现代信号处理

合集下载

专业学位硕士研究生“现代信号处理”课程教学改革探讨

专业学位硕士研究生“现代信号处理”课程教学改革探讨

专业学位硕士研究生“现代信号处理”课程教学改革探讨一、引言信号处理是现代通信、电子、医学、生物工程等领域的重要基础学科,其应用广泛,对于提高信息处理的效率、准确性以及对信息处理质量的保证具有重要意义。

而专业学位硕士研究生“现代信号处理”课程作为培养学生掌握信号处理理论和方法,具备从事信号处理工程技术研究与开发的能力的重要课程之一,其教学改革的探讨也因此显得尤为重要。

二、课程教学改革的背景和意义传统的“现代信号处理”课程教学虽然在一定程度上能够满足学生对于基础知识的学习需求,但随着信息化技术的飞速发展和人才培养的新需求,传统的教学模式和内容已经不能很好地适应现代社会的发展。

通过对“现代信号处理”课程教学改革的探讨,可以更好地引导学生掌握新的知识和技能,更好地适应未来的社会需求。

教学改革的最终目的是为了帮助学生更好地学习和掌握知识,增强学生的创新能力和实际应用能力,提高学生的综合素质,使其能够更好地适应未来的社会发展。

通过对“现代信号处理”课程教学的改革探讨,有利于培养学生的实际动手能力和创新意识,使其能够更好地应对未来的职业挑战。

三、改革方向和内容1. 教学内容的更新和拓展随着信息化技术的迅速发展,信号处理方面的新理论、新技术和新方法层出不穷,传统的教学内容已经不能满足学生对于知识的学习需求。

需要对教学内容进行更新和拓展,引入和融入一些新的理论和方法,让学生能够更好地了解和掌握现代信号处理的发展动态和重要方向。

2. 教学方法的改进和创新传统的“现代信号处理”课程教学主要以理论知识的讲解和实验操作为主,但随着信息化技术的不断发展,新的教学方法和手段已经得到了广泛的应用,通过利用现代的教学技术和手段,可以更好地刺激学生的学习兴趣,提高教学效果。

需要对教学方法进行改进和创新,引入一些现代的教学手段,如多媒体教学、虚拟实验、互动式教学等,来更好地激发学生的学习热情,提高学习效果。

3. 实践环节的增加和加强“现代信号处理”课程的教学内容较为抽象和复杂,学生很难通过简单的理论讲解就能够真正地理解和掌握知识,因此需要通过加强实践环节的设计和安排,让学生能够通过实际操作和练习来加深理解和掌握知识。

现代信号处理方法1_2

现代信号处理方法1_2
但应当指出,并不是所有的时-频分布都 满足表中的所有性质,实际中适用的时-频 分布并非一定要满足所有的性质,应该根据 具体情况进行合理取舍。
1.3.4 核函数的基本性质要求
由(1.3.5)式
( , v)




P(t , f )e j 2 ( vt f ) dtdf Az ( , v) P (t , f )e j 2 ( vt f ) dtdf
则(1.3.1)式化为
1 * 1 j 2f P(t , f ) z (t ) z (t )e d 2 2

(1.3.2)
上式就是著名的Wigner-Ville分布 .

上式是一个双线性变换(双时间信号)。关于 时间t作Fourier反变换
k z (t , ) z (t ) z (t ) 2 2
j 2 ( vt f )
如果时-频分布 p (t , 核函数的性质要求.
P (t , f )e z (u 2 ) z (u 2 )e
*

dtdf
(1.3.5)
j 2vu
du
f )有特定性质要求, 由上式可决定对
互时-频分布定义
两个连续信号 x(t ),y(t )的互时-频分布定义为:
P(t , ) 0
在上面的特性中,边缘特性和非负特性保 证了时-频分布准确反映信号的谱能量、瞬 时功率和总能量。边缘特性可以保证信号的 总体量(平均时间、平均频率、时宽和带宽 等)正确给定。非负性则可以进一步保证分 布的条件期望是切合实际的和物理解释。非 负性和边缘特性一起可以保证时-频分布的 强有限支撑。
2 2 * 1 2 z1 , z2 * 2 1 z2 , z1

现代信号处理

现代信号处理

现代信号处理
现代信号处理是对信号进行数字化处理的一种技术,它使用数字信
号处理算法来分析、修复、增强或压缩信号。

现代信号处理技术广
泛应用于通信、音频处理、图像处理、生物医学工程、雷达和声纳
等领域。

现代信号处理的基本步骤包括信号采集(模拟信号转换为数字信号)、滤波、采样、量化和编码。

滤波可以用于去除信号中的噪声
或不需要的成分,采样和量化将连续的信号转换为离散的数据点,
编码则将离散的数据点转换为数字形式,方便存储和传输。

现代信号处理算法包括傅里叶变换、小波变换、自适应滤波、功率
谱估计以及各种滤波器设计方法等。

傅里叶变换可以将信号从时域
转换为频域,从而可以分析信号的频谱特性;小波变换可以将信号
分解成不同的频率分量,实现信号的多分辨率分析;自适应滤波可
以根据信号的特性自动调整滤波器的参数,以适应不同的环境条件。

1
现代信号处理技术在通信领域广泛应用,例如调制解调、信道编码、多址接入等;在音频处理中,可以实现音频降噪、语音识别和语音
合成;在图像处理中,可以实现图像去噪、边缘检测和数字图像压缩;在生物医学工程中,可以实现生物信号的特征提取、滤波和分析;在雷达和声纳中,可以实现目标检测、目标跟踪和图像重建。

总之,现代信号处理技术为信号分析和处理提供了一种高效、准确
和灵活的方法,为我们获取有用的信息、改善信号质量和实现更复
杂的信号处理任务提供了重要的工具。

2。

现代信号处理1

现代信号处理1

def
P (f ) xy P ( f )P (f ) xx yy
若 对 某 一 滞 后 , 有 (0 ) 1 , 则 称 x ( t ) 和 y ( t ) 为 相 干 信 号 , 并 且 0 x y
j c 此 时 有 y ( t ) C e x ( t ) , 即 y ( t ) 是 x ( t ) 的 拷 贝 信 号 0
特征:参数化信号处理(或称为基于模型的 信号处理),如参数化的功率估计。 优点:性能更好。 缺点:对于偏离模型的信号,效果不好。
§1.2 信号分类
1、确定性信号
如果序列{s(t)}在每个时刻的取值不是随机的, 而是服从某种固定函数的关系,则称为为~。 例如:阶跃信号
1 U(t) 0
t 0 t 0
均值为零,
2 ,则 { x ( t )} 是一白噪声序列。
x [ x ( 1 ), , x ( t )] T 量中的每个元素,有 E { x ( i )} 0
则由已知条件,对于向
0 2 E { x ( i ) x ( i )} R xx ( ) 0 0 由于 { x ( t )} 的均值为零,故其协方 差函数与相
关函数相等 C
xx
( ) R xx ( ) 2 ( )
0 , 1, 2
2
因此,功率谱xx
( ) e j 2 f d
练习:
令 c (n )表示白噪声序列, s (n )表示一个与 c (n ) 不相
*
def
R ( ) xy
(6)互功率谱

