水,某自来水公司采取以下收费方法:若每户每月用水不超过15吨,则每吨水收费2元;若每户每月用水超过15吨,则超过部分按每吨2.5元收费.9月份小明家用水m吨(m> 15).(1)请用代数式表示小明家9月份应交的水费;(2)当m=20时,小明家9月份应交水费多少元?21.小明装饰新家,为自己房间的长方形窗户选择了一种装饰物,如图所示的阴影部分.(1)挂上这种装饰物后,窗户中能射进阳光的部分的面积是多少?(2)当m=5m,m=2m时,求窗户中能射进阳光的部分的面积是多少.(结果保留π)五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分. 22.(1)已知m=3时,多项式mm3−mm+5的值是1,当m=−3时,求mm3−mm+5的值;(2)如果关于字母m的二次多项式−3m2+mm+mm2−m+3的值与m的取值无关,求(m+m)(m−m)的值.23.阅读材料:求31+32+33+34+35+36的值.解:设m=31+32+33+34+35+36①则3m=32+33+34+35+36+37.②②−①,得3m−m=(32+33+34+35+36+37)−(31+32+33+34+35+36)=37−3.所以2m=37−3,即m=37−32.所以31+32+33+34+35+36=37−32.以上方法我们称为“错位相减法”.请利用上述材料,解决下列问题.这是一个很著名的故事:阿基米德与国王下棋,国王输了,国王问阿基米德想要什么奖赏,阿基米德对国王说:“我只要在棋盘上第一格放一粒米,第二格放两粒米,第三格放四粒米,第四格放八粒米……按这个方法摆满整个棋盘就行.”国王以为要不了多少米,就随口答应了,结果国王错了.(1)国际象棋棋盘共有64个格子,则在第64格中应放__________粒米;(用幂表示)(2)设国王输给阿基米德的米粒数为m,求m.参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是()A. mm23的系数是−3 B. −m2m2的次数是3C. mm2−63的常数项是2 D. −5m2m与mm2是同类项【答案】B2.代数式m+mm的意义是()A. m与m除以m的和B. m与m,m的商的和C. m与m除以m的商的和D. m与m的和除以m的商【答案】C3.下列各式运算正确的是()A. 3m+2m=5mmB. 3m2m−3mm2=0C. m2+m2=m4D. −mm+3mm=2mm 【答案】D4.多项式−m2−12m−1的各项分别是()A. −m2,12m,1 B. −m2,−12m,−1 C. m2,12m,1 D. m2,−12m,−1【答案】B5.下列各组中的两个单项式能合并的是()A. 4和4mB. 3m2m3和−m2m3C. 2mm2和100mm2mD. m和m2【答案】D6.下列去括号的过程(1)m−(m+m)=m−m−m,(2)m−(m−m)=m−m+m,(3)m+(m−m)= m+m−m,(4)m−(m−m)=m+m+m,其中正确的个数为()A. 4B. 3C. 2D. 1【答案】B7.多项式4mm−3m2−mm+m2+m2与多项式3mm+2m−2m2的差的值()A. 与m,m有关B. 与m,m无关C. 只与m有关D. 只与m有关【答案】D8.实数m,m在数轴上的对应点的位置如图所示,计算|m−m|的结果为()A. m+mB. m−mC. m−mD. −m−m【答案】C9.元旦在中国也被称为“阳历年”.为庆祝元旦,郑州某商场举行促销活动,促销的方法是“消费超过300元时,所购买的商品按原价打8折后,再减50元”.若某商品的原价为m元(m>300),则活动期间购买该商品实际付的钱数是()A. (80%m−50)元B. [80%(m−50)]元C. (50%m−80)元D. [50%(m−80)]元【答案】A10.下列图形都是用同样大小的闪电图案按一定规律组成的,其中第①个图形中共有5个闪电图案,第②个图形中共有9个闪电图案,第③个图形中共有13个闪电图案,按此规律摆放下去,则第⑦个图形中闪电图案的个数为()A. 29B. 30C. 31D. 32【答案】A二、填空题(本大题共5小题,每小题3分,共15分)11.多项式−3mm+5m3m−2m2m3+5的次数是____,最高次项的系数是________,常数项是________.【答案】5 −2+512.已知m,m是常数,若3mm m和−m m m3是同类项,则2m−m=____.【答案】513.一桶方便面为m元,一瓶矿泉水比一桶方便面便宜2元,小明准备买2桶方便面和3瓶矿泉水,小明一共花的钱数为____________元.【答案】(5m−6)14.有一个多项式与3m2−m−1的和是−m2+m+3,则这个多项式是____________________. 【答案】−4m2+2m+415.一列有理数按照以下规律排列:-1,2,-2,0,3,-1,1,4,0,2,⋯,根据以上你发现的规律,请问第2024个数是____.【答案】676三、解答题(一):本大题共3小题,每小题3分,共21分.16.计算:(1)−3m2m+3mm2−2mm2+2m2m;(2)2m2−5m+m2+6+4m−3m2.【答案】(1)解:−3m2m+3mm2−2mm2+2m2m=(−3m2m+2m2m)+(3mm2−2mm2)=−m2m+mm2.(2)解:2m2−5m+m2+6+4m−3m2=(2m2+m2−3m2)+(4m−5m)+6=−m+6..17.先化简,再求值:(3m2−4mm−4m2)−4(m2−mm+2m2),其中m=2,m=−12解:原式=3m2−4mm−4m2−4m2+4mm−8m2=−m2−12m2当m=2,m=−1时2)2=−4−3=−7.原式=−22−12×(−1218.张华在一次测验中计算一个多项式加上5mm−3mm+2mm时,误认为减去此式,计算出错误结果为2mm−6mm+mm,试求出正确答案.解:设原来的整式为m,则m−(5mm−3mm+2mm)=2mm−6mm+mm得m=7mm−9mm+3mmm+(5mm−3mm+2mm)=7mm−9mm+3mm+(5mm−3mm+2mm)=12mm−12mm+5mm.∴原题的正确答案为12mm−12mm+5mm.四、解答题(二):本大题共3小题,每小题9分,共27分.19.已知某轮船顺水航行3小时,逆水航行2小时.(1)设轮船在静水中前进的速度是m千米/时,水流的速度是m千米/时,则轮船共航行多少千米?(2)若轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?【答案】(1)解:轮船共航行的路程为(m+m)×3+(m−m)×2=(5m+m)(千米).(2)把m=80,m=3代入(1)中的式子,得5×80+3=403(千米).答:轮船共航行403千米.20.为了节约用水,某自来水公司采取以下收费方法:若每户每月用水不超过15吨,则每吨水收费2元;若每户每月用水超过15吨,则超过部分按每吨2.5元收费.9月份小明家用水m吨(m> 15).(1)请用代数式表示小明家9月份应交的水费;(2)当m=20时,小明家9月份应交水费多少元?【答案】(1)解:小明家9月份应交的水费为2×15+2.5(m−15)=(2.5m−7.5)(元);(2)当m=20时,2.5×20−7.5=42.5(元),所以小明家9月份应交水费42.5元. 21.小明装饰新家,为自己房间的长方形窗户选择了一种装饰物,如图所示的阴影部分.(1)挂上这种装饰物后,窗户中能射进阳光的部分的面积是多少?(2)当m=5m,m=2m时,求窗户中能射进阳光的部分的面积是多少.(结果保留π)【答案】(1)解:由题意可知窗户的面积可表示为m(m+m2+m2)=2mm装饰物的面积可表示为π⋅(m2)2=π4m2所以窗户中能射进阳光的部分的面积是2mm−π4m2.(2)将m=5m,m=2m代入(1)中的代数式可得2mm−π4m2=2×5×2−π4×22=(20−π)(m2)所以窗户中能射进阳光的部分的面积是(20−π)m2.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分. 22.(1)已知m=3时,多项式mm3−mm+5的值是1,当m=−3时,求mm3−mm+5的值; (2)如果关于字母m的二次多项式−3m2+mm+mm2−m+3的值与m的取值无关,求(m+m)(m−m)的值.【答案】(1)解:∵m=3时,多项式mm3−mm+5的值是1∴27m−3m+5=1∴27m−3m=−4∴m=−3时−27m+3m+5=4+5=9.(2)−3m2+mm+mm2−m+3=(−3+m)m2+(m−1)m+3∵关于字母m的二次多项式的值与m的取值无关∴−3+m=0m−1=0解得m=3m=1代入(m+m)(m−m)得(1+3)×(1−3)=4×(−2)=−8.23.阅读材料:求31+32+33+34+35+36的值.解:设m=31+32+33+34+35+36①则3m=32+33+34+35+36+37.②②−①,得3m−m=(32+33+34+35+36+37)−(31+32+33+34+35+36)=37−3. 所以2m=37−3,即m=37−3.2.所以31+32+33+34+35+36=37−32以上方法我们称为“错位相减法”.请利用上述材料,解决下列问题.这是一个很著名的故事:阿基米德与国王下棋,国王输了,国王问阿基米德想要什么奖赏,阿基米德对国王说:“我只要在棋盘上第一格放一粒米,第二格放两粒米,第三格放四粒米,第四格放八粒米……按这个方法摆满整个棋盘就行.”国王以为要不了多少米,就随口答应了,结果国王错了.(1)国际象棋棋盘共有64个格子,则在第64格中应放__________粒米;(用幂表示)(2)设国王输给阿基米德的米粒数为m,求m.【答案】(1)263(2)解:设m=20+21+⋯+263①则2m=21+22+23+⋯+263+264②②−①得2m−m=21+22+⋯+264−20−21−22−⋯−263=264−20=264−1即m= 264−1.【解析】(1)国际象棋共有64个格子,则在第64格中应放263粒米.故答案为263.。

2022-2023学年华东师大版七年级数学上册第3章《整式的加减》单元达标测试题(含答案)

2022-2023学年华东师大版七年级数学上册第3章《整式的加减》单元达标测试题(含答案)

2022-2023学年华东师大版七年级数学上册《第3章整式的加减》单元达标测试题(附答案)一.选择题(共10小题,满分30分)1.多项式的次数和项数分别为()A.7,2B.8,3C.8,2D.7,32.下列说法,其中正确的是()A.负数没有绝对值B.所含字母相同,并且字母的指数也相同的项是同类项C.几个有理数相乘,负因数的个数是奇数个时,积为负数D.如果两个数互为相反数,那么它们的平方相等3.下列各式中,符合代数式书写规则的是()A.x×5B.C.D.x﹣1÷y4.若代数式x2+3x的值为5,则代数式2x2+6x﹣9的值是()A.10B.1C.﹣4D.﹣85.下列各式中,不是整式的是()A.3a B.C.0D.x+y6.单项式mxy3与x n+2y3的和是5xy3,则m﹣n()A.﹣4B.3C.4D.57.如图长方形中放入5张长为x,宽为y的相同的小长方形,其中A,B,C三点在同一条直线上.若阴影部分的面积为54,大长方形的周长为42,则一张小长方形的面积为()A.10B.11C.12D.138.观察下列图形,图①中有7个空心点,图②中有11个空心点,图③中有15个空心点,…,按此规律排列下去,第50个图形中有()个空心点.A.196B.199C.203D.2079.按一定规律排列的单项式:3b2,5a2b2,7a4b2,9a6b2,11a8b2,…,第8个单项式是()A.17a14b2B.17a8b14C.15a7b14D.152a14b210.规定一个新数“i”满足i2=﹣1,则方程x2=﹣1变为x2=i2,故方程的解为x=±i,并规定:一切实数可以与新数进行四则运算,原有的运算律与运算法则仍然成立,于是i1=i,i2=﹣1,i3=i2•i=(﹣1)•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对于任意正整数n有i4n+1=i4n•i=(i4)n・i=i,i4n+2=i4n•i2=(i4)n•i2=﹣1,那么i+i2+i3+i4+…+i2021+i2022=()A.i﹣1B.1C.i D.﹣i二.填空题(共10小题,满分30分)11.单项式的系数是.12.若a,c,d是整数,b是正整数,且满足a+b=c,b+c=d,c+d=a,则a+2b+3c+4d的最大值是.13.化简:﹣2(3x﹣1)=.14.若单项式3x m y与﹣2x6y是同类项,则m=.15.(1)单项式32x3y的次数是;(2)﹣πr2h的系数是.16.下列代数式:①﹣mn,②m,③,④,⑤2m+1,⑥,⑦,⑧x2+2x+中,整式共有个.17.某超市的苹果价格如图,试说明代数式100﹣6.8x的实际意义.18.已知代数式x4+ax3+3x2+5x3﹣7x2﹣bx2+6x﹣2合并同类项后不含x3,x2项,则2a+3b的值.19.若|y﹣|+(x+1)2=0,则代数式﹣2(3x﹣y)﹣[5x﹣(3x﹣4y)]=.20.如果代数式x2+3x的值是4,那么代数式3﹣2x2﹣6x的值等于.三.解答题(共7小题,满分60分)21.先去括号,再合并同类项;(1)(3x2+4﹣5x3)﹣(x3﹣3+3x2)(2)(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)(3)2x﹣[2(x+3y)﹣3(x﹣2y)](4)(a+b)2﹣(a+b)﹣(a+b)2+(﹣3)2(a+b).22.已知关于x的多项式A,当A﹣(x﹣2)2=x(x+7)时,完成下列各题:(1)求多项式A;(2)若x2+x+1=0,求多项式A的值.23.已知单项式﹣2x2m y7与单项式﹣5x6y n+8是同类项,求﹣m2﹣n2021的值.24.某企业有A、B两条加工相同原材料的生产线,在一天内,A生产线共加工a吨原材料,加工时间为(4a+1)小时;在一天内,B生产线共加工b吨原材料,加工时间为(2b+3)小时.(1)当a=b=1时,两条生产线的加工时间分别是多少小时?(2)第一天,该企业把5吨原材料分配到A、B两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到两条生产线的吨数是多少?(3)第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A生产线分配了m吨原材料,给B生产线分配了n吨原材料,若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则m和n有怎样的数量关系?若此时m与n 的和为6吨,则m和n的值分别为多少吨?25.某居民小区为响应党的号召,开展全民健身活动,准备修建一座长方形健身广场,其设计方案及数据如图所示.已知广场内A区为长方形的成年人活动场所,B区为圆形的儿童活动场所,其余地方为绿化带.(1)求绿化带的面积;(2)求整座健身广场的面积是成年人活动场所面积的多少倍.26.对于密码Ldpdvwxghqw,你能看出它代表什么意思吗?如果给你一把破译它的“钥匙”x﹣3,联想英语字母表中字母的顺序,你再试试能不能解读它.英语字母表中字母是按以下顺序排列的:abcdefghijklmnopqrstuvwxyz,如果规定a又接在z的后面,使26个字母排成圈,并能想到x﹣3可以代表“把一个字母换成字母表中从它向前移动3位的字母”,按这个规律就有Ldpdvwxghqw→Iamastudent.这样你就能解读它的意思了.为了保密,许多情况下都要采用密码,这时就需要有破译密码的“钥匙”.上面的例子中,如果写和读密码的双方事先约定了作为“钥匙”的式子x﹣3的含义,那么他们就可以用一种保密方式通信了.你和同伴不妨也利用数学式子来制定一种类似的“钥匙”,并互相合作,通过游戏试试如何进行保密通信.27.近日,教育部正式印发《义务教育课程方案》,将劳动从原来的综合实践活动课程中完全独立出来,并在今年9月份开学开始正式施行.某学校率先行动,在校园开辟了劳动教育基地,培养学生劳动品质.已知该劳动教育基地有一块长方形和一块正方形实验田,长方形实验田每排种植(3a﹣b)株豌豆幼苗,种植了(3a+b)排,正方形实验田每排种植(a+b)株豌豆幼苗,种植了(a+b)排,其中a>b>0.(1)该劳动教育基地这两块实验田一共种植了多少株豌豆幼苗?(用含a、b的代数式表示并化简)(2)当a=5,b=2时,求该劳动教育基地这两块实验田一共种植了多少株豌豆幼苗?参考答案一.选择题(共10小题,满分50分)1.解:多项式共有3项,分别是:,其次数为6+2=8,﹣2x3y4,其次数为3+4=7,3,其次数为0,∴多项式的次数为8;故选:B.2.解:A、任何数都有绝对值,正数和0的绝对值是它本身,负数的绝对值是它的相反数,说法错误,不符合题意;B、所含字母相同,并且相同字母的指数也相同的单项式是同类项,说法错误,不符合题意;C、几个有理数相乘,负因数的个数是奇数个时,积不一定为负数,例如有因数为0的时候,最后的结果为0,说法错误,不符合题意;D、如果两个数互为相反数,那么它们的平方相等,说法正确,符合题意;故选D.3.解:x×5应写成5x,∴选项A不符合题意;∵xy符合整式的规范书写规则,∴选项B符合题意;∵2xy应该写成xy,∴选项C不符合题意;∵x﹣1÷y应该写成x﹣,∴选项D不符合题意,故选:B.4.解:∵x2+3x=5,∴2x2+6x﹣9=2(x2+3x)﹣9=2×5﹣9=1.故选:B.5.解:A、3a是整式,不符合题意;B、是分式,不是整式,符合题意;C、0是整式,不符合题意;D、x+y是整式,不符合题意;故选:B.6.解:∵单项式mxy3与x n+2y3的和是5xy3,∴单项式mxy3与x n+2y3是同类项,∴n+2=1,m+1=5,解得n=﹣1,m=4,∴m﹣n=4﹣(﹣1)=5,故选:D.7.解:由题意知,大长方形的长=2x+y,大长方形的宽=x+2y,则大长方形的周长=2[(2x+y)+(x+2y)]=42,化简得x+y=7,∵阴影部分的面积=大长方形的面积﹣5个小长方形的面积,∴54=(2x+y)(x+2y)﹣5xy,化简得x2+y2=27,∵大长方形的周长=2[(2x+y)+(x+2y)]=42,化简得x+y=7,∴(x+y)2=72,即x2+2xy+y2=49,把x2+y2=27代入得,27+2xy=49,解得xy=11,则一张小长方形的面积=xy=11.故选:B.8.解:∵第1个图形中空心点的个数为:7,第2个图形中空心点的个数为:11=7+4=7+4×1,第3个图形中空心点的个数为:15=7+4+4=7+4×2,…∴第n个图形中空心点的个数为:7+4(n﹣1)=4n+3.∴第50个图形中空心点的个数为:4×50+3=203,故选:C.9.解:由题意可知:单项式的系数是从3起的奇数,单项式中a的指数偶数,b的指数不变,所以第8个单项式是:17a14b2.故选:A.10.解:原式=(i+i2+i3+i4)+i4(i+i2+i3+i4)+...i2016(i+i2+i3+i4)+i2021+i2022=(i﹣1﹣i+1)+(i﹣1﹣i+1)+...+(i﹣1﹣i+1)+i﹣1=i﹣1,故选:A.二.填空题(共10小题,满分30分)11.解:∵单项式为,∴单项式的系数为,故答案为:.12.解:∵a+b=c①,b+c=d②,c+d=a③,由①+③,得(a+b)+(c+d)=a+c,∴b+d=0④,∵b+c=d②;由④+②,得2b+c=b+d=0,∴c=﹣2b⑤;由①⑤,得a=c﹣b=﹣3b,⑥由④⑤⑥,得a+2b+3c+4d=﹣11b,∵b是正整数,其最小值为1,∴a+2b+3c+4d的最大值是﹣11.故答案为:﹣11.13.解:原式=﹣6x+2,故答案为:﹣6x+2.14.解:∵3x m y与﹣2x6y是同类项,∴m=6.故答案为:6.15.解:(1)单项式32x3y的次数是4;(2)﹣πr2h的系数是﹣π.故选:4,﹣π.16.解:在①﹣mn,②m,③,④,⑤2m+1,⑥,⑦,⑧x2+2x+中,①﹣mn,②m,③,⑤2m+1,⑥,⑧x2+2x+都是整式,④,⑦的分母中含有字母,属于分式.综上所述,上述代数式中整式的个数是6个.故答案为:6.17.解:代数式100﹣6.8x的实际意义为:用100元买每斤6.8元的苹果x斤余下的钱.故答案为:用100元买每斤6.8元的苹果x斤余下的钱.18.解:x4+ax3+3x2+5x3﹣7x2﹣bx2+6x﹣2=x4+(a+5)x3+(3﹣7﹣b)x2+6x﹣2,由x4+ax3+3x2+5x3﹣7x2﹣bx2+6x﹣2,合并同类项后不含x3和x2项,得a+5=0,3﹣7﹣b=0.解得a=﹣5,b=﹣4.∴2a+3b=2×(﹣5)+3×(﹣4)=﹣22.故答案为:﹣22.19.解:∵|y﹣|+(x+1)2=0,∴y﹣=0,x+1=0,∴y=,x=﹣8,∴﹣2(3x﹣y)﹣[5x﹣(3x﹣4y)]=﹣6x+2y﹣5x+(3x﹣4y)=﹣6x+2y﹣5x+3x﹣4y=﹣8x﹣2y=﹣8×(﹣8)﹣2×=64﹣1=63,故答案为:63.20.解:∵x2+3x=4,∴3﹣2x2﹣6x=3﹣2(x2+3x)=3﹣8=﹣5.故答案为:﹣5.三.解答题(共7小题,满分60分)21.解:(1)原式=3x2+4﹣5x3﹣x3+3﹣3x2=﹣6x3+7;(2)原式=3x2﹣xy﹣2y2﹣2x2﹣2xy+4y2=x2﹣3xy+2y2;(3)原式=2x﹣2x﹣6y+3x﹣6y=3x﹣12y;(4)原式=﹣(a+b)﹣(a+b)2+9(a+b)=﹣(a+b)2+(a+b).22.解:(1)由题意将原式整理得:A=(x﹣2)2+x(x+7),=x2﹣4x+4+x2+7x,=2x2+3x+4;(2)∵x2+x+1=0,∴2x2+3x=﹣2,∴A=﹣2+4=2,则多项式A的值为2.23.解:因为单项式﹣2x2m y7与单项式﹣5x6y n+8是同类项,所以2m=6,n+8=7,所以m=3,n=﹣1,所以﹣m2﹣n2021=﹣32﹣(﹣1)2021=﹣8.24.解:(1)当a=b=1时,4a+1=5,2b+3=5.答:当a=b=1时,A生产线的加工时间为5小时,B生产线的加工时间为5小时.(2)由题意可知,,解得:a=2,b=3.答:分配到A生产线2吨,分配到B生产线3吨.(3)由题意可知,4(2+m)+1=2(3+n)+3,解得:2m=n,,解得:m=2,n=4.答:m和n的数量关系为2m=n,当m与n的和为6吨时,m为2吨,n为4吨.25.解:(1)绿化带的面积:(a+4a+5a)(1.5a+3a+1.5a)﹣[4a×3a+π(1.5a)2]=60a2﹣12a2﹣πa2=48a2﹣πa2;(2)根据题意得:(a+4a+5a)(1.5a+3a+1.5a)÷(3a×4a)=10a•6a÷12a2=5.26.解:钥匙为:x+1,英语字母表中字母是按以下顺序排列的:abcdefghijklmnopqrstuvwxyz,如果规定a又接在z的后面,使26个字母排成圈,并能想到x+1可以代表“把一个字母换成字母表中从它向后移动1位的字母“,按这个规律就有:ktbjx→lucky.27.解:(1)由题意得,(3a﹣b)(3a+b)+(a+b)2=9a2﹣b2+a2+2ab+b2=10a2+2ab.(2)当a=5,b=2时,原式=10×52+2×5×2=270.答:该劳动教育基地这两块实验田一共种植了270株豌豆幼苗.。

