广西南宁三中2019-2020学年高二下学期期末考试(普通班)理科数学试题 Word版含解析
广西南宁三中2019-2020学年高二下学期期末考试(重点班)理科数学试题 Word版含解析
南宁三中2019~2020学年度下学期高二期考理科数学试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设i 为虚数单位,复数z 满足()25z i -=,则在复平面内,z 对应的点位于( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】B 【解析】 【分析】利用复数的四则运算进行化简,然后在利用共轭复数的定义和复数的几何意义求解即可. 【详解】因为()25z i -=,所以()()()5252222i z i i i i +===----+, 由共轭复数的定义知,2z i =-+,由复数的几何意义可知,z 在复平面对应的点为()2,1-,位于第二象限. 故选:B【点睛】本题考查复数的四则运算、共轭复数的定义和复数的几何意义;考查运算求解能力;属于基础题.2. 某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:“我没有偷”;乙:“丙是小偷”;丙:“丁是小偷”;丁:“我没有偷”.根据以上条件,可以判断偷珠宝的人是( ) A. 甲 B. 乙C. 丙D. 丁【答案】A 【解析】【详解】试题分析:若甲说的是真话,则乙、丙、丁都是说假话,所以丁偷了珠宝,所以,丙说的也是真话,与只有一个人说真话相矛盾,所以甲说的假话,偷珠宝的人是甲. 考点:推理与证明. 3. 用数学归纳法证明()111111111234212122n N n n n n n*-+-+-=+++∈-++,则从k 到1k +时左边添加的项是( )A.121k + B.112224k k -++C. 122k -+ D.112122k k -++ 【答案】D 【解析】 【分析】根据式子的结构特征,求出当n k =时,等式的左边,再求出1n k =+ 时,等式的左边,比较可得所求.【详解】当n k =时,等式的左边为111111234212k k -+-+⋯+--, 当1n k =+ 时,等式的左边为111111112342122122k k k k -+-+⋯+-+--++,故从“n k =到1n k =+”,左边所要添加的项是112122k k -++. 故选:D .【点睛】本题考查用数学归纳法证明等式,注意式子的结构特征,以及从n k =到1n k =+项的变化.4. 已知函数()322f x x x =-,[]13,x ∈-,则下列说法不正确...的是( ) A. 最大值为9B. 最小值为3-C. 函数()f x 在区间[]1,3上单调递增D. 0x =是它的极大值点【答案】C 【解析】 【分析】利用导数分析函数()y f x =在区间[]1,3-上的单调性,求得该函数的极值与最值,由此可判断各选项的正误. 【详解】()322f x x x =-,则()()23434f x x x x x '=-=-.令()0f x '>,可得0x <或43x >;令()0f x '<,可得403x <<.当[]13,x ∈-时,函数()y f x =在区间[)1,0-,4,33⎛⎤⎥⎝⎦上均为增函数,在区间40,3⎡⎤⎢⎥⎣⎦上为减函数,C 选项错误;所以0x =是函数()y f x =的极大值点,D 选项正确;因为()00f =,()327299f =-⨯=,()11213f -=--⨯=-,46416322327927f ⎛⎫=-⨯=- ⎪⎝⎭,所以,函数()y f x =在区间[]1,3-上的最大值为9, 最小值为3-,A 、B 选项正确. 故选:C.【点睛】本题考查利用导数判断函数的单调性,以及利用导数求解函数的极值点与最值,考查分析问题和解决问题的能力,属于中等题.5. 抛掷两枚均匀骰子,观察向上的点数,记事件A 为“两个点数不同”,事件B 为“两个点数中最大点数为4”,则()P B A =( ) A.112B.16C.15D.56【答案】C 【解析】 【分析】抛掷两枚均匀骰子,构成的基本事件的总数共有36种,其中记事件A 为“两个点数不同”的基本事件共有30种,再由“两个点数不同且最大点数为4”的基本事件共有6种,利用条件概率的计算公式,即可求解.【详解】由题意,抛掷两枚均匀骰子,构成的基本事件的总数共有36种, 其中记事件A 为“两个点数不同”的基本事件共有36630-=种,又由事件“两个点数不同且最大点数为4”的基本事件为:(1,4),(2,4),(3,4),(4,1),(4,2),(4,3),共有6种,所以6()136()30()536P A B P B A P A ⋂===,故选C . 【点睛】本题主要考查了条件概率的计算,其中解答中熟记条件概率的计算方法,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.6. 有8件产品,其中4件是次品,从中有放回地取3次(每次1件),若X 表示取得次品的次数,则(2)P X ≤=( ) A. 38B.1314C.45D.78【答案】D 【解析】 【分析】首先把取一次取得次品的概率算出来,再根据离散型随机变量的概率即可算出. 【详解】因为是有放回地取产品,所以每次取产品取到次品的概率为4182=.从中取3次,X 为取得次品的次数,则13,2XB ⎛⎫ ⎪⎝⎭, ()3102323331(2)(2)(1)0111722228P X P X P X P X C C C ⎛⎫⎛⎫≤==+=+==⎛⎫+= ⎪⎝⎭⨯⨯+ ⎪ ⎪⎝⎭⎝⎭,选择D 答案.【点睛】本题考查离散型随机变量的概率,解题时要注意二项分布公式的灵活运用.属于基础题.7. 2020年3月31日,某地援鄂医护人员A ,B ,C ,D ,E ,F ,6人(其中A 是队长)圆满完成抗击新冠肺炎疫情任务返回本地,他们受到当地群众与领导的热烈欢迎.当地媒体为了宣传他们的优秀事迹,让这6名医护人员和接见他们的一位领导共7人站一排进行拍照,则领导和队长站在两端且BC 相邻,而BD 不相邻的排法种数为( ) A. 36种 B. 48种 C. 56种D. 72种【答案】D 【解析】 【分析】根据题意,分2步进行分析:①领导和队长站在两端,由排列数公式计算可得其排法数目,②中间5人分2种情况讨论:若BC 相邻且与D 相邻,若BC 相邻且不与D 相邻,由加法原理可得其排法数目,由分步计数原理计算可得答案.【详解】让这6名医护人员和接见他们的一位领导共7人站一排进行拍照,则领导和队长站在两端且BC 相邻分2步进行分析:①领导和队长站在两端,有222A =种情况,②中间5人分2种情况讨论:若BC 相邻且与D 相邻,有232312A A =种安排方法,若BC 相邻且不与D 相邻,有22222324A A A =种安排方法,则中间5人有12+24=36种安排方法, 则有23672⨯=种不同的安排方法; 故选:D .【点睛】本题主要考查了带有限制的排列问题,解题关键是掌握分步计数原理和特殊元素优先排列,考查了分析能力和计算能力,属于中档题.8. 甲、乙两队进行篮球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队不超过4场即获胜的概率是( ) A. 0.18 B. 0.21C. 0.39D. 0.42【答案】C 【解析】 【分析】利用相互独立事件概率乘法公式和互斥事件概率加法公式直接求解.【详解】解:甲、乙两队进行排球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立, 则甲队以3:1获胜的概率是:()()()10.60.610.50.50.610.60.50.510.60.60.50.50.21P =⨯⨯-⨯+⨯-⨯⨯+-⨯⨯⨯=. 甲队以3:0获胜概率是: 20.60.60.50.18P =⨯⨯=则甲队不超过4场即获胜的概率120.210.180.39P P P =+=+=故选:C【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,属于中档题.9. 电路从A 到B 上共连接着6个灯泡(如图),每个灯泡断路的概率为13,整个电路的连通与否取决于灯泡是否断路,则从A 到B 连通的概率是( )A.1027B.448729C.100243D.4081【答案】B 【解析】 【分析】先求,A C 连通的概率,再求,B D 连通的概率,然后求,A B 连通的概率. 【详解】先考虑,A C 没有连通的情况,即连个灯泡都断路,则其概率为111339P =⨯=. 所以,A C 连通的概率18=199P -=. ,E F 连通,则两个灯泡都没有断路,则其概率为224339P =⨯=, 所以,E F 没有连通的概率为:45=199P -=. 则,B D 之间没有连通的概率5525=9981P =⨯所以,B D 连通的概率255618181P =-=, 所以,A B 连通的概率. 568448=819729P =⨯ 故选:B【点睛】本题考查概率的求法,注意并联电路和串联电路的性质的合理运用.解题时要认真分析,属于基础题. 10. 已知()21ln (0)2f x a x x a =+>,若对任意两个不等的正实数1x ,2x ,都有()()12122f x f x x x ->-恒成立,则a 的取值范围是( )A. (]0,1B. ()1,+∞C. ()0,1D. [)1,+∞ 【答案】D 【解析】【详解】试题分析:根据1212()()2f x f x x x ->-可知112212()2[()]20f x x f x x x x --->-, 令()21()2ln ()202g x f x x a x a x x =-=+>-为增函数, 所以()()'200,0ag x x x a x=+-≥>>恒成立,分离参数得()2a x x ≥-,而当0x >时,()2x x -最大值为1,故1a ≥.考点:函数导数与不等式,恒成立问题. 11. 已知随机变量()21,XN σ,且()()0P X P X a ≤=≥,则()53221ax x x ⎛⎫+⋅+ ⎪⎝⎭的展开式中4x 的系数为( ) A. 680 B. 640C. 180D. 40【答案】A 【解析】 【分析】本题首先可以根据正态分布的相关性质以及()()0P X P X a ≤=≥得出2a =,然后根据二项分布的展开式找出()53221ax x x ⎛⎫+⋅+ ⎪⎝⎭展开式中包含4x 的项,最后通过计算即可得出结果.【详解】因为随机变量()21,XN σ,()()0P X P X a ≤=≥,所以2a =,代入可得()532212x x x ⎛⎫++ ⎪⎝⎭, 故()532212x x x ⎛⎫++ ⎪⎝⎭展开式中包含4x 项为:()()()23323220323444535322240640680Cx C C x C x x x x x x ⎛⎫⎛⎫⋅+⋅=+= ⎪ ⎪⎝⎭⎝⎭,系数为680, 故选:A.【点睛】本题考查正态分布以及二项分布的相关性质,主要考查根据二项分布的展开式的相关性质求特殊项的系数,考查计算能力,是中档题. 12. 在R 上可导的函数3211()232f x x ax bx c =+++,当(0,1)x ∈时取得极大值,当(1,2)x ∈ 时取得极小值,则21b a --的取值范围是 ( ) A. 11(,)22- B. 11(,)24-C. (1,14)D. 1(,1)2【答案】C 【解析】试题分析:()()()()()20002{10{21,202f b f x x ax b f a b a b f a b >>=++∴<∴+<-'''∴>>-'+在由()()()2,0,1,0,3,1---所构成的三角形的内部,21b a --可看作点(),a b 与点1,2的连线的斜率,结合图形可知21,114b a -⎛⎫∈ ⎪-⎝⎭考点:函数极值及线性规划点评:函数在极值点处的导数为零且在极值点两侧导数一正一负,线性规划问题取得最值的位置一般是可行域的顶点处或边界处,本题有一定的综合性二、填空题(本大题共4小题,每小题5分)13. 从10名大学毕业生中选3个人担任村长助理,甲、乙至少有1人入选的不同选法的种数为______. 【答案】64 【解析】 【分析】从10人中任选3人担任村长310C ,去掉没有甲、乙2人的情况38C ,即可得出结果. 【详解】从10人中任选3人担任村长310C ,去掉没有甲、乙2人的情况38C331081205664C C -=-=故答案为:64【点睛】本题考查了组合问题,考查了运算求解能力和逻辑推理能力,属于一般题目.14. 定积分1024x dx π⎫-⎪⎭⎰的值______. 【答案】1 【解析】 【分析】⎰等于以原点为圆心,以1为半径的圆面积的四分之一,为4π,再利用微积分基本定理求出1024x π⎛⎫- ⎪⎝⎭⎰的值即可.【详解】1024x dx π⎫-⎪⎭⎰ 1024x π⎛⎫=+- ⎪⎝⎭⎰⎰,因为⎰等于以原点为圆心,以1为半径的圆面积的四分之一,为4π,121002|1444x x x πππ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭⎰,所以100211444x πππ⎛⎫+-=+-= ⎪⎝⎭⎰⎰,故答案为:1【点睛】本题主要考查微积分基本定理的应用,考查了定积分的几何意义,属于基础题.15. 已知45015(2)(1)(1)(1)x x a a x a x +-=+++++,则135a a a ++=____________.【答案】1 【解析】 【分析】令0x =以及令2x =-,即可求得结果. 【详解】由()()()()450152111x x a a x a x +-=+++++,令x =0可得:2=a 0+a 1++a 5;令x =−2可得:0=a 0−a 1+a 2+−a 5.相减可得:2(a 1+a 3+a 5)=2, 则a 1+a 3+a 5=1. 故答案为:1.【点睛】本题考查通过赋值法求系数和,属基础题. 16. 已知函数()x af x x e-=+,()()ln 24a xg x x e-=+-,其中e 为自然对数的底数,若存在实数0x 使()()003f x g x -=成立,则实数a 的值为______. 【答案】ln21-- 【解析】 【分析】将问题转化为()()ln 234x aa x h x x x ee --=-+-++有零点,利用()()ln 23d x x x =-+-的最值,和44x a a x e e --+≥的最值根据等号成立的条件求解参数的取值. 【详解】构造函数:()()()()34ln 23x aa x h x f x g x x e e x --=--=++-+-,存在实数0x 使()()003f x g x -=成立, 即()()ln 234x aa x h x x x ee --=-+-++有解,考虑函数()()()()11ln 23,1,2,22x d x x x d x x x x +'=-+-=-=∈-+∞++, ()()0,2,1d x x '<∈--,()()0,1,d x x '>∈-+∞所以()()ln 23d x x x =-+-在()2,1x ∈--递减,在()1,x ∈-+∞递增, 所以()()min 14d x d =-=-,44x a a x e e --+≥,当且仅当42x a a x e e --==时,取得等号,所以()ln 2340x aa x x x ee ---+-++≥要使()()ln 234x aa x h x x x e e --=-+-++有零点,必须零点1-,且1142a a e e --+==,即ln 21a =--. 故答案为:ln21--.【点睛】此题考查根据方程有根转化为函数有零点求解参数的取值范围,关键在于准确构造函数,利用函数单调性和基本不等式求解最值.三、解答题(解答应写出文字说明.证明过程或演算步骤,第17-21题每题12分,选做题10分,共70分)17. 从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14. (1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和均值. (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 【答案】(1)见解析;(2)11()()48P A P B +=. 【解析】试题分析:X 表示一辆车从甲地到乙地遇到红灯的个数, X 的所有可能取值为0,1,2,3.分别求出相应的概率值,列出随机变量X 的分布列并计算数学期望,Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,这2辆车共遇到1个红灯就是包括第一辆遇到1次红灯且第2辆没遇上和第一辆没遇上红灯且第2辆遇上1次红灯两个事件的概率的和. 试题解析:(Ⅰ)解:随机变量X 的所有可能取值为0,1,2,3.()111101112344P X ⎛⎫⎛⎫⎛⎫==-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()11111111111111111123423423424P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯-⨯-+-⨯⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, ()111111111121112342342344P X ⎛⎫⎛⎫⎛⎫==-⨯⨯+⨯-⨯+⨯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()1111323424P X ==⨯⨯=.所以,随机变量X 的分布列为随机变量X 的数学期望()1111113012342442412E X =⨯+⨯+⨯+⨯=. (Ⅱ)解:设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为()()()()()()()10,11,00110P Y Z P Y Z P Y Z P Y P Z P Y P Z +====+=====+==1111111142424448=⨯+⨯=. 所以,这2辆车共遇到1个红灯的概率为1148. 【考点】离散型随机变量概率分布列及数学期望【名师点睛】求离散型随机变量概率分布列问题首先要清楚离散型随机变量的可取值有那些?当随机变量取这些值时所对应的事件的概率有是多少,计算出概率值后,列出离散型随机变量概率分布列,最后按照数学期望公式计算出数学期望.;列出离散型随机变量概率分布列及计算数学期望是理科高考数学必考问题.18. 如图,四棱锥P ABCD -,//AB CD ,90BCD ∠=︒,224AB BC CD ===,PAB ∆为等边三角形,平面PAB ⊥平面ABCD ,Q 为PB 中点.(1)求证:AQ ⊥平面PBC ; (2)求二面角B PC D --的余弦值. 【答案】(1)见解析;(2)14- 【解析】 【分析】(1)证明BC AQ ⊥及PB AQ ⊥,即可证明:AQ ⊥平面PBC ,问题得证.(2)建立空间直角坐标系,由(1)得(3AQ =-为平面PBC 的法向量,求得平面PCD 的法向量为()0,3,1n =,利用空间向量夹角的数量积表示即可求得二面角B PC D --的余弦值.【详解】(1)证明:因为//AB CD ,90BCD ∠=︒,所以AB BC ⊥,又平面PAB ⊥平面ABCD ,且平面PAB ⋂平面ABCD AB =, 所以BC ⊥平面PAB .又AQ ⊂平面PAB ,所以BC AQ ⊥,因为Q 为PB 中点,且PAB ∆为等边三角形,所以PB AQ ⊥. 又PB BC B ⋂=,所以AQ ⊥平面PBC .(2)取AB 中点为O ,连接PO ,因为PAB ∆为等边三角形,所以PO AB ⊥, 因为平面PAB ⊥平面ABCD ,所以PO ⊥平面ABCD , 所以PO OD ⊥,由224AB BC CD ===,90ABC ∠=︒, 可知//OD BC ,所以⊥OD AB .以AB 中点O 为坐标原点,分别以OA ,OD ,OP 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系O xyz -.所以()2,0,0A ,()0,2,0D,()2,2,0C -,(0,0,23P ,()2,0,0B -,所以(0,2,23DP =-,()2,0,0CD =, 由(1)知,AQ 为平面PBC 的法向量, 因为Q 为PB 的中点, 所以()1,0,3Q -, 所以(3AQ =-,设平面PCD 的法向量为(),,n x y z =,由00n CD n DP ⎧⋅=⎨⋅=⎩,得2020x y =⎧⎪⎨-+=⎪⎩,取1z =,则()0,3,1n =. 所以2cos ,33AQ nAQ n AQ n⋅==+ 14=. 因为二面角B PC D --为钝角, 所以,二面角B PC D --的余弦值为14-. 【点睛】本题主要考查了线面垂直的证明,考查转化能力及空间思维能力,还考查了利用空间求二面角的余弦值,考查计算能力,属于中档题.19. 近年来,国资委.党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:并调查了某村300名村民参与管理的意愿,得到的部分数据如下表所示:(1)求出相关系数r 的大小,并判断管理时间y 与土地使用面积x 是否线性相关? (2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?(3)若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取3人,记取到不愿意参与管理的男性村民的人数为x ,求x 的分布列及数学期望. 参考公式:1()()ni xx y y r --=∑22(),()()()()n ad bc k a b c d a c b d -=++++其中n a b c d =+++.临界值表:25.2≈【答案】(1)线性相关;(2)有;(3)详见解析. 【解析】 【分析】(1)分别求出3x =,16y =,从而521()10ii x x =-=∑,521()254ii y y =-=∑,51()()47i i i x x y y =--=∑,求出()()0.933niix x y y r --==≈∑,从而得到管理时间y 与土地使用面积x 线性相关.(2)完善列联表,求出218.7510.828K =>,从而有99.9%的把握认为村民的性别与参与管理的意愿具有相关性.(3)x 的可能取值为0,1,2,3,从该贫困县中随机抽取一名,取到不愿意参与管理的男性村民的概率为16,由此能求出X 的分布列和数学期望. 