* x y
P ( f ) ( ) e xy xy C

现代信号处理_完美版PPT

现代信号处理_完美版PPT


测量信号v(n)是均值为零,方差为
2 v
的高斯白噪声;
且v(n)与信号x(n)统计无关,即v(n)不影响信号的谱形状
故有
S y ( y ) S x (x ) v 2 u 2 H () 2 v 2 R u ( m y ) E [ u ( n ) y ( n m ) ] u 2 h ( m )
2
高阶谱估计
➢ 研究的必要性 ➢ 高阶统计量 ➢ 高阶谱 ➢ 高阶累积量和多谱的性质 ➢ 三阶相关和双谱及其性质 ➢ 基于高阶谱的相位谱估计 ➢ 基于高阶谱的模型参数估计 ➢ 多谱的应用
参考:《现代数字信号处理》(184-199;204-205)
3
研究高阶谱的必要性
❖ 关于模型参数估计问题
• 所谓模型参数估计,就是根据有限长的数据序列(如模 型输出端所观测到的信号y(n)来估计图中随机信号模型 的参数,)
i1
i1
即不同ARMA过程具有相同形状的功率谱。这一特性 称为相关函数的多重性或模型的多重性。
9
随机信号的高阶特征(续)
两个具有零均值和相同方差的高斯白色噪声和 指数分布白色噪声显然是不同的随机过程,但它 们的功率谱相同。
用这样两个白色噪声激励同一个ARMA模型,产生的 两个ARMA过程显然是不同的随机过程,但它们的
• 与前面所述不同之处在于:这里考虑了观测过程所引 入的噪声v(n).
v(n)
u(n)
H(z)
x(n) ∑
y(n)
(h(n))
4
研究高阶谱的必要性
❖ 基于二阶统计量的模型参数估计方法的缺陷
• 前述模型参数估计方法中,估计得到的模型参数仅与 信号的自相关函数或功率谱包络相匹配;其功率谱不 含信号的相位特性,亦称盲相。即

《现代信号处理》教学大纲

《现代信号处理》教学大纲

《现代信号处理》教学大纲适用专业:信息与通信工程、物联课程性质:学位课网工程、电子与通信学时数:32 学分数: 2课程号:M081001 开课学期:秋季第(1)学期大纲执笔人:何继爱大纲审核人:陈海燕一、课程的地位和教学目标现代信号处理作为信息类专业研究生的一门专业基础课,是在传统数字信号处理基础上,基于概率统计的思想,用数理统计、优化估计、线性代数和矩阵计算等工具,研究有限数据量的随机信号的分析与处理,且系统可能是时变、非线性的,它是近代才发展起来的前沿学科。

主要讨论基于信号模型分析和滤波的基本理论和基本方法;以现代谱估计和自适应滤波为核心内容,并介绍现代信号处理的新技术。

该课程为众多信号处理的应用领域打下基础,包括通信、声学、图像、雷达、声纳、生物医学等领域的信号处理。

本课程的知识目标是使学生牢固掌握现代信号处理一些最基本的理论、方法和应用,并能跟踪和学习新的理论、方法和技术;内容涉及随机信号统计分析、现代谱估计、自适应滤波器、时频分析与二次型时频分布、信号多速率变换、盲信分离和阵列信号处理方法等;建立现代信号处理的知识体系,对课程内容总体把握;具有一定的实验和模拟仿真的基本知识。

了解现代信号处理重要新技术的发展趋势,为从事信息与通信工程及相关电子系统的工程设计打下坚实的基础。

本课程的能力目标是通过课程的学习提高学生的分析计算方法、演绎推理方法和归纳法等基本数学处理方法;运用数学、物理及工程概念及方法发现问题、分析问题和解决问题的能力,以及理论与实际相结合的能力;能够触类旁通,提高学生的科学学习方法;掌握通信学科的信号分析与处理基本理论和技能,思路开阔,具有运用所学知识的能力、搜集和提炼信息的能力、团队合作能力、表达能力和创新能力等。

本课程的专业素质目标通过本课程的课堂学习、单元知识及章节总结、习题及专题研讨培养学生培养良好严谨的科学研究态度和正确的思维方法,使学生敢于提出问题、善于分析问题和解决问题的能力及具有团队合作精神。

清华大学《现代信号处理》课件

清华大学《现代信号处理》课件

现代信号处理(离散随机信号处理)电子工程系本课程要讨论的主要问题:(1)对信号特性的了解随机信号(随机过程,时间序列––随机过程的一个实现)信号模型→参数估计→现代谱估计:参数化谱估计讨论信号模型及模型参数的估计问题,比较参数谱估计方法和周期图方法的优劣。

(2)对统计意义下最优滤波器设计的研究平稳条件下:Wiener滤波器理论非平稳条件下:Kalman滤波理论上的目标,实际算法可达到的最佳结果(3)对环境的自适应,具备“学习能力”的滤波算法自适应均衡、波束形成、线性自适应滤波器(4)更多信息的利用,挖掘(针对非高斯问题)线性系统、功率谱:二阶矩,高斯过程的完全刻划非线性、多谱:高阶量,循环平稳(5)对时间(空间)–––频率关系的适应性:全局特性与局域特性,小波变换,时频分析信号处理算法设计面向的几个主要因素n信噪比n先验知识n雷达n通信系统n电子对抗n对先验知识的利用:统计基础上的假设、学习过程n算法复杂性与性能要求的匹配性一些进展中的课题盲自适应信号处理序列贝叶斯估计、粒子滤波阵列信号处理等等与信号处理紧密关联的学科人工神经网络统计学习理论模式识别等等教材n张旭东,陆明泉:离散随机信号处理,2005年10月,清华大学出版社主要参考书①S. Haykin, Adaptive Filter theory, Third Edition, Prentice-Hall, 1996,//Fouth Edition 2001 (电子工业出版社均有影印本)①S.M. Kay, Modern Spectral Estimation: Theory & Application,Prentice-Hall, 1988①S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall PTR, 1993.①S. Mallat, A Wavelet Tour of Signal Processing, Academic press, 1998,Second Edition 1999①扬福生, 小波变换的工程分析与应用, 科学出版社, 2000.① D. G. Manolakis, et,al. Statistical and Adaptive Signal Processing, Mcgraw-Hall, 2000.①J. G. Proakis, et al. Algorithms for Statistical Signal Processing, Prentice hall, 2002①张贤达现代信号处理第2版清华大学出版社课程成绩n平时作业10%n2个Matlab作业40%(布置后2周内提交)n期末开卷考试50%1.1随机信号基础被噪声干扰的初相位是随机值的正弦波信号本质上均是随机的,但将信号作为随机信号处理,还是做为确定信号处理,与我们的应用目标和我们的先验知识有关,一般地,我们总是选择对应用有利的处理方式。