七年级数学上册整式的加减单元测试卷

七年级数学上册整式的加减单元测试卷

七年级数学上册整式的加减单元测试卷(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.“m 与n 差的3倍”用代数式可以表示成( )A .3m n -B .3m n -C .()3n m -D .()3m n -2.在棋盘上的米粒故事中,皇帝往棋盘的第1格中放1粒米,第2格中放2粒米,在第3格中加倍至4粒米……,以此类推,每一格均是前一格的双倍,那么他在 第12格中所放的米粒数是( )A .22B .24C .211D .2123.若2335a x y --与425b xy +相加后,结果仍是个单项式,则相加后的结果为( ) A .24x y B .315x y C .315y x D .315xy - 4.若2360x y -+=,则213922x y -+-的值为( ) A .0 B .6 C .﹣6 D .15.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,6.小李今年a 岁,小王今年(a -15)岁,过n +1年后,他们相差( )岁A .15B .n +1C .n +16D .16 7.整式532x y -,0,12x + ,2312ab a b -,-46中是单项式的个数有( ) A .2个 B .3个 C .4个 D .58.下列变形正确的是( )A .452x x -=+与425x x -=-+B .215332x x -=+得4533x x -=+C .4(1)2(3)x x -=+得4126x x -=+D .32x =得23x = 9.下列说法中,错误的是( )A .单项式2a bc -的系数是1-,次数是4B .整式可分为单独一个数字、单独一个字母、单项式、多项式C .多项式243a b -是二次二项式D .()243x -与()223x --可以看作是同类项 10.《九章算术》中记载一问题:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?设有x 人,则表示物价的代数式可以是( )A .83-xB .83x +C .74x -D .()74x +二、填空题11.请你写出一个系数为3,次数为4,只含字母a 、b 的单项式:________.12.如图,在△ABC 中,点D 在BC 的延长线上,△A =m °,△ABC 和△ACD 的平分线交于点A 1,得△A 1;△A 1BC 和△A 1CD 的平分线交于点A 2,得△A 2;…;△A 2019BC 和△A 2019CD 的平分线交于点A 2020,则△A 2020=________°.13.若|a |=2,|b |=5,且a <b ,则a ﹣b 的值为______.14.单项式2335a bc 的系数是m ,次数是n ,则m n +=____. 15._____________________,叫做合并同类项.16.如图,在这个数据运算程序中,如果开始输入的x 的值为10,那么第1次输出的结果是5,返回进行第二次运算,那么第2次输出的结果是16,……以此类推,第204次输出的结果是_____.17.已知:2321A B a a -=--,223B C a -=-,则C A -的值是__________三、解答题18.已知:23231A x xy y =++-,2B x xy =-.(1)计算:A -3B ;(2)若()2120x y ++-=,求A -3B 的值;(3)若A -3B 的值与y 的取值无关,求x 的值.19.如图,将长和宽分别是a 、b 的矩形纸片折成一个无盖的长方体纸盒,方案是在矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用含a 、b 、x 的代数式表示纸片剩余部分的面积;(2)当10,8a b ==,且剪去部分的正方形的边长为最小的正整数时,求无盖长方体纸盒的底面积;(3)当10,8a b ==,若x 取整数,以x 作为高,将纸片剩余部分折成无盖长方体,求长方体的体积最大值. 20.将边长相等的黑、白两色小正方形按如图所示的方式拼接起来,第1个图由5个白色小小正方形和1个黑色小正方形拼接起来,第2个图由8个白色小正方形和2个黑色小正方形拼接起来,第3个图由11个白色小正方形和3个黑色小正方形拼接起来,依此规律拼接.(1)第4个图白色小正方形的个数为__;(2)第10个图白色小正方形的个数为___;(3)第n 个图白色小正方形的个数为(用含n 的代数式表示,结果应化简);(4)是否存在某个图形,其白色小正方形的个数为2021个,若存在,求出是第几个图形;若不存在,请说明理由.21.在整式的加减练习课中,已知2232A a b ab =-,嘉淇错将“A B -”看成“A B +”,所算的错误..结果是2243a b ab -.请你解决下列问题.(1)求出整式B ;(2)若1a =-,2b =.求B 的值;(3)求该题的正确计算结果.22.有理数a ,b 在数轴上的位置如图所示.(1)在数轴上表示出-a ,-b ,122-;(2)把a ,b ,-a ,-b ,122-,用“<”连接起来.23.如图,在数轴上,点A 所表示的数为a ,点B 所表示的数为b ,满足211(4)08a b ++-=,点D 从点A 出发以2个单位长度/秒的速度沿数轴向右运动,点E 从点B 出发以1个单位长度/秒的速度沿数轴向左运动,当D 、E 两点相遇时停止运动.(1)点A 表示的数为 ,点B 表示的数为 ;(2)点P 为线段DE 的中点,D 、E 两点同时开始运动,设运动时间为t 秒,试用含t 的代数式表示BP 的长度.(3)在(2)的条件下,探索3BP -DP 的值是否与t 有关,请说明理由.参考答案:1.D【分析】先求x 与y 的差,最后写出它们的3倍来求解.【详解】解:m 与n 差的即m n -,m 与n 差的3倍为()3m n -.故选:D .【点睛】本题考查了列代数式的知识,解答本题的关键是熟练读题,找出题目所给的等量关系. 2.C【分析】根据题意找出规律:每一格均是前一格的双倍,所以a n =2n -1.【详解】解:设第n 格中放的米粒数是a n ,则a 1=1,a 2=a 1×2,a 3=a 2×2=a 1×22,…a n =a 1×2n -1,△a 12=a 1×211=211.故选:C .【点睛】本题考查探索与表达规律,解答本题的关键是从题意中找出规律:每一格均是前一格的双倍,即a n =2n -1.3.D 【分析】根据单项相加后,结果仍是个单项式可知,2335a x y --与425b xy +为同类项 【详解】△2335a x y --与425b xy +相加后,结果仍是个单项式, △2335a x y --与425b xy +是同类项, △2143a b -=⎧⎨+=⎩,解得31a b =⎧⎨=-⎩△2335a x y --+425b xy +=335xy -+325xy =315xy -, 故选D.【点睛】本题考查了利用同类项的定义求字母的值以及合并同类项,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程求解即可.4.C 【分析】先将213922x y -+-化为21(3)92x y ---,然后整体代入即可得出答案. 【详解】213922x y -+-=21(3)92x y ---,236x y -=-, ∴21319(6)96222x y -+-=-⨯--=-. 故选:C .【点睛】本题考查代数式求值,解题的关键是熟练掌握整体代入法在代数式求值中的应用.5.D【分析】逐项代入,寻找正确答案即可.【详解】解:A 选项满足m≤n ,则y=2m+1=3;B 选项不满足m≤n ,则y=2n -1=-1;C 选项满足m≤n ,则y=2m+1=3;D 选项不满足m≤n ,则y=2n -1=1;故答案为D ;【点睛】本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确地代入代数式及代入的值. 6.A【分析】用大李今年的年龄减去小王今年的年龄,即可求出两人的年龄差,再根据年龄差不会随着时间的变化而改变,由此即可确定再过n +1年后,大李和小王的年龄差仍然不变.【详解】解:a ﹣(a ﹣15)=15(岁)答:他们相差15岁.故选:A .【点睛】此题考查了列代数式及年龄问题,要注意:两个人的年龄差是一个永远也不变的数值. 7.B【分析】根据单项式的定义判断即可.【详解】解:整式532x y -,0,12x +,2312ab a b -,-46中, 是单项式的为:-2x 5y 3,0,-46,共有3个;故选:B .【点睛】本题考查了单项式,熟练掌握单项式的定义是解题的关键.8.D【分析】根据等式基本性质和去括号法则进行判断即可.【详解】解:A 、452x x -=+变形为425x x -=+,故A 错误,不符合题意;B 、215332x x -=+变形得:430318x x -=+,故B 错误,不符合题意; C 、4(1)2(3)x x -=+得:4426x x -=+,故C 错误,不符合题意;D 、32x =得23x =,故D 正确,符合题意. 故选:D .【点睛】本题主要考查了等式的基本性质和去括号法则,熟练掌握等式的基本性质和去括号法则,是解题的关键.9.B【分析】根据单项式的系数和次数,整式的定义,多项式的次数和项数以及同类项的概念进行判断即可.【详解】解:A .单项式2a bc -的系数是1-,次数是4,不符合题意;B .整式分为单项式和多项式,符合题意;C .多项式243a b -是二次二项式,不符合题意;D .()243x -与()223x --是同类项,不符合题意; 故选:B .【点睛】本题考查了单项式的系数和次数,整式的定义,多项式的次数和项数以及同类项的概念,熟练地掌握以上知识是解决问题的关键.10.A【分析】根据题意可直接进行求解.【详解】设有x 人,由题意可表示物价的代数式是83-x 或74x +,故选A .【点睛】本题主要考查代数式的实际意义,熟练掌握代数式的书写是解题的关键.11.3a 2b 2(答案不唯一)【分析】根据单项式的系数和次数的意义判断即可.【详解】解:一个系数为3,次数为4,只含字母a 、b 的单项式:3a 2b 2,故答案为:3a 2b 2(答案不唯一).【点睛】本题考查了单项式,熟练掌握单项式的次数的意义,所有字母的指数和是解题的关键.12.20202m【分析】根据角平分线的性质可得△A 1CD =12△ACD ,△A 1BD =12△ABC ,再根据外角的性质可得△A 1=12△A ,找出规律即可求出△A 2020.【详解】解:△BA 1平分△ABC ,A 1C 平分△ACD ,△△A 1CD =12△ACD ,△A 1BD =12△ABC ,△△A 1=△A 1CD -△A 1BD =12△ACD △-12△ABC =12△A ,同理可得△A 2=12△A 1=(12)2△A ,△△A 2020=(12)2020△A ,△△A =m °,△△A 2020=2020°2m , 故答案为:2020°2m . 【点睛】本题考查了角平分线的性质与图形规律的综合,涉及三角形外角性质,找出△A 1和△A 之间的规律是解题的关键.13.3-或7-【分析】根据绝对值的定义求出a ,b 的值,再根据a <b ,分两种情况分别计算即可.【详解】解:△|a |=2,|b |=5,△a =±2,b =±5,△a <b ,△a =2时,b =5,a ﹣b =2﹣5=﹣3,a =﹣2时,b =5,a ﹣b =﹣2﹣5=﹣7,综上所述,a ﹣b 的值为﹣3或﹣7.故答案为:﹣3或﹣7.【点睛】本题主要考查了绝对值和代数式求值,解题的关键在于能够根据题意确定a 、b 的值. 14.335【分析】根据单项式的定义求出m 和n ,代入求值即可.【详解】解:△单项式2335a bc 的系数是m ,次数是n ,△35m =,2136n =++=, △33303365555m n +=+=+=, 故答案为:335. 【点睛】本题考查代数式求值,熟练掌握单项式定义,得到m 和n 的值是解决问题的关键.15.把同类项合并成一项【解析】略16.1【分析】根据数据运算程序,从第1次开始往后逐个计算输出结果,直到找出规律即可求解.【详解】解:由数据运算程序得,如果开始输入的x 的值为10,那么:第1次输出的结果是5,第2次输出的结果是16,第3次输出的结果是8,第4次输出的结果是4,第5次输出的结果是2,第6次输出的结果是1,第7次输出的结果是4,……综上可得,从第4次开始,每三个一循环,由()2043367-÷= 可得第204次输出的结果与第6次输出的结果相等.故答案为:1.【点睛】本题主要考查了代数式求值问题,解题的关键是通过计算特殊结果发现一般规律.17.21a -【分析】根据两个等式的左端式子的特征,将两个等式相加先求出21A C a -=-+,进而求出21C A a -=-.【详解】解: 2321①A B a a -=--,223②B C a -=-,∴①+②得()()()()2232123A B B C a a a -+-=--+-,()()2232123A B B C a a a -+-=--+-,2232123A C a a a -=--+-,21A C a -=-+,∴()()2121C A A C a a -=--=--+=-,故答案为:21a -.【点睛】本题主要考查了整式的加减,熟练运用合并同类项法则是解题的关键.18.(1)5xy +3y -1(2)-5 (3)35x =-【分析】(1)把A 和B 代入计算即可;(2)利用非负数的性质求出x ,y 的值,代入计算即可;(3)A -3B 变形后,其值与y 的取值无关,确定出x 的值即可.(1)解:A -3B=23231x xy y ++--3(2x xy -)=23231x xy y ++--3x 2+3xy=5xy +3y -1(2)解:因为()2120x y ++-=,()21x +≥0,2y -≥0,所以x +1=0,y -2=0,解得x =-1,y =2,把x =-1,y =2代入得,原式=5×(-1)×2+3×2-1=-5.(3)解:A -3B=5xy +3y -1=(5x +3)y -1,要使A -3B 的值与y 的取值无关,则5x +3=0,所以35x =-. 【点睛】本题考查整式的加减,整式的化简求值,非负数的性质,熟练掌握运算法则是解题的关键. 19.(1)24ab x -(2)48(3)48【分析】(1)根据图形可知剩余部分的面积=长方形的面积﹣4个小正方形的面积,从而可以用代数式表示出来;(2)根据题意可以求得正方形边长x 的值,从而求出长方体纸盒的底面积.(3)根据题意可以求得x 的取值范围,然后由x 取整数,从而可以分别求各种情况下长方体的体积,进而求出长方体体积的最大值.(1)由题意得,纸片剩余部分的面积是ab ﹣4x 2;(2)设:正方形边长为x由已知得,当a=10,b=8时,S=(a﹣2x)(b﹣2x)=(10﹣2x)×(8﹣2x)△边长为最小的正整数时△x=1,当x=1时,S=(10﹣2×1)(8﹣2×1)=48,即底面积是48.(3)由已知得,当a=10,b=8时,V=(a﹣2x)(b﹣2x)x=(10﹣2x)×(8﹣2x)×x△10﹣2x>0且8﹣2x>0,解得,x<4,△x取整数,△x=1或x=2或x=3,当x=1时,V=(10﹣2×1)(8﹣2×1)×1=48,当x=2时,V=(10﹣2×2)(8﹣2×2)×2=48,当x=3时,V=(10﹣2×3)(8﹣2×3)×3=24,即长方体的体积最大值是48.【点睛】本题考查列代数式,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.(1)14(2)32(3)32n(4)存在,第673个【分析】(1)由图可知,第一个图形由5个白色小正方形,第二个图形由8个,第三个图形由11个,往后每个图形依次增加3个,第四个图形在第三个图形的基础上增加3个即可;(2)根据(1)中观察得到的结论“往后每个图形依次增加3个白色小正方形”,则第十个应该在第一个的基础上增加9×3个;(3)第一个:5=2+3,第二个:8=2+3×2,第三个:11=2+3×3,则第n 个应该在2的基础上增加3n 个; (4)设第n 个图白色小正方形的个数为2021,将2021代入(3)中的代数式,求出n ,若n 为整数,则存在,否则,不存在.(1)11+3=14(个),故答案为:14(2)5+3×9=32(个),则答案为:32(3)第一个:5=2+3,第二个:8=2+3×2,第三个:11=2+3×3,则地n 个:2+3n ,故答案为:2+3n(4)设第n 个图白色小正方形的个数为2021则322021n +=解得673n =所以第673个图白色小正方形的个数为2021【点睛】本题主要考查了图形的变化规律,根据题目给出的图形找出其中的变化规律是解题的关键. 21.(1)a 2b -ab 2(2)6(3)2a 2b -ab 2【分析】(1)根据A B +=2243a b ab -即可得B =4a 2b -3ab 2-A ,从而可求出整式B ;(2)把1a =-,2b =代入(1)中的整式B 即可求解;(3)直接将整式A 、B 代入A -B ,利用整式的加减法则即可求解.(1)解:△A B +=2243a b ab -,2232A a b ab =-,△B =4a 2b -3ab 2-A =4a 2b -3ab 2-(3a 2b -2ab 2)=a 2b -ab 2;(2)解:当1a =-,2b =时,B =()()22-12-12=2+4=6⨯-⨯;(3)解△△2232A a b ab =-, B =a 2b -ab 2,△A -B =3a 2b -2ab 2-(a 2b -ab 2)=2a 2b -ab 2.【点睛】本题考查了整式的加减以及求代数式的值,熟练掌握合并同类项法则是解题的关键. 22.(1)数轴表示见解析;(2)122b a a b <-<-<<- 【分析】(1)先画出数轴,然后把根据题意表示出对应的有理数即可;(2)根据数轴上点表示的有理数左边的数小于右边的数进行求解即可.【详解】解:(1)数轴表示如下所示:(2)根据数轴上点的位置可得:122b a a b <-<-<<-. 【点睛】本题主要考查了用数轴表示有理数,利用数轴比较有理数的大小,解题的关键在于能够熟练掌握有理数与数轴的关系.23.(1)-8,4 (2)162BP t =- (3)3BP -DP 为定值12,与t 无关,理由见解析【分析】(1)根据若干个非负数的和为0,则这些非负数均为0,建立方程求解即可;(2)用含t 的代数式表示点D 、E 对应数,再利用中点性质即可求得点P 对应的数,最后利用B 对应数与P 对应数的差,表示数轴上两点之间的距离即可;(3)由(2)得:162BP t =-,1(123)2DP t =-,代入3BP -DP 即可得出答案. (1)解:△211(4)08a b ++-=,△110,408a b +=-=,解得:8,4a b =-=,△点A 表示的数为-8,点B 表示的数为4;故答案为:-8,4(2)解:如图,根据题意得:得:AD =2t ,BE =t ,△点D 、E 对应数分别为:-8+2t ,4-t ,且点E 在点D 的右侧,△DE =4-t -(-8+2t )=12-3t ,△点P 为线段DE 的中点,△11(123)22DP DE t ==-,△点P 对应的数为1182(123)222t t t -++-=-,△114(2)622BP t t =--=-; (3)解:3BP -DP 为定值12,与t 无关,理由如下:由(2)得:162BP t =-,1(123)2DP t =-,△113333(6)(123)186122222BP DP t t t t ⎡⎤-=---=--+=⎢⎥⎣⎦,△3BP -DP 为定值12,与t 无关. 【点睛】本题考查了数轴、绝对值、代数式、数轴上两点之间的距离、整式加减的应用等,找准等量关系,正确列出代数式是解题的关键.。