【详解】解:依题意:123458101325243,1655x y ++++++++==== 故51()()(2)(8)(1)(6)192847i x x y y =--=-⨯-÷-⨯-+⨯+⨯=∑552211()411410,()643698164254i i x x y y ==-=+++=-=++++=∑∑则5521()()0.933)(x x y y r x y--===≈-∑∑,故管理时间y 与土地使用面积x 线性相关. (2)依题意,完善表格如下:计算得2k 的观测值为22300(150505050)3005000500018.7510.828200100200100200100200100k ⨯⨯-⨯⨯⨯===>⨯⨯⨯⨯⨯⨯故有99.9%的把握认为村民的性别与参与管理的意愿具有相关性.(3)依题意,x 的可能取值为0,1,2,3,从该贫困县中随机抽取一名,则取到不愿意参与管理的男性村民的概率为16, 故35125(0)(),6216P X===1235125(1)(),6672P X C ==⨯⨯=233332515(2)(11(3)62),721666P P X X C C⎛⎫=== ⎪⎭⨯⎝==⨯= 故x 的分布列为则数学期望为12525511()012321672722162E X =⨯+⨯+⨯+⨯= (或由1(3,)6X B ~,得11()362E X =⨯=【点睛】本题主要考查相关系数的求法、独立检验的应用、离散型随机变量的分布列、数学期望的求法以及二项分布等.20. 已知椭圆C :22221(0)x y a b a b +=>>的右焦点为F ,上顶点为M ,直线FM 的斜率为,且原点到直线FM .(1)求椭圆C 的标准方程;(2)若不经过点F 的直线l :(0,0)y kx m k m =+<>与椭圆C 交于,A B 两点,且与圆221x y +=相切.试探究ABF ∆的周长是否为定值,若是,求出定值;若不是,请说明理由.【答案】(1)2213x y +=;(2)【解析】 【分析】(1)由题可知,求得直线FM 的方程0bx cy bc +-=,再由点到直线的距离公式,联立求得,,a b c 的值,即可得到椭圆的标准方程;(2)由直线与圆相切,求得221m k =+,再把直线方程与圆的方程联立,利用根与系数的关系和弦长公式,分别求得,,AB AF BF ,即计算求得三角形的周长.【详解】(1)由题可知,(),0F c ,()0,M b ,则2b c -=-,直线FM 的方程为1x yc b +=,即0bx cy bc +-==,解得1b =,c =又2223a b c =+=,所以椭圆C 的标准方程为2213x y +=.(2)因为直线():0,0l y kx m k m =+与圆221x y +=相切,1=,即221m k =+.设()11,A x y ,()22,B x y ,联立2213x y y kx m ⎧+=⎪⎨⎪=+⎩,得()()222316310k x kmx m +++-=,所以()()22223612311k m k m ∆=-+-= ()2221231240k m k -+=>,122631km x x k -+=+,()21223131m x x k -=+,所以12AB x =-=又221m k =+,所以AB =. 因为AF ==1=,同理2BF x =.所以)123AF BF x x +=+,所以ABF ∆的周长是()122331x x k +-=+则ABF ∆的周长为定值【点睛】本题主要考查了椭圆的标准方程的求解、及直线与椭圆的位置关系的应用问题,解答此类题目时通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.21. 已知函数()2ln 2f x x x ax x =-+,a ∈R .(Ⅰ)若()f x 在()0,∞+内单调递减,求实数a 的取值范围; (Ⅱ)若函数()f x 有两个极值点分别为1x ,2x ,证明:1212x x a+>. 【答案】(Ⅰ)e ,4a ⎡⎫∈+∞⎪⎢⎣⎭(Ⅱ)见证明 【解析】 【分析】(I )先求得函数的导数,根据函数在()0,∞+上的单调性列不等式,分离常数a 后利用构造函数法求得a 的取值范围.(II )将极值点12,x x 代入导函数列方程组,将所要证明的不等式转化为证明12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+,利用构造函数法证得上述不等式成立.【详解】(I )()ln 24f x x ax +'=-. ∴()f x 在()0,∞+内单调递减, ∴()ln 240f x x ax =+-≤在()0,∞+内恒成立,即ln 24x a x x ≥+在()0,∞+内恒成立. 令()ln 2x g x x x =+,则()21ln xg x x --'=, ∴当10e x <<时,()0g x '>,即()g x 在10,e ⎛⎫⎪⎝⎭内为增函数; 当1x e >时,()0g x '<,即()g x 在1,e ⎛⎫+∞ ⎪⎝⎭内为减函数. ∴()g x 的最大值为1g e e ⎛⎫= ⎪⎝⎭, ∴e ,4a ⎡⎫∈+∞⎪⎢⎣⎭(Ⅱ)若函数()f x 有两个极值点分别为1x ,2x , 则()ln 240f x x ax =+-='在()0,∞+内有两根1x ,2x ,由(I ),知e04a <<. 由1122ln 240ln 240x ax x ax +-=⎧⎨+-=⎩,两式相减,得()1212ln ln 4x x a x x -=-.不妨设120x x <<,∴要证明1212x x a+>,只需证明()()121212142ln ln x x a x x a x x +<--. 即证明()1212122ln ln x x x x x x ->-+,亦即证明12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+. 令函数.∴22(1)'()0(1)x h x x x --=≤+,即函数()h x 在(]0,1内单调递减. ∴()0,1x ∈时,有()()10h x h >=,∴2(1)ln 1x x x ->+. 即不等式12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+成立.综上,得1212x x a+>. 【点睛】本小题主要考查根据函数的单调性求参数,考查利用导数研究函数极值点问题,考查利用导数证明不等式,考查利用构造函数法证明不等式,难度较大,属于难题.选做题:考生需从第22题和第23题中选一道作答22. 在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y αα=+⎧⎨=⎩(α为参数),以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,点A 为曲线1C 上的动点,点B 在线段OA 的延长线上且满足||||8,OA OB ⋅=点B 的轨迹为2C . (1)求曲线12,C C 的极坐标方程;(2)设点M 的极坐标为32,2π⎛⎫ ⎪⎝⎭,求ABM ∆面积的最小值. 【答案】(1)1C :2cos ρθ=,2C :cos 4ρθ=; (2)2.【解析】【分析】(1)消去参数,求得曲线1C 的普通方程,再根据极坐标方程与直角坐标方程的互化公式,即可求得曲线1C 的极坐标方程,再结合题设条件,即可求得曲线2C 的极坐标方程; (2)由2OM =,求得OBM OAM ABM S S S ∆∆∆=-,求得ABM ∆面积的表达式,即可求解.【详解】(1)由曲线1C 的参数方程为1cos sin x y αα=+⎧⎨=⎩ (α为参数), 消去参数,可得普通方程为()2211x y -+=,即2220x y x +-=,又由cos ,sin x y ρθρθ==,代入可得曲线1C 的极坐标方程为2cos ρθ=,设点B 的极坐标为(,)ρθ,点A 点的极坐标为00(,)ρθ, 则0000,,2cos ,OB OA ρρρθθθ====,因为||||8OA OB ⋅=,所以08ρρ⋅=,即82cos θρ=,即cos 4ρθ=, 所以曲线2C 的极坐标方程为cos 4ρθ=.(2)由题意,可得2OM =, 则2211||||242cos 42cos 22ABM B OBM O M A A S S S OM x x θθ∆∆∆=⋅-=⋅⋅=-=--, 即242cos ABM S θ∆=-, 当2cos 1θ=,可得ABM S ∆的最小值为2.【点睛】本题主要考查了参数方程与普通方程,以及直角坐标方程与极坐标方程的互化,以及极坐标方程的应用,着重考查推理与运算能力,属于中档试题.23. 设函数()212f x x x a =-+-,x ∈R .(1)当4a =时,求不等式()9f x >的解集;(2)对任意x ∈R ,恒有()5f x a ≥-,求实数a 的取值范围.【答案】(1)712x x x ⎧⎫<->⎨⎬⎩⎭或;(2)[3,)+∞ 【解析】【分析】(1)由绝对值不等式的解法,当4a =,分11,2,222x x x ≤<<≥三种情况讨论,求解不等式即可得解; (2)由绝对值不等式的三角不等式性质可得21221(2)1x x a x x a a -+-≥---=-, 再转化为15a a -≥-恒成立,再分10a -≥和10a -<讨论即可得解. 【详解】解:(1)当4a =时,145,21()3,2245,2x x f x x x x ⎧-+≤⎪⎪⎪=<<⎨⎪-≥⎪⎪⎩, 则()9f x >等价于12459x x ⎧≤⎪⎨⎪-+>⎩或12239x ⎧<<⎪⎨⎪>⎩或2459x x ≥⎧⎨->⎩, 解得1x <-或72x >, 所以()9f x >的解集为712x x x ⎧⎫<->⎨⎬⎩⎭或. (2)由绝对值不等式的性质有:()21221(2)1f x x x a x x a a =-+-≥---=-,由()5f x a ≥-恒成立,有15a a -≥-恒成立,当5a ≥时不等式显然恒成立,当5a <时,由221(5)a a -≥-得35a ≤<,综上,a 的取值范围是[3,)+∞.【点睛】本题考查了绝对值不等式的解法及绝对值不等式的性质,主要考查了不等式恒成立问题,重点考查了分类讨论的数学思想方法,属中档题.。
2019-2020学年广西南宁三中重点班高二下学期期末数学试卷(理科) (解析版)
2019-2020学年广西南宁三中重点班高二第二学期期末数学试卷(理科)一、选择题(共12小题).1.设i为虚数单位,复数z满足z(i﹣2)=5,则在复平面内,对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是()A.甲B.乙C.丙D.丁3.用数学归纳法证明1﹣+﹣+…+﹣=++…+(n∈N*),则从“n=k到n=k+1”,左边所要添加的项是()A.B.﹣C.﹣D.﹣4.已知函数f(x)=x3﹣2x2,x∈[﹣1,3],则下列说法不正确的是()A.最大值为9B.最小值为﹣3C.函数f(x)在区间[1,3]上单调递增D.x=0是它的极大值点5.抛掷两枚均匀骰子,观察向上的点数,记事件A为“两个点数不同”,事件B为“两个点数中最大点数为4”,则P(B|A)=()A.B.C.D.6.有8件产品,其中4件是次品,从中有放回地取3次(每次1件),若X表示取得次品的次数,则P(X≤2)=()A.B.C.D.7.2020年3月31日,某地援鄂医护人员A,B,C,D,E,F6人(其中A是队长)圆满完成抗击新冠肺炎疫情任务返回本地,他们受到当地群众与领导的热烈欢迎.当地媒体为了宣传他们的优秀事迹,让这6名医护人员和接见他们的一位领导共7人站一排进行拍照,则领导和队长站在两端且BC相邻,而BD不相邻的排法种数为()A.36种B.48种C.56种D.72种8.甲、乙两队进行篮球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队不超过4场即获胜的概率是()A.0.18B.0.21C.0.39D.0.429.电路从A到B上共连接着6个灯泡(如图),每个灯泡断路的概率为,整个电路的连通与否取决于灯泡是否断路,则从A到B连通的概率是()A.B.C.D.10.已知f(x)=alnx+x2(a>0),若对任意两个不等的正实数x1,x2,都有>2恒成立,则a的取值范围是()A.(0,1]B.(1,+∞)C.(0,1)D.[1,+∞)11.已知随机变量X~N(1,σ2),且P(X≤0)=P(X≥a),则(1+ax)3•(x2+)5的展开式中x4的系数为()A.680B.640C.180D.4012.在R上的可导函数,极大值点x1∈(0,1),极小值点x2∈(1,2),则的取值范围是()A.B.C.D.二、填空题(共4小题).13.从10名大学毕业生中选3个人担任村长助理,甲、乙至少有1人入选的不同选法的种数为.14.定积分(+2x﹣)的值.15.已知(x+2)(x﹣1)4=a0+a1(x+1)+…+a5(x+1)5,则a1+a3+a5=.16.已知函数f(x)=x+e x﹣a,g(x)=1n(x+2)﹣4e a﹣x,其中e为自然对数的底数,若存在实数x0,使f(x0)﹣g(x0)=3成立,则实数a的值为.三、解答题(解答应写出文字说明.证明过程或演算步骤,第17-21题每题12分,选做题10分,共70分.)17.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,.(Ⅰ)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.18.如图,四棱锥P﹣ABCD,AB∥CD,∠BCD=90°,AB=2BC=2CD=4,△PAB为等边三角形,平面PAB⊥平面ABCD,Q为PB中点.(1)求证:AQ⊥平面PBC;(2)求二面角B﹣PC﹣D的余弦值.19.近年来,国资委、党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如表所示:土地使用面积x(单位:亩)12345管理时间y(单位:月)810132524并调查了某村300名村民参与管理的意愿,得到的部分数据如表所示:愿意参与管理不愿意参与管理男性村民15050女性村民50(1)求出相关系数r的大小,并判断管理时间y与土地使用面积x是否线性相关?(2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?(3)若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取3人,记取到不愿意参与管理的男性村民的人数为x,求x的分布列及数学期望.参考公式:,其中n=a+b+c+d.临界值表:P(K2≥k0)0.1000.0500.0250.0100.001 k0 2.706 3.841 5.024 6.63510.828参考数据:≈25.220.已知椭圆的右焦点为F,上顶点为M,直线FM的斜率为,且原点到直线FM的距离为.(1)求椭圆C的标准方程;(2)若不经过点F的直线l:y=kx+m(k<0,m>0)与椭圆C交于A,B两点,且与圆x2+y2=1相切.试探究△ABF的周长是否为定值,若是,求出定值;若不是,请说明理由.21.已知函数f(x)=xlnx﹣2ax2+x,a∈R.(Ⅰ)若f(x)在(0,+∞)内单调递减,求实数a的取值范围;(Ⅱ)若函数f(x)有两个极值点分别为x1,x2,证明:x1+x2>.选做题:考生需从第22题和第23题中选--道作答[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点O为极点,x轴非负半轴为极轴建立极坐标系,点A为曲线C1上的动点,点B在线段OA的延长线上,且满足|OA|•|OB|=8,点B的轨迹为C2.(Ⅰ)求曲线C1,C2的极坐标方程;(Ⅱ)设点M的极坐标为,求△ABM面积的最小值.[选修4-5:不等式选讲]23.设函数f(x)=|2x﹣1|+|2x﹣a|,x∈R.(1)当a=4时,求不等式f(x)>9的解集;(2)对任意x∈R,恒有f(x)≥5﹣a,求实数a的取值范围.参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设i为虚数单位,复数z满足z(i﹣2)=5,则在复平面内,对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】利用复数的运算法则、共轭复数的定义、几何意义即可得出.解:z(i﹣2)=5,则z=﹣=﹣=﹣2﹣i.则在复平面内,=﹣2+i对应的点(﹣2,1)位于第二象限.故选:B.2.某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是()A.甲B.乙C.丙D.丁【分析】此题可以采用假设法进行讨论推理,即可得出结论.解:假如甲:我没有偷是真的,乙:丙是小偷、丙:丁是小偷是假的,丁:我没有偷就是真的,与他们四人中只有一人说真话矛盾,假如甲:我没有偷是假的,那么丁:我没有偷就是真的,乙:丙是小偷、丙:丁是小偷是假的,成立,故选:A.3.用数学归纳法证明1﹣+﹣+…+﹣=++…+(n∈N*),则从“n=k到n=k+1”,左边所要添加的项是()A.B.﹣C.﹣D.﹣【分析】根据式子的结构特征,求出当n=k时,等式的左边,再求出n=k+1 时,等式的左边,比较可得所求.解:当n=k时,等式的左边为1﹣+﹣+…+﹣,当n=k+1 时,等式的左边为1﹣+﹣+…+﹣+,故从“n=k到n=k+1”,左边所要添加的项是.故选:D.4.已知函数f(x)=x3﹣2x2,x∈[﹣1,3],则下列说法不正确的是()A.最大值为9B.最小值为﹣3C.函数f(x)在区间[1,3]上单调递增D.x=0是它的极大值点【分析】对f(x)求导,分析f′(x)的正负,进而得f(x)的单调区间,极值可判断C错误,D正确,再计算出极值,端点处函数值f(1),f(3),可得函数f(x)的最大值,最小值,进而可判断A正确,B正确.解:f′(x)=3x2﹣4x,令f′(x)=3x2﹣4x>0,解得x<0或x>,所以当x∈[﹣1,0),(,3]时,f′(x)>0,函数f(x)单调递增,当x∈(0,)时,f′(x)<0,函数f(x)单调递减,C错误,所以x=0是它的极大值点,D正确,因为f(0)=0,f(3)=27﹣2×9=9,所以函数f(x)的最大值为9,A正确,因为f(﹣1)=﹣1﹣2=﹣3,f()=﹣2×=﹣,所以函数f(x)的最小值为﹣3,B正确,故选:C.5.抛掷两枚均匀骰子,观察向上的点数,记事件A为“两个点数不同”,事件B为“两个点数中最大点数为4”,则P(B|A)=()A.B.C.D.【分析】由条件概率与独立事件得:用列举法列出事件A的基本事件个数为36﹣6=30,列出事件B的基本事件有6个,即P(B|A)==,得解.解:事件A为“两个点数不同”的基本事件个数为36﹣6=30,事件B为“两个点数中最大点数为4”的基本事件有(1,4),(2,4),(3,4),(4,1),(4,2),(4,3)共6个,即P(B|A)==,故选:C.6.有8件产品,其中4件是次品,从中有放回地取3次(每次1件),若X表示取得次品的次数,则P(X≤2)=()A.B.C.D.【分析】每次取到次品的概率都是p==,X表示取得次品的次数,则X~B(3,),P(X≤2)=1﹣P(X=3),由此能求出结果.解:有8件产品,其中4件是次品,从中有放回地取3次(每次1件),则每次取到次品的概率都是p==,X表示取得次品的次数,则X~B(3,),∴P(X≤2)=1﹣P(X=3)=1﹣()3=.故选:D.7.2020年3月31日,某地援鄂医护人员A,B,C,D,E,F6人(其中A是队长)圆满完成抗击新冠肺炎疫情任务返回本地,他们受到当地群众与领导的热烈欢迎.当地媒体为了宣传他们的优秀事迹,让这6名医护人员和接见他们的一位领导共7人站一排进行拍照,则领导和队长站在两端且BC相邻,而BD不相邻的排法种数为()A.36种B.48种C.56种D.72种【分析】解:根据题意,分2步进行分析:①领导和队长站在两端,由排列数公式计算可得其排法数目,②中间5人分2种情况讨论:若BC相邻且与D相邻,若BC相邻且不与D相邻,由加法原理可得其排法数目,由分步计数原理计算可得答案.解:根据题意,分2步进行分析:①领导和队长站在两端,有A22=2种情况,②中间5人分2种情况讨论:若BC相邻且与D相邻,有A22A33=12种安排方法,若BC相邻且不与D相邻,有A22A22A32=24种安排方法,则中间5人有12+24=36种安排方法,则有2×36=72种不同的安排方法;故选:D.8.甲、乙两队进行篮球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队不超过4场即获胜的概率是()A.0.18B.0.21C.0.39D.0.42【分析】甲队不超过4场即获胜包含的情况有2种:①甲连胜3场,②前三场甲两胜一负,第四场甲胜,由此利用相互独立事件概率乘法公式、互斥事件概率加法公式能求出甲队不超过4场即获胜的概率.解:甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,甲队不超过4场即获胜包含的情况有2种:①甲连胜3场,②前三场甲两胜一负,第四场甲胜,则甲队不超过4场即获胜的概率是:P=0.6×0.6×0.5+(0.4×0.6×0.5+0.6×0.4×0.5+0.6×0.6×0.5)×0.5=0.39.故选:C.9.电路从A到B上共连接着6个灯泡(如图),每个灯泡断路的概率为,整个电路的连通与否取决于灯泡是否断路,则从A到B连通的概率是()A.B.C.D.【分析】利用对立事件概率加法公式和相互独立事件事件概率公式能求出从A到B连通的概率.解:∵电路从A到B上共连接着6个灯泡(如图),每个灯泡断路的概率为,整个电路的连通与否取决于灯泡是否断路,则从A到B连通的概率是:P=(1﹣)×[1﹣(1﹣)(1﹣)]=.故选:B.10.已知f(x)=alnx+x2(a>0),若对任意两个不等的正实数x1,x2,都有>2恒成立,则a的取值范围是()A.(0,1]B.(1,+∞)C.(0,1)D.[1,+∞)【分析】先将条件“对任意两个不等的正实数x1,x2,都有>2恒成立”转换成f(x1)﹣2x1>f(x2)﹣2x2,构造函数h(x)=f(x)﹣2x,根据增减性求出导函数,即可求出a的范围.解:对任意两个不等的正实数x1,x2,都有>2恒成立,假设x1>x2,f(x1)﹣f(x2)>2x1﹣2x2,即f(x1)﹣2x1>f(x2)﹣2x2对于任意x1>x2>0成立,令h(x)=f(x)﹣2x,h(x)在(0,+∞)为增函数,∴h'(x)=+x﹣2≥0在(0,+∞)上恒成立,+x﹣2≥0,则a≥(2x﹣x2)max=1故选:D.11.已知随机变量X~N(1,σ2),且P(X≤0)=P(X≥a),则(1+ax)3•(x2+)5的展开式中x4的系数为()A.680B.640C.180D.40【分析】先根据正态分布曲线的性质,求出a的值,然后结合两个二项式的通项求出含x4的项.