现代信号处理的几个边沿问题

现代信号处理的几个边沿问题
(1) 假设信号及其背景噪声是高斯的和平稳的; (2) 其对象系统只限于时不变(或缓慢) 、线性、 因果、最小相位的系统;
3. 信号分析方法只限于二阶矩特性和傅氏频谱。
4. 傅里叶变换的困境
○ 在信号分析和故障诊断技术等领域中,以前最为普遍
○ 是利用快速傅里叶变换 (FFT) 的频域分析法,这种方法
MATLAB 仿真见图1 。
图1 正弦波与回 声信号叠加的波 形和时谱形状
衬底1
Signal in time domain 1
0.5
0
-0.5
-1
0
0.5
1
1.5
Time/s
Cepstrum of signal 1
0.5
0
-0.5
-1
0
0.5
1
1.5
Time/s
(2) 功率频谱(不是功率时谱)
短时: 小时间 区间。
衬底1
应用举例: 开关电源 传导干扰信号的短时 分形维数模糊控制滤 波
基于短时分形维数的模糊控制滤波方法, 对开关电源传导干扰信号中的噪声进行滤 波。该方法提出了网络分形维数和短时分 形维数的新算法,并讨论了模糊控制滤波 方法中的模糊控制参数的选取算法。基于 虚拟仪器(VI) LabVIEW 6.i平台上对开关 电源传导干扰信号进行实时检测。经过信 号处理,该系统还具有信噪分离、测量传 导干扰功率谱等功能。结果表明,该方法 滤波效果良好。
Tga,t0a 1 f(t)g t at0 dt
1 g t t0 a a
其中小波 是将具有局部特性的小 波函数g(t)通过平移和尺度变换(放大倍数为1/a)而构成的。参
数a具有时间的量纲,也称 为小波尺度;f(t)为被处理的信号。 小波函数g(t)称为小波母函数,有多种,以便 适应各种非平稳信号的检测。当对信号进行小波 变换时,其局部化特性与所选取小波函数有关, 因此,要根据信号的特征选择适当的小波母函数 才能获得满意的检测效果。

最新现代信号处理第1章ppt课件

最新现代信号处理第1章ppt课件
信号是传载信息的物理量,是信息的表现形式。
信号处理的本质是信息的变换和提取。
信息的提取就要借助各种信号获取方法以及信号处理 技术。
信号测量系统和信号处理的工作内容的成本已达到装 备系统总成本的50%-70%。
1.1 现代信号处理的内容和意义
信号处理技术的应用领域:
电子通讯; 机械振动信号的分析与处理; 自动测量与控制工程领域; 语音分析、图像处理与声纳探测; 生物医学工程。
(1.4.4)
R x(y ) x ( t)y ( t)d t x ( t)y ( ,t)
(1.4.5)
内积可视为 x (t与) “基函数”关系紧密度或相似性的一种度量。
1.4 信号处理的内积与基函数
信号的内积与基函数
傅里叶变换是应用最为广泛的信号处理方法,函数 x (t ) 的傅里叶变换为
cn
1 T
T/2 x(t)eintdt
T/ 2
(1.3.6)
1.3 非平稳信号处理和信号的正交分解
1.3.2 信号的正交分解
傅里叶级数具有两个独特的性质:
1、函数 x (t ) 可分解为无限多个互相正交的分量 gn(t):cneint 的和,其中正交是指 g m 与 g n 的内积对所有 mn成立, 即
gm,gn:T 1 T T //2 2gm (t)gn(t)d t0
mn
2、正交分量 或 可用一个简单的基函数
的整数m
或n的膨胀g生m 成,g 线n 性累加逼近任何函数 g1(。t)
x(t) 小波变换中,通过母小波的伸缩和平移生成小波族。
1.3 非平稳信号处理和信号的正交分解
1.3.2 信号的正交分解
第一章 绪论
1.1 现代信号处理的内容和意义 1.2 信号的分类 1.3 非平稳信号处理和信号的正交分解 1.4 信号处理的内积与基函数 1.5 现代信号处理的应用现状与进展

现代信号处理-胡广书-清华

现代信号处理-胡广书-清华
(1.1.1a)式的傅立叶变换可以写成如下的内积形式:
X ( jΩ)
=
1 2π
<
x(t), e jΩt
>
式中 < x, y > 表示信号 x 和 y 的内积。若 x , y 都是连续的,则
(1.1.5)
< x, y >= ∫ x(t) y*(t)dt
若 x , y 均是离散的,则
< x, y >= ∑ x(n) y*(n)
从时域波形还是从频域波形,我们都很难看出该信号的调制类型及其他特点。和图 1.1.1(c)
一样,图 1.1.2(c)也是 x(n) 的时-频分布表示,由该图可明显看出,该信号的频率与时间成
Line ar sca le
Real part
S ignal in time 1
0
-1 |S TF T|2, Lh=48 , Nf=1 92, lin. scale, co ntour, Thld =5%
gt,Ω (τ ) = g(t − τ )e jΩτ
(1.1.8)
来代替傅立叶变换中的基函数 e jΩt ,则
< x(τ ), gt,Ω (τ ) >=< x(τ ), g(t −τ )e jΩτ >
∫= x(τ )g*(t − τ )e− jΩτ dτ = STFTx (t, Ω)
(1.1.9)
该式称为 x(t) 的短时傅立叶变换(Short Time Fourier Transform, STFT)。式中 g(τ ) 是一窗函
愈多。但由傅立叶变换 X ( jΩ) 看不出在什么时刻发生了此种类型的突变。现举两个例子说
明这一概念。 例 1.1.1 设信号 x(n)由三个不同频率的正弦所组成,即

现代信号处理

现代信号处理

现代信号处理一 信号分析基础傅里叶变换的不足:()()1()()2j t j tX j x t e dtx t X j e d π∞-Ω-∞∞Ω-∞Ω==ΩΩ⎰⎰1.不具有时间和频率的“定位”功能;2.傅里叶变换对于非平稳信号的局限性;3.傅里叶变换在分辨率上的局限性。

频率不随时间变化的信号,称为时不变信号(又称为平稳信号),频率随时间变化的信号称为时变信号(又称为非平稳信号),傅里叶变换反映不出信号频率随时间变化的行为,只适合于分析平稳信号。

而我们希望知道在哪一时刻或哪一段时间产生了我们所要考虑的频率,现代信号处理主要克服傅里叶变换的不足,这些方法构成了现代信号处理。

分辨率包括频率分辨率和时间分辨率,含义是指对信号能作出辨别的时域或频域的最小间隔。

分辨率的好坏一是取决于信号的特点,二是取决于信号的长度,三是取决于所用的算法。

克服傅里叶变换不足的主要方法有:方法一:STFT (Short Time Fourier Transform )方法二:联合时频分析Cohen 分布,联合时频分析Wigner 分布 方法三:小波变换方法四:信号的子带分解,将信号的频谱均匀或非均匀地分解成若干部分,每一个部分都对应一个时间信号。