人教版2024-2025学年七年级上册数学单元检测(整式的加减)含答案

人教版2024-2025学年七年级上册数学单元检测(整式的加减)含答案

A. B. C. D.1(4)2a -124a -124a +324a +9.多项式是关于x.y 的四次二项式,则m 的值为( )2||2(2)1m x ym xy --+A.2B.-B.-2 C.±2 D.±110.当0a >,0b <时,化简|65||81||32|b b a b -+---的结果是( )A.35a b ++B.3117a b -+C.D.355a b -++3117a b --+二、填空题(每小题4分,共20分)11.若的系数是m ,的系数是n ,则的值为__________.2a b -23xy -m n +12.化简:________________.()()17372x x ---=13.若,则的值为________.244239m n x y ax y x y +=a m n ++14.若一个多项式加上,结果是,则这个多项式为___________.234y xy +-2325xy y +-15.阅读下面材料:计算.123499100++++++ 如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度..12399100(1100)(299)(5051)101505050+++++=++++++=⨯= 根据材料中提供的方法,计算:_________.()(2)(3)(100)a a m a m a m a m +-+-+-++-= 三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)已知多项式243352261079x x x x +-+-.(1)把这个多项式按x 的降幂重新排列;(2)该多项式是几次几项式?直接写出它的常数项.17.(8分)已知下列式子:(1)计算小长方形C的周长(用含(2)小明发现阴影图形A与阴影图形(3)已知,,求的值.22x xy +=2235y xy +=222116x xy y ++21.(12分)观察下列单项式:,,,解答下列问题:23x 35x 47x ⋅⋅⋅⋅⋅⋅(1)对这组单项式,你发现了什么规律?(2)根据你发现的规律,第5个单项式和第6个单项式分别是什么?(3)根据上面的归纳,你猜想第n 个单项式是什么?(4)请你根据猜想,写出第2022个单项式.答案以及解析1.答案:B解析:单项式的系数和次数分别是和3.22a b -2-2.答案:A解析:多项式的次数是3,最高次项是,22325xy xy -+23xy -的系数是,23xy -3-所以多项式的次数和最高次项的系数分别是3,,22325xy xy -+3-故选:A.3.答案:D解析:选项A ,多项式的项数是3、次数是2,故此选项不符合题意;221x y -+选项B ,多项式的项数是2、次数是3,故此选项不符合题意;33x y -选项C ,多项式的项数是3、次数是4,故此选项不符合题意;37xy y ++选项D ,多项式的项数是3、次数是3,故此选项符合题意.故选D.222x x y y ++4.答案:C解析:多项式的次数是4,有3项,是四次三项式,故A 项、B 项错误;22521ab a bc --它的常数项是-1,故D 项错误.5.答案:A解析:A.是同类项,此选项符合题意;B.字母a 的次数不相同,不是同类项,故此选项不符合题意;C.相同字母的次数不相同,不是同类项,故此选项不符合题意;D.相同字母的次数不相同,不是同类项,故此选项不符合题意.故选:A.6.答案:C解析:剩余白色长方形的长为b ,宽为,()b a -所以剩余白色长方形的周长.()2242b b a b a =+-=-故选:C.7.答案:A解析:A 、是四次三项式,故该选项正确,符合题意.22521ab a bc --B 、单项式的系数是1,故该选项错误,不符合题意.xy C 、的常数项是,故该选项错误,不符合题意.231x x --1-D 、最高次项是,故该选项错误,不符合题意.23231x y xy -+33xy -故选:A.8.答案:C解析:由题意得第三边的长为.11111(4)2242424a a a a a a a ---=--+=+9.答案:A解析:多项式是关于x ,y 的四次二项式,2||2(2)1m x y m xy --+且,2m ∴=20m -=.2m ∴=故选:A.10.答案:D解析:因为,,所以,,,所以0a >0b <650b ->810b -<320a b ->.|65||81|3265(81)(32)6581323117b b a b b b a b b b a b a b -+---=-----=--+-+=--+∣∣11.答案:53-解析:因为的系数是m ,的系数是n ,2a b -23xy -所以,,则的值为.1m =-23n =-m n +25133--=-12.答案:10x -解析:()()17372x x ---17372x x =--+10x=-故答案为.10x-13.答案:12解析:, 244239m n x y ax y x y +=,,,∴4m =2n =39a +=,∴6a =,∴64212a m n ++=++=故12.14.答案:21y -解析:依题意这个多项式为.故答案为.()()2222232534325341xy yy xy xy y y xy y +--+-=+---+=-21y -15.答案:1015050a m-解析:()(2)(3)(100)101(23100)a a m a m a m a m a m m m m +-+-+-++-=-++++ 101[(100)(299)(398)(5051)]101101501015050a m m m m m m m m a m a m=-++++++++=-⨯=- 16.答案:(1)432351022679x x x x -++-(2)四次五项式,59-解析:(1)含有5项,分别是、243352261079x x x x +-+-222x 、、6x 、,x 的次数分别是2、4、0、1、3,437x 59-310x -这个多项式按x 的降幂重新排列为.∴432351022679x x x x -++-(2)由(1)得,该多项式是四次五项式,常数项是.59-17.答案:(1)①②⑦;、、143- 6.1-(2)④⑥;3、2解析:(1)单项式是由数字与字母的积组成的整式,,,a 是单项式,243x y ∴-226.1a b -即①②⑦是单项式,的系数为,的系数为,a 的系数是1,243x y ∴-43-226.1a b - 6.1-故答案为①②⑦;、、1;43- 6.1-(2)多项式是由若干个单项式相加组成的整式,,,233a ab b ∴-+2412m n -+即④⑥,的次数为3,的次数为2,233a ab b ∴-+2412m n -+故答案为④⑥;3、2.18.答案:(1)216y -(2)见解析解析:(1)因为小长方形C 的宽为4,所以小长方形C 的长为,12y -所以小长方形C 的周长为.2(124)216y y ⨯-+=-(2)由题图可知,阴影图形A 的较长边长为,较短边长为,12y -8x -阴影图形B 的较长边长为12,较短边长为,(12)12x y x y --=-+所以阴影图形A 和阴影图形B 的周长之和为,2(128)2(1212)2402482248y x x y y x x y x -+-++-+=-+++-=+所以阴影图形A 与阴影图形B 的周长之和与y 值无关.19.答案:(1),322x y -+(2),54223a b ab -解析:(1)()()22222322x xy y x yx y +--+-222223224x xy y x yx y =+---+,22x y =-+将代入中得:1x =-2y =,22x y -+;22143x y -+=-+=(2)22225343a b ab ab a b---+()2222155412a b ab ab a b=-+-,223a b ab =-将,代入中得.2a =-3b =223a b ab -()2233432954a b ab -=⨯⨯--⨯=20.答案:(1)22()m n -(2)10(3)19解析:(1)把看成一个整体,2()m n -2223()4()3()m n m n m n ---+-()2343()m n =-+-;22()m n =-故;22()m n -(2),224x y += ;()2236232234210x y x y ∴+-=+-=⨯-=故10;(3),,22x xy += 2235y xy +=①,②,2224x xy ∴+=26915y xy +=得,,+①②222269415x xy y xy +++=+.22219161x xy y +=∴+21.答案:(1)系数是从3开始连续的奇数,次数是从2开始连续的整数;(2),611x 713x (3)()121n n x++(4)20234045x 解析:(1)观察下列单项式:,,,……23x 35x 47x 可得,系数是从3开始连续的奇数,次数是从2开始连续的整数;(2)由(1)发现的规律可得,第5个单项式为,第6个单项式为;611x 713x (3)由(1)发现的规律可得,第n 个单项式为()121n n x++;(4)由(3)中的猜想可得,第2022个单项式为()2022120232202214045x x +⨯+=.。

七年级数学上册《整式的加减》单元测试卷及答案

七年级数学上册《整式的加减》单元测试卷及答案

人教新版七年级上册《第2章整式的加减》单元测试(1)一.选择题(共13小题)1.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个2.单项式的系数与次数分别为()A.,7B.π,6C.4π,6D.π,4 3.﹣2x﹣2x合并同类项得()A.﹣4x2B.﹣4x C.0D.﹣44.下列各选项中是同类项的是()A.﹣a2b和ab2B.a2和22C.﹣ab2和2b2a D.2ab和2xy5.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.46.若﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.17.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定8.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣109.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 10.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣411.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+112.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较13.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是()A.是六次六项式B.是五次六项式C.是六次五项式D.是五次五项式二.填空题(共6小题)14.若x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,则正整数n的值为.15.当k=时,关于x、y的多项式x2+kxy﹣2xy﹣6中不含xy项.16.单项式2x m y3与﹣3xy3n是同类项,则m+n=.17.已知a2+a﹣3=0,则2024﹣a2﹣a=.18.x2﹣2x+y=x2﹣().19.已知x+y=3,xy=1,则代数式(5x+2)﹣(3xy﹣5y)的值.三.解答题(共5小题)20.化简:3x2+2xy﹣4y2﹣3xy+4y2﹣3x2.21.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.22.化简与求值:(1)化简(5a+4c+7b)+(5c﹣3b﹣6a);(2)化简(2a2b﹣ab2)﹣2(ab2+3a2b);(3)化简,求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.(4)化简,求值:已知A=4x2y﹣5xy2,B=3x2y﹣4y2,当x=﹣2,y=1时,求2A﹣B 的值.23.请回答下列问题:(1)若多项式mx2+3xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值.(2)若关于x、y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,m﹣n的值.(3)若2x|k|+1y2+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.24.某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?人教新版七年级上册《第2章整式的加减》单元测试卷(1)参考答案与试题解析一.选择题(共13小题)1.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个【考点】整式.【分析】根据整式的定义,结合题意即可得出答案.【解答】解:整式有﹣mn,m,8,x2+2x+6,,,故选:C.2.单项式的系数与次数分别为()A.,7B.π,6C.4π,6D.π,4【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式的系数与次数分别为,4,故选:D.3.﹣2x﹣2x合并同类项得()A.﹣4x2B.﹣4x C.0D.﹣4【考点】合并同类项.【分析】根据合并同类项的法则判断即可得结论.【解答】解:﹣2x﹣2x=(﹣2﹣2)x=﹣4x.故选:B.4.下列各选项中是同类项的是()A.﹣a2b和ab2B.a2和22C.﹣ab2和2b2a D.2ab和2xy【考点】同类项.【分析】根据同类项的概念逐一判断即可得.【解答】解:A.﹣a2b和ab2相同字母的指数不相同,不是同类项;B.a2和22所含字母不相同,不是同类项;C.﹣ab2和2b2a所含字母相同,且相同字母的指数也相同,是同类项;D.2ab与2xy所含字母不相同,不是同类项;故选:C.5.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.4【考点】同类项.【分析】根据同类项的概念求出x、y的值,再代入所求式子计算即可.【解答】解:∵﹣3a2b x与﹣3a y b是同类项,∴x=1,y=2,∴y x=21=2.故选:B.6.若﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.1【考点】合并同类项.【分析】直接利用两式可以合并进而得出m=n+2,即可得出答案.【解答】解:∵﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,∴m=n+2,则m﹣n=2.故选:A.7.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定【考点】整式的加减.【分析】直接利用整式的加减运算法则计算进而得出答案.【解答】解:∵M=x2+6x+22,N=﹣x2+6x﹣3,∴M﹣N=x2+6x+22﹣(﹣x2+6x﹣3)=x2+6x+22+x2﹣6x+3=2x2+25,∵x2≥0,∴2x2+25>0,∴M>N.故选:A.8.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣10【考点】代数式求值.【分析】根据相反数的定义得:﹣2a﹣3b=﹣4,首先化简﹣4a﹣6b+1,然后把﹣2a﹣3b =﹣4代入化简后的算式,求出算式的值是多少即可.【解答】解:∵2a+3b=4,∴﹣2a﹣3b=﹣4,∴﹣4a﹣6b+1=2(﹣2a﹣3b)+1=﹣8+1=﹣7,故选:C.9.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1【考点】代数式求值;有理数的混合运算.【分析】根据题意一一计算即可判断.【解答】解:当m=﹣1,n=1时,y=2m﹣n+1=2×(﹣1)﹣1+1=﹣2,不合题意;当m=1,n=0时,y=2m+n=2×1+0=2,不合题意;当m=1,n=2时,y=2m﹣n+1=2×1﹣2+1=1,符合题意;当m=2,n=1时,y=2m+n=2×2+1=5,不合题意;故选:C.10.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣4【考点】多项式.【分析】根据多项式的定义即可求解.【解答】解:因为多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,所以|m|=2,且m﹣2≠0,解得m=±2,且m≠2,则m的值为﹣2.故选:C.11.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+1【考点】多项式.【分析】字母b的最高次数为3,然后按照字母b的指数从高到低进行排列即可.【解答】解:1﹣5ab2﹣7b3+6a2b按字母b的降幂排列为﹣7b3﹣5ab2+6a2b+1.故选:D.12.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较【考点】整式的加减.【分析】首先计算两个整式的差,再通过分析差的正负性可得答案.【解答】解:∵A=x2﹣3x﹣2,B=2x2﹣3x﹣1,∴B﹣A=(2x2﹣3x﹣1)﹣(x2﹣3x﹣2)=2x2﹣3x﹣1﹣x2+3x+2=x2+1,∵x2≥0,∴B﹣A>0,则B>A,故选:A.13.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是()A.是六次六项式B.是五次六项式C.是六次五项式D.是五次五项式【考点】多项式.【分析】根据多项式次数的定义知,该多项式的次数是5次,又因为次多项式有6个单项式组成,所以是五次六项式.【解答】解:多项式26﹣3x5+x4+x3+x2+x次数最高的项的次数是5,且有6个单项式组成,所以是五次六项式.故选:B.二.填空题(共6小题)14.若x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,则正整数n的值为2或1.【考点】多项式.【分析】根据多项式的次数定义和n是正整数得出4+n=6或4+n=5,求出n的值即可.【解答】解:∵x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,又∵n是正整数,∴4+n=6或4+n=5,∴n=2或n=1;故答案为:2或1.15.当k=2时,关于x、y的多项式x2+kxy﹣2xy﹣6中不含xy项.【考点】合并同类项;多项式.【分析】根据多项式的概念即可求出答案.【解答】解:∵多项式x2+kxy﹣2xy﹣6中不含xy项,∴原式=x2+(k﹣2)xy﹣6令k﹣2=0,∴k=2故答案为:2.16.单项式2x m y3与﹣3xy3n是同类项,则m+n=2.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)求出n,m的值,再代入代数式计算即可.【解答】解:由单项式2x m y3与﹣3xy3n是同类项,得m=1,3n=3,解得m=1,n=1.∴m+n=1+1=2.故答案为:2.17.已知a2+a﹣3=0,则2024﹣a2﹣a=2021.【考点】代数式求值.【分析】由a2+a﹣3=0可得a2+a=3,再将a2+a=3整体代入要求的式子即可.【解答】解:∵a2+a﹣3=0,∴a2+a=3,∴2024﹣a2﹣a=2024﹣(a2+a)=2024﹣3=2021,故答案为:2021.18.x2﹣2x+y=x2﹣(2x﹣y).【考点】去括号与添括号.【分析】本题添了1个括号,且所添的括号前为负号,括号内各项改变符号.【解答】解:根据添括号的法则可知,x2﹣2x+y=x2﹣(2x﹣y),故答案为:2x﹣y.19.已知x+y=3,xy=1,则代数式(5x+2)﹣(3xy﹣5y)的值14.【考点】整式的加减.【分析】先将代数式(5x+2)﹣(3xy﹣5y)化简为:5(x+y)﹣3xy+2,然后把x+y=3,xy=1代入求解即可.【解答】解:∵x+y=3,xy=1,∴(5x+2)﹣(3xy﹣5y)=5x+2﹣3xy+5y=5(x+y)﹣3xy+2=5×3﹣3×1+2=14.故答案为:14.三.解答题(共5小题)20.化简:3x2+2xy﹣4y2﹣3xy+4y2﹣3x2.【考点】合并同类项.【分析】这个式子的运算是合并同类项的问题.根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【解答】解:原式=(3x2﹣3x2)+(2xy﹣3xy)+(4y2﹣4y2)=﹣xy.21.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.【考点】整式的加减—化简求值.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:原式=12a2+6a﹣2a2﹣3a+5=10a2+3a+5.当a=﹣2时,原式=10×(﹣2)2+3×(﹣2)+5=40﹣6+5=39.22.化简与求值:(1)化简(5a+4c+7b)+(5c﹣3b﹣6a);(2)化简(2a2b﹣ab2)﹣2(ab2+3a2b);(3)化简,求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.(4)化简,求值:已知A=4x2y﹣5xy2,B=3x2y﹣4y2,当x=﹣2,y=1时,求2A﹣B 的值.【考点】整式的加减—化简求值.【分析】(1)先去掉括号,再合并同类项即可得出答案;(2)先去掉括号,再合并同类项即可;(3)先把给出的式子进行化简,再代入x,y的值进行计算即可;(4)根据题意先列出算式,再合并同类项,最后把x,y的值进行计算即可.【解答】解:(1)(5a+4c+7b)+(5c﹣3b﹣6a)=5a+4c+7b+5c﹣3b﹣6a=5a﹣6a+7b﹣3b+4c+5c=﹣a+4b+9c;(2)(2a2b﹣ab2)﹣2(ab2+3a2b)=2a2b﹣ab2﹣2ab2﹣6a2b=2a2b﹣6a2b﹣ab2﹣2ab2=﹣4a2b﹣3ab2;(3)4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)=4xy﹣2x2﹣5xy+y2+2x2+6xy=y2+5xy,当x=1,y=﹣2时原式=(﹣2)2+5×1×(﹣2)=4﹣10=﹣6;(4)2A﹣B=2(4x2y﹣5xy2)﹣(3x2y﹣4y2)=8x2y﹣10xy2﹣3x2y+4y2=5x2y﹣10xy2+4y2当x=﹣2,y=1时,原式=5×(﹣2)2×1﹣10×(﹣2)×12+4×12=5×4×1﹣(﹣20)×1+4=20+20+4=44.23.请回答下列问题:(1)若多项式mx2+3xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值.(2)若关于x、y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,m﹣n的值.(3)若2x|k|+1y2+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.【考点】合并同类项;多项式;绝对值;代数式求值.【分析】(1)先把多项式合并同类项,再令含x项的系数等于0,求出m、n的值即可;(2)先把多项式合并同类项,然后根据多项式不含二次项,得到关于m、n的一次方程,求出m、n的值,再代入计算即可.(3)根据四次三项式的概念,得关于k的方程,求解即可.【解答】解:(1)原式=(m﹣1)x2+(3+n)xy﹣2y2﹣2y+6.∵原式的值与x的值无关,∴m﹣1=0,3+n=0,∴m=1,n=﹣3,∴(m+n)3=(1﹣3)3=﹣8,(2)原式=(6m﹣1)x2+(4n+2)xy+2x+y+4,∵多项式不含二次项,∴6m﹣1=0,4n+2=0.∴.∴.(3)由题意得:|k|+1+2=4,∴k=±1.又∵k﹣1≠0,∴k≠1.∴k=﹣1.24.某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?【考点】列代数式.【分析】(1)先表示出第二车间的人数,再表示出第三车间的人数即可;(2)把表示三个车间的人数的代数式相加即可得到答案;(3)先表示出调动后第一车间的人数,再用调动后第一车间的人数减去第三车间的人数即可.【解答】解:(1)∵第二车间的人数比第一车间人数的少20人,即人,而第三车间人数是第二车间人数的多10人,∴第三车间的人数为:人;(2)三个车间共有:人;(3)(x+10)﹣(x﹣15)=25(人),答:原第三车间人数比调动后的第一车间人数少25人.。