解:因为随机变量X~N(1,σ2),且P(X≤0)=P(X≥a),所以a=2,代入可得,该式展开式中含x4的项为:+=40x4+640x4=680x4.故x4的系数为680.故选:A.12.在R上的可导函数,极大值点x1∈(0,1),极小值点x2∈(1,2),则的取值范围是()A.B.C.D.【分析】求出导函数,由当x∈(0,1)时取得极大值,当x∈(1,2)时取得极小值求出f′(0),f′(1),f′(2),判断出它们的符号,得到所求的范围即可.解:f′(x)=x2+ax+2b,由函数当x∈(0,1)时取得极大值,当x∈(1,2)时取得极小值:f′(0)=2b>0;f′(1)=1+a+2b<0;f′(2)=4+2a+2b>0;根据条件,画出满足条件的平面区域,而表示平面区域内的点与过P(1,2)的直线的斜率,结合图象,K AP=,K PC=1,所以∈(,1),故选:C.二、填空题(本大题共4小题,每小题5分)13.从10名大学毕业生中选3个人担任村长助理,甲、乙至少有1人入选的不同选法的种数为64.【分析】根据题意,用间接法分析:先计算从10名大学毕业生中选3个人的选法,再计算其中甲乙都没有入选的选法,分析可得答案.解:根据题意,从10名大学毕业生中选3个人担任村长助理,有C103=120种选法,其中甲乙都没有入选的选法有C83=56种,则甲、乙至少有1人入选的不同选法有120﹣56=64种;故答案为:6414.定积分(+2x﹣)的值1.【分析】采用分项积分,(+2x﹣)=()+(2x﹣),其中()表示个单位圆的面积,即;根据定积分的运算法则求出(2x ﹣)的值,再将两者相加即可得解.解:(+2x﹣)=()+(2x﹣),()表示个单位圆的面积,即;(2x﹣)==1﹣,所以原式=+(1﹣)=1.故答案为:1.15.已知(x+2)(x﹣1)4=a0+a1(x+1)+…+a5(x+1)5,则a1+a3+a5=1.【分析】由(x+2)(x﹣1)4=a0+a1(x+1)+…+a5(x+1)5,令x=0可得:2=a0+a1+…+a5;令x=﹣2可得:0=a0﹣a1+a2+…﹣a5.相减即可得出.解:由(x+2)(x﹣1)4=a0+a1(x+1)+…+a5(x+1)5,令x=0可得:2=a0+a1+…+a5;令x=﹣2可得:0=a0﹣a1+a2+…﹣a5.相减可得:2(a1+a3+a5)=2,则a1+a3+a5=1.故答案为:1.16.已知函数f(x)=x+e x﹣a,g(x)=1n(x+2)﹣4e a﹣x,其中e为自然对数的底数,若存在实数x0,使f(x0)﹣g(x0)=3成立,则实数a的值为﹣1﹣ln2.【分析】令f(x)﹣g(x)=x+e x﹣a﹣1n(x+2)+4e a﹣x,从而可证明f(x)﹣g(x)≥3,从而解得.解:令f(x)﹣g(x)=x+e x﹣a﹣1n(x+2)+4e a﹣x,令y=x﹣ln(x+2),y′=1﹣=,故y=x﹣ln(x+2)在(﹣2,﹣1)上是减函数,(﹣1,+∞)上是增函数,故当x=﹣1时,y有最小值﹣1﹣0=﹣1,而e x﹣a+4e a﹣x≥4,(当且仅当e x﹣a=4e a﹣x,即x=a+ln2时,等号成立);故f(x)﹣g(x)≥3(当且仅当等号同时成立时,等号成立);故x=a+ln2=﹣1,即a=﹣1﹣ln2.故答案为:﹣1﹣ln2.三、解答题(解答应写出文字说明.证明过程或演算步骤,第17-21题每题12分,选做题10分,共70分.)17.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,.(Ⅰ)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.【分析】(Ⅰ)随机变量X的所有可能取值为0,1,2,3,求出对应的概率值,写出它的分布列,计算数学期望值;(Ⅱ)利用相互独立事件同时发生的概率公式计算所求事件的概率值.解:(Ⅰ)随机变量X的所有可能取值为0,1,2,3;则P(X=0)=(1﹣)×(1﹣)(1﹣)=,P(X=1)=×(1﹣)×(1﹣)+(1﹣)××(1﹣)+(1﹣)×(1﹣)×=,P(X=2)=(1﹣)××+×(1﹣)×+××(1﹣)=,P(X=3)=××=;所以,随机变量X的分布列为X0123P随机变量X的数学期望为E(X)=0×+1×+2×+3×=;(Ⅱ)设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为P(Y+Z=1)=P(Y=0,Z=1)+P(Y=1,Z=0)=P(Y=0)•P(Z=1)+P(Y=1)•P(Z=0)=×+×=;所以,这2辆车共遇到1个红灯的概率为.18.如图,四棱锥P﹣ABCD,AB∥CD,∠BCD=90°,AB=2BC=2CD=4,△PAB为等边三角形,平面PAB⊥平面ABCD,Q为PB中点.(1)求证:AQ⊥平面PBC;(2)求二面角B﹣PC﹣D的余弦值.【分析】(1)推导出AB⊥BC,从而BC⊥平面PAB,进而BC⊥AQ,再求出PB⊥AQ,由此能证明AQ⊥平面PBC.(2)取AB中点为O,连接PO,推导出PO⊥AB,PO⊥平面ABCD,OD⊥AB.以AB 中点O为坐标原点,分别以OD,OB,OP所在直线为x,y,z轴,建立空间直角坐标系O﹣xyz,利用向量法能求出二面角B﹣PC﹣D的余弦值.【解答】证明:(1)因为AB∥CD,∠BCD=90°,所以AB⊥BC,又平面PAB⊥平面ABCD,且平面PAB∩平面ABCD=AB,所以BC⊥平面PAB,(1分)又AQ⊂平面PAB,所以BC⊥AQ,因为Q为PB中点,且△PAB为等边三角形,所以PB⊥AQ,又PB∩BC=B,所以AQ⊥平面PBC.解:(2)取AB中点为O,连接PO,因为△PAB为等边三角形,所以PO⊥AB,由平面PAB⊥平面ABCD,因为PO⊂平面PAB,所以PO⊥平面ABCD,所以PO⊥OD,由AB=2BC=2CD=4,∠ABC=90°,可知OD∥BC,所以OD⊥AB.以AB中点O为坐标原点,分别以OD,OB,OP所在直线为x,y,z轴,建立如图所示的空间直角坐标系O﹣xyz.所以A(0,﹣2,0),D(2,0,0),C(2,2,0),P(0,0,2),B(0,2,0),则=(﹣2,0,2),=(0,﹣2,0),因为Q为PB中点,所以Q(0,1,),由(1)知,平面PBC的一个法向量为=(0,3,),设平面PCD的法向量为=(x,y,z),由,取z=1,得=(),由cos<>===.因为二面角B﹣PC﹣D为钝角,所以,二面角B﹣PC﹣D的余弦值为﹣.19.近年来,国资委、党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如表所示:土地使用面积12345 x(单位:亩)管理时间y(单810132524位:月)并调查了某村300名村民参与管理的意愿,得到的部分数据如表所示:愿意参与管理不愿意参与管理男性村民15050女性村民50(1)求出相关系数r的大小,并判断管理时间y与土地使用面积x是否线性相关?(2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?(3)若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取3人,记取到不愿意参与管理的男性村民的人数为x,求x的分布列及数学期望.参考公式:,其中n=a+b+c+d.临界值表:P(K2≥k0)0.1000.0500.0250.0100.001 k0 2.706 3.841 5.024 6.63510.828参考数据:≈25.2【分析】(1)分别求出=3,=16,从而=10,=254,=47,求出=≈0.933,从而得到管理时间y与土地使用面积x线性相关.(2)完善列联表,求出K2=18.75>10.828,从而有99.9%的把握认为村民的性别与参与管理的意愿具有相关性.(3)x的可能取值为0,1,2,3,从该贫困县中随机抽取一名,取到不愿意参与管理的男性村民的概率为,由此能求出X的分布列和数学期望.解:(1)依题意==3,==16,故=4+1+1+4=10,=64+36+9+81+64=254,=(﹣2)×(﹣8)+(﹣1)×(﹣6)+1×9+2×8=47,则=≈0.933,故管理时间y与土地使用面积x线性相关.(2)依题意,完善表格如下:愿意参与管理不愿意参与管理总计男性村民15050200女性村民5050100总计200100300计算得K2的观测值为:===18.75>10.828,故有99.9%的把握认为村民的性别与参与管理的意愿具有相关性.(3)依题意,x的可能取值为0,1,2,3,从该贫困县中随机抽取一名,则取到不愿意参与管理的男性村民的概率为,故P(X=0)=()3=,P(X=1)==,P(X=2)==,P(X=3)==,故X的分布列为:X0123P则数学期望为:E(X)=+3×=.20.已知椭圆的右焦点为F,上顶点为M,直线FM的斜率为,且原点到直线FM的距离为.(1)求椭圆C的标准方程;(2)若不经过点F的直线l:y=kx+m(k<0,m>0)与椭圆C交于A,B两点,且与圆x2+y2=1相切.试探究△ABF的周长是否为定值,若是,求出定值;若不是,请说明理由.【分析】(1)可设F(c,0),M(0,b),由直线的斜率公式和点到直线的距离公式,解方程可得b,c,进而得到a,可得椭圆方程;(2)设A(x1,y1),B(x2,y2).(x1>0,x2>0),运用勾股定理和点满足椭圆方程,求得|AQ|=x1,同理可得|BQ|=x2,再由焦半径公式,即可得到周长为定值.解:(1)可设F(c,0),M(0,b),可得﹣=﹣,直线FM的方程为bx+cy=bc,即有=,解得b=1,c=,a=,则椭圆方程为+y2=1;(2)设A(x1,y1),B(x2,y2).(x1>0,x2>0),连接OA,OQ,在△OAQ中,|AQ|2=x12+y12﹣1=x12+1﹣﹣1=x12,即|AQ|=x1,同理可得|BQ|=x2,∴|AB|=|AQ|+|BQ|=(x1+x2),∴|AB|+|AF|+|BF|=(x1+x2)+﹣x1+﹣x2=2,∴△ABF的周长是定值2.21.已知函数f(x)=xlnx﹣2ax2+x,a∈R.(Ⅰ)若f(x)在(0,+∞)内单调递减,求实数a的取值范围;(Ⅱ)若函数f(x)有两个极值点分别为x1,x2,证明:x1+x2>.【分析】(I)令f′(x)≤0恒成立,分离参数得出4a≥,利用函数单调性求出函数g(x)=的最大值即可得出a的范围;(II)令=t,根据分析法构造关于t的不等式,再利用函数单调性证明不等式恒成立即可.解:(I)f′(x)=lnx﹣4ax+2,若f(x)在(0,+∞)内单调递减,则f′(x)≤0恒成立,即4a≥在(0,+∞)上恒成立.令g(x)=,则g′(x)=,∴当0<x<时,g′(x)>0,当x>时,g′(x)<0,∴g(x)在(0,)上单调递增,在(,+∞)上单调递减,∴g(x)的最大值为g()=e,∴4a≥e,即a≥.∴a的取值范围是[,+∞).(II)∵f(x)有两个极值点,∴f′(x)=0在(0,+∞)上有两解,即4a=有两解,由(1)可知0<a<.由lnx1﹣4ax1+2=0,lnx2﹣4ax2+2=0,可得lnx1﹣lnx2=4a(x1﹣x2),不妨设0<x1<x2,要证明x1+x2>,只需证明<,即证明>lnx1﹣lnx2,只需证明>ln,令h(x)=﹣lnx(0<x<1),则h′(x)=<0,故h(x)在(0,1)上单调递减,∴h(x)>h(1)=0,即>lnx在(0,1)上恒成立,∴不等式>ln恒成立,综上,x1+x2>.选做题:考生需从第22题和第23题中选--道作答[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点O为极点,x轴非负半轴为极轴建立极坐标系,点A为曲线C1上的动点,点B在线段OA的延长线上,且满足|OA|•|OB|=8,点B的轨迹为C2.(Ⅰ)求曲线C1,C2的极坐标方程;(Ⅱ)设点M的极坐标为,求△ABM面积的最小值.【分析】(Ⅰ)利用参数方程,普通方程,极坐标方程之间的转化关系直接求解可;(Ⅱ)先表示出△ABM的面积,再利用余弦函数的有界性求解即可.解:(Ⅰ)将曲线C1化为普通方程为(x﹣1)2+y2=1,即x2+y2﹣2x=0,又,则曲线C1的极坐标方程为ρ1=2cosθ;又根据题意有ρ1ρ2=8,可知,即为曲线C2的极坐标方程;(Ⅱ)由=,而cos2θ≤1,故△ABM面积的最小值为2.[选修4-5:不等式选讲]23.设函数f(x)=|2x﹣1|+|2x﹣a|,x∈R.(1)当a=4时,求不等式f(x)>9的解集;(2)对任意x∈R,恒有f(x)≥5﹣a,求实数a的取值范围.【分析】(1)将a=4代入f(x)中,然后将f(x)写为分段函数的形式,再根据f(x)>9,分别解不等式可得解集;(2)利用绝对值三角不等式求出f(x)的最小值,然后根据对任意x∈R,恒有f(x)≥5﹣a,可得f(x)min≥5﹣a,再解关于a的不等式可得a的范围.解:(1)当a=4时,f(x)=|2x﹣1|+|2x﹣4|=.∵f(x)>9,∴或,∴x<﹣1或,∴不等式的解集为;(2)∵f(x)=|2x﹣1|+|2x﹣a|≥|(2x﹣1)﹣(2x﹣a)|=|a﹣1|,∴f(x)min=|a﹣1|.∵对任意x∈一、选择题,恒有f(x)≥5﹣a,∴f(x)min≥5﹣a,即|a﹣1|≥5﹣a,∴a≥3,∴a的取值范围为[3,+∞).。
2019-2020学年广西壮族自治区南宁市第三中学高二12月月考数学(理)试题(解析版)
2019-2020学年广西壮族自治区南宁市第三中学高二12月月考数学(理)试题一、单选题 1.已知集合,,则( )A .B .C .D .【答案】C 【解析】依题意得:,所以,故,故选C.2.若双曲线()222213x y a o a -=>的离心率为2,则a 等于( )A .2B 3C .32D .1【答案】D【解析】由222231323x y c a b e a a 可知虚轴,而离心率+-=====,解得a=1或a=3,参照选项知而应选D.3.若实数x ,y 满足2211y x y x y x ≥-⎧⎪≥-+⎨⎪≤+⎩,则3z x y =-的最大值是A .2-B .1-C .5D .3【答案】C【解析】画出可行域如下图所示,由图可知,目标函数在点()3,4处取得最大值为5.4.一个几何体的三视图如图所示,则该几何体的体积为( )A .1B .13C .12D .32【答案】B【解析】由三视图确定几何体的直观图,根据棱锥的体积公式求解即可. 【详解】根据三视图得到的几何体如上图所示,该几何体是四棱锥,底面积111S =⨯=,高1h =,四棱锥的体积11111333V Sh ==⨯⨯=,故选:B .【点睛】本题主要考查了已知三视图求几何体的体积,属于基础题. 5.“x a >”是“x a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【解析】将两个条件相互推导,根据能否推导的情况选出正确选项. 【详解】当“x a >”时,如1,1x a ==-,x a =,故不能推出“x a >” .当“x a >”时,必然有“x a >”.故“x a >”是“x a >”的必要不充分条件. 【点睛】本小题主要考查充分、必要条件的判断,考查含有绝对值的不等式,属于基础题. 6.已知22log 3a =,4logb π=,30.6c -=a ,b ,c 的大小关系为() A .b c a >> B .c b a >>C .b a c >>D .c a b >>【答案】B【解析】采用“0,1”分段法,找到小于0、在0~1之间和大于1的数,由此判断出三者的大小关系. 【详解】因为010.6c >=,401log 4b <<=,0a <,所以c b a >>.故选B. 【点睛】本题考查指数与对数值的大小比较,考查运算求解能力,属于基础题.7.某校高一年级从815名学生中选取30名学生参加庆祝建党98周年的大合唱节目,若采用下面的方法选取:先用简单随机抽样从 815 人中剔除5人,剩下的810人再按系统抽样的方法抽取,则每人入选的概率( ) A .不全相等 B .均不相等 C .都相等,且为6163D .都相等,且为127【答案】C【解析】抽样要保证机会均等,由此得出正确选项. 【详解】抽样要保证机会均等,故从815名学生中抽取30名,概率为306815163=,故选C. 【点睛】本小题主要考查简单随机抽样、系统抽样等抽样方法的概念,属于基础题.8.设()f x 与()g x 是定义在同一区间[],a b 上的两个函数,若函数()()y f x g x =-在[],x a b ∈上有两个不同的零点,则称()f x 和()g x 在[],a b 上是关联函数,[],a b 称为关联区间,若()234f x x x =-+与()2g x x m =+在[]0,3上是关联函数,则m 的取值范围是( ) A .9,4⎛⎫-+∞ ⎪⎝⎭B .9,24⎛⎤-- ⎥⎝⎦C .(],2-∞-D .[]1,0-【答案】B【解析】根据题意,得到()254h x x x m =-+-在[]0,3上有两个不同的零点,故有()()0030502h h h ⎧⎪≥⎪⎪≥⎨⎪⎛⎫⎪< ⎪⎪⎝⎭⎩,由此求得m 的取值范围. 【详解】∵()234f x x x =-+与()2g x x m =+在[]0,3上是“关联函数”,故函数()()()254y h x f x g x x x m ==-=-+-在[]0,3上有两个不同的零点, 故有()()0030502h h h ⎧⎪≥⎪⎪≥⎨⎪⎛⎫⎪< ⎪⎪⎝⎭⎩∴402025254042m m m ⎧⎪-≥⎪--≥⎨⎪⎪-+-<⎩∴924m -<≤- 故选:B 【点睛】本题主要考查了函数与方程的应用,属于中档题.9.已知数列{}n a 满足11a =,*12()n n n a a n N +⋅=∈,n S 是数列{}n a 的前n 项和,则( ) A .201820182a =B .10092018323S =⋅- C .数列21{}n a -是等差数列 D .数列{}n a 是等比数列【答案】B【解析】分析:由11a =,()*12n n n a a n N +⋅=∈可知数列{}n a 隔项成等比,再结合等比的有关性质即可作出判断.详解:数列{}n a 满足11a =,()*12n n n a a n N +⋅=∈, 当n 2≥时,112n n n a a --⋅=两式作商可得:112n n a a +-=, ∴数列{}n a 的奇数项135a a a L ,,,,成等比, 偶数项246a a a L ,,,,成等比, 对于A 来说,20181100810092201822222aa -=⨯=⨯=,错误;对于B 来说,()()2018132017242018S a a a a a a L L =+++++++()()1009100910091122123231212⨯-⨯-=+=⋅---,正确;对于C 来说,数列{}21n a -是等比数列 ,错误; 对于D 来说,数列{}n a 不是等比数列,错误, 故选:B点睛:本题考查了由递推关系求通项,常用方法有:累加法,累乘法,构造等比数列法,取倒数法,取对数法等等,本题考查的是隔项成等比数列的方法,注意偶数项的首项与原数列首项的关系.10.已知1F ,2F 是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且21PF PF >,椭圆的离心率为1e ,双曲线的离心率为2e ,若112PF F F =,则2133e e +的最小值为( ) A .623+B .622+C .8D .6【答案】C【解析】由椭圆的定义以及双曲线的定义、离心率公式化简2133e e +,结合基本不等式即可求解. 【详解】设椭圆的长半轴长为a ,双曲线的半实轴长为a ',半焦距为c , 则1ce a=,2c e a =',设2PF m =由椭圆的定义以及双曲线的定义可得:1222m PF PF a a c +=⇒=+,2122mPF PF a a c ''-=⇒=- 则2133e e +33322633322m m c c a c c c m m c a c c c c ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭=+=+=++'⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭3262832m c c m c c ⎛⎫- ⎪⎝⎭≥+⋅=⎛⎫- ⎪⎝⎭当且仅当73a c =时,取等号. 故选:C . 【点睛】本题主要考查了椭圆的定义以及双曲线的定义、离心率公式,属于中等题.11.设棱锥M ABCD -的底面是正方形,且,MA MD MA AB =⊥,AMD △的面积为1,则能够放入这个棱锥的最大球的半径为 A .23- B 21C .212-D .313-【答案】B【解析】设球O 是与平面MAD 、平面AC 、平面MBC 都相切的球,然后找出球心所在的三角形,设AD EF a ==,求出内切圆半径然后利用基本不等式即可求出最大值.【详解】解:AB AD ⊥Q ,AB MA ⊥,AB ∴⊥平面MAD ,由此,面MAD ⊥面ABCD . 记E 是AD 的中点,从而ME AD ⊥.ME ∴⊥平面ABCD ,ME EF ⊥.设球O 是与平面MAD 、平面ABCD 、平面MBC 都相切的球. 不妨设O ∈平面MEF ,于是O 是MEF V 的内心. 设球O 的半径为r ,则2MEFS r EF EM MF=++V设AD EF a ==,1AMD S =V Q所以2ME a ∴=,222MF a a ⎛⎫=+ ⎪⎝⎭所以222122222r a a a a =≤=+⎛⎫+++ ⎪⎝⎭.当且仅当2a a=,即2a =.∴当2-.AD ME==时,满足条件的最大半径为21【点睛】涉及球与棱柱、棱锥的切接问题时一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系,注意多边形内切圆半径与面积和周长间的关系;多面体内切球半径与体积和表面积间的关系,属于中档题.12.定义在上的函数对任意都有,且函数的图象关于成中心对称,若满足不等式,则当时,的取值范围是()A.B.C.D.【答案】D【解析】试题分析:由已知条件知函数为奇函数且在上为减函数,由有,所以,,若以为横坐标,为纵坐标,建立平面直角坐标系,如图所示,阴影部分为不等式表示的平面区域,即及其内部,,令,则,求出,所以,解得,∴的取值范围是,选D.【考点】1.函数的基本性质;2.线性规划.【方法点睛】本题主要考查了函数的性质:单调性和奇偶性,以及线性规划的相关知识,属于中档题. 利用已知条件得出函数是上的减函数,由函数的图象关于成中心对称,根据图象的平移,得出的图象关于原点成中心对称,所以为奇函数,解不等式,得出,画出不等式组表示的平面区域,,则,通过图形求关于的一次函数的斜率得出的范围,从而求出的范围.二、填空题13.已知x ,y 满足方程(x ﹣2)2+y 2=1,则yx的最大值为__________ 【答案】3 【解析】求出圆的圆心坐标,圆的半径,利用圆心到直线的距离等于半径求出k 的值即可. 【详解】x ,y 满足方程(x ﹣2)2+y 2=1,圆的圆心(2,0),半径为1, 设y k x =,即kx ﹣y =0,要求x ,y 满足方程(x ﹣2)2+y 2=1,yx的最大值, 就是求圆的圆心到直线的距离等于半径,即:2211k k=+,解得k 3=±,所求y x 的最大值为:3.故答案为33. 【点睛】本题是基础题,考查直线与圆的位置关系,考查了表达式yx的几何意义,考查计算能力. 14.若方程表示焦点在轴上的椭圆,则实数的取值范围为__★__ 【答案】【解析】根据椭圆的标准方程及焦点在轴上,可得k 的不等式组,解不等式组即可得k 的取值范围。