方法五:信号的多分辨率分析,与方法四类似,为了适应在不同频段对时域和频域分辨率的不同要求,可以将信号的频谱做非均匀分解。

明确概念:时间中心、时间宽度、频率中心和频带宽度 信号能量:2221()()()2E x t x t dt X j d π===ΩΩ<∞⎰⎰时间中心:21()()t t x t dt Eμ=⎰ 频率中心:21()()2x d EμπΩ=ΩΩΩ⎰ 时间宽度:22201()()t t t x t dt E ∞-∞∆=-⎰频率宽度:22221=()2X d Eπ∞Ω-∞∆ΩΩΩ-Ω⎰ 时宽和带宽:2,2t T B Ω=∆=∆品质因数=信号的带宽/信号的频率中心。

不定原理:给定信号x(t),若()0t t →∞=,则12t Ω∆∆≥当且仅当x(t)为高斯信号,即2()t x t Ae α-=等号成立。

现代信号处理

现代信号处理
互相关函数
R x(y)E {x(t)y*(t)}
互协方差函数
C x(y ) E {x ( [ t)x ]y ( [ t )y ] * } Rxy()x*y

互相关系数
xy()
Cxy()
Cxx(0)Cyy(0)
主要性质
1.对零均值随机信号,相关函数与协方差函数
非平稳即不具有广义平稳。 例1.1.1
随机信号的遍历性
均方遍历:一个平稳信号,其n阶矩及较
低阶的所有矩都与时间无关,对所k 有1, ,n
和所有整数 t1,,tk ,恒有
N l i E m 2 N 1 1t N N x (t t1) x (t tk)(t1, ,tk)2 0
及 ,其k阶矩有界,并满足
( t 1 , ,t k ) ( t 1 , ,t k )
广义平稳(协方差平稳、弱平稳):均值为常 数,二阶矩有界,协方差函数与时间无关。
严格平稳:概率密度函数与时间无关。
3者关系 广义平稳是n=2的n阶平稳; 严格平稳一定广义平稳,反之则不一定;
等价
2. 0 时,自相关函数退化为二阶矩
Rxx(0)E{x(t)2}
3. 0时,协方差函数退化为方差 Cx(x0)Rx(x0)x2
4. R* xx()Rxx() 5. C* xx()Cxx() 6. C x(x)C x(x 0),
R* xy()Ryx()
白噪声
互功率谱密度
定义
P x(yf) Cx(y )ej2fd
互功率谱的实部称为同相谱,虚部称为正交谱。
相干函数
定义 C(f) Pxy(f)
特点

现代信号处理

现代信号处理

4.信号的函数表达式为:()()()()sin(2100) 1.5sin(2300)sin(2200)x t t t A t t dn t n t πππ=++++,其中,()A t 为一随时间变化的随机过程,()dn t 为经过390—410Hz 带通滤波器后的高斯白噪声,()n t 为高斯白噪声,采样频率为1kHz ,采样时间为2.048s 。

(1)利用现代信号处理的知识进行信号谱估计;(2)利用现代信号处理知识进行信号的频率提取; (3)分别利用Winner 滤波和Kalman 滤波进行去噪; (4)利用Wigner-Ville 分布分析信号的时频特性。

(1):利用现代信号处理的知识进行信号谱估计:经典谱估计中两种主要的方法为直接法和间接法,其中间接法则先根据N 个样本数据()x n 的样本自相关函数()()()1*01,01N x n R k x n k x n k M N-==+=⋅⋅⋅∑,,,(4.1)其中1M N ≤<,且()()*x x R k R k -=。

计算样本自相关函数的Fourier 变换,得到功率谱()()Mjk x x k MP R k e ωω-=-=∑(4.2)周期图方法估计的功率谱为有偏估计,可通过加窗来减少其偏差。

定义为 ()()()2101N jn x n P x n c n e NWωω--==∑ (4.3)式中()()122112N n W c n C d NNππωωπ--===∑⎰(4.4)式中,()C ω是窗函数()c n 的Fourier 变换。