华东师大版七年级数学上册《第二章整式及其加减》单元测试卷带答案

华东师大版七年级数学上册《第二章整式及其加减》单元测试卷带答案

华东师大版七年级数学上册《第二章整式及其加减》单元测试卷带答案(测试时间:90分钟;试卷满分:100分)一、选择题(每小题3分,共24分)1.下列叙述中,正确的是( )A.0是单项式B.单项式23xy的次数是5C.单项式-2x 2y5的系数为-2 D.多项式3a3b+2a2是六次二项式2.用代数式表示“a的平方与b的平方的差”,正确的是( )A.(a-b)2B.a2-b2C.a-b2D.a-2b3.(2024·湘潭模拟)下列计算正确的是( )A.5-(-1)=4B.(-2)4=-16C.2a2-a=2aD.3x-(-2y+4)=3x+2y-44.当x=1时,整式ax3+bx+1的值为2 023,则当x=-1时,整式ax3+bx-2的值是( )A.2 024B.-2 024C.2 022D.-2 0225.若单项式a3m b9-n与78a6b2n的和仍是单项式,则m-n的值是( )A.1B.5C.-5D.-16.观察下列关于x的单项式,探究其规律:-x,3x2,-5x3,7x4,-9x5,11x6……按照此规律,第2 025个单项式是( )A.-2 025x2 025B.4 049x2 025C.-4 049x2 025D.4 051x2 0257.(2024·包头模拟)甲、乙两店卖豆浆,每杯售价均相同.已知甲店的促销方式为每买2杯,第1杯原价,第2杯半价;乙店的促销方式为每买3杯,第1,2杯原价,第3杯免费.若东东想买12杯豆浆,则下列所花的钱最少的方式是( )A.在甲店买12杯B.在甲店买8杯,在乙店买4杯C.在甲店买6杯,在乙店买6杯D.在乙店买12杯8.有依次排列的3个整式:x,x+6,x-3,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串,例如:x,6,x+6,-9,x-3,我们称它为整式串1;将整式串1按上述方式再做一次操作,可以得到整式串2;以此类推,通过实际操作,得到以下结论:①整式串2为:x,6-x,6,x,x+6,-x-15,-9,x+6,x-3;②整式串3的所有整式的和比整式串2的所有整式的和小3;③整式串5共65个整式;④整式串2 024的所有整式的和为3x-6 069;上述四个结论正确的有( )A.1个B.2个C.3个D.4个二、填空题(每小题4分,共24分)9.(2024·郴州模拟)单项式-5a2b(m+2)与3a n+5b是同类项,那么m-n=.10.多项式13x|m|-(m+4)x-11是关于x的四次三项式,则m的值是.11.(2024·长沙模拟)已知关于x的多项式(4x2-3x+5)-(2mx2-x+1)化简后不含x2项,则m的值是.12.如果x=5时,代数式ax5+bx-7的值为9,那么x=-5时,代数式a2x5+b2x+7的值为.13.已知三个有理数a,b,c,其积是负数,其和是正数,当x=|a|a +|b|b+|c|c时,代数式x2 025-2x+2的值为.14.(2024·台州模拟)如图所示,未来公园的广场背景墙上有一系列用灰砖和白砖铺成的图案,图①有1块灰砖,8块白砖;图②有4块灰砖,12块白砖;以此类推.若某个图案中有49块灰砖,则此图案中有块白砖.三、解答题(共52分)15.(6分)计算:(1)3m-3n-2m+n;(2)(8x-7y)-(4y-5x).16.(8分)先化简,再求值.(1)4(3a2b-ab2)-2(-ab2+3a2b),其中a是1的相反数,b是2的倒数;(2)3(x-2y)+5(x+2y-1)-2,其中2x+y=3.17.(8分)(2024·苏州期末)已知代数式A=3x2+3xy+2y,B=x2-xy+x.(1)计算A-3B;(2)当x=-1,y=3时,求A-3B的值;(3)若A-3B的值与x的取值无关,求y的值.18.(8分)有理数a,b,c在数轴上的位置如图所示.(1)比较大小:a +1 0,2-b a -c ; (2)|b -c |= ; (3)化简:|c -3|+|c -b |-|b +1|.19.(10分)近年来,电商多选择在11月11日促销.今年的促销期间,某电商客服在为买家包装商品时用到长、宽、高分别为a 厘米、b 厘米、c 厘米的箱子,并发现有如图所示的甲、乙两种打包方式(打包带不计接头处的长).回答下列问题:(1)用含a ,b ,c 的式子表示甲、乙两种打包方式所用的打包带的长度: 甲需要 厘米,乙需要 厘米;(2)当a =50厘米,b =40厘米,c =30厘米时,直接写出甲、乙两种打包方式所用的打包带的长度:甲需要 厘米,乙需要 厘米;(3)当a >b >c 时,两种打包方式中,哪种方式节省打包带?并说明你的理由.20.(12分)观察下列等式.11×2=1-12,12×3=12-13,13×4=13-14将以上三个等式两边分别相加得:11×2+12×3+13×4=1-12+12-13+13-14=1-14=34.(1)猜想并写出:1n (n+1)= .(2)直接写出下列各式的计算结果:①11×2+12×3+13×4+…+12022×2023=;②11×2+12×3+13×4+…+1n(n+1)=.(3)探究并计算:①11×3+13×5+15×7+…+12021×2023.②11×3-12×4+13×5-14×6+15×7-…+12021×2023-12022×2024.【附加题】(10分)某市居民使用自来水按如下标准缴费(水费按月缴纳):用户月用水量单价不超过12 m3的部分a元/m3超过12 m3但不超过20 m3的部分1.5a元/m3超过20 m3的部分 2a元/m3(1)当a=2时,某户一个月用了15 m3的水,求该户这个月应缴纳的水费.(2)设某户月用水量为28 m3,该户应缴纳的水费为元.(3)当a=2时,甲,乙两户一个月共用水40 m3,已知甲户缴纳的水费超过了24元,设甲户这个月用水x m3,试求甲,乙两户一个月共缴纳的水费(用含x的式子表示).参考答案一、选择题(每小题3分,共24分)1.下列叙述中,正确的是(A)A.0是单项式B.单项式23xy的次数是5C.单项式-2x 2y5的系数为-2 D.多项式3a3b+2a2是六次二项式2.用代数式表示“a的平方与b的平方的差”,正确的是(B)A.(a-b)2B.a2-b2C.a-b2D.a-2b3.(2024·湘潭模拟)下列计算正确的是(D)A.5-(-1)=4B.(-2)4=-16C.2a2-a=2aD.3x-(-2y+4)=3x+2y-44.当x=1时,整式ax3+bx+1的值为2 023,则当x=-1时,整式ax3+bx-2的值是(B)A.2 024B.-2 024C.2 022D.-2 0225.若单项式a3m b9-n与78a6b2n的和仍是单项式,则m-n的值是(D)A.1B.5C.-5D.-16.观察下列关于x的单项式,探究其规律:-x,3x2,-5x3,7x4,-9x5,11x6……按照此规律,第2 025个单项式是(C)A.-2 025x2 025B.4 049x2 025C.-4 049x2 025D.4 051x2 0257.(2024·包头模拟)甲、乙两店卖豆浆,每杯售价均相同.已知甲店的促销方式为每买2杯,第1杯原价,第2杯半价;乙店的促销方式为每买3杯,第1,2杯原价,第3杯免费.若东东想买12杯豆浆,则下列所花的钱最少的方式是(D)A.在甲店买12杯B.在甲店买8杯,在乙店买4杯C.在甲店买6杯,在乙店买6杯D.在乙店买12杯8.有依次排列的3个整式:x,x+6,x-3,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串,例如:x,6,x+6,-9,x-3,我们称它为整式串1;将整式串1按上述方式再做一次操作,可以得到整式串2;以此类推,通过实际操作,得到以下结论:①整式串2为:x,6-x,6,x,x+6,-x-15,-9,x+6,x-3;②整式串3的所有整式的和比整式串2的所有整式的和小3;③整式串5共65个整式;④整式串2 024的所有整式的和为3x-6 069;上述四个结论正确的有(D)A.1个B.2个C.3个D.4个二、填空题(每小题4分,共24分)9.(2024·郴州模拟)单项式-5a2b(m+2)与3a n+5b是同类项,那么m-n=2.10.多项式13x|m|-(m+4)x-11是关于x的四次三项式,则m的值是4.11.(2024·长沙模拟)已知关于x的多项式(4x2-3x+5)-(2mx2-x+1)化简后不含x2项,则m的值是2.12.如果x=5时,代数式ax5+bx-7的值为9,那么x=-5时,代数式a2x5+b2x+7的值为-1.13.已知三个有理数a,b,c,其积是负数,其和是正数,当x=|a|a +|b|b+|c|c时,代数式x2 025-2x+2的值为1.14.(2024·台州模拟)如图所示,未来公园的广场背景墙上有一系列用灰砖和白砖铺成的图案,图①有1块灰砖,8块白砖;图②有4块灰砖,12块白砖;以此类推.若某个图案中有49块灰砖,则此图案中有32块白砖.三、解答题(共52分)15.(6分)计算:(1)3m-3n-2m+n;(2)(8x-7y)-(4y-5x).【解析】(1)原式=(3-2)m+(-3+1)n=m-2n;(2)原式=8x-7y-4y+5x=13x-11y.16.(8分)先化简,再求值.(1)4(3a2b-ab2)-2(-ab2+3a2b),其中a是1的相反数,b是2的倒数;(2)3(x-2y)+5(x+2y-1)-2,其中2x+y=3.【解析】(1)原式=12a2b-4ab2+2ab2-6a2b=6a2b-2ab2;因为a是1的相反数,b是2的倒数所以a=-1,b=12所以原式=6×(-1)2×12-2×(-1)×(12)2=3+12=72;(2)原式=3x-6y+5x+10y-5-2=8x+4y-7;当2x+y=3时,原式=4(2x+y)-7=4×3-7=12-7=5.17.(8分)(2024·苏州期末)已知代数式A=3x2+3xy+2y,B=x2-xy+x.(1)计算A-3B;(2)当x=-1,y=3时,求A-3B的值;(3)若A-3B的值与x的取值无关,求y的值.【解析】(1)因为A=3x2+3xy+2y,B=x2-xy+x所以A-3B=(3x2+3xy+2y)-3(x2-xy+x)=3x2+3xy+2y-3x2+3xy-3x=6xy+2y-3x;(2)当x=-1,y=3时,A-3B=6xy+2y-3x=6×(-1)×3+2×3-3×(-1)=-18+6+3=-9;(3)A-3B=6xy+2y-3x=(6y-3)x+2y因为A-3B的值与x的取值无关所以6y-3=0,解得y=1.218.(8分)有理数a,b,c在数轴上的位置如图所示.(1)比较大小:a+10,2-b a-c;(2)|b-c|=;(3)化简:|c-3|+|c-b|-|b+1|.【解析】(1)由题意得,-3<a<-2,-1<b<0,1<c<2所以a+1<0,2-b>0>a-c.答案:<>(2)因为b-c<0,所以|b-c|=-(b-c)=c-b.答案:c-b(3)因为-3<a<-2,-1<b<0,1<c<2,所以c-3<0,c-b>0,b+1>0所以|c-3|+|c-b|-|b+1|=3-c+c-b-(b+1)=2-2b.19.(10分)近年来,电商多选择在11月11日促销.今年的促销期间,某电商客服在为买家包装商品时用到长、宽、高分别为a厘米、b厘米、c厘米的箱子,并发现有如图所示的甲、乙两种打包方式(打包带不计接头处的长).回答下列问题:(1)用含a ,b ,c 的式子表示甲、乙两种打包方式所用的打包带的长度: 甲需要 厘米,乙需要 厘米;(2)当a =50厘米,b =40厘米,c =30厘米时,直接写出甲、乙两种打包方式所用的打包带的长度:甲需要 厘米,乙需要 厘米;(3)当a >b >c 时,两种打包方式中,哪种方式节省打包带?并说明你的理由. 【解析】(1)2×2(a +c )+2(b +c )=(4a +2b +6c )厘米,2(a +c )+2×2(b +c )=(2a +4b +6c )厘米 所以甲需要(4a +2b +6c )厘米,乙需要(2a +4b +6c )厘米; 答案:(4a +2b +6c ) (2a +4b +6c )(2)当a =50厘米,b =40厘米,c =30厘米时,4a +2b +6c =4×50+40×2+6×30=460厘米,2×50+4×40+30×6=440厘米 所以甲需要460厘米,乙需要440厘米; 答案:460 440(3)乙种节省,理由如下:(4a +2b +6c )-(2a +4b +6c )=4a +2b +6c -2a -4b -6c =2a -2b 因为a >b >c ,所以2a -2b >0 所以(4a +2b +6c )-(2a +4b +6c )>0 所以乙种打包方式更节省. 20.(12分)观察下列等式.11×2=1-12,12×3=12-13,13×4=13-14将以上三个等式两边分别相加得:11×2+12×3+13×4=1-12+12-13+13-14=1-14=34.(1)猜想并写出:1n (n+1)= .(2)直接写出下列各式的计算结果: ①11×2+12×3+13×4+…+12 022×2 023= ;②11×2+12×3+13×4+…+1n (n+1)= .(3)探究并计算: ①11×3+13×5+15×7+…+12 021×2 023.②11×3-12×4+13×5-14×6+15×7-…+12 021×2 023-12 022×2 024.【解析】(1)1n (n+1)=1n -1n+1.答案:1n -1n+1(2)①11×2+12×3+13×4+…+12 022×2 023=1-12+12-13+…+12 022-12 023=1-12 023=2 0222 023.②11×2+12×3+13×4+…+1n (n+1)=1-12+12-13+…+1n -1n+1=1-1n+1=n n+1.答案:①2 0222 023②nn+1(3)①11×3+13×5+15×7+…+12 021×2 023=12(1-13+13-15+15-17+…+12 021-12 023)=12(1-12 023)=1 0112 023.②11×3-12×4+13×5-14×6+15×7-…+12 021×2 023-12 022×2 024 =(11×3+13×5+…+12 021×2 023)- (12×4+14×6+…+12 022×2 024)=12(1-13+13-15+…+12 021-12 023)-12(12-14+14-16+…+12 022-12 024)=12(1-12 023)-12(12-12 024)=1 0112 023-1 0114 048=2 025×1 0112 023×4 048.【附加题】(10分)某市居民使用自来水按如下标准缴费(水费按月缴纳):用户月用水量单价不超过12 m3的部分a元/m3超过12 m3但不超过20 m3的部分1.5a元/m3超过20 m3的部分 2a元/m3(1)当a=2时,某户一个月用了15 m3的水,求该户这个月应缴纳的水费.(2)设某户月用水量为28 m3,该户应缴纳的水费为元.(3)当a=2时,甲,乙两户一个月共用水40 m3,已知甲户缴纳的水费超过了24元,设甲户这个月用水x m3,试求甲,乙两户一个月共缴纳的水费(用含x的式子表示).【解析】(1)12×2+(15-12)×1.5×2=24+9=33(元)所以该户这个月应缴纳的水费为33元;(2)12a+(20-12)×1.5a+(28-20)×2a=12a+12a+16a=40a(元).答案:40a(3)因为12×2=24所以x>12当12<x≤20时,甲用水量超过12 m3但不超过20 m3,乙用水量超过20 m3所以12×2+(x-12)×1.5×2+12×2+(20-12)×2×1.5+(40-x-20)×2×2=24+3x-36+24+24+80-4x= (116-x)元;当20<x<28时,甲的用水量超过20 m3,乙的用水量超过12 m3但不超过20 m3所以12×2+(20-12)×1.5×2+(x-20)×2×2+12×2+(40-x-12)×2×1.5=24+24+4x-80+24+84-3x= (x+76)元当28≤x≤40时,甲的用水量超过20 m3,乙的用水量不超过12 m3所以12×2+(20-12)×1.5×2+(x-20)×2×2+(40-x)×2=24+24+4x-80+80-2x=(2x+48)元; 综上所述,当12<x≤20时,甲,乙两户一个月共缴纳的水费为(116-x)元;当20<x<28时,甲,乙两户一个月共缴纳的水费为(x+76)元;当28≤x≤40时,甲,乙两户一个月共缴纳的水费为(2x+48)元.。

人教版七年级数学上册第2章《整式的加减》单元测试题1(含答案)

人教版七年级数学上册第2章《整式的加减》单元测试题1(含答案)

人教版七年级数学上册第2章《整式的加减》单元测试题测试范围:§2.1 整式 参考时间:60分钟(答案附卷后)一、选择题(每小题3分,共30分) 1.单项式-4a 的系数是( )A. 4B. -4C. 1D. a 2.单项式43a 2b 4的次数是( )A. 9B. 8C. 7D. 6 3.用代数式表示“a 的5倍与b 的差”,正确的是( )A. 5a -bB. 5a +bC. a -5bD. 5(a -b) 4.若多项式x 2-5x -2与3x 2+4x -n 的常数项相同,则n -1n的值是( )A. 0B. 1.5C.-2D. 25.多项式21145x -的最高次项的系数为( )A. 2B. 15C. -15D. -120 6. 某商品打七折后价格为a 元,则原价为( )A. 0.7a 元B. 107a 元 C. 1.2a 元 D. (a +0.2)元7.某种股票原价为a 元,连续两天上涨,每次涨幅为10%,则该股票两天后的价格为( )A. 1.21a 元B. 1.1a 元C.1.2a 元D. (a +0.2)元 8.已知代数式3x 2-4x +6的值为15,则9x 2-12x -7的值是( )A. 10B. 15C. 18D. 20 9.多项式3x |m |y 3+(m -3)x -1是关于x 、y 的六次三项式,则m 的值为( )A. -3B. 3C. ±3D. ±110. 一列单项式:-x ,3x 2,-5x 3,7x 4,…,-37x 19,39x 20,…,若第n 个单项式的系数为b , 则下列算式结果为1的是( )A. |b |-2nB. 2n -|b |C. 3n -|b |D. 以上都不对二、填空题(每小题3分,共18分) 11.下列各式:①3xy ; ②-4; ③5x; ④26x +; ⑤23m n+; ⑥x 2-y 2-1. 其中单项式有_________, 多项式有___________,整式有_______________. (填序号)12. 为了帮助洪水灾区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中6名教师人均 捐款a 元,则该班学生共捐款_______________元(用含a 的代数式表示). 13. 任意写出一个含有字母x 、y 的四次三项式,其中最高次项的系数为-2, 一次项系数为1,常数项为-5,你写出的多项式是________________. 14. 按下面程序计算:输入x =-4,则输出的结果是____________.15. 已知当x =-1时,ax 3+bx +1的值为5,则当x =1时,ax 3+bx -1的值为__________. 16. 如图,两个正方形面积分别为9和4. 两个阴影部分面积分别为S 1、S 2(S 1>S 2),则S 1-S 2的值为__________.第16题三、解答题(共8题,共72分)17.(8分)关于x 的多项式x 4+(a +2)x 3+5x 2-(b +4)x -1不含x 3项和x 项,求a -b 的值.18. (8分)若多项式(a -2b )x 3-x 2+x -b 是关于x 的二次三项式,常数项为3,求a 2-b 2的值.19.(8分)若332|b |a x y --是关于x 、y 的单项式,且系数是5,次数是5,求a 、b 的值.20. (8分)已知(m +3)2+|n -1|=0,求式子5m 2n 3+4(m -n )2的值.21.(8分)已知整式A =10x 9+9x 8+8x 7+7x 6+6x 5+5x 4+4x 3+3x 2+2x +1. (1)当x =1时,求整式A 的值; (2)当x =-1时,求整式A 的值;(3)小明同学做此题第(2)题时,由于将整式中某一项前的“+”号看成“-”号,误求得 整式的值为7,问小明同学看错了哪一项前的符号?22. (10分)甲、乙两家文具店出售同样的毛笔和宣纸,毛笔每支18元,宣纸每张2元. 甲店优惠方法为:买一支毛笔送两张宜纸;乙店优惠方法为:按总价的九折优惠. 小丽想购买5支毛笔,宣纸x 张(x ≥10). (1) 若到甲店购买,应付______________元(用代数式表示);(2) 若到乙店购买,应付______________元(用代数式表示); (3) 若小丽要买宣纸10张,应选择那家商店? 若买100张呢?23. (10分)某人买了50元的乘车公交卡,若此人乘车的次数用m表示,则记录他每次乘车后的余额如下表:(1) 写出此人乘车的次数m表示余额的式子;(2)若m为多项式2x3y4z+32x3y4-5的次数,计算乘了m次后还剩下多少元?24. (12分)观察下列三行数:-3,9,-27,81,-243,……①-6,6,-30,78,-246,……②-1,3,-9,27,-81,……③(1) 第一行数按什么规律排列?(2) 第二行、第三行的数与第一行数分别有什么关系?(3) 设x、y、z分别是这①②③行的第n、n-1、n-2个数,若x+y-az与n无关,求a的值.答 案一、选择题(每小题3分,共30分)题号1 2 3 4 5 6 7 8 9 10 答案BDABCBADAB第10题:b =(-1)n (2n -1),|b |=2n -1,故选B .二、填空题(每小题3分,共18分)11. ①②,⑤⑥,①②⑤⑥; 12. (3200-6a ); 13. -2x 3y +x -5(不唯一); 14. -30; 15. -5; 16. 5.三、解答题(共8题,共72分) 17. a =-2,b =-4,a -b =2. 18. a =-6,b =-3,a 2-b 2=27. 19. a =-10,b =5或1.20. m =-3,n =1,原式=109.21. (1)当x =1时,A =10+9+8+7+6+5+4+3+2+1=55;(2)当x =-1时,A =-10+9-8+7-6+5-4+3-2+1=-5;(3) ∵7-(-5)=12,12÷2=6,系数为6,故看错了5次项前的符号. 22. (1)5×18+2(x -10)=2x +70,填(2x +70);(2)0.9(5×18+2x )=1.8x +81,填(1.8x +81);(3)当x =10时,甲店费用为2x +70=90(元),乙店费用为1.8x +81=99(元),应选甲店; 当x =100时,甲店费用为2x +70=270(元),乙店费用为1.8x +81=261(元),应选乙店. 23. (1)(50-0.8m )(元);(2)当m =8时,50-0.8m =43.6(元). 24. (1)第一行的第n 个数为:(-3)n ;(2)第二行的数为第一行的相应数减去3,即第二行的第n 个数为:(-3)n -3; 第三行的数为第一行的相应数除以3,即第三行的第n 个数为:13×(-3)n ; (3)由题设得:x =(-3)n ,y =(-3)n -1-3,z =13×(-3)n -2, ∴x +y -az =(-3)n +[(-3)n -1-3]-13a (-3)n -2=(-3)n -2[(-3)2+(-3)-13a ]-3=(-3)n -2(6-13a )-3, 令6-13a =0,得a =18.。

人教版七年级上册数学第二章《整式的加减》单元达标测试卷(含答案解析)

人教版七年级上册数学第二章《整式的加减》单元达标测试卷(含答案解析)