2019-2020学年南宁市数学高二第二学期期末达标测试试题含解析
2019-2020学年南宁市数学高二第二学期期末达标测试试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意)1.已知1F ,2F 是双曲线的左、右焦点,点1F 关于渐近线的对称点恰好落在以2F 为圆心,2OF 为半径的圆上,则该双曲线的离心率为( ) A .2 B .3C .2D .3【答案】C 【解析】 【分析】设点1F 关于渐近线的对称点为点G ,该渐近线与1F G 交点为H ,由平面几何的性质可得2OF G ∆为等边三角形,设1F OH α∠=,则有tan b a α=;又223F OG ππα∠=-=,可得3πα=,代入离心率21b e a ⎛⎫=+ ⎪⎝⎭即可得出结果.【详解】设点1F 关于渐近线的对称点为点G ,该渐近线与1F G 交点为H ,所以OH 为线段1F G 的中垂线,故122OF OG OF F G ===,所以2OF G ∆为等边三角形,设1F OH α∠=,则有tan b a α=;又223F OG ππα∠=-=,可得3πα=, 所以离心率2211tan 23b e a π⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭.故选:C 【点睛】本题主要考查了双曲线的几何性质以及渐近线和离心率,考查了学生逻辑推理与运算求解能力. 2.从a 、b 、c 中任取两个字母排成一列,则不同的排列种数为( ) A .3 B .4C .5D .6【答案】D 【解析】【分析】从a 、b 、c 中任取两个字母排成一列,直接利用排列数公式可得出结果. 【详解】由排列数的定义可知,从a 、b 、c 中任取两个字母排成一列,则不同的排列种数为236A =.故选:D. 【点睛】本题考查排列数的应用,考查计算能力,属于基础题.3.某县城中学安排4位教师去3所不同的村小支教,每位教师只能支教一所村小,且每所村小有老师支教.甲老师主动要求去最偏远的村小A ,则不同的安排有( ) A .6 B .12 C .18 D .24【答案】B 【解析】 【分析】按照村小A 安排一个人和安排两个人两种情况分类讨论,按先分组后排序的方法,计算出不同的安排总数. 【详解】村小A 安排一人,则有2232C A ;村小A 若安排2人,则有1232C A .故共有1212323212C A C A +=.选B.【点睛】本小题主要考查分类加法计算原理,考查简单的排列组合计算问题,属于基础题. 4.如图,向量OZ uuu r对应的复数为Z ,则复数2z的共轭复数是( )A .1i +B .1i -C .1i -+D .1i --【答案】B 【解析】 【分析】由已知求得z ,代入2z,再由复数代数形式的乘除运算化简得答案. 【详解】解:由图可知,1z i =-,∴222(1)11(1)(1)i i z i i i +===+--+, ∴复数2z的共轭复数是1i -. 故选:B . 【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题. 5.求函数2y x =- )A .[0,+∞)B .[178,+∞) C .[54,+∞) D .[158,+∞) 【答案】D 【解析】 【分析】=t ,t ≥0,则x =t 2+1,y =2t 2﹣t+2,由此再利用配方法能求出函数y =2x【详解】=t ,t ≥0,则x =t 2+1, ∴y =2t 2﹣t+2=2(t 14-)2151588+≥, 故选:D . 【点睛】本题考查函数的值域的求法,是基础题,解题时要注意换元法的合理运用. 6.已知随机变量X 满足条件X ~(),B n p ,且()()12125E X ,D X ==,那么n 与p 的值分别为 A .4165, B .2205,C .4155,D .3125,【答案】C 【解析】 【分析】根据二项分布的均值与方差公式列方程组解出n 与p 的值. 【详解】∵X ~B (n ,p )且()()12125E X D X ==,, ∴()121215np np p =⎧⎪⎨-=⎪⎩,解得n =15,p 45=故选C . 【点睛】本题考查了二项分布的均值与方差公式的应用,考查了运算能力,属于基础题. 7.若,则不等式的解集为A .B .C .D .【答案】D 【解析】 【分析】由绝对值三角不等式的性质得出,由,得出,借助正弦函数图象可得出答案。
广西壮族自治区南宁市示范性普通中学2019-2020学年高三数学理下学期期末试题含解析
广西壮族自治区南宁市示范性普通中学2019-2020学年高三数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 阅读右侧程序框图,输出的结果的值为A. B. C. D.参考答案:C2. 已知x0是函数f(x)=+lnx的一个零点,若x1∈(1,x0),x2∈(x0,+∞),则()A.f(x1)<0,f(x2)<0 B.f(x1)>0,f(x2)>0C.f(x1)>0,f(x2)<0 D.f(x1)<0,f(x2)>0参考答案:D略3. 设函数,则的单调减区间(▲)A. B. , C. D.参考答案:A略4. 已知θ∈(,π),sinθ=,则sin(θ+)等于()A.B.﹣C.D.﹣参考答案:D【考点】两角和与差的正弦函数.【分析】利用同角三角函数的基本关系求得cosθ的值,再利用诱导公式求得要求式子的值.【解答】解:∵θ∈(,π),sinθ=,∴cosθ=﹣=﹣,则sin(θ+)=cosθ=﹣,故选:D.5. 若复数(i是虚数单位)在复平面内对应的点在第一象限,则实数a的取值范围是()A.(-∞,-1) B.(1,+∞) C.(-1,1) D.(-∞,-1)∪(1,+∞)参考答案:C分析:先化简复数z,再根据z在复平面内对应的点在第一象限得到a的不等式,解不等式即得a的取值范围.详解:由题得,因为z在复平面内对应的点在第一象限,所以故答案为:C6. 某几何体的三视图如图所示,若这个几何体的顶点都在球O的表面上,则球O的表面积是()A.2πB.4πC.5πD.20π参考答案:C【考点】棱柱、棱锥、棱台的体积.【分析】由已知中的三视图可得:该几何体为三棱锥,其外接球相当于以俯视图为底面,高为1的三棱柱的外接球,进而得到答案.【解答】解:由已知中的三视图可得:该几何体为三棱锥,其外接球相当于以俯视图为底面,高为1的三棱柱的外接球,底面的外接圆半径r=1,球心到底面的距离d=,故几何体的外接球半径,故几何体的外接球表面积为:S=4πR2=5π,故选:C【点评】本题考查的知识点是球内接多面体,球的体积和表面积,简单几何体的三视图,难度中档.7. 在△ABC中,角A,B,C的对边分别为a,b,c,且b2﹣a2=ac,则( )A.B=2C B.B=2A C.A=2C D.C=2A参考答案:B考点:余弦定理.专题:计算题;转化思想;分析法;解三角形.分析:利用余弦定理,正弦定理化简已知可得2sinAcosB=sinC﹣sinA,根据三角形内角和定理及三角函数恒等变换的应用解得sin(B﹣A)=sinA,即B﹣A=A或B﹣A=180﹣A,从而可得B=2A.解答:解:∵cosB====∴2sinAcosB=sinC﹣sinA=sin(A+B)﹣sinA=sinAcosB﹣cosAsinB﹣sinA移项,整理,得sin(B﹣A)=sinA即B﹣A=A或B﹣A=180﹣A所以B=2A 或 B=180(舍).故选:B.点评:本题主要考查了正弦定理,余弦定理,三角形内角和定理,三角函数恒等变换的应用,属于中档题8. 已知函数f(x)=Acos(ωx+)的图象如图所示,f()=-,则f(0)=(A)-(B)-(C)(D)参考答案:C略9. 已知,,,则A.B.C.D.参考答案:B从题意得:,,。
2019-2020学年南宁市名校数学高二第二学期期末学业质量监测试题含解析
2019-2020学年南宁市名校数学高二第二学期期末学业质量监测试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意)1.已知a r ,b r 是平面内两个互相垂直的单位向量,若向量c r 满足()()0a c b c -⋅-=r r r r,则c r 的最大值是( )A .1B .2C .D .2.如图所示,程序框图输出的某一实数y 中,若32y =,则菱形框中应填入( )A .11i ≤B .11i ≥C .13i ≥D .13i ≤3.请观察这些数的排列规律,数字1位置在第一行第一列表示为(1,1),数字14位置在第四行第三列表示为(4,3),根据特点推算出数字2019的位置A .(45,44)B .(45,43)C .(45,42)D .该数不会出现4. “0x =”是“复数()()21z x x x i x R =-+-∈为纯虚数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.已知复数z 满足2z zi i +=-(i 为虚数单位),则z =( )A 5B .2C 10D .16.已知二次函数2()f x x ax b =--在区间[1,1]-内有两个零点,则22H a b =+的取值范围为( ) A .(0,2]B .2]C .(0,1]D .(3⎤⎦7. “3a =”是“圆O :222x y +=与圆C :()()228x a y a -+-=外切”的( ) A .必要不充分条件 B .充分不必要条件C .充要条件D .既不充分条件也不必要条件8.已知函数()()()10xf x eax ax a a =--+≥,若有且仅有两个整数()1,2i x i =,使得()0i f x <,则a的取值范围为( )A .1,121e ⎡⎫⎪⎢-⎣⎭B .21,12e -⎡⎫⎪⎢-⎣⎭C .211,22e -⎛⎤⎥-⎝⎦D .11,212e ⎛⎤⎥-⎝⎦ 9.某批零件的尺寸X 服从正态分布()210,N σ,且满足()198P x <=,零件的尺寸与10的误差不超过1即合格,从这批产品中抽取n 件,若要保证抽取的合格零件不少于2件的概率不低于0.9,则n 的最小值为( ) A .7 B .6C .5D .410.已知21zi i=++,则复数z =( )AB .2C .13i -D .13i +11.已知单位向量,OA OB u u u r u u u r 的夹角为60o ,若2OC OA OB u u u r u u u r u u u r=+,则ABC ∆为( ) A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形12.给出以下四个说法:①残差点分布的带状区域的宽度越窄相关指数越小②在刻画回归模型的拟合效果时,相关指数2R 的值越大,说明拟合的效果越好;③在回归直线方程0.212ˆy x =+中,当解释变量x 每增加一个单位时,预报变量ˆy 平均增加0.2个单位;④对分类变量X 与Y ,若它们的随机变量2K 的观测值k 越小,则判断“X 与Y 有关系”的把握程度越大.其中正确的说法是()A .①④B .②④C .①③D .②③二、填空题(本题包括4个小题,每小题5分,共20分)13.已知曲线1xe y x a=+在1x =处的切线l 与直线230x y +=垂直,则实数a 的值为______.14.已知复数z =(m +1)+(m ﹣2)i 是纯虚数(i 为虚数单位),则实数m 的值为_______. 15.已知随机变量X 服从正态分布()24,N σ,()60.78P X <=,则()2P X ≤=__________.16.()()2221z m m i m R =-+-∈,其共轭复数z 对应复平面内的点在第二象限,则实数m 的范围是____.三、解答题(本题包括6个小题,共70分) 17.已知函数()f x 2x a x 1,a R =-+-∈.(1)若不等式()f x 4x 1≤--无解,求实数a 的取值范围; (2)当a 2<时,函数()f x 的最小值为2,求实数a 的值.18.ABC ∆的内角,,A B C 的对边分别为,,,a b c 已知sin 0,2A A a b +===.(1)求角A 和边长c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD ∆的面积.19.(6分)在平面直角坐标系xOy 中,直线l 的参数方程为325425x t y t⎧=-+⎪⎪⎨⎪=+⎪⎩(t 为参数),它与曲线C :(y -2)2-x 2=1交于A 、B 两点. (1)求|AB|的长;(2)在以O 为极点,x 轴的正半轴为极轴建立极坐标系,设点P 的极坐标为32,4π⎛⎫⎪⎝⎭,求点P 到线段AB 中点M 的距离.20.(6分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 的参数方程为cos 2sin x a ty t =⎧⎨=⎩(t 为参数,0a >),已知直线l 的方程为40x y -+=.(1)设P 是曲线C 上的一个动点,当2a =时,求点P 到直线l 的距离的最小值; (2)若曲线C 上的所有点均在直线l 的右下方,求a 的取值范围.21.(6分)已知数列{}n a 满足12a =,()12n n a a n N *+=∈,设()23log 2n n b a n N *=-∈,数列{}n c 满足n n n c a b =.(1)求证:数列{}n b 为等差数列; (2)求数列{}n c 的前n 项和n S .22.(8分)若展开式66nx x 中第二、三、四项的二项式系数成等差数列. (1)求n 的值及展开式中二项式系数最大的项; (2)此展开式中是否有常数项,为什么?参考答案一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.C 【解析】 【分析】 【详解】 试题分析:由于垂直,不妨设,,,则,,表示到原点的距离,表示圆心,为半径的圆,因此的最大值,故答案为C .考点:平面向量数量积的运算. 2.B 【解析】分析:由已知中的程序语句可知,该程序功能是利用循环结构计算并输出实数对(,)x y ,模拟程序的运行过程,分析循环中各变量的变化情况,可得答案. 详解:由题意,当1,1i y ==时, 第1次循环,不满足条件,3,2i y ==; 第2次循环,不满足条件,5,4i y ==; 第3次循环,不满足条件,7,8i y ==; 第4次循环,不满足条件,9,16i y ==;第5次循环,不满足条件,11,32i y ==,此时输出结果32y =, 所以判断框填写的条件应为11i ≥,故选B .点睛:本题主要考查了循环结构的程序框图的判断条件的添加问题,其中极大中应模拟程序框图的运行过程,把握程序框图的运算功能是解答的关键,着重考查了推理与运算能力. 3.C 【解析】 【分析】由所给数的排列规律得到第n 行的最后一个数为2n ,然后根据2452025=可推测2019所在的位置. 【详解】由所给数表可得,每一行最后一个数为2221,2,3,L , 由于22441936,452025==,2244201945<<, 所以故2019是第45行的倒数第4个数, 所以数字2019的位置为(45,42). 故选C . 【点睛】(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识. (2)解决归纳推理问题的基本步骤①发现共性,通过观察特例发现某些相似性(特例的共性或一般规律); ②归纳推理,把这种相似性推广为一个明确表述的一般命题(猜想). 4.C 【解析】分析:首先求得复数z 为纯虚数时x 是值,然后确定充分性和必要性即可. 详解:复数()()21z x x x i x R =-+-∈为纯虚数,则:2010x x x ⎧-=⎨-≠⎩,即:011x x x ==⎧⎨≠⎩或,据此可知0x =, 则“0x =”是“复数()()21z x x x i x R =-+-∈为纯虚数”的充要条件本题选择C 选项.点睛:本题主要考查充分必要条件的判断,已知复数类型求参数的方法,意在考查学生的转化能力和计算求解能力. 5.C 【解析】 【分析】 整理得到21iz i-=+,根据模长的运算可求得结果. 【详解】由2z zi i +=-得:21iz i -=+21i z i -∴===+ 本题正确选项:C 【点睛】本题考查向量模长的求解,属于基础题. 6.A【解析】 【分析】先求出二次函数2()f x x ax b =--在区间[1,1]-内有两个零点,所需要的条件,然后再平面直角坐标系内,画出可行解域,然后分析得出22H a b =+的取值范围. 【详解】因为二次函数2()f x x ax b =--在区间[1,1]-内有两个零点,所以有:2(1)010(1)010*********f a b f a b a aa b ≥+-⎧⎧⎪⎪-≥--⎪⎪⎪⎪⇒⎨⎨-<-<-<-<⎪⎪⎪⎪∆>+>⎪⎪⎩⎩……,对应的平面区域为下图所示:则令2211120102222m a b b a m m m =+∴=-+∴<≤∴<≤,则22H a b =+的取值范围为(0,2],故本题选A. 【点睛】本题考查了一元二次方程零点分布问题,正确画出可行解域是解题的关键. 7.B 【解析】 【分析】由圆O :222x y +=与圆C :()()228x a y a -+-=外切可得,圆心(0,0)O 到圆心(,)C a a 的距离是3 2. 求出a 的值,然后判断两个命题之间的关系。
2019-2020学年南宁市数学高二第二学期期末达标测试试题含解析
2019-2020学年南宁市数学高二第二学期期末达标测试试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意)1.若偶函数()f x 在(],0-∞上单调递减,()2log 3a f =,()4log 5b f =,232c f ⎛⎫= ⎪⎝⎭,则a 、b 、c满足( ) A .a b c <<B .b a c <<C .c a b <<D .c b a <<2.设随机变量ξ服从正态分布2(2,)N σ,若(2)0.1P ξ<-=,则函数3221()23f x x x x ξ=++有极值点的概率为( ) A .0.2B .0.3C .0.4D .0.53.已知某几何体的三视图如图所示,其中正视图和侧视图都由半圆及矩形组成,俯视图由正方形及其内切圆组成,则该几何体的表面积等于( )A .488π+B .484π+C .648π+D .644π+4.设2{|430}A x x x =-+…,{|(32)0}B x ln x =-<,则(A B =I)A .3(1,)2B .(1,3]C .3(,)2-∞D .3(2,3]5.在某班进行的歌唱比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连着出场,且女生甲不能排在第一个,那么出场顺序的排法种数为( ) A .30B .36C .60D .726.函数3222x xx y -=+在[]6,6-的图像大致为 A . B .C .D .7.已知x ,y 取值如下表:x0 1 4 5 6 8y1.3 1.8 5.66.17.4 9.3从所得的散点图分析可知:y 与x 线性相关,且0.95y x a =+,则a 等于( ) A .1.30B .1.45C .1.65D .1.808.已知高为 H 的正三棱锥 P ABC -的每个顶点都在半径为R 的球O 的球面上,若二面角 P AB C --的正切值为 4 ,则RH=( ) A .37B .35C .59D .589.已知12P(B|A)=,P(A)=35,则()P AB 等于( ) A .56B .910C .215D .11510.已知集合{}2|160A x x =-<,{}5,0,1B =-,则( )A .AB =∅I B .B A ⊆C .{}0,1A B =ID .A B ⊆11.图1和图2中所有的正方形都全等,将图1中的正方形放在图2中的①②③④某一位置,所组成的图形能围成正方体的概率是( )A .B .C .D .12.命题:p 若0x <,则ln(1)0x +<,q 是p 的逆命题,则( ) A .p 真,q 真B .p 真,q 假C .p 假,q 真D .p 假,q 假二、填空题(本题包括4个小题,每小题5分,共20分)13.函数22,1()log ,1x x f x x x ⎧<=⎨-≥⎩的值域为____________.14.正方体1111A B C D ABCD -的边长为3,P 是正方体表面上任意一点,集合{|2}P PA Ω=≤,满足Ω的点P 在正方体表面覆盖的面积为_________;15.已知等比数列{}n a 是递减数列,n S 是{}n a 的前n 项和,若12,a a 是方程22310x x -+=的两个根,则5S =__________.16.若901(1)x a a x =+-+2929(1)(1)a x a x -++-L ,则3a 的值为__________.三、解答题(本题包括6个小题,共70分) 17.观察下列等式:311=; 33123+=;3331236++=; 3333123410+++=; 333331234515++++=;(1)猜想第n(n ∈N *)个等式; (2)用数学归纳法证明你的猜想.18.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥平面ABCD ,2AB =,60ABC ∠=o ,E ,F 分别是BC ,PC 的中点.(Ⅰ)证明:AE PD ⊥;(Ⅱ)设H 为线段PD 上的动点,若线段EH 长的最小值为5,求直线PD 与平面AEF 所成的角的余弦值.19.(6分)若数列{}n a 的前n 项和为n S ,且13a =,()211324222n n S S n n n -=+-+≥. (1)求2a ,3a ,4a ;(2)猜想数列{}n a 的通项公式,并用数学归纳法加以证明.20.(6分)已知函数22()3ln ()f x x ax a x a R =-+∈.(Ⅰ)求()f x 的单调区间;(Ⅱ)若对于任意的2x e ≥(e 为自然对数的底数),()0f x ≥恒成立,求a 的取值范围. 21.(6分)已知圆C 经过P(4,-2),Q(-1,3)两点,且圆心C 在直线x +y -1=0上. (1)求圆C 的方程;(2)若直线l ∥PQ ,且l 与圆C 交于点A ,B 且以线段AB 为直径的圆经过坐标原点,求直线l 的方程. 22.(8分)已知函数()sin xxf x e =(1)求函数()f x 在点()()0,0M f 处的切线方程;(2)若()0f x k -≤在[]0,x π∈时恒成立,求k 的取值范围。