功率谱估计程序为: clear clcclose all hidden sf=1000;nfft=2048; t=0:1/1000:2.047;A=normrnd(0,1,1,2048); N=wgn(1,2048,1); f1=390;f2=410;wc1=2*f1/sf; wc2=2*f2/sf; %归一化频率f0=[0 wc1-0.05 wc1 wc2 wc2+0.05 1]; B=[0 0 1 1 0 0];%设置带通和带阻 weigh=[1 1 1 ];%设置带通和带阻权重 b=remez(50,f0,B,weigh);%传函分子 D=filter(b,1,N);y=sin(2*pi*t*100)+1.5*sin(2*pi*t*300)+A.*sin(2*pi*t*200)+D+N; a(1,:)=y;a(2,:)=y.*sin(y); x=a(1,:);y=a(2,:)-a(1,:);f=0:sf/nfft:sf/2-sf/nfft;w=boxcar(nfft);%加矩形窗 z=psd(y,nfft,sf,w,nfft/2); nn=1:nfft/2;plot(f(nn),abs(z(nn))); xlabel('频率(Hz)'); ylabel('幅值'); grid on;图4.1 功率谱估计结果图(2).信号频率的提取用离散傅立叶算法离散傅立叶算法程序 clear clcclose all hidden sf=1000;nfft=2048; t=0:1/1000:2.047;A=normrnd(0,1,1,2048); N=wgn(1,2048,1); f1=390;f2=410; wc1=2*f1/sf; wc2=2*f2/sf;050100150200250300350400450500200400600800频率(Hz)幅值%归一化频率f0=[0 wc1-0.05 wc1 wc2 wc2+0.05 1];B=[0 0 1 1 0 0];%设置带通和带阻weigh=[1 1 1 ];%设置带通和带阻权重b=remez(50,f0,B,weigh);%传函分子D=filter(b,1,N);y=sin(2*pi*t*100)+1.5*sin(2*pi*t*300)+A.*sin(2*pi*t*200)+D+N; t2=(0:nfft-1)/sf;f=(0:nfft-1)*sf/nfft;y1=abs(fft(y));f=f(1:nfft/2);y1=y1(1:nfft/2);plot(t,y);title('原始信号');axis([0 2.047 -6 8]);plot(f,y1);title('fft频率提取');axis([0 500 0 1000]);xlabel('f/Hz');grid on;原信号时间(t)图4.2 原始信号时域图图4.3 信号频谱(3)分别利用Winner 滤波和Kalman 滤波进行去噪;clear all close allM=100;%维纳滤波器阶数 sf=1000;nfft=2048; L=nfft;t=0:1/1000:2.047;A=normrnd(0,1,1,2048); N=wgn(1,2048,1); f1=390;f2=410; wc1=2*f1/sf; wc2=2*f2/sf; %归一化频率f0f0=[0 wc1-0.05 wc1 wc2 wc2+0.05 1]; B=[0 0 1 1 0 0];%设置带通和带阻 weigh=[1 1 1 ];%设置带通和带阻权重 b=remez(50,f0,B,weigh);%传函分子 D=filter(b,1,N);y=sin(2*pi*t*100)+1.5*sin(2*pi*t*300)+A.*sin(2*pi*t*200)+D+N; phixx=xcorr(y,y); for i=1:M for j=1:MRxx(i,j)=phixx(i-j+L); end ends=sin(2*pi*t*100)+1.5*sin(2*pi*t*300)+A.*sin(2*pi*t*200); phixs=xcorr(y,s); for i=1:Mrxs(i)=phixs(i+L); endh1=(inv(Rxx))*rxs';2004006008001000fft 频率提取f/Hz%获得理想FIR滤波器系数h1AA=sin(2*pi*t*100)+1.5*sin(2*pi*t*300)+A.*sin(2*pi*t*200); for i=1:Mh(i)=AA(i);end%绘图比较估计滤波器与实际滤波器figurek=1:M;plot(k,h(k),'r',k,h1(k),'b');title('Ideal h(n) & Calculated h(n)');legend('Ideal h(n)',' Calculated h(n)');xlabel('n');ylabel('h(n)');%比较理想输出与实际输出v=D+N;S=conv(h,v);SI(1)=S(1);LL1=sin(2*pi*t*100)+1.5*sin(2*pi*t*300)+A.*sin(2*pi*t*200); for i=2:LSI(i)=LL1(i);endfigurek=1:L;plot(k,s(k),'r',k,SI(k),'b');title('s(n) VS. SI(n)');legend('s(n)','SI(n)',0);xlabel('n');ylabel('Ideal Output');hold onSR=conv(h1,y);figurek=1:L;plot(k,s(k),'r',k,SR(k),'b');title('s(n)VS. SR(n)');legend('s(n)去噪前','SR(n)去噪后',0);xlabel('n');ylabel('Actual Output');图4.4 Winner 滤波去噪图Kalman 滤波程序 clear; clc;Fs=1000; nfft=2048;t1=0:1/Fs:2.047;A=normrnd(0,1,1,2048); N=wgn(1,2048,2); f1=390;f2=410; wc1=2*f1/Fs; wc2=2*f2/Fs; wc2=2*f2/sf; %归一化频率f0f0=[0 wc1-0.05 wc1 wc2 wc2+0.05 1]; B=[0 0 1 1 0 0];%设置带通和带阻 weigh=[1 1 1 ];%设置带通和带阻权重 b=remez(50,f0,B,weigh);%传函分子 D=filter(b,1,N);x=sin(2*pi*t1*100)+1.5*sin(2*pi*t1*300)+A.*sin(2*pi*t1*200)+D+N; x1=sin(2*pi*t1*100)+1.5*sin(2*pi*t1*300)+A.*sin(2*pi*t1*200); a1=-1.352;a2=1.338;a3=-0.662;a4=0.240;A=[-a1 -a2 -a3 -a4;1 0 0 0;0 1 0 0;0 0 1 0];%状态转移矩阵 H=[1 0 0 0];%观测矩阵Q=[1 0 0 0;0 0 0 0;0 0 0 0;0 0 0 0];%状态噪声方差 R=1;%观测噪声方差阵X(:,1)=[x(4);x(3);x(2);x(1)];p(:,:,1)=[10 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1];%一步预测误差方针 %开始滤波 for k=2:nfftp1(:,:,k)=A*p(:,:,k-1)*A'+Q;%p1(:,:,k)即是一步预测误差的自相关矩阵,它是4*4的矩阵,取不同的k 值就构成了一个三维矩阵K(:,k)=p1(:,:,k)*H'/(H*p1(:,:,k)*H'+R); %K(:,:,k)是增益矩阵,对于固定的k 值它是4*1矩阵,取不同的k 值就是三维矩阵s(n)VS. SR(n)nA c t u a l O u t p u tX(:,k)=A*X(:,k-1)+K(:,k)*[x(k)-H*A*X(:,k-1)]; %X(:,k)是估计值,4*1矩阵p(:,:,k)=p1(:,:,k)-K(:,k)*H*p1(:,:,k);%p(:,:,k)是估计误差的自相关矩阵,4*4矩阵的三维矩阵end%结束一次滤波%绘图t=1:nfft;figure(2);plot(t,x1,'k-',t,x,'r-',t,X(1,:),'b-.');title('卡曼滤波去噪')legend('真实轨迹','观测样本','估计轨迹');grid on;卡曼滤波去噪n图5 Kalman滤波去噪图(4) 利用Wigner-Ville分布分析信号的时频特性MATLAB程序clear;clc;Fs=1000;nfft=2049;t1=0:1/Fs:2.048;A=normrnd(0,1,1,2049);N=wgn(1,2049,2);f1=390;f2=410;wc1=2*f1/Fs;wc2=2*f2/Fs;%归一化频率f0f0=[0 wc1-0.05 wc1 wc2 wc2+0.05 1];B=[0 0 1 1 0 0];%设置带通或带阻,1为带通,0为带阻weigh=[1 1 1 ];%设置通带和阻带的权重b=remez(50,f0,B,weigh);%传函分子D=filter(b,1,N);x=sin(2*pi*t1*100)+1.5*sin(2*pi*t1*300)+A.*sin(2*pi*t1*200)+D+N; figure(8)tfrwv(x');xlabel('时间t');ylabel('频率f');0.50.450.40.350.30.250.20.150.10.05图6 幅频特性图。

现代信号处理ModernSignalProcessing40页PPT

现代信号处理ModernSignalProcessing40页PPT
凡不是广义平稳的信号
遍历性
若 N li m E 2N 11tN Nx(tt1)Lx(ttk)(t1,L,tk)2 0
则 {x(t)}称 为 均 方 遍 历 信 号 。
2.两个随机信号的二阶统计量
互相关函数
Rxy()@E{x(t)y*(t)}
相同部分相乘(相同符号) 不同(随机)部分相乘 (平均意义上,相互抵消)。
考核方式 习题(11%) 计算机仿真(实验3次,24%) 考试(65%)
第一章 随机信号
本章主要介绍随机信号的基本概念:相关 函数、功率谱密度、两个信号的正交、统计不 相关和统计独立、相干信号以及它们的几个典 型应用。
1.信号分类
信号——信息的载体
连 续 时 间 信 号s(t) t 离 散 时 间 信 号s(k) k为 整 数
▪ 时分多址(TDMA: time-division multiple access): 各个用户的信号波形在时域上无重叠 正交(时域正交)
用户1和用户2之间有一个保护时隙
b
a si
(t)s*j (t)dt
0,
i j
共享:整个频带
正交的两个典型应用(续)
▪ 频分多址(FDMA: frequency-division multiple access): 各个用户的信号波形在频域上无重叠 频域正交
E wi 2 qiHqi
im1
im1
由wi qiHx得:E wi 2 E qiHxxHqi qiHE xxH qi qiHRxqi
正交的两个典型应用(续)
M
最优化: min Em min
q
H i
R
x
q
i
im 1