人教版七年级上册数学第二章《整式的加减》单元达标测试卷一.选择题(每题3分,共30分)1.下列代数式中,符合书写规则的是( )A .xB .x ÷yC .m ×2D .32.已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A .B .C .D .3关于多项式0.3x 2y ﹣2x 3y 2﹣7xy 3+1,下列说法错误的是( )A.这个多项式是五次四项式B.四次项的系数是7C.常数项是1D.按y 降幂排列为﹣7xy 3﹣2x 3y 2+0.3x 2y+14.若x+y=1,则代数式3(4x-1)-2(3-6y )的值为( )A .-8B .8C .-3D .35.下列运算中,正确的是( )A .3a +2b =5abB .2a 3+3a 2=5a 5C .3a 2b -3ba 2=0D .5a 2-4a 2=1A .这个多项式是五次五项式B .常数项是﹣1C .四次项的系数是3D .按x 降幂排列为x 5+3x 2﹣3xy 3﹣y ﹣17.若A =3x 2-4y 2,B =-y 2-2x 2+1,则A -B 等于( )A .x 2-5y 2+1B .x 2-3y 2+1C .5x 2-3y 2-1D .5x 2-3y 2+18.两船从同一港口同时反向而行,甲船顺水航行,乙船逆水航行,两船在静水中的速度都是50km/h ,水流的速度为a km/h ,3h 后,甲船比乙船多航行的路程是( )A .1.5a kmB .3a kmC .6a kmD .(150+3a )km 9.下面是小明做的一道多项式的加减运算题,但他不小心把一滴墨水滴在了上面.(﹣x 2+3xy 12-y 2)﹣(12-x 2+4xy 12-y 2)12=-x 2●,黑点处即为被墨迹弄污的部分,那么被墨汁遮住的一项应是( )A .﹣xyB .+xyC .﹣7xyD .+7xy10.如图,阴影部分的面积为A.B.C.D.二、填空题(共24分)11.减去3m后,等于3m2+m﹣1的多项式是.12.已知3a n b n﹣1与﹣5a2b2m(m是正整数)是同类项,那么(2m﹣1)2=.13.计算:(m+3m+5m+…+2019m)﹣(2m+4m+6m+…+2020m)=.14.小华在计算多项式P加上x2﹣3x+6时,因误认为加上x2+3x+6,得到的答案是2x2﹣4x,则P应是.15.如图,把五个长为b、宽为a的小长方形,按图1和图2两种方式放在一个宽为m的大长方形上(相邻的小长方形既无重叠,又不留空隙).设图1中两块阴影部分的周长和为C1,图2中阴影部分的周长为C2,若大长方形的长比宽大(6﹣a),则C2﹣C1的值为.16.如图,将图①中的四边形剪开得到图②,图中共有4个四边形;将图②中的一个四边形剪开得到图③,图中共有7个四边形;如此剪下去,第5个图中共有________个四边形,第n(n为正整数)个图中共有________个四边形.。

人教新版七年级数学上学期 第2章 整式的加减 单元练习卷 含解析

人教新版七年级数学上学期 第2章 整式的加减 单元练习卷  含解析

第2章整式的加减一.选择题(共11小题)1.下列各式﹣xy,0,,2x+1,中,整式有()A.1个B.2个C.3个D.4个2.下列运算正确的是()A.2a2﹣a2=1 B.5a2b﹣3ba2=2a2bC.5a+a=6a2D.3a+3b=8ab3.单项式﹣5x2y的次数和系数分别是()A.3,5 B.3,﹣5 C.2,5 D.2,﹣5 4.下列代数式是同类项的是()A.与x2y B.2x2y与3xy2C.xy与﹣xyz D.x+y与2x+2y5.下列判断错误的是()A.1﹣a﹣2ab是二次三项式B.﹣a2b2c与2ca2b2是同类项C.是多项式D.πa2的系数是π6.如果单项式﹣2x a+2y3与5x4y b是同类项,那么a b的值是()A.8 B.5 C.6 D.9 7.下列说法中正确的是()A.2x2+3x3是五次二项式B.﹣πx2yz的系数是﹣1C.﹣23x2y2的次数是6 D.是多项式8.已知﹣4x a y+x2y b=﹣3x2y,则a2﹣b的值为()A.1 B.2 C.3 D.4 9.若代数式x2﹣2kxy+y2﹣6xy+9不含xy项,则k的值为()A.3 B.﹣C.0 D.﹣3 10.若2个单项式3x2a﹣b y2与2x4y a﹣b的和仍是单项式,则ab的值为()A.0 B.3 C.﹣3 D.211.如果多项式3x m﹣(n﹣1)x+1是关于x的二次二项式,则()A.m=0,n=0 B.m=2,n=0 C.m=2,n=1 D.m=0,n=1 二.填空题(共6小题)12.将a﹣(b﹣c)去括号得.13.当1≤m<3时,化简|m﹣1|﹣|m﹣3|=.14.去括号合并:3(a﹣b)﹣(2a+3b)=.15.a2﹣ab+b2=a2﹣(),2x﹣3(y﹣z)=.16.如图,长方形纸片的长为6cm,宽为4cm,从长方形纸片中剪去两个形状和大小完全相同的小长方形卡片,那么余下的两块阴影部分的周长之和是.17.若代数式﹣(3x3y m﹣1)+3(x n y+1)经过化简后的结果等于4,则m﹣n的值是.三.解答题(共5小题)18.去括号,并合并同类项:3(5m﹣6n)+2(3m﹣4n).19.已知代数式A=x2+xy﹣2y,B=2x2﹣2xy+x﹣1(1)求2A﹣B;(2)若2A﹣B的值与x的取值无关,求y的值.20.已知:A=x2﹣2xy+y2,B=x2+2xy+y2(1)求A+B;(2)如果2A﹣3B+C=0,那么C的表达式是什么?21.已知A=2a2﹣a,B=﹣5a+1(1)化简:3A+2B﹣3;(2)当a=﹣时,求3A+2B﹣3的值.22.已知a,b,c所表示的数在数轴上的位置如图所示:(1)化简:|a﹣1|﹣|c+b|+|b﹣1|;(2)若a+b+c=0,且b与﹣1的距离和c与﹣1的距离相等,求:﹣a2+2b﹣c﹣(a﹣4c ﹣b)的值.参考答案与试题解析一.选择题(共11小题)1.下列各式﹣xy,0,,2x+1,中,整式有()A.1个B.2个C.3个D.4个【分析】直接利用整式的定义分析得出答案.【解答】解:﹣xy,0,,2x+1,中,整式有﹣xy,0,2x+1,共4个.故选:D.2.下列运算正确的是()A.2a2﹣a2=1 B.5a2b﹣3ba2=2a2bC.5a+a=6a2D.3a+3b=8ab【分析】根据合并同类项的法则逐一判断即可.【解答】解:A.2a2﹣a2=a2,故本选项不合题意;B.5a2b﹣3ba2=2a2b,正确,故本选项符合题意;C.5a+a=6a,故本选项不合题意;D.3a与3b不是同类项,所以不能合并,故本选项不合题意.故选:B.3.单项式﹣5x2y的次数和系数分别是()A.3,5 B.3,﹣5 C.2,5 D.2,﹣5【分析】直接利用单项式的次数与系数的定义分析得出答案.【解答】解:单项式﹣5x2y的次数是3,系数是:﹣5.故选:B.4.下列代数式是同类项的是()A.与x2y B.2x2y与3xy2C.xy与﹣xyz D.x+y与2x+2y【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A.与x2y,所含字母相同,并且相同字母的指数也相同,是同类项,故本选项正确;B.2x2y与3xy2,所含字母相同,但相同字母的指数不同,不是同类项,故本选项错误;C.xy与﹣xyz,所含字母不尽相同,不是同类项,故本选项错误;D.x+y与2x+2y是多项式,不是同类项,故本选项错误.故选:A.5.下列判断错误的是()A.1﹣a﹣2ab是二次三项式B.﹣a2b2c与2ca2b2是同类项C.是多项式D.πa2的系数是π【分析】分别根据多项式的定义,同类项的定义以及单项式的定义逐一判断即可.【解答】解:A.1﹣a﹣2ab是二次三项式,结论正确,故本选项不合题意;B.﹣a2b2c与2ca2b2是同类项,结论正确,故本选项不合题意;C.是分式,不是多项式,故原结论错误,故本选项符合题意;D.的系数是π,结论正确,故本选项不合题意.故选:C.6.如果单项式﹣2x a+2y3与5x4y b是同类项,那么a b的值是()A.8 B.5 C.6 D.9【分析】根据同类项的定义中相同字母的指数也相同,可先列出关于a和b的两个等式,通过解等式求出它们的值,最后代入所求代数式求值即可.【解答】解:∵单项式﹣2x a+2y3与5x4y b是同类项,∴a+2=4,b=3,解得a=2,b=3,∴a b=23=8.故选:A.7.下列说法中正确的是()A.2x2+3x3是五次二项式B.﹣πx2yz的系数是﹣1C.﹣23x2y2的次数是6 D.是多项式【分析】直接利用多项式的项数与次数和单项式的系数与次数确定方法分别分析得出答案.【解答】解:A、2x2+3x3是三次二项式,故此选项错误;B、﹣πx2yz的系数是﹣π,故此选项错误;C、﹣23x2y2的次数是4,故此选项错误;D、是多项式,正确.故选:D.8.已知﹣4x a y+x2y b=﹣3x2y,则a2﹣b的值为()A.1 B.2 C.3 D.4【分析】由﹣4x a y+x2y b=﹣3x2y,可得﹣4x a y与x2y b是同类项,再根据同类项的定义求出a,b的值,然后代入所求式子即可.【解答】解:∵﹣4x a y+x2y b=﹣3x2y,∴a=2,b=1.∴a2﹣b=22﹣1=4﹣1=3.故选:C.9.若代数式x2﹣2kxy+y2﹣6xy+9不含xy项,则k的值为()A.3 B.﹣C.0 D.﹣3【分析】将含xy的项进行合并,然后令其系数为0即可求出k的值.【解答】解:x2﹣2kxy+y2﹣6xy+9令﹣2k﹣6=0,k=﹣3.故选:D.10.若2个单项式3x2a﹣b y2与2x4y a﹣b的和仍是单项式,则ab的值为()A.0 B.3 C.﹣3 D.2【分析】由单项式3x2a﹣b y2与2x4y a﹣b的和仍是单项式知单项式3x2a﹣b y2与2x4y a﹣b是同类项,根据同类项的概念列出关于a、b的方程组,解之求得a、b的值,代入计算可得.【解答】解:∵单项式3x2a﹣b y2与2x4y a﹣b的和仍是单项式,∴单项式3x2a﹣b y2与2x4y a﹣b是同类项,则,解得,∴ab=0,故选:A.11.如果多项式3x m﹣(n﹣1)x+1是关于x的二次二项式,则()A.m=0,n=0 B.m=2,n=0 C.m=2,n=1 D.m=0,n=1 【分析】根据二次二项式可得m=2,n﹣1=0,再解即可.【解答】解:由题意得:m=2,n﹣1=0,解得:m=2,n=1,故选:C.二.填空题(共6小题)12.将a﹣(b﹣c)去括号得a﹣b+c.【分析】依据去括号法则化简即可.【解答】解:a﹣(b﹣c)=a﹣b+c.故答案为:a﹣b+c.13.当1≤m<3时,化简|m﹣1|﹣|m﹣3|=2m﹣4 .【分析】先根据绝对值的性质把原式化简,再去括号即可.【解答】解:根据绝对值的性质可知,当1≤m<3时,|m﹣1|=m﹣1,|m﹣3|=3﹣m,故|m﹣1|﹣|m﹣3|=(m﹣1)﹣(3﹣m)=2m﹣4.14.去括号合并:3(a﹣b)﹣(2a+3b)=a﹣6b.【分析】直接利用去括号法则去掉括号,进而合并同类项得出答案.【解答】解:3(a﹣b)﹣(2a+3b)=3a﹣3b﹣2a﹣3b=a﹣6b.故答案为:a﹣6b.15.a2﹣ab+b2=a2﹣(ab﹣b2),2x﹣3(y﹣z)=2x﹣3y+3z.【分析】①根据括号前是正号添括号后括号内各项不变号,括号前是负号添括号后括号内各项要变号,可得答案;②根据括号前是正号去括号不变号,括号前是负号去掉括号要变号,可去掉括号,可得答案.【解答】解:a2﹣ab+b2=a2﹣(ab﹣b2),2x﹣3(y﹣z)=2x﹣3y+3z.故答案为:ab﹣b2,2x﹣3y+3z.16.如图,长方形纸片的长为6cm,宽为4cm,从长方形纸片中剪去两个形状和大小完全相同的小长方形卡片,那么余下的两块阴影部分的周长之和是16cm.【分析】设两个形状和大小完全相同的小长方形卡片的长为acm,宽为bcm,由图表示出上面与下面两个长方形的周长,求出之和,根据题意得到a+b=6,代入计算即可得到结果.【解答】解:两个形状和大小完全相同的小长方形卡片的长为acm,宽为bcm,上面的长方形周长:2(6﹣a+4﹣a)=(20﹣4a)cm,下面的长方形周长:2(a+4﹣b)=(8+2a﹣2b)cm,两式联立,总周长为:(20﹣4a)+(8+2a﹣2b)=20﹣4a+8+2a﹣2b=28﹣2(a+b)cm,∵a+b=6(由图可得),∴阴影部分总周长为28﹣2(a+b)=28﹣2×6=16cm.故答案为:16cm.17.若代数式﹣(3x3y m﹣1)+3(x n y+1)经过化简后的结果等于4,则m﹣n的值是﹣2 .【分析】先去括号、合并同类项,再根据题意可得﹣3x3y m和3x n y是同类项,进而可得答案.【解答】解:﹣(3x3y m﹣1)+3(x n y+1)=﹣3x3y m+1+3x n y+3,=﹣3x3y m+3x n y+4,∵经过化简后的结果等于4,∴﹣3x3y m与3x n y是同类项,∴m=1,n=3,则m﹣n=1﹣3=﹣2,故答案为:﹣2.三.解答题(共5小题)18.去括号,并合并同类项:3(5m﹣6n)+2(3m﹣4n).【分析】利用去括号法则,如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进而合并同类项即可.【解答】解:3(5m﹣6n)+2(3m﹣4n)=15m﹣18n+6m﹣8n=21m﹣26n19.已知代数式A=x2+xy﹣2y,B=2x2﹣2xy+x﹣1(1)求2A﹣B;(2)若2A﹣B的值与x的取值无关,求y的值.【分析】(1)把A与B代入2A﹣B中,去括号合并即可得到结果;(2)由2A﹣B与x取值无关,确定出y的值即可.【解答】解:(1)2A﹣B=2(x2+xy﹣2y)﹣(2x2﹣2xy+x﹣1)=2x2+2xy﹣4y﹣2x2+2xy﹣x+1=4xy﹣x﹣4y+1;(2)∵2A﹣B=4xy﹣x﹣4y+1=(4y﹣1)x﹣4y+1,且其值与x无关,∴4y﹣1=0,解得y=.20.已知:A=x2﹣2xy+y2,B=x2+2xy+y2(1)求A+B;(2)如果2A﹣3B+C=0,那么C的表达式是什么?【分析】(1)根据题意列出算式,再去括号、合并同类项可得;(2)由2A﹣3B+C=0可得C=3B﹣2A=3(x2+2xy+y2)﹣2(x2﹣2xy+y2),再去括号、合并同类项可得.【解答】解:(1)A+B=(x2﹣2xy+y2)+(x2+2xy+y2)=x2﹣2xy+y2+x2+2xy+y2=2x2+2y2;(2)因为2A﹣3B+C=0,所以C=3B﹣2A=3(x2+2xy+y2)﹣2(x2﹣2xy+y2)=3x2+6xy+3y2﹣2x2+4xy﹣2y2=x2+10xy+y221.已知A=2a2﹣a,B=﹣5a+1(1)化简:3A+2B﹣3;(2)当a=﹣时,求3A+2B﹣3的值.【分析】(1)将A,B所代表的多项式代入3A+2B﹣3,然后去括号,合并同类项即可得;(2)将a的值代入化简后的代数式计算可得.【解答】解:(1)3A+2B﹣3=3(2a2﹣a)+2(﹣5a+1)﹣3=6a2﹣3a﹣10a+2﹣3=6a2﹣13a﹣1;(2)当a=﹣时,3A+2B﹣3=6a2﹣13a﹣1=6×(﹣)2﹣13×(﹣)﹣1=+﹣1=7.22.已知a,b,c所表示的数在数轴上的位置如图所示:(1)化简:|a﹣1|﹣|c+b|+|b﹣1|;(2)若a+b+c=0,且b与﹣1的距离和c与﹣1的距离相等,求:﹣a2+2b﹣c﹣(a﹣4c ﹣b)的值.【分析】(1)直接利用数轴结合绝对值的性质化简得出答案;(2)直接利用b与﹣1的距离和c与﹣1的距离相等得出b+c=﹣2,进而得出a的值求出答案.【解答】解:(1)由数轴可得:c+b<0,a﹣1>0,b﹣1<0,则|a﹣1|﹣|c+b|+|b﹣1|=a﹣1+(c+b)﹣(b﹣1)=a+c;(2)∵b与﹣1的距离和c与﹣1的距离相等,∴b+c=﹣2,∵a+b+c=0,∴a=2,﹣a2+2b﹣c﹣(a﹣4c﹣b)=﹣a2﹣a+3(b+c)=﹣4﹣2﹣6=﹣12.。

七年级数学上册《第三章 整式的加减》单元测试卷-附答案(北师大版)

七年级数学上册《第三章 整式的加减》单元测试卷-附答案(北师大版)

七年级数学上册《第三章 整式的加减》单元测试卷-附答案(北师大版)一、选择题1.如果一个两位数是十位数字是a ,个位数字是b ,则这个两位数用代数式表示为( )A .abB .10abC .a b +D .10a b +2.已知12a b -=,则代数式662a b --的值是( ). A .0B .1C .-1D .53.下列代数式中,属于单项式的是( )A .a b +B .a b -C .abD .a b4.下列各选项中的两个项是同类项的是( ).A .32a b 和23a bB .35a b -和33baC .23abc 和23a bcD .2a 和2a5.“居家嗨购,网上过年”,为做好疫情防控并促进春节消费,山西省组织开展了2022年“全晋乐购”网上年货节活动,某企业采购了具有山西特色的年货慰问响应国家号召就地过年的员工,该企业选购了甲种物品()3a +件,单价是100元;乙种物品a 件,单价是240元.则该企业共花费在( )A .()140300a +元B .()200300a +元C .()300300a +元D .()340300a +元6.已知21a b -=-,则代数式124a b -+的值是( )A .-3B .-1C .2D .37.式子 2282259b x y a x m-++--,,,, 中, 单项式有( ) A .1个B .2个C .3个D .4个8.若关于 x 、 y 的多项式 2226431x ax y ax x +-+-- 中没有二次项,则 a = ( )A .3B .2C .12-D .3-9.下列运算中,正确的是( )A .325a b ab +=B .325235a a a +=C .22541a a -=D .22330a b ba -=10.图1是由3个相同小长方形拼成的图形其周长为24cm ,图2中的长方形ABCD 内放置10个相同的小长方形,则长方形ABCD 的周长为( )A .32cmB .36cmC .48cmD .60cm二、填空题11.“x 的2倍与5的和”用式子表示为 . 12.已知221a a -=-,则2362a a -+= .13.把多项式322245x y y x -+按x 的升幂排列 .14.若代数式39m a b 与22n a b -是同类项,那么m = ,n = .三、解答题15.如图是某居民小区的一块长为b 米,宽为2a 米的长方形空地,为了美化环境,准备在这个长方形的四个顶点处各修建一个半径为a 米的扇形花台,然后在花台内种花,其余部分种草.如果建造花台及种花费用每平方米需要资金100元,种草每平方米需要资金50元,那么美化这块空地共需资金多少元?16.已知:a b 、 互为相反数,c d 、 互为倒数,m 是最小的正整数,求代数式2022()32a b cd m +-+的值.17.已知式 23372m km m +-+ 是关于m 的多项式,且不含一次项,求k 的值. 18.先化简,再求值:()222233()a ab a b ab b ⎡⎤+--++⎣⎦其中6a =和13b =-.四、综合题19.列代数式。

人教版初中数学七年级上册第二章《整式的加减》单元测试题(含答案)

人教版初中数学七年级上册第二章《整式的加减》单元测试题(含答案)