广西南宁市第三中学2019-2020学年高二下学期期中考试数学(理)试题Word版含答案
广西南宁市第三中学2019-2020学年下学期期中考试高二数学(文)试题一、选择题(每题5分,共60分)1.设集合A ={y |y =2x ,x ∈R },B ={x |x 2-1<0},则A ∪B =( )A .(-1,1)B .(0,1)C .(-1,+∞)D .(0,+∞)2.若a ,b 都是实数,则“a -b>0”是“a 2-b 2>0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.若a >b ,则下列不等式中成立的是( )A.1a <1bB .a 3>b 3C .a 2>b 2D .a >|b |4.若实数a ,b 满足1a +2b=ab ,则ab 的最小值为( )A. 2 B .2 C .2 2 D .45.下列函数中,最小值为4的是( )A .y =x +4xB .y =sin x +4sin x(0<x <π) C .y =e x +4e -xD .y =x 2+1+2x 2+16.一个频数分布表(样本容量为30)不小心被损坏了一部分(如图),若样本中数据在[20,60)内的频率为0.8,则样本中在[40,60)内的数据个数为( )A .15B .16C .17D .197.某家庭连续五年收入x 与支出y 如下表:年份 2012 2013 2014 2015 2016 收入(万元) 8.2 8.6 10.0 11.3 11.9 支出(万元)6.27.58.08.59.8画散点图知:y 与x 线性相关,且求得的回归方程是y bx a =+,其中0.76b =,则据此预计该家庭2017年若收入15万元,支出为( )万元.A .11.4B .11.8 C.12.0 D .12.28.已知()f x 的导函数()f x '的图象如图所示,那么()f x 的图象最有可能是图中的( )9.设两个变量x 和y 之间具有线性相关关系,它们的相关系数是r ,y 关于x 的回归直线的回归系数为ˆb,回归截距是ˆa,那么必有( ) A .ˆb与r 的符号相同 B .ˆa与r 的符号相同 C .ˆb与r 的符号相反 D .ˆa与r 的符号相反 10.如图的5个数据,去掉D (3,10)后,下列说法错误..的是( ) A .相关系数r 变大 B .残差平方和变大C .相关指数R 2变大D .解释变量x 与预报变量y 的相关性变强 11.下列命题,正确的是( ) A .命题“0x R ∃∈,使得2010x -<”的否定是“x R ∀∈,均有210x ->”B .命题“存在四边相等的空间四边形不是正方形”,该命题是假命题 C. 命题“若22x y =,则x y =”的逆否命题是真命题D .命题“若3x =,则2230x x --=”的否命题是“若3x ≠,则2230x x --≠”12.设函数()f x 在R 上存在导数()f x ',对任意的x R ∈有2()()f x f x x +-=且在(0,)+∞上,()f x x >',若(2)()22f a f a a --≥-,则实数a 的范围是( )A .(,1]-∞B .(1,)+∞C . (1,2)D .(1,3)-二、填空题(每题5分,共20分) 13.不等式1<|x +1|<3的解集为________.14.已知a 1≤a 2,b 1≥b 2,则a 1b 1+a 2b 2与a 1b 2+a 2b 1的大小关系是________.15.已知函数f (x )=|x +1|+|x -a |(a >0),若不等式f (x )≥6的解集为(-∞,-2]∪[4,+∞),则a 的值为__________.16.已知直线l 过点(2,1)P ,与,x y 轴的正半轴相交于,A B 两点,三角形AOB (O 为坐标原点)的内切圆半径的最大值为_______. 三、解答题(6小题,共70分)17. (本小题12分)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量m =(a ,3b )与n =(cos A ,sin B )平行. (1)求A ;(2)若a =7,b =2,求△ABC 的面积.OFEDCBA18.(本小题满分12分)国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地,目前德国汉堡,美国波士顿等申办城市因市民担心赛事费用超支而相继退出,某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:(1)根据已知数据,把表格数据填写完整;(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运有关?(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.附:()()()()()22n ad bcK a b c d a c b d -=++++ ,n a b c d =+++ ,19.(12分)在四棱锥ABCD E -中,底面ABCD 是正方形,AC 与BD 交于点O ,⊥EC 底面ABCD ,F 为BE 的中点.(1)求证:DE ∥平面ACF ;(2)若2,2==CE AB ,求三棱锥F-ABC 的体积。
2019-2020学年南宁市数学高二下期末达标测试试题含解析
2019-2020学年南宁市数学高二下期末达标测试试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()f x ,满足()y f x =-和(2)y f x =+均为偶函数,且(1)2f π=,设()g x()()f x f x =+-,则(2019)g =A .2π B .23π C .πD .43π 【答案】C 【解析】分析:根据函数的奇偶性和周期性求出()()201921g f =,然后即可得到答案 详解:由题意可得:()()f x f x -=()()()222f x f x f x +=-+=- 故()()4f x f x =+,周期为4 ()()()()()()()()2019?20192019331121?g f f f f f f f π=+-=+-=-+==故选C点睛:本题考查了函数的奇偶性和周期性,运用周期性进行化简,结合已知条件求出结果,本题的解题方法需要掌握。
2.已知1232727272727S C C C C =++++,则S 除以9所得的余数是A .2B .3C .5D .7【答案】D 【解析】 【分析】根据组合数的性质,将1232727272727S C C C C =++++化简为()9911--,再展开即可得出结果.【详解】()9123272799081827272727999C C C C 21819119C 9C 9C 2S =++++=-=-=--=-++-,所以除以9的余数为1.选D. 【点睛】本题考查组合数的性质,考查二项式定理的应用,属于基础题.3.若数列{}n a 是等比数列,则“首项10a >,且公比1q >”是“数列{}n a 单调递增”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .非充分非必要条件【答案】B 【解析】 【分析】证明由10a >,1q >可以得到数列{}n a 单调递增,而由数列{}n a 单调递增,不一定得到10a >,1q >,从而做出判断,得到答案. 【详解】数列{}n a 是等比数列,首项10a >,且公比1q >,所以数列110n n a a q -=>,且1n n n a a q a +=>,所以得到数列{}n a 单调递增; 因为数列{}n a 单调递增,可以得到首项10a >,且公比1q >, 也可以得到10a <,且公比01q <<.所以“首项10a >,且公比1q >”是“数列{}n a 单调递增”的充分不必要条件. 故选:B. 【点睛】本题考查等比数列为递增数列的判定和性质,考查充分不不必要条件,属于简单题. 4.已知函数()322f x x ax bx a =+++在1x =处取极值10,则a =( )A .4或3-B .4或11-C .4D .3-【答案】C 【解析】分析:根据函数的极值点和极值得到关于,a b 的方程组,解方程组并进行验证可得所求. 详解:∵322()f x x ax bx a =+++, ∴2()32f x x ax b '=++.由题意得2(1)320(1)110f a b f a b a =++=⎧⎨=+++='⎩, 即2239a b a b a +=-⎧⎨++=⎩,解得33a b =-⎧⎨=⎩或411a b =⎧⎨=-⎩.当33ab=-⎧⎨=⎩时,22()3633(1)0f x x x x'=-+=-≥,故函数()f x单调递增,无极值.不符合题意.∴4a=.故选C.点睛:(1)导函数的零点并不一定就是函数的极值点,所以在求出导函数的零点后一定要注意分析这个零点是不是函数的极值点.(2)对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件,因此在根据函数的极值点或极值求得参数的值后需要进行验证,舍掉不符合题意的值.5.设α,β是两个不同的平面,m是直线且mα⊂.“mβ”是“αβ”的()A .充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】试题分析:,得不到,因为可能相交,只要和的交线平行即可得到;,,∴和没有公共点,∴,即能得到;∴“”是“”的必要不充分条件.故选B.考点:必要条件、充分条件与充要条件的判断.【方法点晴】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念,属于基础题;并得不到,根据面面平行的判定定理,只有内的两相交直线都平行于,而,并且,显然能得到,这样即可找出正确选项.6.读下面的程序:上面的程序在执行时如果输入6,那么输出的结果为()A.6 B.720 C.120 D.5040【答案】B【解析】 【分析】执行程序,逐次计算,根据判断条件终止循环,即可求解输出的结果,得到答案. 【详解】由题意,执行程序,可得:第1次循环:满足判断条件,1,2S i ==; 第2次循环:满足判断条件,2,3S i ==; 第3次循环:满足判断条件,6,4S i ==; 第4次循环:满足判断条件,24,5S i ==; 第5次循环:满足判断条件,120,6S i ==; 第6次循环:满足判断条件,720,7S i ==; 不满足判断条件,终止循环,输出720S =,故选B. 【点睛】本题主要考查了循环结构的程序框图的计算输出,其中解答中正确理解循环结构的程序框图的计算功能,逐次计算是解答的关键,着重考查了推理与运算能力,属于基础题.7.在极坐标系中,已知圆C 经过点6P π⎛⎫⎪⎝⎭,,圆心为直线sin 4πρθ⎛⎫+= ⎪⎝⎭与极轴的交点,则圆C 的极坐标方程为A .4cos ρθ=B .4sin ρθ=C .2cos ρθ=D .2sin ρθ=【答案】A 【解析】 【分析】求出圆C 的圆心坐标为(2,0),由圆C 经过点6P π⎛⎫⎪⎝⎭,得到圆C 过极点,由此能求出圆C 的极坐标方程. 【详解】在sin 4πρθ⎛⎫+= ⎪⎝⎭中,令0θ=,得2ρ=, 所以圆C 的圆心坐标为(2,0). 因为圆C 经过点6P π⎛⎫⎪⎝⎭,,所以圆C 的半径()222322223cos26r π=+-⨯⨯=,于是圆C 过极点,所以圆C 的极坐标方程为4cos ρθ=. 故选A 【点睛】本题考查圆的极坐标方程的求法,考查直角坐标方程、参数方程、极坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,属于中档题.8.已知空间向量(1,1,0)a =-, (3,2,1)b =-,则a b +=( ) A .5 B .6C .5D .26【答案】D 【解析】 【分析】先求a b +,再求模. 【详解】∵(1,1,0)a =-, (3,2,1)b =-, ∴a b +(4,3,1)=-,∴2224(3)126a b +=+-+=.故选:D . 【点睛】本题考查空间向量模的坐标运算,掌握空间向量模的坐标运算公式是解题基础. 9.命题“任意[]21,2,0x x a ∈-≤”为真命题的一个充分不必要条件是( ) A .4a ≥ B .4a ≤C .5a ≥D .3a ≥【答案】C 【解析】试题分析:对此任意性问题转化为恒成立,当,即,,若是原命题为真命题的一个充分不必要条件,那应是的真子集,故选C.考点:1.集合;2.充分必要条件.10.中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”,某高中学校为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识竞赛,现有甲、乙、丙三位选手进入了前三名的最后角逐,规定:每场知识竞赛前三名的得分都分别为,,a b c ()a b c >>且,,a b c N *∈;选手最后得分为各场得分之和,在六场比赛后,已知甲最后得分为26分,乙和丙最后得分都是11分,且乙在其中一场比赛中获得第一名,下列说法正确的是( ) A .乙有四场比赛获得第三名 B .每场比赛第一名得分a 为4 C .甲可能有一场比赛获得第二名 D .丙可能有一场比赛获得第一名 【答案】A 【解析】 【分析】先计算总分,推断出5a =,再根据正整数把,,a b c 计算出来,最后推断出每个人的得分情况,得到答案. 【详解】由题可知()626111148a b c ++⨯=++=,且,,a b c 都是正整数=8a b c ++当4a ≤时,甲最多可以得到24分,不符合题意 当6a ≥时,2b c +≤,不满足 推断出,a=5, b=2, c=1 最后得出结论:甲5个项目得第一,1个项目得第三乙1个项目得第一,1个项目得第二,4个项目得第三 丙5个项目得第二,1个项目得第三, 所以A 选项是正确的. 【点睛】本题考查了逻辑推理,通过大小关系首先确定a 的值是解题的关键,意在考查学生的逻辑推断能力.11.已知定义在R 上的增函数f(x),满足f(-x)+f(x)=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f(x 1)+f(x 2)+f(x 3)的值 ( ) A .一定大于0 B .一定小于0 C .等于0 D .正负都有可能【答案】A 【解析】因为f(x) 在R 上的单调增,所以由x 2+x 1>0,得x 2>-x 1,所以21121()()()()()0f x f x f x f x f x >-=-⇒+> 同理得2313()()0,()()0,f x f x f x f x +>+>即f(x 1)+f(x 2)+f(x 3)>0,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行 12.如图,设区域,向区域内随机投一点,且投入到区域内任一点都是等可能的,则点落到由曲线与所围成阴影区域内的概率是()A. B. C.D.【答案】B 【解析】试题分析:图中阴影面积可以用定积分计算求出,即)1312320211333x dx x x ⎛⎫=-= ⎪⎝⎭⎰,正方形OABC的面积为1,所以根据几何概型面积计算公式可知,点落到阴影区域内的概率为13P =。
2019-2020年高二下学期期末考试数学理试题含答案.doc
2019-2020年高二下学期期末考试数学理试题含答案一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答卷..纸.相应位置上.1. 设复数z 满足(34i)|43i |z -=+(i 为虚数单位),则z 的虚部是___.2. 设集合}3{},4,2{},3,1,1{2=++=-=B A a a B A ,则实数a 的值为 .3. 右图是一个算法流程图,则输出的k 的值是 .4. 函数ln(1)()1x f x x +=-的定义域为 . 5.某棉纺厂为了解一批棉花的质量,从中随机抽取了100根棉花纤 维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据均 在区间]40,5[中,其频率分布直方图如图所示,则在抽测的100根 中,有_ _根棉花纤维的长度小于mm 20.6. 盒子里共有大小相同的3只白球,1只黑球,若从中随机摸出两只球,则它们颜色不同的概率是_____________. 7.已知函数cos y x =与sin(2)(0)y x ϕϕπ=+≤≤,它们的图象有一个横坐标为3π的交点,则ϕ的值是___________. 8. 双曲线()2222:10,0x y C a b a b -=>> 的左、右焦点分别是12,F F ,过1F 作倾斜角为30︒的直线, 交双曲线C 右支于点M ,若2MF 垂直于x 轴,则双曲线C 的离心率为 . 9.若sin (6π﹣θ)=,则cos (23π+2θ)的值为 .10.函数()sin (0)f x x x x π=-≤≤的单调增区间是________ 11. 设函数24 6 (0)() 6 (0)x x x f x x x ⎧-+=⎨+<⎩≥,则不等式)1()(f x f >的解集是 .12. 已知函数,1)(2-+=mx x x f 若对于任意()1,+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是__________ .13.已知()f x 是定义在R 上且周期为3的函数,当[)0,3x ∈时,21()22f x x x =-+,若函数()y f x a =-在区间[]3,4-上有10个零点(互不相同),则实数a 的取值范围是 .14. 在钝角ABC ∆中,已知2sin 216A A +=,则sin cosBC 取得最小值时,角B 等于 .二、解答题:本大题共6小题,共计90分.解答应写出文字说明、证明过程或演算步骤.请把答案写在答卷纸...相应位置上. 15. (本题满分14分)已知集合A ={x |x 2-3x +2>0},B ={x |x 2-(a +1)x +a ≤0,a >1}. (1)求集合A ,B ;(2)若(C R A )∪B =B ,求实数a 的取值范围. 16.(本题满分14分)在ABC ∆中,角A ,B ,C 的对边分别为a b c ,,,已知3a =,b =2B A =. (1)求cos A 值; (2)求c 的值.已知()()2,ln 23+-+==x ax x x g x x x f .(Ⅰ)如果函数()x g 的单调递减区间为1(,1)3-,求函数()x g 的解析式; (Ⅱ)在(Ⅰ)的条件下,求函数y=()x g 的图像在点(1,1)P -处的切线方程;(Ⅲ)若不等式2()()2f x g x '≤+的解集为P ,且(0,)P +∞⊆,求实数a 的取值范围. 18.(本题满分16分)已知美国苹果公司生产某款iPhone 手机的年固定成本为40万美元,每生产1万只还需另投入16万美元.设苹果公司一年内共生产该款iPhone 手机x 万只并全部销售完,每万只的销售收入为R(x)万美元,且R(x)=(Ⅰ)写出年利润W(万美元)关于年产量x(万只)的函数解析式;(Ⅱ)当年产量为多少万只时,苹果公司在该款iPhone 手机的生产中所获得的利润最大?并求出最大利润.已知椭圆C :22221x y a b+=(0a b >>)的离心率为12,1F .2F 分别为椭圆C 的左.右焦点,若椭圆C 的焦距为2. (1)求椭圆C 的方程;(2)设M 为椭圆上任意一点,以M 为圆心,1F M 为半径作圆M ,当圆M 与椭圆的右准线l 有公共点时,求12FF ∆M 面积的最大值.20. (本题满分16分)已知a 为实数,函数f (x )=a ·ln x +x 2-4x .(1)是否存在实数a ,使得f (x )在x =1处取极值?证明你的结论; (2)若函数f (x )在[]2,3上存在单调递增区间,求实数a 的取值范围; (3)设g (x )=2a ln x +x 2-5x -1a x +,若存在x 0∈1,e e ⎡⎤⎢⎥⎣⎦,使得f (x 0)<g (x 0)成立,求实数a 的取值范围.第Ⅱ卷21.B (本小题满分10分)已知直线1=+y x l :在矩阵⎥⎦⎤⎢⎣⎡=10n m A 对应的变换作用下变为直线1=-'y x l :,求矩阵A .21.C (本小题满分10分) 已知直线:l 1314x ty t =+⎧⎨=--⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴,曲线C 的极坐标方程为)4cos(2πθρ+=.(1)将曲线C 的方程化成直角坐标方程;(2)求直线l 被曲线C 截得的弦长. 22.(本小题满分10分)已知甲箱中装有3个红球,3个黑球,乙箱中装有2个红球,2个黑球,这些球除颜色外完全相同,某商场举行有奖促销活动,设奖规则如下:每次分别从以上两个箱子中个随机摸出2个球,共4个球,若摸出4个球都是红球,则获得一等奖,摸出的球中有3个红球,则获得二等奖;摸出的球中有2个红球,则获得三等奖;其他情况不获奖,每次模球结束后将球放回原箱中(1)求在1次摸奖中,获得二等奖的概率;(2)若连续摸奖2次,求获奖次数X 的分布列及数学期望E(X)。
南宁市2019-2020学年数学高二第二学期期末达标测试试题含解析