第1章 现代信号处理 (1)

第1章  现代信号处理 (1)

ψ 若把ψ (t ) 看成一窗函数, (t / a ) 的宽度将随着的不同而不同, 看成一窗函数, 的宽度将随着的不同而不同, Ψ,由此我们可得到不同的 ( aΩ ) 这也同时影响到频域, 这也同时影响到频域,即 a 对应分析信号的高频部分, 时域分辨率和频域分辨率。 时域分辨率和频域分辨率。 小,对应分析信号的高频部分, a 对应分析信号的低频部分。 大,对应分析信号的低频部分。参数 是沿着时间轴的位 b x 尺度 位移” WTx ( a, b) 尺度- 移,所得结果 是信号 的“(t ) -位移”联合分 它也是时-频分布的一种。 析,它也是时-频分布的一种。
第1章 信号分析基础 章
Cohen时 Cohen时-频分布
C x (t , Ω : g ) =
1 2π
x (u + τ ) x * (u − τ ) g (θ ,τ )e − j (θt +Ωτ −uθ ) dudτdθ 2 2 ∫∫∫
Cohen分布即 式中g (θ , τ )是处在平面的权函数若g (θ , τ )=1,则Cohen分布即 变成Wigner-Ville分布,给定不同的权函数,我们可得到同 变成Wigner-Ville分布,给定不同的权函数, Wigner 分布 的时-频分布,统称为Cohen类时-频分布,简称Cohen类 的时-频分布,统称为Cohen类时-频分布,简称Cohen类, Cohen类时 Cohen
第1章 信号分析基础 章
小波变换
小波变换: 希望找到一个基本函 小波变换:对给定的信号 x (t ) ,希望找到一个基本函 数 ψ (t ) ,并记 ψ (t ) 的伸缩与位移
ψ a,b (t) = 1a ψ ( t −b ) a
x 为一族函数, 为一族函数,(t )和这一族函数的内积

现代信号处理第6章连续小波变换

现代信号处理第6章连续小波变换
分形
小波
小波分形技术原理与离散信号盒维数的计算
设离散信号 是n维欧氏空间Rn上的闭集。将Rn划分成尽可能细的Δ网格,若是网格宽度N Δ为Δ的离散空间上集合X的网格计数。盒维数定义为 :
由于离散信号的最高分辩率为采样间隔Δ t,所以上式的极限是无法按其定义Δ→0求出。实际计算时一般采用近似方法,即将Δ网格视为最小网格,然后逐步放大为kΔ网格,k∈Z+,令
6.1.5 谐波小波应用
小波分形技术原理与离散信号盒维数的计算
分形的自相似仿射算子r与小波变换的伸缩因子a是作用相同,小波变换从低分辨到高分辨的过渡原则与分形过程的从总体向局部、从宏观向微观深化分析原则是一致的,小波和分形都具有自相似性,两者结合是可行的。 小波分形技术原理是应用小波包变换将机械振动信号分解到正交的、独立的频带内,然后分别计算出每个频带信号的盒维数, 用盒维数衡量小波包分解每个频带信号的复杂程度 由于一维离散信号的盒维数是介于1和2之间的一个实数,信号越复杂维数越大
谐波小波滤波能够在低频频带和高频频带内都具有足够的数据点数。
6.1.4 谐波小波滤波
6.1.4 谐波小波滤波
谐波小波实际上是一个完全理想的带通滤波器 ,可以用下面的方法定义谐波小波
其中m, n决定了谐波小波变换的尺度(j),且n = 2m,当m = 0时,n = 1。
谐波小波的光滑性,“盒形”谱特性,零相移特性以及明显的数学表达式,使得我们可构造出不同尺度下各频段序列数据点数不变、采样频率不变的算法,最终成功应用于转子轴心轨迹分析
谐波小波的定义及正交性
谐波小波的定义及正交性
实偶函数we(t)和实奇函数wo(t) , 它们的傅里叶变换分别为
谐波小波的定义及正交性

机械故障诊断中的现代信号处理方法

机械故障诊断中的现代信号处理方法

机械故障诊断中的现代信号处理方法
现代信号处理方法在机械故障诊断中有着广泛的应用。

以下是几种常见的现代信号处理方法:
1. 傅里叶变换(Fourier Transform): 傅里叶变换将时域信号转换为频域信号,可以分析信号的频率成分和能量分布。