第二章《整式的加减》单元测试题一、选择题(每小题只有一个正确答案)1.已知一个多项式减去-2m结果等于m2+3m+2,这个多项式是()A.m2+5m+2B.m2-m-2C.m2-5m-2D.m2+m+22.下列各组单项式中,不是同类项的是()A. 3x2y与-2yx2B. 2ab2与-ba2C.xy3与5xy D. 23a与32a3.已知3xa-2是关于x的二次单项式,那么a的值为()A. 4B. 5C. 6D. 74.若-2am+4b4与5a2bn+1可以合并成一项,则mn的值是()A.-6B. 8C.-8D. 95.计算6a2-5a+3与5a2+2a-1的差,结果正确的是()A.a2-3a+4B.a2-3a+2C.a2-7a+2D.a2-7a+46.多项式a3-2a2b2+5b2的次数是()A. 2 B. 3 C. 4 D. 97.下列结论正确的是()A. 3x2-x+1的一次项系数是1B.xyz的系数是0C.a2b3c是五次单项式D.x5+3x2y4-2x3y是六次三项式8.有一组单项式:a2,-a32,a43,-a54…,请观察它们的构成规律,用你发现的规律写出第10个单项式为()A.a1010B.-a1010C.a1110D.-a11109.计算-3(x-2y)+4(x-2y)的结果是()A.x-2y B.x+2y C.-x-2y D.-x+2y10.有理数a,b,c在数轴上的位置如图所示,则|a+b|-2|c-b|+3|b+a|等于()A.-2b B. 0 C.-4a-b-3c D.-4a-2b-2c二、填空题11.去括号:3x-(a-b+c)=___________.12.a、b在数轴上的位置如图所示,化简|a+b|-2|a-b|=___________.13.有规律地排列着这样一些单项式:-xy,x2y,-x3y,x4y,-x5y,…,则第n个单项式(n≥1正整数)可表示为___________.14.10a-5减去(-5a+7)的差是___________.三、解答题15.化简:①4a2+3b2+2ab-3a2-4b2;①(2a-4b)-(3a+4b);①2(4a2b-10b3)+(-3a2b-20b3);①(-x2+3xy-4y3)-3(2xy-3y2).16.先化简,再求值:5(a2b+2ab2)-2(3a2b+5ab2-1),其中a=-2,b=2.17.已知多项式y4-x4+3x3y-1xy2-5x2y3.2(1)按字母x的降幂排列;(2)按字母y的升幂排列.18.观察下面有规律的三行单项式:x,2x2,4x3,8x4,16x5,32x6,…①-2x,4x2,-8x3,16x4,-32x5,64x6,…①2x2,-3x3,5x4,-9x5,17x6,-33x7,…①(1)根据你发现的规律,第一行第8个单项式为___________;(2)第二行第n个单项式为___________;(3)第三行第8个单项式为___________;第n个单项式为___________.答案解析1.【答案】D【解析】设这个多项式为M ,则M =(m 2+3m +2)+(-2m )=m 2+3m +2-2m =m 2+m +2 2.【答案】B【解析】A 、字母相同且相同字母的指数也相同,故A 正确; B 、相同字母的指数不同不是同类项,故B 错误; C 、字母相同且相同字母的指数也相同,故C 正确; D 、字母相同且相同字母的指数也相同,故D 正确. 3.【答案】A【解析】因为3xa -2是关于x 的二次单项式, 所以a -2=2, 解得a =4 4.【答案】C【解析】根据题意可得m +4=2,n +1=4, 解得m =-2,n =3, 所以mn =-8. 5.【答案】D【解析】(6a 2-5a +3)-(5a 2+2a -1) =6a 2-5a +3-5a 2-2a +1 =a 2-7a +4. 6.【答案】C【解析】a 3-2a 2b 2+5b 2的次数是4. 7.【答案】D【解析】A 、3x 2-x +1的一次项系数是-1,故错误; B 、xyz 的系数是1,故错误; C 、a 2b 3c 是六次单项式,故错误; D 、正确. 8.【答案】D【解析】注意观察各单项式系数和次数的变化, 系数依次是1(可以看成是11),-12,13,-14…据此推测,第十项的系数为-110;次数依次是2,3,4,5…据此推出,第十项的次数为11.所以第十个单项式为-a11.10 9.【答案】A【解析】-3(x-2y)+4(x-2y)=-3x+6y+4x-8y=x-2y.10.【答案】D【解析】因为由图可知,a<b<0<c,|a|>|b|>c,所以a+b<0,c-b>0,b+a<0,所以原式=-(a+b)-2(c-b)-3(b+a)=-a-b-2c+2b-3b-3a=-4a-2b-2c.11.【答案】3x-a+b-c【解析】3x-(a-b+c)=3x-a+b-c.12.【答案】-3a+b【解析】由数轴可得b+a<0,a-b>0,则|a+b|-2|a-b|=-a-b-2(a-b)=-3a+b13.【答案】(-x)n y【解析】第n个单项可表示为(-x)n y14.【答案】15a-12【解析】(10a-5)-(-5a+7)=10a-5+5a-7=15a-12.15.【答案】解:①原式=(4-3)a2+(3-4)b2+2ab=a2+2ab-b2;①原式=2a-4b-3a-4b=-a-8b;①原式=8a2b-20b3-3a2b-20b3=5a2b-40b3;①原式=-x2+3xy-4y3-6xy+9y2=x2-4y3-3xy+9y2.【解析】①直接合并同类项即可;①①①先去括号,再合并同类项即可.16.【答案】解:原式=5a2b+10ab2-6a2b-10ab2+2=-a2b+2,当a=-2,b=2时,原式=-8+2=-6.【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.17.【答案】解:(1)按字母x的降幂排列:−x4+3x3y−5x2y3−1xy2+y4;2(2)按字母y的升幂排列:−x4+3x3y−5x2y3−1xy2+y4.2【解析】(1)根据x的指数的从大到小顺序排列即可;(2)根据y的指数的从小到大顺序排列即可.18.【答案】(1)128x8(2)(-2)nxn(3)-129x9(-1)n+1(1+2n-1)xn+1【解析】通过观察很容易得到三组数据数字因数、字母次数之间的关系,根据规律写出相应的式子即可.解:因为第一行的每个单项式,数字因数后面都是前面的2倍,字母次数与这个单项式是第几个有关,根据这个规律可得第一行第8个单项式为 128x8;因为第二行的每个单项式,数字因数后面都是前面的(-2)倍,字母次数与这个单项式是第几个有关,根据这个规律可得第n个单项式为(-2)nxn;通过观察第三行的这组单项式,这组单项式符合(-1)n+1(1+2n-1)xn+1,第8个单项式是-129x9;第n个单项式为(-1)n+1(1+2n-1)xn+1.。

七年级数学上册《第2章 整式的加减》单元测试卷及答案详解

七年级数学上册《第2章 整式的加减》单元测试卷及答案详解

人教新版七年级上册《第2章整式的加减》单元测试卷(2)一.选择题(共5小题)1.下列式子中是单项式的个数为()①,②,③0,④,⑤,⑥2x2﹣1,⑦,⑧﹣1.96,⑨m﹣2,⑩.A.5个B.6个C.7个D.8个2.单项式﹣的系数和次数是()A.系数是,次数是3B.系数是﹣;,次数是5C.系数是﹣,次数是3D.系数是5,次数是﹣3.下列各式中,与x2y3能合并的单项式是()A.x3y2B.﹣x2y3C.3x3D.x2y24.给出下列判断:①单项式5×103x2的系数是5;②x﹣2xy+y是二次三项式;③多项式﹣3a2b+7a2b2﹣2ab+1的次数是4;④几个非0有理数相乘,当负因数有奇数个时,积为负.其中判断正确的个数有()A.1个B.2个C.3个D.4个5.小文在计算某多项式减去2a2+3a﹣5的差时,误认为是加上2a2+3a﹣5,求得答案是a2+a ﹣4(其他运算无误),那么正确的结果是()A.﹣a2﹣2a+1B.﹣3a2﹣5a+6C.a2+a﹣4D.﹣3a2+a﹣4二.填空题(共12小题)6.单项式﹣的系数是,次数是.7.多项式3x2y﹣7x4y2﹣xy3+28是次项式,最高次项的系数是.8.若x a+2y4与﹣2x3y2b和仍为一个单项式,则(a﹣b)2021的值是.9.多项式是关于x的四次三项式,则m的值是.10.已知2a m b+4a2b n=6a2b,则m+n为.11.多项式﹣﹣(m﹣2)x﹣7是关于x的二次三项式,则m=.12.观察下面的一列单项式:x,﹣2x2,3x3,﹣4x4,…根据你发现的规律,第100个单项式为;第n个单项式为.13.关于x,y的代数式axy﹣3x2+2xy+bx2+y中不含二次项,则(a+b)2020=.14.化简:3(m﹣n)﹣(m﹣n)﹣2(n﹣m)的结果是.15.若a﹣5b=3,则17﹣3a+15b=.16.已知等式a2﹣2a﹣3=0,则代数式11+6a﹣3a2的值为.17.按如图所示的程序进行计算,如果输入x的值是正整数,输出结果是150,则开始输入x的值可能是.三.解答题(共7小题)18.(1)化简2x2﹣3x﹣1+4x﹣3x2;(2)计算﹣14﹣8÷(﹣2)3+22×(﹣3)19.化简:(1)﹣5x﹣2y+7x+9y(2)5(3a2b﹣ab2)﹣3(ab2+5a2b)+220.已知A=x3﹣5x2,B=x2﹣11x+6,当x=﹣1时,求:﹣(A+3B)+2(A﹣B)的值.21.(1)计算:﹣12018﹣(1+0.5)×÷(﹣4)(2)先化简,再求值:5xy2﹣2x2y+[3xy2﹣2(2xy2﹣x2y)],其中x=﹣2,y=﹣1.22.化简求值:(1)(8x﹣7y)﹣3(4x﹣5y)其中:x=﹣2,y=﹣1.(2)已知多项式(﹣2x2+3)的2倍与A的差是2x2+2x﹣7,当x=﹣1时,求A的值.23.马虎同学在计算A﹣(ab﹣2bc+4ac﹣3)时,由于马虎,将“A﹣”错看成了“A+”,求得的结果为3ab﹣2ac+5bc.(1)请你帮助马虎同学求出这道题的正确结果;(2)当字母a和b满足什么关系时,正确的计算结果与字母c的取值无关.24.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+.(1)当a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值.(2)若代数式4A﹣(3A﹣2B)的值与a的取值无关,求b4A+b3B的值.人教新版七年级上册《第2章整式的加减》单元测试卷(2)参考答案与试题解析一.选择题(共5小题)1.下列式子中是单项式的个数为()①,②,③0,④,⑤,⑥2x2﹣1,⑦,⑧﹣1.96,⑨m﹣2,⑩.A.5个B.6个C.7个D.8个【考点】单项式.【分析】直接利用单项式定义分析得出答案.【解答】解:单项式有:①,③0,④,⑤,⑦,⑧﹣1.96,⑩,共7个.故选:C.2.单项式﹣的系数和次数是()A.系数是,次数是3B.系数是﹣;,次数是5C.系数是﹣,次数是3D.系数是5,次数是﹣【考点】单项式.【分析】直接利用单项式的次数与系数定义分析得出答案.【解答】解:单项式﹣的系数和次数是:﹣,5.故选:B.3.下列各式中,与x2y3能合并的单项式是()A.x3y2B.﹣x2y3C.3x3D.x2y2【考点】单项式.【分析】根据同类项的概念解答.【解答】解:﹣x2y3与x2y3是同类项,是与x2y3能合并的单项式,故选:B.4.给出下列判断:①单项式5×103x2的系数是5;②x﹣2xy+y是二次三项式;③多项式﹣3a2b+7a2b2﹣2ab+1的次数是4;④几个非0有理数相乘,当负因数有奇数个时,积为负.其中判断正确的个数有()A.1个B.2个C.3个D.4个【考点】多项式;有理数的乘法.【分析】根据有理数的乘法,多项式和单项式的概念求解.【解答】解:①单项式5×103x2的系数是5×103,故本项错误;②x﹣2xy+y是二次三项式,本项正确;③多项式﹣3a2b+7a2b2﹣2ab+1的次数是4,故本项正确;④几个非0有理数相乘,当负因数有奇数个时,积为负,故本项正确.正确的有3个.故选:C.5.小文在计算某多项式减去2a2+3a﹣5的差时,误认为是加上2a2+3a﹣5,求得答案是a2+a ﹣4(其他运算无误),那么正确的结果是()A.﹣a2﹣2a+1B.﹣3a2﹣5a+6C.a2+a﹣4D.﹣3a2+a﹣4【考点】多项式.【分析】先根据加减互逆运算关系得出这个多项式为(a2+a﹣4)﹣(2a2+3a﹣5),去括号、合并同类项可得此多项式,再根据题意列出算式(﹣a2﹣2a+1)﹣(2a2+3a﹣5),进一步计算可得.【解答】解:根据题意,这个多项式为(a2+a﹣4)﹣(2a2+3a﹣5)=a2+a﹣4﹣2a2﹣3a+5=﹣a2﹣2a+1,则正确的结果为(﹣a2﹣2a+1)﹣(2a2+3a﹣5)=﹣a2﹣2a+1﹣2a2﹣3a+5=﹣3a2﹣5a+6,故选:B.二.填空题(共12小题)6.单项式﹣的系数是﹣,次数是5.【考点】单项式.【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.据此解答即可.【解答】解:单项式﹣的系数是﹣,次数是5.故答案是:﹣,5.7.多项式3x2y﹣7x4y2﹣xy3+28是六次四项式,最高次项的系数是﹣7.【考点】多项式.【分析】根据多项式的定义即可得结论.【解答】解:多项式3x2y﹣7x4y2﹣xy3+28是六次四项式,最高次项的系数是﹣7.故答案为六、四、﹣78.若x a+2y4与﹣2x3y2b和仍为一个单项式,则(a﹣b)2021的值是﹣1.【考点】合并同类项;单项式.【分析】利用同类项定义可得a+2=3,2b=4,再解即可.【解答】解:由题意得:a+2=3,2b=4,解得:a=1,b=2,则(a﹣b)2021=(1﹣2)2021=﹣1,故答案为:﹣1.9.多项式是关于x的四次三项式,则m的值是﹣4.【考点】多项式;绝对值.【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m的值.【解答】解:∵多项式x|m|﹣(m﹣4)x+7是关于x的四次三项式,∴|m|=4,m﹣4≠0,∴m=﹣4.故答案为:﹣4.10.已知2a m b+4a2b n=6a2b,则m+n为3.【考点】合并同类项.【分析】由2a m b+4a2b n=6a2b可知2a m b与4a2b n是同类项,根据同类项是字母相同,相同字母的指数相等,可得m、n的值,再根据m、n的值,可得m+n的值.【解答】解:∵2a m b+4a2b n=6a2b,∴m=2,n=1,∴m+n=2+1=3.故答案为:3.11.多项式﹣﹣(m﹣2)x﹣7是关于x的二次三项式,则m=﹣2.【考点】多项式;绝对值.【分析】根据二次三项式的定义可得:|m|=2,且m﹣2≠0,再解即可.【解答】解:由题意得:|m|=2,且m﹣2≠0,解得:m=﹣2,故答案为:﹣2.12.观察下面的一列单项式:x,﹣2x2,3x3,﹣4x4,…根据你发现的规律,第100个单项式为﹣100x100;第n个单项式为(﹣1)n+1nx n.【考点】单项式.【分析】根据单项式系数与指数的变化,可判断单项式.【解答】解:第100个单项式为:(﹣1)100+1•100•x100=﹣100x100,第n个单项式为:(﹣1)n+1•n•x n,故答案为:﹣100x100,(﹣1)n+1•n•x n.13.关于x,y的代数式axy﹣3x2+2xy+bx2+y中不含二次项,则(a+b)2020=1.【考点】合并同类项;多项式.【分析】直接利用多项式中不含二次项,则二次项系数都是0,进而得出a,b的值,即可得出答案.【解答】解:∵关于x,y的代数式axy﹣3x2+2xy+bx2+y中不含二次项,∴a+2=0,b﹣3=0,解得:a=﹣2,b=3.∴(a+b)2020=12020=1.故答案为:1.14.化简:3(m﹣n)﹣(m﹣n)﹣2(n﹣m)的结果是4(m﹣n).【考点】合并同类项.【分析】先去括号,然后合并同类项即可.【解答】解:3(m﹣n)﹣(m﹣n)﹣2(n﹣m)=3(m﹣n)﹣(m﹣n)+2(m﹣n)=(3﹣1+2)(m﹣n)=4(m﹣n).故答案为:4(m﹣n).15.若a﹣5b=3,则17﹣3a+15b=8.【考点】代数式求值.【分析】把a﹣5b的值代入代数式进行计算即可得答案.【解答】解:∵a﹣5b=3,∴17﹣3a+15b=17﹣3(a﹣5b),=17﹣3×3,=17﹣9,=8.故答案为:8.16.已知等式a2﹣2a﹣3=0,则代数式11+6a﹣3a2的值为2.【考点】代数式求值.【分析】将a2﹣2a﹣3=0变形为a2﹣2a=3,11+6a﹣3a2=11﹣3(a2﹣2a),整体代入即可求出所求的结果.【解答】解:∵a2﹣2a﹣3=0,∴a2﹣2a=3,∴11+6a﹣3a2=11﹣3(a2﹣2a)=11﹣3×3=2.故答案为:2.17.按如图所示的程序进行计算,如果输入x的值是正整数,输出结果是150,则开始输入x的值可能是3或10或38.【考点】代数式求值;有理数的混合运算.【分析】当输入数字为x,输出数字为150时,4x﹣2=150,解得x=38;当输入数字为x,输出数字为38时,得到4x﹣2=38,解得x=10,当输入数字为x,输出数字为10时,4x﹣2=10,解得x=3,当输入数字为x,输出数字为3时,4x﹣2=3,解得x=不和题意.【解答】解:当4x﹣2=150时,解得;x=38;当4x﹣2=38时,解得;x=10;当4x﹣2=10时,解得;x=3;当4x﹣2=3时,解得;x=不合题意.所以开始输入x的值可能是3或10或38.故答案为:3或10或38.三.解答题(共7小题)18.(1)化简2x2﹣3x﹣1+4x﹣3x2;(2)计算﹣14﹣8÷(﹣2)3+22×(﹣3)【考点】合并同类项;有理数的混合运算.【分析】(1)根据合并同类项法则计算;(2)根据有理数的混合运算法则计算.【解答】解:(1)2x2﹣3x﹣1+4x﹣3x2=(2﹣3)x2+(﹣3+4)x﹣1=﹣x2+x﹣1;(2)﹣14﹣8÷(﹣2)3+22×(﹣3)=﹣1﹣8÷(﹣8)+4×(﹣3)=﹣12.19.化简:(1)﹣5x﹣2y+7x+9y(2)5(3a2b﹣ab2)﹣3(ab2+5a2b)+2【考点】整式的加减.【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果.【解答】解:(1)﹣5x﹣2y+7x+9y,=﹣5x+7x+9y﹣2y,=2x+7y,(2)5(3a2b﹣ab2)﹣3(ab2+5a2b)+2,=15a2b﹣5ab2﹣3ab2﹣15a2b+2,=﹣8ab2+2.20.已知A=x3﹣5x2,B=x2﹣11x+6,当x=﹣1时,求:﹣(A+3B)+2(A﹣B)的值.【考点】整式的加减—化简求值.【分析】解法一:先将所求式子化简,再把A与B代入,去括号合并得到最简结果,把x的值代入计算即可求出值.解法二:先计算A和B的值,再将所求式子化简后代入即可.【解答】解:解法一:∵A=x3﹣5x2,B=x2﹣11x+6,∴﹣(A+3B)+2(A﹣B),=﹣A﹣3B+2A﹣2B,=A﹣5B,=x3﹣5x2﹣5(x2﹣11x+6),=x3﹣5x2﹣5x2+55x﹣30,=x3﹣10x2+55x﹣30,当x=﹣1时,原式=(﹣1)3﹣10×(﹣1)2+55×(﹣1)﹣30=﹣96.解法二:当x=﹣1时,A=x3﹣5x2=﹣1﹣5=﹣6,B=x2﹣11x+6=1+11+6=18,∴﹣(A+3B)+2(A﹣B),=﹣A﹣3B+2A﹣2B,=A﹣5B,=﹣6﹣5×18,=﹣96.21.(1)计算:﹣12018﹣(1+0.5)×÷(﹣4)(2)先化简,再求值:5xy2﹣2x2y+[3xy2﹣2(2xy2﹣x2y)],其中x=﹣2,y=﹣1.【考点】整式的加减—化简求值;有理数的混合运算.【分析】(1)根据有理数的混合运算法则计算;(2)根据整式的加减混合运算法则化简,代入计算即可.【解答】解:(1)﹣12018﹣(1+0.5)×÷(﹣4)===;(2)5xy2﹣2x2y+[3xy2﹣2(2xy2﹣x2y)]=5xy2﹣2x2y+3xy2﹣2(2xy2﹣x2y)=5xy2﹣2x2y+3xy2﹣4xy2+2x2y=4xy2,当x=﹣2,y=﹣1时,原式=4×(﹣2)×(﹣1)2=﹣8.22.化简求值:(1)(8x﹣7y)﹣3(4x﹣5y)其中:x=﹣2,y=﹣1.(2)已知多项式(﹣2x2+3)的2倍与A的差是2x2+2x﹣7,当x=﹣1时,求A的值.【考点】整式的加减—化简求值.【分析】(1)先去括号,然后再进行同类项的合并,最后将x=﹣2,y=﹣1代入;(2)根据题意列式,再利用去括号法则与合并同类项法则化简,再把x的值代入A计算即可.【解答】解:(1)(8x﹣7y)﹣3(4x﹣5y),=8x﹣7y﹣12x+15y,=﹣4x+8y,当x=﹣2,y=﹣1时,原式=﹣4×(﹣2)+8×(﹣1)=0.(2)由题意得:2(﹣2x2+3)﹣A=2x2+2x﹣7,∴A=﹣4x2+6﹣2x2﹣2x+7=﹣6x2﹣2x+13,当x=﹣1时,A=﹣6×(﹣1)2﹣2×(﹣1)+13=9.23.马虎同学在计算A﹣(ab﹣2bc+4ac﹣3)时,由于马虎,将“A﹣”错看成了“A+”,求得的结果为3ab﹣2ac+5bc.(1)请你帮助马虎同学求出这道题的正确结果;(2)当字母a和b满足什么关系时,正确的计算结果与字母c的取值无关.【考点】整式的加减.【分析】(1)先根据题意列出整式相加减的式子进行计算即可.(2)将ab﹣10ac+9bc+6写成(9b﹣10a)c+ab+6,即可得到当b=a时,正确的计算结果与字母c的取值无关.【解答】解:(1)由题意得,(3ab﹣2ac+5bc)﹣2(ab﹣2bc+4ac﹣3)=3ab﹣2ac+5bc﹣2ab+4bc﹣8ac+6=ab﹣10ac+9bc+6,∴正确结果为ab﹣10ac+9bc+6;(2)ab﹣10ac+9bc+6=(9b﹣10a)c+ab+6,由题可得,9b﹣10a=0,∴b=a,∴当b=a时,正确的计算结果与字母c的取值无关.24.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+.(1)当a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值.(2)若代数式4A﹣(3A﹣2B)的值与a的取值无关,求b4A+b3B的值.【考点】整式的加减—化简求值.【分析】(1)先化简整式,再代入值即可求解;(2)代数式4A﹣(3A﹣2B)的值与a的取值无关可知a的系数为0,可求出b的值,进而求解.【解答】解:(1)4A﹣(3A﹣2B)=4A﹣3A+2B=A+2B因为A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+,所以A+2B=2a2+3ab﹣2a﹣1+2(﹣a2+ab+)=2a2+3ab﹣2a﹣1﹣2a2+ab+=4ab﹣2a+当a=﹣1,b=﹣2时,原式=8+2+=10;(2)因为4A﹣(3A﹣2B)=4ab﹣2a+=a(4b﹣2)+因为代数式的值与a无关,所以4b﹣2=0,解得b=∵b4A+b3B=b3(bA+B)=(A+B)=(A+2B)=(4ab﹣2a+)=.答:b4A+b3B的值为.。