南宁市2019-2020学年数学高二第二学期期末达标测试试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.某电子管正品率为34,次品率为14,现对该批电子管进行测试,那么在五次测试中恰有三次测到正品的概率是( ) A .33534C ⎛⎫⎪⎝⎭B .22514C ⎛⎫⎪⎝⎭C .23253144C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭D .32353144C ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭2.展开式中的常数项为( )A .第5项B .第5项或第6项C .第6项D .不存在3.某创业公司共有36名职工,为了了解该公司职工的年龄构成情况,随机采访了9位代表,将数据制成茎叶图如图,若用样本估计总体,年龄在(,)x s x s -+内的人数占公司总人数的百分比是(精确到1%)( )A .56%B .14%C .25%D .67%4.如图,在三棱锥O ABC -中,点D 是棱AC 的中点,若OA a =u u u r r ,OB b =u u u r r ,OC c =u u u r r ,则BD u u u r等于( )A .1122a b c -+r r rB .a b c +-r r rC .a b c -+r r rD .1122a b c -+-r r r5.设复数(是虚数单位),则复数的虚部是( )A .B .C .D .6.有7名女同学和9名男同学,组成班级乒乓球混合双打代表队,共可组成( ) A .7队B .8队C .15队D .63队7.若函数()2ln f x ax x x =+-存在增区间,则实数a 的取值范围为( )A .1,4⎛⎫-∞-⎪⎝⎭ B .1,4⎛⎫-+∞ ⎪⎝⎭ C .1,8⎛⎫-+∞ ⎪⎝⎭D .1,8⎛⎫-∞- ⎪⎝⎭8.角α的终边与单位圆交于点525⎛⎫- ⎪ ⎪⎝⎭,,则cos2=α( ) A .15B .-15 C .35D .35-9.已知数列{}n a 的前n 项和为n S ,12a =,()121n n S S n N ++=-∈,则10a =( ) A .128 B .256C .512D .102410.若展开式的二项式系数之和为64,则展开式的常数项为( )A .10B .20C .30D .12011.已知函数()()()10xf x e ax ax a a =--+≥,若有且仅有两个整数()1,2i x i =,使得()0i f x <,则a 的取值范围为( )A .1,121e ⎡⎫⎪⎢-⎣⎭B .21,12e -⎡⎫⎪⎢-⎣⎭C .211,22e -⎛⎤ ⎥-⎝⎦D .11,212e ⎛⎤⎥-⎝⎦ 12.一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为1ξ;当无放回依次取出两个小球时,记取出的红球数为2ξ,则( )A .12E E ξξ<,12D D ξξ<B .12E E ξξ=,12D D ξξ>C .12E E ξξ=,12D D ξξ<D .12E E ξξ>,12D D ξξ>二、填空题(本题包括4个小题,每小题5分,共20分)13.已知双曲线22132x y m m +=--的焦距为3__________.14.若曲线3()y x ax a R =-∈在点01x =处的切线斜率为1,则该切线方程为__________.15.设x ,y 满足约束条件1124x y x y x y -⎧⎪+⎨⎪-⎩……„,则()222z x y =++的最小值为_______. 16.集合{}2{0,2},1,A B a ==,若{0,1,2,4}A B ⋃=,则实数a 的值为__________.三、解答题(本题包括6个小题,共70分)17.已知二项式332nx x ⋅的展开式中,前三项系数的绝对值成等差数列.(1)求正整数n 的值;(2)求展开式中二项式系数最大的项; (3)求展开式中系数最大的项.18.已知抛物线C :2y =2px (p>0)的准线方程为x=-12,F 为抛物线的焦点 (I )求抛物线C 的方程;(II )若P 是抛物线C 上一点,点A 的坐标为(72,2),求PA PF +的最小值; (III )若过点F 且斜率为1的直线与抛物线C 交于M ,N 两点,求线段MN 的中点坐标.19.(6分)设不等式()()0x y x y +-<表示的平面区别为D .区域D 内的动点P 到直线0x y +=和直线0x y -=的距离之积为1.记点P 的轨迹为曲线C .过点()F 的直线l 与曲线C 交于A 、B 两点.(1)求曲线C 的方程;(1)若l 垂直于x 轴,Q 为曲线C 上一点,求QA QB ⋅u u u v u u u v的取值范围;(3)若以线段AB 为直径的圆与y 轴相切,求直线l 的斜率.20.(6分)某大型工厂有5台大型机器,在1个月中,1台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修.每台机器出现故障的概率为12.已知1名工人每月只有维修1台机器的能力,每台机器不出现故障或出现故障时有工人维修,就能使该厂获得10万元的利润,否则将亏损3万元.该工厂每月需支付给每名维修工人1.5万元的工资.(1)若每台机器在当月不出现故障或出现故障时有工人进行维修,则称工厂能正常运行.若该厂只有2名维修工人,求工厂每月能正常运行的概率; (2)已知该厂现有4名维修工人.(ⅰ)记该厂每月获利为X 万元,求X 的分布列与数学期望;(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘1名维修工人?21.(6分)证明:当[0,1]x ∈sin x x x ≤≤. 22.(8分)等差数列{}n a 的前n 项和为46,62,75n S S S =-=-,求数列{||}n a 前n 项和.参考答案一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意)1.D 【解析】 【分析】根据二项分布独立重复试验的概率求出所求事件的概率。
广西南宁市第三中学2019_2020学年高二数学10月月考试题理
广西南宁市第三中学2019-2020学年高二数学10月月考试题 理一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合.)1.直线3x -y +a =0(a 为常数)的倾斜角为( )A .30°B .60°C .120°D .150°2.已知a ,b ,c 是两两不同的三条直线,下列说法正确的是( ) A .若直线a ,b 异面,b ,c 异面,则a ,c 异面 B .若直线a ,b 相交,b ,c 相交,则a ,c 相交 C .若a ∥b ,则a ,b 与c 所成的角相等D .若a ⊥b ,b ⊥c ,则a ∥c3.若直线l 1:x +3y +m =0(m >0)与直线l 2:2x +6y -3=0的距离为10,则m =( ) A .7B .172C .14D .174.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=15.某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( )A .100B .150C .200D .2506.阅读程序框图,运行相应的程序,则输出S 的值为( )A .2B .4C .6D .87.已知等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为( ) A .24B .12C .22D . 28.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场作的9个分数的茎叶图,后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为( ) A .1169B .677C .36D .3679.如图,在正方形ABCD 中,E ,F 分别是BC ,CD 的中点,沿AE ,AF ,EF 把正方形折成一个四面体,使B ,C ,D 三点重合,重合后的点记为P ,P 点在△AEF 内的射影为O ,则下列说法正确的是( ) A .O 是△AEF 的垂心B .O 是△AEF 的内心C .O 是△AEF 的外心D .O 是△AEF 的重心10.一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A .-53或-35B .-32或-23C .-54或-45D .-43或-3411.已知边长为1的等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C -AB -D 的余弦值为33,若A 、B 、C 、D 、E 在同一球面上,则此球的体积为( )A .2πB .823πC .2πD .23π12.两圆x 2+y 2+2ax +a 2-4=0 和x 2+y 2-4by -1+4b 2=0恰有三条公切线,若a ∈R ,b ∈R且ab ≠0,则1a 2+1b 2的最小值为( ) A .1B .3C .19D .49二、填空题(本题共4小题,每小题5分,共20分.)13.为了了解一片经济林的生长情况,随机抽取了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100 cm.14.如图,正方形ACDE 与等腰直角三角形ACB 所在的平面互相垂直,且AC =BC =2,∠ACB=90°,F ,G 分别是线段AE ,BC 的中点,则AD 与GF 所成的角的余弦值为________.15.已知平面区域⎩⎪⎨⎪⎧x ≥0,y ≥0,x +2y -4≤0恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2及其内部所覆盖,则圆C 的方程为________.16.已知圆O :x 2+y 2=9及点C (2,1),过点C 的直线l 与圆O 交于P ,Q 两点,当△OPQ 的面积最大时,直线l 的方程为________.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤.) 17.(10分)(1)求经过点P (4,1),且在两坐标轴上的截距相等的直线方程.(2)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,求圆C 的面积.18.(12分)四面体ABCD 及其三视图如图所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H .(1)求四面体ABCD 的体积;(2)证明:四边形EFGH是矩形.19.(12分)已知△ABC 的三内角A ,B ,C 所对的边分别是a ,b ,c ,向量m =(cos B ,cos C ),n =(2a +c ,b ),且m ⊥n .(1)求角B 的大小;(2)若b =3,求a +c 的范围.20.(12分)如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =6,AD =8,BC =10,∠PAD =45°,E 为PA 的中点.(1)求证:DE ∥平面BPC ;(2)线段AB 上是否存在一点F ,满足CF ⊥DB ?若存在, 试求出二面角F -PC -D 的余弦值;若不存在,请说明理由.21.(12分)已知等差数列{a n }的前n 项和为S n ,公差d ≠0,且S 3+S 5=50,a 1,a 4,a 13成等比数列.(1)求数列{a n }的通项公式;(2)设⎩⎨⎧⎭⎬⎫b n a n 是首项为1,公比为3的等比数列,求数列{b n }的前n 项和T n .22.(12分)已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的右上方.(1)求圆C的方程;(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.高二月考(二)理科数学试题参考答案1.B 直线的斜率为k =tan α=3,又因为0°≤α<180°,所以α=60°.2.C 若直线a ,b 异面,b ,c 异面,则a ,c 相交、平行或异面;若a ,b 相交,b ,c 相交,则a ,c 相交、平行或异面;若a ⊥b ,b ⊥c ,则a ,c 相交、平行或异面;由异面直线所成的角的定义知C 正确.3.B 直线l 1:x +3y +m =0(m >0),即2x +6y +2m =0,因为它与直线l 2:2x +6y -3=0的距离为10,所以|2m +3|4+36=10,求得m =172.4.A 设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则⎩⎪⎨⎪⎧x =4+x 02,y =-2+y 02,解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.因为点Q 在圆x 2+y 2=4上,所以x 20+y 20=4,即(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1.5.A 由题意,抽样比为703 500=150,总体容量为3 500+1 500=5 000,故n =5 000×150=100.6.B 初始值S =4,n =1.循环第一次:S =8,n =2;循环第二次:S =2,n =3;循环第三次:S =4,n =4,满足n>3,输出S =4. 7.C 如图所示,作出等腰梯形ABCD 的直观图:因为OE =(2)2-1=1,所以O ′E ′=12,E ′F =24,则直观图A ′B ′C ′D ′的面积S ′=1+32×24=22.8.D 由题意知87+94+90+91+90+90+x +917=91,解得x =4.所以s 2=17[(87-91)2+(94-91)2+(90-91)2+(91-91)2+(90-91)2+(94-91)2+(91-91)2]=17(16+9+1+0+1+9+0)=367.9.A 由题意可知PA ,PE ,PF 两两垂直,所以PA⊥平面PEF ,从而PA⊥EF,而PO⊥平面AEF ,则PO⊥EF,因为PO∩PA=P , 所以EF⊥平面PAO ,∴EF⊥AO,同理可知AE⊥FO,AF⊥EO, ∴O 为△AEF 的垂心.10.D 由已知,得点(-2,-3)关于y 轴的对称点为(2,-3),由入射光线与反射光线的对称性,知反射光线一定过点(2,-3).设反射光线所在直线的斜率为k ,则反射光线所在直线的方程为y +3=k (x -2),即kx -y -2k -3=0.由反射光线与圆相切,则有d =|-3k -2-2k -3|k 2+1=1,解得k =-43或k =-34 11.D 取AB 的中点为M ,连接CM ,取DE 的中点为N ,连接MN ,CN ,可知∠CMN 即为二面角C -AB -D 的平面角,利用余弦定理可求CN =32=CM ,所以该几何体为正四棱锥,半径R =22,V =43πR 3=2π3.12.A x 2+y 2+2ax +a 2-4=0,即(x +a )2+y 2=4,x 2+y 2-4by -1+4b 2=0,即x 2+(y -2b )2=1.依题意可得,两圆外切,则两圆圆心距离等于两圆的半径之和,则a 2+(2b )2=1+2=3,即a 2+4b 2=9,所以1a 2+1b 2=⎝ ⎛⎭⎪⎫1a 2+1b 2⎝ ⎛⎭⎪⎫a 2+4b 29=19⎝ ⎛⎭⎪⎫5+a 2b 2+4b 2a 2≥19⎝ ⎛⎭⎪⎫5+2a 2b 2·4b 2a 2=1,当且仅当a 2b 2=4b 2a 2,即a =±2b 时取等号.13. 24 底部周长在[80,90)的频率为0.015×10=0.15,底部周长在[90,100)的频率为0.025×10=0.25,样本容量为60,所以树木的底部周长小于100 cm 的株数为(0.15+0.25)×60=24.14.36 取DE 的中点H ,连接HF ,GH .由题设,HF ∥AD .∴∠GFH 为异面直线AD 与GF 所成的角(或其补角). 在△GHF 中,可求HF =2,GF =GH =6,∴cos∠HFG =2+6-62×2×6=36.15.(x -2)2+(y -1)2=5 由题意知,此平面区域表示的是以O (0,0),P (4,0), Q (0,2)所构成的三角形及其内部,所以覆盖它的且面积最小的圆是其外接圆.∵△OPQ 为直角三角形,∴圆心为斜边PQ 的中点(2,1),半径r =|PQ |2=5,因此圆C 的方程为(x -2)2+(y -1)2=5.16.x +y -3=0或7x +y -15=0 当直线l 的斜率不存在时,l 的方程为x =2,则P ,Q 的坐标分别为(2,5),(2,-5),所以S △OPQ =12×2×25=25.当直线l 的斜率存在时,设l 的方程为y -1=k (x -2)⎝ ⎛⎭⎪⎫k ≠12,则圆心到直线PQ 的距离为d =|1-2k |k 2+1,且|PQ |=29-d 2,则S △OPQ =12×|PQ |×d =12×29-d 2×d =(9-d 2)d 2≤⎝ ⎛⎭⎪⎫9-d 2+d 222=92,当且仅当9-d 2=d 2,即d 2=92时,S △OPQ 取得最大值 92.因为25<92,所以S △OPQ 的最大值为92,此时,由4k 2-4k +1k 2+1=92,解得k =-7或k =-1,则直线l 的方程为x +y -3=0或7x +y -15=0.17.(1)设直线l 在x ,y 轴上的截距均为a ,若a =0,即l 过点(0,0)和 (4,1),∴l 的方程为y =14x ,即x -4y =0.若a ≠0,则设l 的方程为x a +y a =1,∵l 过点(4,1),∴4a +1a =1,∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y -5=0.(2)圆C :x 2+y 2-2ay -2=0,即C :x 2+(y -a )2=a 2+2,圆心为C (0,a ),半径r =a 2+2,C 到直线y =x +2a 的距离为d =|0-a +2a |2=|a |2. 又由|AB |=23,得⎝ ⎛⎭⎪⎫2322+⎝ ⎛⎭⎪⎫|a |22=a 2+2,解得a 2=2,所以圆的面积为π(a 2+2)=4π. 18.(1)解 由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1,又BD ∩DC =D ,∴AD ⊥平面BDC ,∴四面体ABCD 的体积V =13×12×2×2×1=23.(2)证明:∵BC ∥平面EFGH ,平面EFGH ∩平面BDC =FG ,平面EFGH ∩平面ABC =EH ,∴BC ∥FG ,BC ∥EH ,∴FG ∥EH .同理,EF ∥AD ,HG ∥AD ,∴EF ∥HG ,∴四边形EFGH 是平行四边形.又∵AD ⊥平面BDC ,BC ⊂平面BDC ,∴AD ⊥BC ,∴EF ⊥FG ,∴四边形EFGH 是矩形.19. (1)∵m =(cos B ,cos C ),n =(2a +c ,b ),且m ⊥n ,∴(2a +c )cos B +b cos C =0,∴cos B (2sin A +sin C )+sin B cos C =0,∴2cos B sin A +cos B sin C +sin B cos C =0.即2cos B sin A =-sin(B +C )=-sin A .∵A ∈(0,π),∴sin A ≠0,∴cos B =-12.∵0<B <π,∴B =2π3.(2)由余弦定理得b 2=a 2+c 2-2ac cos 23π=a 2+c 2+ac =(a +c )2-ac ≥(a +c )2-⎝ ⎛⎭⎪⎫a +c 22=34(a +c )2, 当且仅当a =c 时取等号.∴(a +c )2≤4,故a +c ≤2.又a +c >b =3,∴a +c ∈(3,2].即a +c 的取值范围是(3,2].20.(1)证明 取PB 的中点M ,连接EM 和CM ,过点C 作CN ⊥AB ,垂足为点N .∵CN ⊥AB , DA ⊥AB ,∴CN ∥DA ,又AB ∥CD ,∴四边形CDAN 为平行四边形,∴CN =AD =8,DC =AN =6,在Rt△BNC 中,BN =BC 2-CN 2=102-82=6,∴AB =12,而E ,M 分别为PA ,PB 的中点,∴EM ∥AB 且EM =6,又DC ∥AB ,∴EM ∥CD 且EM =CD ,四边形CDEM 为平行四边形, ∴DE ∥CM .∵CM ⊂平面PBC ,DE ⊄平面PBC ,∴DE ∥平面BPC .(2)解 由题意可得DA ,DC ,DP 两两互相垂直,如图,以D 为原点, DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系D -xyz , 则A (8,0,0),B (8,12,0),C (0,6,0),P (0,0,8).假设AB 上存在一点F 使CF ⊥BD ,设点F 坐标为(8,t ,0),则CF →=(8,t -6,0),DB →=(8,12,0),由CF →·DB →=0得t =23.又平面DPC 的一个法向量为m =(1,0,0), 设平面FPC 的法向量为n =(x ,y ,z ).又PC →=(0,6,-8),FC →=⎝ ⎛⎭⎪⎫-8,163,0.由⎩⎪⎨⎪⎧n ·PC →=0,n ·FC →=0,得⎩⎪⎨⎪⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y , 不妨令y =12,有n =(8,12,9).则cos 〈n ,m 〉=n ·m |n ||m |=81×82+122+92=817.又由图可知,该二面角为锐二面角,故二面角F -PC -D 的余弦值为817.21.(1)依题意得⎩⎪⎨⎪⎧3a 1+3×22d +5a 1+4×52d =50,(a 1+3d )2=a 1(a 1+12d ),解得⎩⎪⎨⎪⎧a 1=3,d =2,∴a n =2n +1. (2)∵b n a n =3n -1,∴b n =a n ·3n -1=(2n +1)·3n -1,∴T n =3+5×3+7×32+…+(2n +1)×3n -1,3T n =3×3+5×32+7×33+…+(2n -1)×3n -1+(2n +1)×3n , 两式相减得,-2T n =3+2×3+2×32+…+2×3n -1-(2n +1)×3n=3+2×3(1-3n -1)1-3-(2n +1)×3n =-2n ×3n , ∴T n =n 3n .22.(1)设圆心C (a ,0)⎝ ⎛⎭⎪⎫a >-52,则|4a +10|5=2⇒a =0或a =-5(舍). 所以圆C 的方程为x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t ,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 2=4,y =k (x -1),得(k 2+1)x 2-2k 2x +k 2-4=0,所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1. 若x 轴平分∠ANB ,则k AN=-k BN⇒y1x1-t+y2x2-t=0⇒k(x1-1)x1-t+k(x2-1)x2-t=0⇒2x1x2-(t+1)(x1+x2)+2t=0⇒2(k2-4)k2+1-2k2(t+1)k2+1+2t=0⇒t=4,所以当点N为(4,0)时,能使得∠ANM=∠BNM总成立.。
【精准解析】广西南宁三中2019-2020学年高二下学期期末考试(普通班)理科数学试题
|
a b a || b
|
6 2 42
1 2
,所以夹角
a, b
120
故选:C
【点睛】本题主要考查了向量数量积的定义及性质的简单应用,属于基础题.