在机械故障诊断中,傅里叶变换可以用来检测故障产生的谐波或频率成分的变化。

2. 小波变换(Wavelet Transform): 小波变换可以在时间和频率上同时进行分析,可以更好地捕捉瞬态故障或频率变化的特征。

小波变换在机械故障诊断中常用于检测冲击、噪声和频率模态等问题。

3. 自适应滤波(Adaptive Filtering): 自适应滤波是一种可以自动调整滤波器参数的方法,可以根据信号的特点动态调整滤波器的频率响应。

自适应滤波在机械故障诊断中可以用于降噪和提取故障特征。

4. 统计特征提取(Statistical Feature Extraction): 统计特征提取是通过对信号进行统计分析来提取信号特征的方法。

常见的统计特征包括均值、方差、峰值、峭度等。

统计特征提取可以用来检测信号的变化和异常。

5. 机器学习(Machine Learning): 机器学习是一种可以让计算机自动学习和适应数据模式的方法。

在机械故障诊断中,机器学习可以用来训练模型,识别和分类不同的故障模式。

常见的
机器学习算法包括支持向量机(SVM)、随机森林(Random Forest)和深度学习(Deep Learning)等。

这些现代信号处理方法可以结合使用,以提取和分析机械故障信号中的相关特征,提高故障诊断的准确性和效率。

现代信号处理技术

现代信号处理技术

DWTf DWT (m, n) 2m / 2 f (k ) (2m k n)
k
(11-27)
4 一维Mallat算法 ( x) ,满足尺度方程 设尺度函数为 ( x),对应的小波函数为 ( x) h(n) (2 x n)
信号 f ( x)在尺度j下所平滑的信号 Ad 为 j f
2. Fourier分析的主要内容
从本质上讲,Fourier变换就是一个棱镜(Prism),它把一 个信号函数分解为众多的频率成分,这些频率又可以重构 原来的信号函数,这种变换是可逆的且保持能量不变。
图11-1 傅立叶变换与棱镜
二、小波分析的发展历程
1.小波分析起源与追踪 1981年,Morlet仔细研究了Gabor变换方法,对 Fourier变换与加窗Fourier变换的异同、特点及函数构 造做了创造性研究,首次提出了“小波分析”概念, 建立了以他的名字命名的Morlet小波。 2. 多分辨分析及Mallat算法的建立 Mallat与Meyer创立多分辨分析和Mallat算法。 3. Daubechies小波的提出 Daubechies建立了著名的Daubechies小波,这种小波是 目前应用最广泛的一种小波,不能用解析公式给出, 只能通过迭代方法产生,是迭代过程的极限。
二、短时傅立叶变换(Short Time Fourier
Transform , STFT )
我们将一个信号的STFT定义如下:
1 it (11-1) S ( , t ) e s( )h( t )d 2
其中h(t) 是窗函数. 沿时间轴移动分析窗, 我们可以得到 两维的时频平面。STFT 方法最大的优点是容易实现。 STFT 分析实质上是限制了时间窗长的Fourier分析. STFT只能选定一个固定的窗函数, 且STFT 分析受限于 不确定性原理, 较长的窗可以改善频域解但会使时域解 变糟; 而较短的窗尽管能得到好的时域解, 频域解却会变 得模糊。

现代信号处理笔记

现代信号处理笔记

第一章 随机信号本章首先介绍了随机信号的基本概念、协方差函数和功率谱密度的定义与性质。

接着,从独立性、不相关性、正交性和相干性这四种基本统计关系出发,讨论了如何进行两个随机信号之间的比较与识别。

随后,介绍了正交信号变换、双正交信号变换和非正交信号变换的基本理论。

最后,以被随机信号激励的线性关系为对象,分析了系统输出与输入之间的统计量的关系,对两个随机信号之间的关系作了更深一步的描述。

一、信号分类连续时间信号 s(t) -∞﹤t ﹤∞离散时间信号 s(k) k 为整数确定性信号(按某函数取值,每时刻值可知)随机信号(每时刻取值未知):⑴取值是随机的(不能确切已知)⑵取值服从概率分布规律(统计特性确定,但未知)二、两个随机信号的统计量1、互相关函数Rxy (τ)=E{x(t)y *(t-τ)}互相关函数描述的是两个信号共同的部分(特征)。

2、互相关系数τXY ρ()=3、互协方差函数*(){[()][()]}xy x y C E x t m y t m ττ=---4、功率谱:协方差函数的Fourier 变换2()()j f xy P f C e d πτττ∞--∞=⎰三、两个随机信号的统计关系1、统计独立,(,)()()X Y X Y f x y f x f y =2、统计不相关 若C xy ()=0,,则称x(t)和y(t)统计不相关。

3、正交若R xy ()=E{x(t)y *(t-)}=0, ,则称随机信号x(t)和y(t)正交,记作x(t)⊥y(t)。

四、信号变换1、正交信号变换 (1)Фk (t )=g k (t) (2)(),()()k l t t k l δ<ΦΦ>=-2、双正交信号变换(1)()()k k t g t Φ≠ (2)(),()0k k t g t <Φ>= 3、非正交信号变换(1)()()k k t g t Φ≠ (2)(),()0k k t g t <Φ>≠第二章 参数估计理论本章的核心是参数估计的基本理论与方法。

现代信号处理完整版.doc

现代信号处理完整版.doc

意:正态和白色是两个不同的概念,前者指信号取值 服从的规律,后者指信号不同时刻的相关性 信号的比较与区分——独立性、相关性与正交性(1) 两个随机序列 x(n)和 y(n)是统计独立的,若联合概 率密 度 函 数 f XY x, y 等于 x(n) 的概率密度函数
f X x 与 y(n) 的概率密度函数 fY y 的乘积。即

m q

q
传递函数 H ( z )

q
1 ak z k
k 1
r 0 p
br z r

B( z ) A( z )
结合
S x(z ) 2
m q

q
[ bk m bk ] z m
k 0
q |m|
若 u(n)是一个方差为 2 的白噪声,则 x(n)的功率谱
设 {x(n), n 0,1,2 N 1}为随机序列
f XY ( x, y ) f X ( x) fY ( y );(2)两个随机序列 x(n)和
y(n)是统计不相关的,若对于所有的 m,它们的互协
X (e j ) x(n)e-jm
m 0
N 1
限方差的平稳 ARMA 或 MA 模型都可以表示成唯一的、 阶数可能是无穷大的 AR 模型;同样地任何一个有限 方差的平稳 ARMA 或 AR 模型都可以表示成唯一的, 阶 数可能是无穷大的 MA 模型。
y(n m )] 互相关函数 R xy(m ) E[x(n )
高斯(正态)随机序列
R x( m )
一、

1 2 π

π
-π
S x(ej ) ejm d
维纳-辛钦公式 J.Tukey )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
考核

读论文报告一篇—平时成绩 课程考试--2小时
4
序 言



物质、能量同信息一起构成人类最宝贵的三项战略资 源;人类正快步走向信息社会 ,信息技术(IT)已经成 为最具时代特征和最富活力的支柱技术之一。 作为IT基础的信息科学正在经历从“统计”到“理 解”,从“传输”到“认知”的巨大变革,正满怀信心 地迎接以信息的“理解”和“认知”为主要特征,以 全信息理论为主要内容的信息时代的新阶段—智能信 息科学时代。 作为信息载体的信号处理经历了从模拟到数字,从确 知到随机的发展过程,正阔步迈向以非平稳信号、非 高斯信号为主要研究对象和以非线性、不确定性为主 要特征的智能信号处理时代。
ASP: 四大处理, 深层信息 自适应信号处理(盲,半 盲) 非平稳信号处理 (HOS,Wavelets) 非线性信号处理 神经网络信号处理
16
现代信号处理
- 小结

一个目标 以实现智能系统为目标
四个要点

以DSP的原理为理论基础

– –
以软计算为主要处理方法
以计算机为主要实现手段
10
信号处理发展趋势(续)

信号处理与智能技术相结合的智能信号处理方法
– – – –
盲自适应信号处理 神经网络信号处理 模糊信号处理 混沌信号处理
11
信号处理发展趋势(续)

“多” SP向着多维、多谱、多分辨率、多媒体方向发展 多维信号处理 高阶谱估计 多分辨率信号处理 多媒体信号处理
6
信号处理与现代通信
通信信息技术高速发展的这十几年,正是信号处理技术快速 发展的时期,许多新的信号处理方法,如 - 高阶统计量方法 - 盲信号处理方法 - 小波变换 - 神经网络信号处理方法 - 量子信号处理方法 都是在这一时期产生和/或发展的。 结论:信号处理是现代通信发展的基础和推动力。没有DSP 为代表的信号处理技术的发展,就不会有今天的通信与信 息技术的巨大进步。