七年级上《整式及其加减》单元试卷含答案解析

七年级上《整式及其加减》单元试卷含答案解析

七年级数学上册《整式及其加减》单元测验(解析版) 学校:___________姓名:___________班级:___________考号:___________一、选择题1.下列代数式的值,一定是正数的是( )A .2xB .21x -+C .1x -+D .2()2x -+2.下列代数式 a ,﹣2ab ,x+y ,x 2+y 2,﹣1, ab 2c 3中,单项式共有( )A .6个B .5 个C .4 个D .3个3.下面的计算正确的是 ( )A .6a -5a=1B .a +2a 2=2a 3C .-(a -b)= -a +bD .2(a +b) =2a +b4.下列说法正确的是( )A .x 2+1是二次单项式B .﹣m 2的次数是2,系数是1C .﹣23πab 的系数是﹣23D .数字0也是单项式5.下列各式中,不是同类项的是( )A .和B .﹣ab 和baC .和D .和6.(2015秋•龙岗区期末)若整式a 2b n +3a m b 化简的结果是单项式,则m+n 的值是() A .2 B .3 C .4 D .57.下列计算正确的是( )A 、2x +3y =5xyB 、42243a a a =+C 、022=-ba b aD 、15422-=-a a8.多项式3562+-a a 与1252-+a a 的差是: ( )A .432+-a aB .232+-a aC .272+-a aD .472+-a a二、填空题9.325x y -的系数是____________. 10.已知多项式ax 5+bx 3+cx+9,当x=-1时,多项式的值为17,则该多项式当x=1时的值是 .11.(2015秋•莘县期末)市场上的苹果每千克n 元,买10kg 以上九折优惠,小明买了20kg 应付 .12.单项式5)2(32y x -的系数是_____,次数是______. 13.已知x 2-xy=7,2xy+y 2=4,则代数式x 2+xy+y 2的值是 .14.已知有理数a 在数轴上的位置如图,则a+|a ﹣1|= .15.(2015秋•莒县期末)如果(|k|﹣3)x 3﹣(k ﹣3)x 2﹣2是关于x 的二次多项式,则k 的值是 .16.平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是 个.三、解答题17.先化简,再求值:2x 2-(3x 2-2y )+5(x 2-y ),其中x=-1,y=2.18.在一次水灾中,大约有2.5×107个人无家可归,假如一顶帐篷占地100米,可以放置40个床位(一人一床位),为了安置所有无家可归的人,需要多少顶帐篷?这些帐篷大约要占多少地方?若某广场面积为5000米。

第2章 整式的加减 人教版七年级数学上册单元测试卷(含解析)

第2章 整式的加减 人教版七年级数学上册单元测试卷(含解析)

人教版第二章整式的加减单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)小明比小华大2岁,比小强小4岁.如果小华是m岁,小强是( )A.m﹣2B.m+2C.m+4D.m+62.(3分)如果单项式2a2m﹣5b n+2与ab3n﹣2可以合并同类项,那么m和n的值分别为( )A.2,3B.3,2C.﹣3,2D.3,﹣23.(3分)为落实“双减”政策,某校利用课后服务开展形式多样的活动,七、八、九年级共有50人参加书法学习,其中七年级的人数比八年级人数的2倍少1人,设八年级的人数为x人,则九年级的人数为( )A.48﹣3x B.49﹣3x C.51﹣3x D.52﹣3x4.(3分)多项式(m﹣3)x|m﹣1|+mx﹣3是关于x的二次三项式,则m取值为( )A.3B.﹣1C.3或﹣1D.﹣3或15.(3分)下列说法错误的是( )A.π是单项式B.单项式﹣n的系数是﹣1C.单项式的次数是7D.是二次二项式6.(3分)用小棒按下面的规律拼摆八边形.萌萌、亮亮、乐乐、欢欢通过观察图形,找出了拼摆成的八边形的数量n和需要小棒的数量a之间的关系.下面说法正确的是( )A.萌萌:a=16+16n(n>3)B.亮亮:a=7n+1C.乐乐:a=8n﹣1D.欢欢:a=7n+n7.(3分)当a=1,b=﹣1时,代数式a+2b+2(a+2b)+1的值为( )A.3B.1C.0D.﹣28.(3分)如图,在一个直径是a+b的圆形纸板上挖去两个直径分别是a和b的小圆形纸板,则剩余纸板的面积是( )A.B.2πab C.D.π(a2﹣b2)9.(3分)探索规律:观察下面的一列单项式:x、﹣2x2、4x3、﹣8x4、16x5、…,根据其中的规律得出的第8个单项式是( )A.﹣64x8B.64x8C.128x8D.﹣128x810.(3分)在式子,﹣4x,abc,π,,0.81,,0中,单项式共有( )A.5个B.6个C.7个D.8个二.填空题(共6小题,满分18分,每小题3分)11.(3分)如果﹣4x3y n﹣4与3x3y是同类项,那么n= .12.(3分)一支铅笔的价钱是a元,一块橡皮的价钱是b元,买3支铅笔和7块橡皮应付 元.13.(3分)若a+2b﹣1=0,则3a+6b的值是 .14.(3分)如图,正方形中阴影部分的面积为 .15.(3分)已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|+|a+b+c|﹣|c﹣b|= .16.(3分)小明从东面上山西面下山,已知下山的路程是上山路程的三倍,上山的速度为a,下山的速度为b,则小明全程的平均速度为 .三.解答题(共9小题,满分72分)17.(6分)计算(1)x2﹣5y﹣4x2+y﹣1;(2)7a+3(a﹣3b)﹣2(b﹣3a).18.(6分)先化简,再求值:2(6y2﹣3y+2)+2(y﹣1)﹣(2+12y2),其中.19.(8分)已知x,y为有理数,现规定一种新运算“※”,满足x※y=2x﹣y.(1)求3※4的值;(2)求(2※2a)※(﹣3a)的值.20.(8分)每年的6月5日是“世界环境日”,中国的主题是“建设人与自然和谐共生的现代化“,希望小学组织六年级同学开展收集废弃的塑料瓶活动,男生一共收集了180个,女生收集的个数是男生的2.5倍,女生一共收集了多少个?21.(8分)公租房作为一种保障性住房,租金低、设施全受到很多家庭的欢迎.某市为解决市民的住房问题,专门设计了如图所示的一种户型,并为每户卧室铺了木地板,其余部分铺了瓷砖.(1)木地板和瓷砖各需要铺多少平方米?(2)若a=1.5,b=2,地砖的价格为100元/平方米,木地板的价格为200元/平方米,则每套公租房铺地面所需费用为多少元?22.(8分)某种T型零件尺寸如图所示(左右宽度相同),求:(1)用含x,y的代数式表示阴影部分的周长.(2)用含x,y的代数式表示阴影部分的面积.(3)x=2,y=2.5时,计算阴影部分的面积.23.(8分)佳佳做一道题“已知两个多项式A,B,计算A﹣B”.佳佳误将A﹣B看作A+B,求得结果是9x2﹣2x+7.若B=x2+3x﹣2,请解决下列问题:(1)求出A;(2)求A﹣B的正确答案.24.(10分)南阳万德隆超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠方法低于200元不予优惠低于500元但不低于200元9折优惠不低于500元其中500元部分给予9折优惠,超过500元部分给予8折优惠(1)你一次性购物680元,那么实际付款 元;(2)某顾客在该超市一次性购物m元,当m小于500但不小于200时,他实际付款 元,当m大于或等于500时,他实际付款 元;(用含m的代数式表示)(3)班主任为了筹备元旦晚会,如果两次购物合计960元,第一次购物x(200<x<400)元,用含x的代数式表示两次购物班主任实际付款多少元?25.(10分)定义如下:存在数a,b,使得等式+=成立,则称数a,b为一对“互助数”,记为(a,b).比如:(0,0)是一对“互助数”.(1)若(1,b)是一对“互助数”,则b的值为 ;(2)若(﹣2,x)是一对“互助数”,求代数式(﹣x2+3x﹣1)﹣(﹣x2+5x﹣15)的值;(3)若(m,n)是一对“互助数”,满足等式m﹣n﹣(6m+2n﹣2)=0,求m和n的值.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)小明比小华大2岁,比小强小4岁.如果小华是m岁,小强是( )A.m﹣2B.m+2C.m+4D.m+6【解答】解:根据题意知,小明的年龄为(m+2)岁,则小强的年龄为m+2+4=m+6(岁),故选:D.2.(3分)如果单项式2a2m﹣5b n+2与ab3n﹣2可以合并同类项,那么m和n的值分别为( )A.2,3B.3,2C.﹣3,2D.3,﹣2【解答】解:由题意得:2m﹣5=1,n+2=3n﹣2,∴m=3,n=2,故选:B.3.(3分)为落实“双减”政策,某校利用课后服务开展形式多样的活动,七、八、九年级共有50人参加书法学习,其中七年级的人数比八年级人数的2倍少1人,设八年级的人数为x人,则九年级的人数为( )A.48﹣3x B.49﹣3x C.51﹣3x D.52﹣3x【解答】解:由题意得:七年级参加书法学习的人数为:(2x﹣1)人,则九年级参加书法学习的人数为:50﹣(2x﹣1)﹣x=(51﹣3x)人,故选:C.4.(3分)多项式(m﹣3)x|m﹣1|+mx﹣3是关于x的二次三项式,则m取值为( )A.3B.﹣1C.3或﹣1D.﹣3或1【解答】解:∵多项式(m﹣3)x|m﹣1|+mx﹣3是关于x的二次三项式,∴|m﹣1|=2,∴m=3,或m=﹣1,∵m﹣3≠0,∴m=﹣1,故选:B.5.(3分)下列说法错误的是( )A.π是单项式B.单项式﹣n的系数是﹣1C.单项式的次数是7D.是二次二项式【解答】解:A、π是单项式,故正确,不合题意;B、单项式﹣n的系数是﹣1,故正确,不合题意;C、单项式的次数是7,故正确,不合题意;D、不是整式,故错误,符合题意;故选:D.6.(3分)用小棒按下面的规律拼摆八边形.萌萌、亮亮、乐乐、欢欢通过观察图形,找出了拼摆成的八边形的数量n和需要小棒的数量a之间的关系.下面说法正确的是( )A.萌萌:a=16+16n(n>3)B.亮亮:a=7n+1C.乐乐:a=8n﹣1D.欢欢:a=7n+n【解答】解:根据题意,拼摆成n个八边形需要小棒的数量a=8+7(n﹣1)=7n+1,故选:B.7.(3分)当a=1,b=﹣1时,代数式a+2b+2(a+2b)+1的值为( )A.3B.1C.0D.﹣2【解答】解:a+2b+2(a+2b)+1=a+2b+2a+4b+1=3a+6b+1,当a=1,b=﹣1时,原式=3×1+6×(﹣1)+1=3+(﹣6)+1=3+1﹣6=﹣2,故选:D.8.(3分)如图,在一个直径是a+b的圆形纸板上挖去两个直径分别是a和b的小圆形纸板,则剩余纸板的面积是( )A.B.2πab C.D.π(a2﹣b2)【解答】解:由题意可得:剩余纸板的面积为:π()2﹣π()2﹣π()2==ab.故选:C.9.(3分)探索规律:观察下面的一列单项式:x、﹣2x2、4x3、﹣8x4、16x5、…,根据其中的规律得出的第8个单项式是( )A.﹣64x8B.64x8C.128x8D.﹣128x8【解答】解:根据题意得:第8个单项式是﹣27x8=﹣128x8.故选:D.10.(3分)在式子,﹣4x,abc,π,,0.81,,0中,单项式共有( )A.5个B.6个C.7个D.8个【解答】解:式子,﹣4x,abc,π,0.81,0是单项式,共6个,故选:B.二.填空题(共6小题,满分18分,每小题3分)11.(3分)如果﹣4x3y n﹣4与3x3y是同类项,那么n= 5 .【解答】解:∵﹣4x3y n﹣4与3x3y是同类项,∴n﹣4=1,解得:n=5.故答案为:5.12.(3分)一支铅笔的价钱是a元,一块橡皮的价钱是b元,买3支铅笔和7块橡皮应付 (3a+7b) 元.【解答】解:一支铅笔的价钱是a元,一块橡皮的价钱是b元,买3支铅笔和7块橡皮应付(3a+7b)元.故答案为:(3a+7b).13.(3分)若a+2b﹣1=0,则3a+6b的值是 3 .【解答】解:∵a+2b﹣1=0,∴a+2b=1,∴原式=3(a+2b)=3×1=3.故答案为:3.14.(3分)如图,正方形中阴影部分的面积为 2ab .【解答】解:.故答案为:2ab.15.(3分)已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|+|a+b+c|﹣|c﹣b|= ﹣3b .【解答】解:由数轴上点的位置可得:c<b<0<a,且|a|<|b|,∴a﹣b>0,c﹣b<0,a+b+c<0,则|a﹣b|+|a+b+c|﹣|c﹣b|=a﹣b﹣a﹣b﹣c+c﹣b=﹣3b.故答案为:﹣3b16.(3分)小明从东面上山西面下山,已知下山的路程是上山路程的三倍,上山的速度为a,下山的速度为b,则小明全程的平均速度为 .【解答】解:设上山的路程是“1”,则下山的路程是“3”.∵上山的速度为a,下山的速度为b,∴上山的时间为,下山的时间,总时间为:+=,小明全程的平均速度为:(1+3)÷=,故答案为:.三.解答题(共9小题,满分72分)17.(6分)计算(1)x2﹣5y﹣4x2+y﹣1;(2)7a+3(a﹣3b)﹣2(b﹣3a).【解答】解:(1)原式=x2﹣4x2+y﹣5y﹣1=﹣3x2﹣4y﹣1;(2)原式=7a+3a﹣9b﹣2b+6a=16a﹣11b;18.(6分)先化简,再求值:2(6y2﹣3y+2)+2(y﹣1)﹣(2+12y2),其中.【解答】解:2(6y2﹣3y+2)+2(y﹣1)﹣(2+12y2)=12y2﹣6y+4+2y﹣2﹣2﹣12y2=﹣4y,∵,∴原式=﹣4×=﹣2.19.(8分)已知x,y为有理数,现规定一种新运算“※”,满足x※y=2x﹣y.(1)求3※4的值;(2)求(2※2a)※(﹣3a)的值.【解答】解:(1)3※4=2×3﹣4=6﹣4=2.(2)2※2a=2×2﹣2a=4﹣2a,(4﹣2a)※(﹣3a)=2×(4﹣2a)﹣(﹣3a)=8﹣4a+3a=8﹣a.20.(8分)每年的6月5日是“世界环境日”,中国的主题是“建设人与自然和谐共生的现代化“,希望小学组织六年级同学开展收集废弃的塑料瓶活动,男生一共收集了180个,女生收集的个数是男生的2.5倍,女生一共收集了多少个?【解答】解:180×2.5=450(个),答:女生一共收集了450个.21.(8分)公租房作为一种保障性住房,租金低、设施全受到很多家庭的欢迎.某市为解决市民的住房问题,专门设计了如图所示的一种户型,并为每户卧室铺了木地板,其余部分铺了瓷砖.(1)木地板和瓷砖各需要铺多少平方米?(2)若a=1.5,b=2,地砖的价格为100元/平方米,木地板的价格为200元/平方米,则每套公租房铺地面所需费用为多少元?【解答】解:(1)铺木地板的面积为:(5b﹣2b﹣b)×2a+(5a﹣2a)×2b=2b×2a+3a×2b=4ab+6ab=10ab(平方米);铺瓷砖的面积为:5a×5b﹣10ab=15ab(平方米).答:木地板需要铺10ab平方米,瓷砖需要铺15ab平方米.(2)当a=1.5,b=2时,10ab=10×1.5×2=30(平方米),15ab=15×1.5×2=45(平方米),∵地砖的价格为100元/平方米,木地板的价格为200元/平方米,∴每套公租房铺地面所需费用为:30×200+45×100=10500(元).答:每套公租房铺地面所需费用为10500元.22.(8分)某种T型零件尺寸如图所示(左右宽度相同),求:(1)用含x,y的代数式表示阴影部分的周长.(2)用含x,y的代数式表示阴影部分的面积.(3)x=2,y=2.5时,计算阴影部分的面积.【解答】解:(1)根据题意得:2(y+3y+2.5x)=5x+8y;(2)根据题意得:y•2.5x+3y•0.5x=4xy;(3)当x=2,y=2.5时,S=4×2×2.5=20.23.(8分)佳佳做一道题“已知两个多项式A,B,计算A﹣B”.佳佳误将A﹣B看作A+B,求得结果是9x2﹣2x+7.若B=x2+3x﹣2,请解决下列问题:(1)求出A;(2)求A﹣B的正确答案.【解答】解:(1)∵A+B=9x2﹣2x+7,B=x2+3x﹣2∴A=9x2﹣2x+7﹣(x2+3x﹣2)=9x2﹣2x+7﹣x2﹣3x+2=8x2﹣5x+9;(2)A﹣B=8x2﹣5x+9﹣(x2+3x﹣2)=8x2﹣5x+9﹣x2﹣3x+2=7x2﹣8x+11.24.(10分)南阳万德隆超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠方法低于200元不予优惠低于500元但不低于200元9折优惠不低于500元其中500元部分给予9折优惠,超过500元部分给予8折优惠(1)你一次性购物680元,那么实际付款 594 元;(2)某顾客在该超市一次性购物m元,当m小于500但不小于200时,他实际付款 0.9x 元,当m大于或等于500时,他实际付款 (0.8x+50) 元;(用含m的代数式表示)(3)班主任为了筹备元旦晚会,如果两次购物合计960元,第一次购物x(200<x<400)元,用含x的代数式表示两次购物班主任实际付款多少元?【解答】解:(1)∵680>500,∴其中500元部分给予9折优惠,超过500元部分给予8折优惠.∴王老师一次性购物680元,他实际付款:500×90%+(680﹣500)×80%=450+144=594(元).故答案为:594.(2)当m小于500但不小于200时,他实际付款(0.9m元);当m大于或等于500时,他实际付款:500×90%+80%(m﹣500)=(0.8m+50)元.故答案为:0.9m;(0.8m+50);(3)∵第一次购物x元,∴第二次购物(960﹣x)元.∵200<x<400,∴560≤960﹣x≤760.∴两次购物王老师实际付款:90%x+500×90%+(960﹣x﹣500)×80%=0.9x+450+368﹣0.8x=(0.1x+818)元.25.(10分)定义如下:存在数a,b,使得等式+=成立,则称数a,b为一对“互助数”,记为(a,b).比如:(0,0)是一对“互助数”.(1)若(1,b)是一对“互助数”,则b的值为 ﹣4 ;(2)若(﹣2,x)是一对“互助数”,求代数式(﹣x2+3x﹣1)﹣(﹣x2+5x﹣15)的值;(3)若(m,n)是一对“互助数”,满足等式m﹣n﹣(6m+2n﹣2)=0,求m和n的值.【解答】解:(1)∵(1,b)是一对“互助数”,∴+=,解得:b=﹣4,故答案为:﹣4;(2)∵(﹣2,x)是一对“互助数”,∴﹣1+=,解得:x=8,(﹣x2+3x﹣1)﹣(﹣x2+5x﹣15)==,当x=8时,原式=+16+2=﹣14;(3)∵(m,n)是一对“互助数”,∴,化简得:n=﹣4m①,由m﹣n﹣(6m+2n﹣2)=0化简得,②,把①代入②中得,,解得:m=,则n==2,∴m=,n=2.。

【教师卷】初中七年级数学上册第二章《整式的加减》基础练习(含答案解析)