6. 安排 3 名志愿者完成 4 项工作,每人至少完成 1 项,每项工作由 1 人完成,则不同的安排
方式共有( )
A. 64 种
B. 18 种
C. 24 种
则 x3 y3 的系数为 80 40 40 .
故选 C. 【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步 根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中 n 和 r 的隐含条件,即 n,r 均为非负整数,且 n≥r,如常数项指数为零、有理项指数为整 数等);第二步是根据所求的指数,再求所求解的项. (2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.
广西南宁三中 2021 届高二下学期期末考试卷
理科数学
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分,每题只有一个正确选项)
1. 设集合 A 2, x, x2 ,若1 A ,则 x 的值为
()
A. 1
B.
C. 1
D. 0
【答案】A
【解析】
1 A x 1orx2 1 ,若 x 1 x2 1 ,不满足集合元素的互异性,
故 x2 1 , x 1.
故结果选 A.
2.
设
i
为虚数单位,复数
z=
4 1i,则|z-i|=(A. 2B. 3
【答案】D
【解析】
【分析】
) C. 2
D. 5
2020年广西省南宁市数学高二第二学期期末考试试题含解析
2020年广西省南宁市数学高二第二学期期末考试试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.如图所示,程序框图(算法流程图)的输出结果是( )A .34B .55C .78D .892.已知x ,()0,y ∈+∞,1x y +=,则xy 的最大值为( ) A .1B .12C .13D .143.将偶函数()()()sin 30πf x x ϕϕ=+<<的图象向右平移π12个单位长度后,得到的曲线的对称中心为( ) A .()π7π,0336k k ⎛⎫+∈⎪⎝⎭Z B .()ππ,0312k k ⎛⎫+∈⎪⎝⎭Z C .()ππ,0336k k ⎛⎫+∈⎪⎝⎭Z D .()ππ,034k k ⎛⎫+∈⎪⎝⎭Z 4.双曲线()2222100x y a b a b-=>,>的左右焦点分别为F 1,F 2,过F 1的直线交曲线左支于A ,B 两点,△F 2AB是以A 为直角顶点的直角三角形,且∠AF 2B =30°.若该双曲线的离心率为e ,则e 2=( ) A .113+B .1353+C .163-D .19103-5.设sin1a =,12sin 2b =,13sin 3c =,则( ) A .a b c << B .a c b <<C .c a b <<D .c b a <<6.定积分()1xx e +⎰的值为( )A .eB .12e +C .12e -D .1e +7.若函数()f x 的定义域为[2,8],则函数(2)()ln(2)f xg x x =-的定义域为()8.已知11a =,1()n n n a n a a +=-(*n N ∈),则数列{}n a 的通项公式是 ( ) A .21n -B .11()n n n-+ C .nD .2n9.二项式12展开式中,3x 的系数是( )A .495-B .220-C . 495D .22010.在54(1)(1)x y -+的展开式中,记m n x y 项的系数为(,)f m n ,则(1,0)(2,1)f f ++(3,2)(4,3)f f +=() A .125B .5C .5-D .15-11.将函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图形向左平移ϕ个单位后得到的图像关于y 轴对称,则正数ϕ的最小正值是() A .3π B .12πC .56π D .512π 12.已知随机变量ξ服从正态分布2(2,)N σ,且(0)(2)P P a ξξ<=>-,则a =( ) A .-2B .2C .4D .6二、填空题(本题包括4个小题,每小题5分,共20分)13.把6个学生分配到3个班去,每班2人,其中甲必须分到一班,乙和丙不能分到三班,不同的分法共有__________种.14.用分层抽样的方法从某校学生中抽取一个容量为45的样本,其中高一年级抽20人,高三年级抽10人,已知该校高二年级共有学生300人,则该校学生总数是_____人. 15.设121(3sin )m x x dx -=+⎰,则6()m x x-的展开式中的常数项为__________. 16.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX =____________. 三、解答题(本题包括6个小题,共70分) 17.已知函数322()1f x x x x =-++.(Ⅰ)求曲线()y f x =在点(2,(2))f 处的切线方程; (Ⅱ)求函数()f x 的极值. 18.设(),f x x a a R =-∈.(1)当13x -≤≤时,()3f x ≤,求a 的取值范围;(2)若对任意x R ∈,()()12f x a f x a a -++≥-恒成立,求实数a 的最小值.19.(6分)旅游业作为一个第三产业,时间性和季节性非常强,每年11月份来临,全国各地就相继进入旅游淡季,很多旅游景区就变得门庭冷落.为改变这种局面,某旅游公司借助一自媒体平台做宣传推广,销售特惠旅游产品.该公司统计了活动刚推出一周内产品的销售数量,用x 表示活动推出的天数,用y 表示产品的销售数量(单位:百件),统计数据如下表所示.根据以上数据,绘制了如图所示的散点图,根据已有的函数知识,发现样本点分布在某一条指数型函数ˆˆbx ay e +=的周围.为求出该回归方程,相关人员确定的研究方案是:先用其中5个数据建立y 关于x 的回归方程,再用剩下的2组数据进行检验.试回答下列问题: (1)现令ln t y =,若选取的是1,2,3,4,5x =这5组数据,已知518ln 26ln 3ii t==+∑,5126ln 222ln 3i ii x t==+∑,请求出t 关于x 的线性回归方程(结果保留一位有效数字);(2)若由回归方程得到的估计数据与选出的检验数据的误差均不超过10,则认为得到的回归方程是可靠的,试问(1)中所得的回归方程是否可靠?参考公式及数据:对于一组数据1122()()()n n x y x y x y L ,,,,,,,其回归直线ˆˆˆy bx a =+的斜率和截距的最小二乘法估计分别为1211221()()ˆ()n iii nni ii ni i i i x y n x x y y bx x x yx nx====----==-∑∑∑∑, ˆˆay bx =-;ln 20.69,ln 3 1.10≈≈;45 1.22e e ≈≈.20.(6分)对一批产品的内径进行抽查,已知被抽查的产品的数量为200,所得内径大小统计如表所示:(Ⅰ)以频率估计概率,若从所有的这批产品中随机抽取3个,记内径在[)26,28的产品个数为X ,X 的分布列及数学期望()E X ;(Ⅱ)已知被抽查的产品是由甲、乙两类机器生产,根据如下表所示的相关统计数据,是否有99%的把握认为生产产品的机器种类与产品的内径大小具有相关性.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,(其中n a b c d =+++为样本容量).()2P K k ≥0.050 0.010 0.001 k3.8416.63510.82821.(6分)一个多面体的三视图如图:主视图和左视图均为一个正方形上加一个等腰直角三角形,正方形的边长为a ,俯视图中正方形的边长也为a .主视图和左视图 俯视图 (1)画出实物的大致直观图形; (2)求此物体的表面积;(3)若2a =,一个蚂蚁从该物体的最上面的顶点开始爬,要爬到此物体下底面四个项点中的任意一个顶点,最短距离是多少?(精确到0.1个单位)22.(8分)已知函数()()()ln f x mx x m m R =-+∈. (1)求()f x 的单调区间;(2)设121m x x >,,为函数()f x 的两个零点,求证:122ln mx x m+<-.参考答案一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.B 【解析】试题分析:由题意,①1,1,2x y z ===⇒②1,2,3x y y z z =====⇒③2,3,5x y z ===⇒④3,5,8x y z ===⇒⑤5,8,13x y z ===⇒⑥8,13,21x y z ===⇒⑦13,21,34x y z ===⇒⑧21,34,5550x y z ===>,从而输出55z =,故选B.考点:1.程序框图的应用. 2.D 【解析】 【分析】直接使用基本不等式,可以求出xy 的最大值. 【详解】因为x ,()0,y ∈+∞,1x y +=,所以有2111()24x y xy =+≥⇒≤=,当且仅当12x y ==时取等号,故本题选D. 【点睛】本题考查了基本不等式的应用,掌握公式的特征是解题的关键. 3.D 【解析】 【分析】根据函数为偶函数求出函数解析式,根据余弦函数的图象和性质求对称轴即可. 【详解】∵()()()sin 30πf x x ϕϕ=+<<为偶函数, ∴()cos3f x x =±, ∴ππcos 3124f x x ⎛⎫⎛⎫-=±- ⎪ ⎪⎝⎭⎝⎭. 令()ππ3π42x k k -=+∈Z ,得()ππ34k x k =+∈Z . 故选:D本题主要考查了诱导公式和余弦函数的图象与性质,属于中档题. 4.D 【解析】 【分析】设22BF m =,根据2F AB ∆是以A 为直角顶点的直角三角形,且230AF B ∠=o,以及双曲线的性质可得212(33),2(23)AF a AF a =-=-,再根据勾股定理求得,a c 的关系式,即可求解.【详解】由题意,设22BF m =,如图所示,因为2F AB ∆是以A 为直角顶点的直角三角形,且230AF B ∠=o, 由212AF AF a -=,所以132AF m a =-, 由212BF BF a -=,所以122BF m a =-,所以11AF BF AB +=,即3222m a m a m -+-=, 所以2(31)m a =-,所以232(31)2(33)AF a a =⋅-=-,12(33)22(23)AF a a a =--=-, 在直角12F AF ∆中,222124AF AF c +=,即222224(33)4(23)4a a c -+-=,整理得22(19103)a c -=,所以22219103c e a==-,故选D.【点睛】本题主要考查了双曲线的定义,以及双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程,即可得e 的值(范围)..【分析】 先研究函数sin xy x=单调性,再比较大小. 【详解】2sin cos sin x x x xy y x x-'=∴=Q ,令cos sin t x x x =-,则sin t x x '=- 因此当(0,)2x π∈时0,0,0t t y ''<<<,即sin y x x =在(0,)2π上单调递减,因为11123>>,所以a b c <<,选A. 【点睛】本题考查利用导数研究函数单调性,考查基本分析判断能力,属中档题. 6.C 【解析】 【分析】根据微积分基本定理()()()()bba af x F x F b F a ==-⎰,可知()112012xx x e x e ⎛⎫+=+ ⎪⎝⎭⎰求解,即可. 【详解】()11210001111110122222xx x e x e e e e e ⎛⎫⎛⎫⎛⎫+=+=⨯+-⨯+=+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰故选:C 【点睛】本题考查微积分基本定理,属于较易题. 7.B 【解析】 【分析】由抽象函数的定义域,对数的真数大于零,分母不为零,列出不等式,从而求出()g x 的定义域。
2020年广西壮族自治区南宁市市第三中学高三数学理期末试卷含解析
2020年广西壮族自治区南宁市市第三中学高三数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知集合,则=( )A. B. C. D.参考答案:C略2. 已知命题,,那么命题为()A. B.C. D.参考答案:B3. “”是“函数在上单调递增”的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件参考答案:A考点:充分条件与必要条件若函数在R上单调递增,则恒成立,所以的最大值,即,所以“”是“”的充分不必要条件。
4. 已知非零向量,的夹角为,且||=1,|﹣2|=1,则||=()A.B.1 C.D.2参考答案:【考点】平面向量数量积的运算.【专题】计算题;转化思想;向量法;平面向量及应用.【分析】直接利用向量的数量积,化简求解即可.【解答】解:非零向量,的夹角为,且||=1,|﹣2|=1,∴2+42﹣4?=1+4||2﹣4||?||cos=1+4||2﹣2||=1,解得||=,故选:A.【点评】本题考查向量的模的求法,数量积的应用,考查计算能力.5. 设向量,,若与垂直,则m的值为()A.B.C.D.参考答案:B【考点】数量积判断两个平面向量的垂直关系.【分析】先利用平面向量坐标运算法则求出,再由向量垂直的条件,能求出m的值.【解答】解:∵向量,,∴=(﹣1,3+m),∵与垂直,∴?()=﹣1+3(3+m)=0,解得m=﹣.故选:B.6. 在数列{a n}中,已知,,则的值为()A.2018 B. C. D.5参考答案:D∵,∴,,∴数列的取值具备周期性,周期数为∴故选D.7. 函数y=的图象上存在不同的三点到原点的距离构成等比数列,则以下不可能成为等比数列的公比的数是()A. B. C. D.参考答案:D考点:等比数列的通项公式;数列的函数特性.分析:由题意可知,函数图象为上半圆,根据图象可得圆上点到原点的最短距离为2,最大距离为8.根据等比数列的性质建立方程,可计算出公比的范围,从而判断出结论.解:函数y=的等价于,表示圆心在(5,0),半径为3的上半圆(如图所示),圆上点到原点的最短距离为2(点2处),最大距离为8(点8处),若存在三点成等比数列,则最大的公比q应有8=2q2,即q2=4,q=2,最小的公比应满足2=8q2,即q2=,解得q=又不同的三点到原点的距离不相等,故q≠1,∴公比的取值范围为≤q≤2,且q≠1,故选:D点评:本题考查等比数列的通项公式,涉及等比数列的定义,等比中项以及函数作图,属中档题.8. 若为奇函数,则的解集为A. B. C. D.参考答案:D【考点】函数奇偶性和单调性的综合运用根据奇函数特性得即a=1得到,因此这是单调递减函数,故即x>0【点评】:严格按照定义挖掘已知条件,注意观察函数特殊值;本题属于中档题9. 已知向量a,b满足,且,则的取值范围是(A)[4,5] (B)[5,6] (C)[3,6] (D)参考答案:D略10. 设全集,集合,则(A)(B)(C)(D)参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 已知,且,则▲.参考答案:12. 向量,则= .参考答案:【考点】9R:平面向量数量积的运算.【分析】根据条件容易求出,的值,而,从而求出该数量积的值.【解答】解:;∴=5﹣5=0.故答案为:0.13. 设R,向量且,则.参考答案:14. ,已知的平分线与交于点,则的外接圆面积是.参考答案:15. 的最小值为______.参考答案:16【分析】利用将变为积为定值的形式后,根据基本不等式可求得最小值.【详解】∵,∴,当且仅当,时“=”成立,故的最小值为16.故答案为:16【点睛】本题考查了利用基本不等式求和的最小值,解题关键是变形为积为定值,才能用基本不等式求最值,属于基础题.16. 设,若对于任意的,都有满足方程,这时的取值范围为_____________参考答案:17. 如图3.这是一个把k进掉数a(共有n位)化为十进制数b的程序框图,执行该程序框图,若输人的k,a,n分别为2,110011,6,则抢出的b=_.参考答案:51依程序框图得三、解答题:本大题共5小题,共72分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广西南宁三中2021届高二下学期期末考试卷理科数学一、选择题(本大题共12小题,每小题5分,共60分,每题只有一个正确选项)1. 设集合{}22,,A x x =,若1A ∈,则x 的值为 ( )A. 1-B. ±1C. 1D. 0【答案】A 【解析】2111A x orx ∈∴== ,若211x x =⇒= ,不满足集合元素的互异性,故21x =, 1.x =- 故结果选A.2. 设i 为虚数单位,复数z =41i-,则|z -i|=( )A.B.C. 2D.【答案】D 【解析】 【分析】先对复数进行化简,求出z i -的值,再利用复数z a bi =+的模长计算公式z =算可得答案.【详解】解:z =41i-=4(1)(1)(1)i i i ++-=2(1+i ),所以|z -i |=|2+i 故选:D .【点睛】本题主要考查复数的四则运算及复数模的求解,考查学生的计算能力,属于基础题. 3. 设a ,b 都是不等于1的正数,则“log 0a b <”是“()()110a b --<”的( ) A. 充要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分又不必要条件【答案】A 【解析】分析:先判断p ⇒q 与q ⇒p 的真假,再根据充要条件的定义给出结论;也可判断命题p 与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p 与命题q 的关系.然后判断“log a b <0”⇒“(a-1)(b-1)<0”与“(a-1)(b-1)<0”⇒“log a b <0”的真假即可得到答案.详解:由前提条件log a b 有意义, 则a >0,a ≠1,b >0则若log a b <0,则“(a −1)(b −1)<0 若“(a −1)(b −1)<0”,则“log a b <0” 故“log a b ”是“(a −1)(b −1)<0”的充要条件 故选:C点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p , q ⇒ p 与非p ⇒非q , p ⇔ q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆ B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.4. 已知定义在R 上的函数()f x 是奇函数且是增函数,若()11f =,则不等式()1f x <的解集为( ) A. ()1,1-B. ()1,0-C. ()0,1D.(,1)(1,)-∞-+∞【答案】A 【解析】 【分析】由不等式()1f x <得()11f x -<<,利用()11f =,()()111f f -=-=-转化,然后利用单调性即可求解.【详解】由不等式()1f x <得()11f x -<<,()f x 是奇函数,∴()()111f f -=-=-, ()(1)(1)f f x f ∴-<<,()f x 在R 上是增函数,11x ∴-<<,∴不等式()1f x <的解集为()1,1-.故答案为:A.【点睛】本题考查利用函数的奇偶性和单调性解不等式,解题的关键是转化对应的函数值. 5. 已知向量(),2(31),,a m b ==,若向量a 在向量b 方向上的投影为2-,则向量a 与向量b 的夹角是( ) A. 30° B. 60°C. 120°D. 150°【答案】C 【解析】 【分析】由已知结合向量数量积的定义可求m ,然后根据向量夹角公式即可求解.【详解】解:由数量积的定义知向量a 在向量b 方向上的投影为3||cos ,2||a b m a a b b ⋅+⋅〈〉===-,所以m =-,所以621cos ,422||||a b a b a b ⋅-+〈〉===-⨯,所以夹角,120a b ︒〈〉=故选:C【点睛】本题主要考查了向量数量积的定义及性质的简单应用,属于基础题.6. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( ) A. 64种 B. 18种 C. 24种 D. 36种【答案】D 【解析】 【分析】先将4项工作分成3组,再按排列的方式安排给3个人做,即可求解.