T
பைடு நூலகம்
u -v ,

夹角余弦定义: cos
两两正交的非零矢量一 定线性无关
24
Y 1, 2 ,.... M 是线性子空间的正交底 任意矢量可唯一分解两 个互相正交的部分,在 内& Y Y ˆ x x e,e Y - - e i ˆ x ai i
31
1.6谱分解
设a (a0 , a1 ,...aM )是最小相位序列,则 变换为 Z A( z ) a0 a1 z 1 ... aM z M a0 (1 z1 z 1 )(1 z 2 z 1 )...( z M z 1 ) 最小时延多项式 1 共轭系数多项式 * ( z ) A 共轭反射多项式 ( z ) A 共轭倒序多项式 R ( z ) A 关系:A ( z ) A* ( z 1 ), A R ( z ) z M A ( z ) z M A* ( z 1 ) A( ) A ( ) A ( ) A ( ) 不影响总振幅

最佳线性估计 设x x1 x2 , x1与y相关,x2与y无关,
ˆ x Hy得x1最佳线性估计 ˆ e1 x1 x x1 Hy Re1e1 E[e1e1 ] min
T
21
均方差最小准则

相关抵消、
ˆ ˆ e x x x2 ( x1 x ) x1已经被抵消,若 是最佳估计, H 抵消后剩余部分 1 x具有最小均方差 x ˆ
k j k k
Rxx (k ) z k

Rxx (k )e - jk
两实平稳信号xn,yn的互相关函数及互功率 谱为 Rxy (k ) z k
30

性质:Rxy (k ) Rxy (-k );S xy ( ) S xy ( )
y N (n)可以看成从宽为 的数据窗在平稳随机信 N 号中yn 截得得 ˆ (k ) 1 取样自相关函数: yy R N ˆ 周期图:S xy ( x)
27
1.3.3新息
和y组成同一矢量空间 ,所含信息相同,无新 Y 息。 每增加一个 i则增加新的信息,随机 变量 i叫新息。 由y n 计算 n的公式:
ˆ n y n - y n|n -1 y n E y n y T n -1 E y n -1 y T n -1 y n -1 y n 在 y n -1上的正交分解 ˆ y n|n -1是根据y n -1 [ y1...yn 1 ]对y n 做的最佳线性估计。若 n ˆ 表示时间,则y n|n -1是过去值对y n的最佳线性预测 n则 , 相应预测误差 。
7
信号处理与现代通信(续)

信号处理与现代通信的密切关系还具体表现在通信的 如下方面: 接入网的宽带化-ADSL

骨干网的信道倍增-DCME


语音、图像和视频信息的压缩与传输
无线信道的估计、均衡与信道分配 3G/4G移动通信中的多用户检测和智能天线 软件无线电技术 加密、认证 网络信号处理
5
信号处理地位与作用


信号与信息处理学科是信息科学一个重要组成部分 信号与信息处理学科的发展水平从一个侧面反映了一 个国家整体科学技术水平 作为信号与信息处理基础的DSP - 它是“数字会聚”和“信息产业合流(3C结合)‖的 粘合剂 -其作用将超过电路在电子信息技术中的作用 In the future, DSP is much more likely to be useful to most engineers and scientists than circuits
12
信号处理发展趋势(续)

―新” IT与量子力学、生物技术等结合的信息处理新技 术 生物信息学:基因工程与信息科学相结合的产物。 它以计算机为工具,对遗传信息进行管理、交流、 破译、预测 。 量子信息学:量子力学与信息科学相结合的产物, 包括量子计算、量子通信、量子密码术、量子计 算机 基于内容的信息理论 信息内容的智能处理
13
现代信号处理

研究对象 处理方法 研究内容

小结
14
现代信号处理
- 处理方法

DSP: 硬计算或硬处理
• •
ASP: 软计算或软处理
• • •
精确计算 数学模型
估计与预测
黑盒子 软计算

求解微分或差分方程
15
现代信号处理
- 研究内容

DSP: 两大支柱,表层信息 快速变换 数字滤波
8
信号处理发展趋势



特点 • 以算法为中心, 更加注重实现与应用 • 突出一个“非”, 呈现“智、多、新” 趋势 “非” SP向着非平稳、非高斯、非线性方向发展 - 非线性信号处理 - 非平稳信号处理 - 多分辨信号处理
9
信号处理发展趋势(续)


”智“ 信号处理与智能技术相结合 各种智能及其关系 – 生物智能(BI) – 人工智能(AI): – 计算智能(CI): – 相互关系:BI >AI>CI 计算智能(软计算)技术 – 主要指神经网络、模糊系统、进化计算 – 也包括自适应技术、混沌技术等
26
到后一子空间,从而不 断扩大子空间的过程。
gram schm idt 正交化过程实质是由前 一子空间增加 一个正交底得到后一子 空间,从而不断扩大子 空间 的过程。 y1 1 y , 2 1 2 ....... y n 1, 2 ,..... n ˆ ˆ y n y n|n -1 n或者 n y n - y n|n -1 y n 在子空间 y n -1上的正交分解!
现代信号处理
2013年7月25日
1
主要内容




数字信号处理基础 自适应信号处理 现代谱估计 多速率信号处理与小波变 换 数字语音信号处理
2
教材事项





现代数字信号处理 姚天任等编,华中科技大学出 版社 张贤达,现代信号处理,北京:清华大学出版社, 2002年10月。 离散时间语音信号处理, Thomas F. Quatieri, 电子 工业出版社 离散时间信号处理,A.V. 奥本海姆, R.W.谢弗, 刘树 棠,黄建国译, 西安交通大学出版社 Mitra,数字信号处理,北京:清华大学出版社, 2001年9月(影印版)。
以通信业为主要应用领域
17
第0章 基础知识
2013年7月25日
18

1.1 随机矢量






x=[x0, x1 …. xn ]去掉均值E[xn], 可得零均值随 机信号 最简单的随机信号– 零阶马尔柯夫信号 密度函数p(x0, x1 …. xn )=p(x0)*p(x1)…p(xn ) Rxx(n,m)=E[xn , xm]=0 –自相关函数与时间起点 无关-- 平稳随机信号 Rxx(k)=E[xn+1,xn]

T
0
Ee , e
T 0 0


-1
-A-120 A 22
29
1.5功率谱和周期图
离散实平稳信号 n的功率谱S xx ( z ) x Rxx (k ) E[ xn 1 xn ] 若Z e ,S xx ( ) Rxy (k ) E[ xn yn k ] S xy ( x)
28
1.4 偏相关系系数
设 y [ y1 y 2 ....yn ] 如果各随机变量 i 相关,那么y 0, y1 y 2也两两相关, y 间接相关/ 直接相关? 若y 0, y 2之间也存在直接相关, 那么这种相关叫做 y 0, y 2间的偏相关性,用 ARCOR系数来度量,定 P 义为关于y1分解的正交分量 0 , e2间相关系数的归一 e 化值,归一化系数为 e2 , eT 0 E E e2 , e
相关文档
最新文档