【教师卷】初中七年级数学上册第二章《整式的加减》基础练习(含答案解析)

1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8D解析:D【分析】根据单项式的定义可得8m x y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±. 故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.下列代数式的书写,正确的是( )A .5nB .n5C .1500÷tD .114x 2y A 解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A 、5n ,书写正确,符合题意;B 、n5,书写错误,不合题意;C 、1500÷t ,应为1500t ,故书写错误,不合题意; D 、114x 2y=54x 2y ,故书写错误,不合题意; 故选:A .【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.3.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C解析:C由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案.【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意;B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意;C 选项、333541x x x x -++-+-=3724x x -++,符合题意;D 选项、337322724x x x x x -+---=-+-,不符合题意.故选:C .【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题.4.下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b --,该选项错误. 故选:C .【点睛】此题主要考查列代数式,注意掌握代数式的意义.5.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( )A .2x 2﹣5x ﹣1B .﹣2x 2+5x+1C .8x 2﹣5x+1D .8x 2+13x ﹣1A解析:A【分析】根据由题意可得被减式为5x 2+4x-1,减式为3x 2+9x ,求出差值即是答案.【详解】由题意得:5x 2+4x−1−(3x 2+9x),=5x 2+4x−1−3x 2−9x ,故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算. 6.下列各代数式中,不是单项式的是()A.2m-B.23xy-C.0 D.2tD解析:D【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.【详解】A选项,2m-是单项式,不合题意;B选项,23xy-是单项式,不合题意;C选项,0是单项式,不合题意;D选项,2t不是单项式,符合题意.故选D.【点睛】本题考查单项式的定义,较为简单,要准确掌握定义.7.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n个“金鱼”需用火柴棒的根数为()A.2+6n B.8+6n C.4+4n D.8n A解析:A【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答.【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8;第二个“金鱼”需用火柴棒的根数为6×2+2=14;第三个“金鱼”需用火柴棒的根数为6×3+2=20;……;第n个“金鱼”需用火柴棒的根数为6n+2.故选:A.【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键.8.下面去括号正确的是()A .2()2y x y y x y +--=+-B .2(35)610a a a a --=-+C .()y x y y x y ---=+-D .222()2x x y x x y +-+=-+ B解析:B【分析】 根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. 2()2y x y y x y +--=--,故错误;B. 2(35)610a a a a --=-+,故正确;C. ()y x y y x y ---=++,故错误;D. 222()22x x y x x y +-+=-+,故错误;故选:B【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘;括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“一”,去括号后,括号里的各项都改变符号.9.下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x + A 解析:A【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.【详解】解:A. 1x +是整式,故正确; B. 11x +是分式,故错误; C. 1÷x 是分式,故错误; D.1x x+是分式,故错误. 故选A.【点睛】 本题主要考查了整式,关键是掌握整式的概念.10.下列各式中,去括号正确的是( )A .2(1)21x y x y +-=+-B .2(1)22x y x y --=++C .2(1)22x y x y --=-+D .2(1)22x y x y --=-- C解析:C【分析】各式去括号得到结果,即可作出判断.【详解】解:2(1)22x y x y +-=+-,故A 错误;2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C .【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.11.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差B .2倍的x 与1的差除以3的商C .x 与1的差的2倍除以3的商D .x 与1的差除以3的2倍B解析:B【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断.【详解】 代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B .【点睛】 本题考查了代数式,正确理解代数式表示的意义是关键.12.在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个B .8个C .4个D .5个C 解析:C【分析】根据单项式的定义逐一判断即可.【详解】3a中,分母含未知数,是分式,不是单项式, x+1是多项式,不是单项式,-2是单项式,3b -是单项式, 0.72xy 是单项式,2π是单项式, 314x -=3144x -,是多项式,∴单项式有-2、3b -、0.72xy 、2π,共4个, 故选C.【点睛】 本题考查单项式的定义,熟练掌握定义是解题关键.13.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B 解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.14.小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a ﹣2b )人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a ﹣6b )人,则中途上车的人数为( )A .16a ﹣8bB .7a ﹣5bC .4a ﹣4bD .7a ﹣7b B 解析:B【分析】根据题意表示出途中下车的人数,再根据车上总人数即可求得中途上车的人数.【详解】由题意可得:(10a ﹣6b )﹣[(6a ﹣2b )﹣(3a ﹣b )]=10a ﹣6b ﹣6a +2b +3a ﹣b=7a ﹣5b .故选B .【点睛】本题考查了整式加减的应用,根据题意正确列出算式是解决问题的关键.15.下列说法错误的是( )A .23-2x y 的系数是32- B .数字0也是单项式 C .-x π是二次单项式D .23xy π的系数是23πC 解析:C【分析】根据单项式的有关定义逐个进行判断即可.【详解】A. 23-2x y 的系数是32-,故不符合题意; B. 数字0也是单项式 故不符合题意;C. -x π是一次单项式 ,故原选项错误D. 23xy π的系数是23π,故不符合题意. 故选C .【点睛】本题考查对单项式有关定义的应用,能熟记单项式的有关定义是解此题关键. 1.与22m m +-的和是22m m -的多项式为__________.【分析】直接利用整式的加减运算法则计算得出答案【详解】设多项式A 与多项式的和等于∴A=-()故答案为:【点睛】本题主要考查了整式的加减正确去括号和合并同类项是解题关键 解析:32m -+【分析】直接利用整式的加减运算法则计算得出答案.【详解】设多项式A 与多项式22m m +-的和等于22m m -,∴A=22m m --(22m m +-)2222m m m m =---+32m =-+.故答案为:32m -+.【点睛】本题主要考查了整式的加减,正确去括号和合并同类项是解题关键.2.a -b ,b -c ,c -a 三个多项式的和是____________0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0故答案为0解析:0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0,故答案为0.3.m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________.0【解析】由题意m+n=0所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0【解析】由题意m+n=0,所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.4.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.08a 【解析】试题分析:根据题意得:a•(1+20)×90=108a ;故答案为108a 考点:列代数式解析:08a【解析】试题分析:根据题意得:a•(1+20%)×90%=1.08a ;故答案为1.08a .考点:列代数式.5.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.6.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________.【分析】直接利用二次三项式的次数与项数的定义得出m 的值【详解】∵多项式是关于x 的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值.【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠, ∴2m =-.故答案为:2-.【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键. 7.若212m m a b -是一个六次单项式,则m 的值是______.2【分析】根据一个单项式中所有字母的指数的和叫做单项式的次数可得2m+m=6再解即可【详解】由题意得解得故答案为:2【点睛】此题主要考查了单项式的次数关键是掌握单项式的相关定义解析:2【分析】根据一个单项式中所有字母的指数的和叫做单项式的次数可得2m+m=6,再解即可.【详解】由题意,得26m m +=,解得2m =.故答案为:2【点睛】此题主要考查了单项式的次数,关键是掌握单项式的相关定义.8.在如图所示的运算流程中,若输出的数3y =,则输入的数x =________________.或【分析】由运算流程可以得出有两种情况当输入的x 为偶数时就有y=x 当输入的x 为奇数就有y=(x+1)把y=3分别代入解析式就可以求出x 的值而得出结论【详解】解:由题意得当输入的数x 是偶数时则y=x 当解析:5或6【分析】由运算流程可以得出有两种情况,当输入的x 为偶数时就有y=12x ,当输入的x 为奇数就有y=12(x+1),把y=3分别代入解析式就可以求出x 的值而得出结论. 【详解】解:由题意,得当输入的数x 是偶数时,则y=12x ,当输入的x 为奇数时,则y=12(x+1). 当y=3时,∴3=12x 或3=12(x+1). ∴x=6或5故答案为:5或6【点睛】本题考查了有理数的混合运算,解答此题的关键是,根据流程图,列出方程,解方程即可得出答案.9.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键.10.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后,又降价25%,现售价为n 元,那么该电脑的原售价为______.【分析】根据题意列出代数式解答即可【详解】解:该电脑的原售价故填:【点睛】此题考查了列代数式关键是读懂题意找出题目中的数量关系列出代数式 解析:43n m + 【分析】根据题意列出代数式解答即可.【详解】 解:该电脑的原售价4125%3n m n m +=+-, 故填:43n m +. 【点睛】 此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式. 11.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.1.定义:若2m n +=,则称m 与n 是关于1的平衡数.(1)3与______是关于1的平衡数,5x -与______(用含x 的整式表示)是关于1的平衡数;(2)若()22234a x x x =-++,()22342b x x x x ⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1的平衡数,并说明理由.解析:(1)1-,3x -;(2)不是,理由见解析【分析】(1)由平衡数的定义求解即可达到答案;(2)计算a+b 是否等于1即可;【详解】解:(1)1-,3x -;(2)a 与b 不是关于1的平衡数.理由如下:因为()22234a x x x =-++,()22342b x x x x ⎡⎤=--+-⎣⎦,所以()()2222342342a b x x x x x x x ⎡⎤+=-+++--+-⎣⎦, 22223342342x x x x x x x =--++-+++,62=≠,所以a 与b 不是关于1的平衡数.【点睛】本题主要考查了整式的加减,准确分析计算是解题的关键.2.先化简,再求值:-2x 2-2[3y 2-2(x 2-y 2)+6],其中x =-1,y =-2.解析:2221012x y --,-50.【分析】根据整式的加减及合并同类项先对原式进行化简,得到2221012x y --,再将1,2x y =-=-代入即可求解,需要注意本题中两次遇到去括号,注意符号的改变.【详解】原式=2222223226x y x y ⎡⎤---++⎣⎦=2222264412x y x y --+--=2222246412x x y y -+---=2221012x y --,当1,2x y =-=-时,原式=222(1)10(2)1250⨯--⨯--=-.【点睛】本题主要考查了去括号,整式的加减,合并同类项,乘法的分配律等相关内容,熟练掌握各项计算法则是解决本题的关键,注意去括号中符号的改变原则.3.列出下列代数式:(1)a 、b 两数差的平方;(2)a 、b 两数平方的差;(3)a 、b 两数的和与a 、b 两数的差的积;(4)a 的相反数与b 的平方的和.解析:(1)2()a b -;(2)22a b -;(3)()()a b a b +-;(4)2a b -+【分析】(1)根据题意先列出a ,b 的差,再表示差的平方,即可得出答案;(2)根据题意先表示出a ,b 平方,再列出差,即可得出答案 ;(3)根据题意先表示出a 与b 两数的和以及这两数的差,再列出它们的积,即可得出答案;(4)利用相反数以及平方的定义得出答案.【详解】(1)根据题意可得:2()a b -;(2)根据题意可得:22a b -;(3)根据题意可得:()()a b a b +-;(4)根据题意可得:2a b -+.【点睛】本题考查了列代数式,关键是能够正确运用数学语言,即代数式来表示题意. 4.化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册数学整式的加减单元重点练习试卷附答案一、单选题(共17题;共34分)1.下列结论中,正确的是()A. 单项式的系数是3,次数是2.B. 单项式m的次数是1,没有系数.C. 单项式﹣xy2z的系数是﹣1,次数是4.D. 多项式5x2-xy+3是三次三项式.【答案】C【解析】【解答】A选项中单项式的系数为37,次数是3,所以错误;B选项中单项式的系数与次数都是1,所以错误;C选项中单项式的系数为-1,次数是4,所以正确;D选项中为多项式,最高次数为多项式的次数,即是二次三项式,所以错误;故答案为:C。

【分析】本题主要考查单项式的系数与次数,单项式的系数是指单项式前的数字因数,单项式的次数是单项式中所有字母指数的和。

2.单项式﹣25πx2y的系数和次数分别是( )A. ﹣π,3B. ,4C. π,4D. ﹣,4【答案】A【解析】【解答】单项式-25πx2y的系数是-25π,次数是3.故答案为:A.【分析】单项式-25πx2y中的数字因数-25π是单项式的系数,所有字母(x与y)的指数的和是单项式的次数。

3.多项式8x2-3x+5与多项式3x3+2mx2-5x+7相加后,不含二次项,则常数m的值是()A. 2B. -4C. -2D. -8【答案】B【解析】【解答】根据题意可得:8x2-3x+5+(3x3+2mx2-5x+7)=8x2-3x+5+3x3+2mx2-5x+7=3x3+(8+2m)x2-8x+12,又因为两个多项式相加后不含二次项,所以8+2m=0,即m=-4.故答案选:B【分析】本题考查了合并同类项与多项式中不含某次项即某次项的系数为0.4.把多项式按的降幂排列是( )A. B.C.D.【答案】 D【解析】【解答】为了书写的美观与今后计算的方便将多项式各项的位置按某个字母的指数从大到小的排列就叫做按该字母的降幂排列.【分析】多项式重新排列时,每一项一定要连同它的符号一起移动.5.已知代数式x 2+ax -2y +7-(bx 2-2x +9y -1)的值与x 的取值无关,则a +b 的值为( ) A. -1 B. 1 C. -2 D. 2 【答案】A【解析】【解答】解:原式=x 2+ax -2y +7-bx 2+2x-9y+1, =(1-b )x 2+(a+2)x -11y +8, ∵此代数式值与x 的取值无关, ∴{1−b =0a +2=0 , 解得{a =−2b =1. ∴a+b=-2+1=-1. 故答案为:A.【分析】根据去括号法则和合并同类项法则先化简原代数式,再根据此代数式值与x 的取值无关求得a=-2,b=1,将a 、b 值代入a+b 计算即可.6.一个多项式与x 2-2x+1的和是3x-2,则这个多项式为( )A. x 2-5x+3B. -x 2+x-1C. -x 2+5x-3D. x 2-5x-13 【答案】 C【解析】【解答】由题意得:这个多项式=3x-2-(x 2-2x+1), =3x-2-x 2+2x-1, =-x 2+5x-3. 选C .【分析】由题意可得被减式为3x-2,减式为x 2-2x+1,根据差=被减式-减式可得出这个多项式 7.下列关于单项式 −4xy 25的说法中,正确的是( )A. 系数是 −45 ,次数是2 B. 系数是 45 ,次数是2 C. 系数是-4,次数是3 D. 系数 −45 ,次数是3 【答案】 D【解析】【解答】解:由单项式的相关知识可知单项式 −4xy 25 的系数是 −45 ,次数为1+2=3,故选D.8.把多项式x 3-xy 2+x 2y+x 4-3按x 的降幂排列是( )A. x 4+x 3+x 2y-3-xy 2B. -xy 2+x 2y+x 4+x 3-3C. -3-xy 2+x 2y+x 3+x 4D. x 4+x 3+x 2y-xy 2-3 【答案】 D【解析】【解答】为了书写的美观与今后计算的方便,将多项式各项的位置按某个字母的指数从大到小的顺序排列就叫做按该字母的降幂排列.故答案选:D【分析】多项式重新排列时,每一项一定要连同它的符号一起移动. 9.在式子a 2+2, 1x ,ab 2 ,xy π−1 ,﹣8x ,0中,整式有( )A. 3个B. 4个C. 5个D. 6个 【答案】 C【解析】【解答】a 2+2,xyπ−1是多项式,也是整式;ab2,-8x ,0是单项式,也是整式,而代数式1x 分母中含有字母,不是整式;所以一共有5个整式。

故答案为:C 。

【分析】本题考查整式的概念,多项式与单项式都是整式,而判断一个代数式是否为整式关键看分母中是否含有字母。

10.下列说法正确的是( )A. 单项式 −34xy 的系数是-3 B. 单项式 2πa 3 的次数是4 C. 多项式 x y 22−2x 2+3 是四次三项式 D. 多项式 x −22x +6 的项分别是 x2、2x 、3 【答案】 C【解析】【解答】A.∵单项式-34xy 的系数为-34;A 不符合题意; B.∵单项式2πa 3次数是3,B 不符合题意;C.∵多项式 x 2y 2−2x 2+3 是四次三项式,C 符合题意;D.∵多项式 x 2−2x+6 的项分别是 x 2 、- 2x 、3,D 不符合题意; 故答案为:C.【分析】单项式定义:表示数与字母乘积的式子叫做单项式;单项式中的数字因数叫做这个单项式的系数;一个单项式中,所有字母的指数的和叫做这个单项式的次数。

多项式定义:若干个单项式的和组成的式子叫做多项式;多项式中每个单项式叫做多项式的项;这些单项式中的最高次数;就是这个多项式的次数。

由此即可得出答案. 11.给出下列式子:0,3a ,π,x−y 2 ,1,3a 2+1,- xy 11 , 1x +y.其中单项式的个数是( )A. 5个B. 1个C. 2个D. 3个 【答案】 A【解析】【解答】单项式有:0,3a ,π,1,- xy11 ,共5个. 故答案为:A.【分析】单项式包括:①数与字母乘积的代数式②单独一个数③单独一个字母;据此作出判断即可.12.在代数式a+b,37x2,5a,−m,0,a+b3a−b,3x−y2中,单项式的个数是().A. 6B. 5C. 4D. 3【答案】 D【解析】【解答】依题可得:单项式有:37x2,−m,,0,故答案为:D.【分析】单项式定义:表示数或字母的积的式子叫做单项式.由此即可得出答案.13.某商店在甲批发市场以每包m元的价格进了20包茶叶,又在乙批发市场以每包n元(m>n)的价格进了同样的40包茶叶,如果商家以每包m+n2元的价格卖出这种茶叶,卖完后,这家商店().A. 盈利了B. 亏损了C. 不赢不亏D. 盈亏不能确定【答案】A【解析】【解答】解:茶叶的总进价为:(20m+40n);茶叶的总售价为:m+n2×(20+40)=30(n+m)=(30n+30m)元,(30n+30m)-(20m+40n)=30n+30m-20m-40n=10m-10n=10(m-n),∵m>n,∴10(m-n)>0,∴商店盈利了。

故答案为:A。

【分析】首先算出商店的总进价与总售价,然后利用作差法求出纵售价与总进价的差,再判断其差是否大于0即可得出结论。

14.若代数式2x2-3x的值为5,则代数式-4x2+6x+9的值是( ).A. -1B. 14C. 5D. 4【答案】A【解析】【解答】解:∵2x2-3x=5,∴-4x2+6x+9=−2(x2−3x)+9=−2×5+9=−1.故答案为:A.【分析】将代数式-4x2+6x+9进行变形可得−2(x2−3x)+9,将代数式2x2-3x的值整体代入即可.15.对于式子:x+4y3,12,3x2+5x﹣2,abc,m,下列说法正确的是()A. 有4个单项式,1个多项式B. 有3个单项式,1个多项式C. 有3个单项式,2个多项式D. 不全是整式【答案】C【解析】【解答】解:整式x+4y3,12,3x2+5x﹣2,abc,m中,有3个单项式:12,abc,m.2个多项式为:x+4y3,3x2+5x﹣2.故答案为:C.【分析】单项式:都是数与字母的积;单个的数与字母也是单项式。

多项式:几个单项式的和。

单项式和多项式统称为整式。

16.在代数式x2+5,﹣1,x2﹣3x+2,π,x2+1x ,x+13中,整式有()A. 3个B. 4个C. 5个D. 6个【答案】C【解析】【解答】解:x 2+5,﹣1,x 2﹣3x+2,π, x+13是整式,故答案为:C【分析】根据单项式和多项式统称为整式,判断即可.17.在求 1+6+62+63+64+65+66+67+68+69 的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设: S =1+6+62+63+64+65+66+67+68+69 ……① 然后在①式的两边都乘以6,得: 6S =6+62+63+64+65+66+67+68+69+610 ……② ②-①得 6S −S =610−1 ,即 5S =610−1 ,所以 S =610−15.得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出 1+a +a 2+a 3+a 4+...+a 2018 的值?你的答案是( ) A.a 2018−1a−1B.a 2019−1a−1C.a 2018−1aD. a 2019−1【答案】 B【解析】【解答】∵M=1+a+a 2+a 3+a 4+…+a 2018①, ∴aM=a+a 2+a 3+a 4+…+a 2014+a 2019②, ②-①,可得aM-M=a 2019-1, 即(a-1)M=a 2019-1, ∴M=a 2019−1a−1.故答案为:B.【分析】设M=1+a+a 2+a 3+a 4+…+a 2018①,将等式两边分别诚意a,可得aM=a+a 2+a 3+a 4+…+a 2014+a 2019②,利用等式性质用②-①即可求出M 的值.二、填空题(共6题;共7分)18.若单项式 3a 3 b n 与 -5a m+1 b 4所得的和仍是单项式,则 m - n 的值为________. 【答案】 -2【解析】【解答】根据题意得m+1=3,n=4, 解得m=2,n=4. 则m-n=2-4=-2. 故答案为-2.【分析】因为两个单项式的和仍是单项式,所以根据同类项的定义得到m+1=3,n=4,再解方程分别求出m 与n ,然后计算它们的差。

19.关于x 的多项式(m-1)x 3-2x n +3x 的次数是2,那么m=________ ,n=________ . 【答案】1;2【解析】【解答】因为多项式(m-1)x 3-2x n +3x 的次数是2;所以三次项不存在即m-1=0,-2x n 这一项的次数为2从而m=1,n=2.【分析】多项式的次数是次数最高项的次数,所以该多项式的各项次数不大于2,对于次数大于2的项应该令其系数为0;而剩余的两项一个次数为n ,一个次数为1,所以必须有n=2. 20.已知一个多项式与3x 2+9x+2的和等于3x 2+4x-3,则此多项式是________。

相关文档
最新文档