【详解】4项工作分成3组,可得:246C =,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成, 可得:33636A ⨯=种. 故选:D.【点睛】本题主要考查均匀分组问题,同时考查学生分析问题的能力,属于简单题. 7. (x +y )(2x -y )5的展开式中x 3y 3的系数为 A. -80 B. -40C. 40D. 80【答案】C 【解析】()()()()555222x y x y x x y y x y +-=-+-,由()52x y -展开式的通项公式()()515C 2rrrr T x y -+=-可得:当3r =时,()52x x y -展开式中33x y 的系数为()3325C 2140⨯⨯-=-;当2r时,()52y x y -展开式中33x y 的系数为()2235C 2180⨯⨯-=, 则33x y 的系数为804040-=. 故选C.【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解. 8. 已知函数()1ln f x x x =--,对定义域内任意x 都有()2f x kx ≥-,则实数k 的取值范围是( ) A. 21,1e ⎛⎤-∞-⎥⎝⎦B. 21,e ⎛⎤-∞-⎥⎝⎦C. 21,e ⎡⎫-+∞⎪⎢⎣⎭D.211,e ⎡⎫-+∞⎪⎢⎣⎭【答案】A 【解析】 【分析】 问题转化为11lnx k x x ≤+-对()0,x ∈+∞恒成立,令()11lnx g x x x=+-,根据函数的单调性求出()g x 的最小值,从而求出k 的范围即可.【详解】()1f x x lnx =--,若对定义域内任意x 都有()2f x kx ≥-,则11lnx k x x≤+-对()0,x ∈+∞恒成立, 令()11lnx g x x x =+-,则()22'lnx g x x -=, 令()'0g x >,解得:2x e >, 令()'0g x <,解得:20x e <<, 故()g x 在()20,e递减,在()2,e +∞递增,故()g x 的最小值是()2211g ee =-,故211k e ≤-, 本题选择A 选项.【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.9. 已知双曲线()222210,0x y a b a b-=>>左、右焦点分别为1F 、2F ,实轴的两个端点分别为1A 、2A ,虚轴的两个端点分别为1B 、2B .以坐标原点O 为圆心,12||B B 为直径的圆()O b a >与双曲线交于点M (位于第二象限),若过点M 作圆的切线恰过左焦点1F ,则双曲线的离心率是( )A. 3B. 2C.6 D.7 【答案】A 【解析】 【分析】作出图形,利用勾股定理得出1MF a =,利用双曲线的定义得出23MF a =,计算出1cos MFO ∠,然后在12MF F △中,利用余弦定理可得出关于a 、c 的齐次等式,进而可求得该双曲线的离心率的值.【详解】由题意作出草图,如下:1F M 与圆O 切于M ,1F M OM ∴⊥,且1OF c =,OM b =,故2211MF OF OMa =-=.由双曲线的定义知2123MF MF a a =+=.在1Rt F MO 中,1cos aMFO c∠=, 在12MF F △中,由余弦定理,得()()2221223cos 22a c a a MF F a cc+-∠==⨯⨯,即22412c a =,故离心率3e =故选:A.【点睛】本题考查双曲线离心率的求解,同时也考查了利用双曲线的定义处理焦点三角形的问题,涉及了余弦定理的应用,考查计算能力,属于中等题.10. 锐角ABC 中,内角A ,B ,C 所对边分别为a ,b ,c ,且2sin 2tan C a b B b-=,则ba 的取值范围为( ) A. 1(,)2+∞ B. ()0,2C. 1(,2)2D. (0,)+∞【答案】C 【解析】 【分析】先将原等式变形为2sin 2tan tan b C a B b B =-,再结合同角三角函数的商数关系和正弦定理,将角化为边,可得2cos 2c B a b =-;由余弦定理可推出3C π=,23A B π+=;结合锐角ABC ∆,可解得(6A π∈,)2π,从而有1tan A∈,而2sin()sin 3sin sin A b B a A Aπ-==,根据正弦的两角差公式展开化简后即可得解. 【详解】2sin 2tan C a bB b -=,2sin 2tan tan bC a B b B ∴=-, sin tan cos BB B=,2sin cos 2sin sin b C B a B b B ∴=-,由正弦定理知,sin sin sin a b cA B C==, 22cos 2bc B ab b ∴=-,即2cos 2c B a b =-,由余弦定理知,2222cos 22a c b a bB ac c+--==,整理得222a b c ab +-=,2221cos 222a b c ab C ab ab +-∴===,(0,)C π∈,3C π∴=,23A B π+=. 锐角ABC ∆,A ∴、(0,)2B π∈,2(0,)32B A ππ∴=-∈,解得(6A π∈,)2π,tan )A ∴∈+∞,1tan A ∈,∴21sin()sin sin 111322(,2)sin sin sin tan 22A A AbB aAA A A π-+====+∈. 故选:C .【点睛】本题考查解三角形中的正弦定理和余弦定理的综合应用,还涉及正弦的两角差公式、同角三角函数的商数关系等,利用正弦定理将角化边是解题的突破口,考查学生的逻辑推理能力和运算能力,属于中档题.11. 已知函数2()sin cos cos =+f x x x x ,x ∈R ,则下列命题中:①()f x 的最小正周期是π,;②()f x 的单调增区问是3,()88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;③()()1sin 22f x f x x π+-=+;④将()f x 的图象向右平移4π个单位可得函数2sin sin cos y x x x =+的图象;其中正确个数为( )A. 1B. 2C. 3D. 4【答案】D 【解析】 【分析】先将()f x 化为1()sin 2242f x x π⎛⎫=++ ⎪⎝⎭,利用周期公式和正弦函数的图象和性质可判断①②④正确与否,利用同角三角函数基本关系式、诱导公式、三角变换公式可证③正确,从而可得正确的选项.【详解】111()sin 2(1cos2)22242f x x x x π⎛⎫=++=++ ⎪⎝⎭,所以最小正周期为T π=,最大值为12,故①正确; 令222242k x k πππππ-≤+≤+,k Z ∈,则3+88k x k ππππ-≤≤, 故单调增区间为3,()88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,所以②正确; 22()sin cos cos sin cos cos 2222f x f x x x x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫+-=++--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭222sin cos sin cos 1sin2x x x x x =++=+.故③正确;将()f x 的图象向右平移4π个单位后,所得图象对应的解析式为: 2sin cos cos 444y x x x πππ⎛⎫⎛⎫⎛⎫=--+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即cos2+1111sin 24sin 2cos222222x x y x x ππ⎛⎫- ⎪+⎛⎫⎝⎭=-+=-+ ⎪⎝⎭ ()22112sin cos 12sin sin cos sin 22x x x x x x +=--+=+, 故④正确. 故选:D.【点睛】形如()22sinsin cos cos f x A x B x x C x ωωωω=++的函数,可以利用降幂公式和辅助角公式将其化为()()sin 2'f x A x B ωϕ'=++的形式,再根据复合函数的讨论方法求该函数的单调区间、对称轴方程和对称中心等.与三角函数图象有关的平移中,注意利用“左加右减”(注意仅对x 作变换)来帮助记忆. 12. 在三棱锥A BCD -中,AB BC CD DA ====,BD =A BD C--是钝角.若三棱锥A BCD -的体积为2.则三棱锥A BCD -的外接球的表面积是( ) A. 12π B.373π C. 13πD.534π 【答案】C 【解析】 【分析】取BD 的中点O ,可得AOC ∠为二面角A BD C --的平面角且BD ⊥平面AOC ;利用三棱锥A BCD -体积可构造方程求得AC ,将三棱锥A BCD -补为长方体BMDG HCFA -,则长方体外接球即为三棱锥的外接球,通过求解长方体外接球表面积即可得到结果. 【详解】如图(1),取BD 的中点O ,连接,AO CO , AB BC CD DA ===,AO BD ∴⊥,CO BD ⊥,AOC ∴∠为二面角A BD C --的平面角,BD ⊥平面AOC .取AC 的中点E ,连接OE ,设AC 2a =, 在AOC △中,2AO OC ===,OE AC ∴⊥,则22224OE a a=-=-,21111232423326A BCD AOCV S BD AC OE BD a a-∴=⋅=⨯⨯⨯⨯=⨯⨯⨯-=,化简得:42430a a-+=,解得:3a=或1a=,当1a=时,60AOC∠=,不合题意,舍去,23∴=AC.如图(2),把三棱锥A BCD-补形成长方体BMDG HCFA-,使三棱锥A BCD-的各棱分别是长方体的面对角线,则三棱锥A BCD-的外接球即为长方体BMDG HCFA-的外接球.设,,BM x BG y BH z===,则(222222222377x yx zy z⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩,解得:661xyz⎧=⎪⎪=⎨⎪=⎪⎩∴外接球的直径为22213AM x y z=++=∴四面体ABCD外接球的表面积为134134Sππ=⨯=.故选:C.【点睛】本题考查三棱锥外接球表面积的求解问题,涉及到三棱锥体积的应用;解题关键是能够通过将三棱锥补为长方体,通过求解长方体的外接球来求得结果.二、填空题:(本大题共4小题,每小题5分,共20分)13. 若4tan3α=,则cos2=α___________.【答案】725-【解析】【分析】 利用同角三角函数的基本关系,二倍角的余弦公式以及“1”的灵活变换,求得所给式子的值. 【详解】4tan 3α=, 222222161cos sin 1tan 9cos 216cos sin 1tan 19ααααααα---===+++ 725=-, 故答案为:725- 【点睛】本题主要考查同角三角函数的基本关系,二倍角的余弦公式,属于中档题.14. 已知实数x ,y 满足约束条件02020x y x y x y -≥⎧⎪+-≤⎨⎪-≤⎩,则13z x y =-+的最大值为___________. 【答案】1【解析】【分析】作出题中不等式组表示的平面区域,再将目标函数13z x y =-+对应的直线进行平移并观察z 的变化,即可得到最大值.【详解】作出题中不等式组表示的平面区域,得如图的阴影部分,将目标函数13z x y =-+对应的直线进行平移并观察z 的变化,通过观察发现,当直线经过42,33A ⎛⎫ ⎪⎝⎭时,z 取得最大值, max 4211333z ∴=-+=. 故答案为:1.【点睛】本题给出二元一次不等式组,求目标函数的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.15. 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为__________.【答案】58.【解析】分析:由题意结合几何关系计算公式整理计算即可求得最终结果.详解:由题意结合几何概型计算公式可知,至少需要等待15秒才出现绿灯的概率: 401525540408p -===. 点睛:解答几何概型问题的关键在于弄清题中的考察对象和对象的活动范围.当考察对象为点,点的活动范围在线段上时,用线段长度比计算;当考察对象为线时,一般用角度比计算,即当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.16. 已知函数()ln()x f x e ax a =+-的值域为R ,其中0a <,则a 的最大值为___________.【答案】﹣e 2【解析】【分析】设g (x )=x e ax a +-,由题意得g (x )能取到一切的正实数,即存在x ,使得g (x )≤0,原问题转化为g (x )min ≤0,然后利用导数求出函数g (x )的单调性,进而得最小值,列出关于a 的不等式即可得解.【详解】设g (x )=x e ax a +-,若f (x )的值域为R ,则g (x )能取到一切的正实数,即存在x ,使得g (x )≤0,原问题转化为g (x )min ≤0.令g '(x )=e x +a =0,0a <,解得x =ln (﹣a ),当x <ln (﹣a )时,g '(x )<0,g (x )单调递减;当x >ln (﹣a )时,g '(x )>0,g (x )单调递增.∴g (x )min =g (ln (﹣a ))=()()ln ln a e a a a -+--=a [ln (﹣a )﹣2]≤0,∵a <0,∴ln (﹣a )﹣2≥0,解得a ≤﹣e 2.∴a 的最大值为﹣e 2.故答案为:﹣e 2.【点睛】本题考查对数函数的值域,还涉及利用导数研究函数的单调性与最值问题,构造新函数,将原问题转化为新函数的最值问题是解题的关键,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.三、解答题(本大题6小题,共70分,解答应写出必要的文字说明、证明过程) 17. 设{}n a 为等差数列,n S 为数列{}n a 的前n 项和,已知33S =-,77S =.(1)求数列{}n a 的通项公式;(2)设42n an b n =⋅+,求数列{}n b 的前n 项和n T . 【答案】(1)3n a n =-(2)(1)212n n n +-+ 【解析】【分析】(1)设等差数列{}n a 的公差为d ,由条件建立方程组解出1a 和d 即可;(2)31422n n n b n n --=⋅+=+,利用等差等比数列的前n 项和公式计算即可.【详解】(1)设等差数列{}n a 的公差为d ,∵33S =-,77S =, ∴11133232177672a d a d ⎧+⨯⨯=-⎪⎪⎨⎪+⨯⨯=⎪⎩,解得121a d =-⎧⎨=⎩, ∴2(1)13n a n n =-+-⨯=-;(2)由(1)得31422n n n b n n --=⋅+=+,∴()01112222(123)n n n T b b b n -=++⋯+⋅=++⋯+++++⋯+12(1)(1)211222n n n n n n -++=+=-+-. 【点睛】常见数列的求和方法:公式法(等差等比数列)、分组求和法、裂项相消法、错位相减法.18. 2020年寒假是特殊的寒假,因为疫情全体学生只能在家进行网上在线学习,为研究学生网上学习的情况,某校社团对男女各10名学生进行了网上在线学习的问卷调查,每名学生给出评分(满分100分),得到如图所示的茎叶图.(1)根据茎叶图判断男生组和女生组哪个组对网课的评价更高?并说明理由;(2)如图是按该20名学生的评分绘制的频率分布直方图,求a 的值并估计这20名学生评分的平均值(同一组中的数据用该组区间中点值作为代表);(3)求该20名学生评分的中位数m ,并将评分超过m 和不超过m 的学生数填入下面的列联表:超过m 不超过m 男生女生根据列联表,能否有85%的把握认为男生和女生的评分有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++, 0.455【答案】(1)男生对网课的评价更高,详见解析(2)0.045a =;平均值为74(3)中位数为74.5,填表见解析;没有【解析】【分析】(1)男生对网课的评价更高,可以根据中位数,平均值,不低于70分的人数得到答案. (2)根据比例关系得到0.045a =,再计算平均值得到答案.(3)计算中位数,完善列联表,计算20.8 2.072K =<,对比临界值表得到答案.【详解】(1)男生对网课的评价更高,理由如下:①由茎叶图可知,评价分数不低于70分的男生比女生多2人(或33.3%),因此男生对网课的评价更高.②由茎叶图可知,男生评分的中位数为77,女生评分的中位数为72,因此男生对网课的评价更高.③由茎叶图可知,男生评分的平均分数为686970747778798386967810+++++++++=, 女生评分的平均分数为5558636471737576818670.210+++++++++=,因此男生对网课的评价更高.以上给出了3种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知这20名学生评分在[70,80)内的有9人,则9100.04520a =÷=,这20名学生评分的平均值为:(550.01650.02750.045850.02950.005)1074⨯+⨯+⨯+⨯+⨯⨯=. (3)由茎叶图知该20名学生评分的中位数为747574.52m +==, 超过m 不超过m男生 6 4女生 46222()20(3616)0.8 2.072()()()()10101010n ad bc K a b c d a c b d --===<++++⨯⨯⨯. 所以没有85%的把握认为男生和女生的评分有差异.【点睛】本题考查了茎叶图,根据茎叶图计算平均值,独立性检验,意在考查学生的计算能力和综合应用能力.19. 如图,在三棱柱111ABC A B C -中,1BB BC ⊥,AB AC =(1)求证:11A B A C =;(2)若四边形11BCC B 为正方形,1A AB 为正三角形,M 是1C C 的中点,求二面角B AM C --的余弦值【答案】(1)证明见解析;(2)57-【解析】【分析】 (1)取BC 的中点为N ,通过线线垂直证明BC ⊥平面1AA N ,即可推出1BC A N ⊥,利用等腰三角形三线合一的性质即可得证;(2)首先证明1A ABC -为正三棱锥,过点1A 作1A O ⊥平面ABC ,则O 为正ABC 的中心,取BC 上靠近点C 的三等分点为E ,建立空间直角坐标系,利用空间向量法求二面角的余弦值.【详解】(1)证明:取BC 的中点为N ,在ABC 中,AB AC =,所以AN BC ⊥, 又1BB BC ⊥,且11//AA BB ,所以1AA BC ⊥,1AA ,AN ⊂平面1AA N ,1AA AN A =,所以BC ⊥平面1AA N , 又1A N ⊂平面1AA N ,所以1BC A N ⊥,所以在1A BC 中,由1BC A N ⊥及BC 的中点为N ,得11A B A C =.(2)由四边形11BCC B 为正方形,得1BB BC =,由1A AB 为正三角形,得11A A AB A B ==,所以11A A AB A B BC AC ====又由(1)知11A B A C =,所以1A ABC -为正三棱锥,过点1A 作1A O ⊥平面ABC ,则O 为正ABC 的中心,取BC 上靠近点C 的三等分点为E , 则1OA ,OB ,OE 两两垂直,分别以射线OB ,OE ,1OA 为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系,设2OB =,则32223AC =⨯=()22123222AO =-=()2,0,0B ,()1,3,0A --,()3,0C -,(10,0,22A ,()0,23,0AC =,()3,3,0AB =,(11,3,22AA =,, ()11131530,23,022222AM AC CM AC AA ⎛⎛=+=+=+= ⎝⎝, 设平面BAM 的法向量(),,n x y z =, 则153202330x y z x ⎧++=⎪⎨⎪+=⎩,取1x =,得721,3,2n ⎛⎫=- ⎪ ⎪⎝⎭,设平面CAM 的法向量(),,m x y z '''=, 则1532022230x y z ⎧++=⎪⎨⎪='''⎩',所以0y '=,取2x '=,得22,0,m ⎛= ⎝⎭72572cos ,49113422m n -==++⋅+, 设二面角B AM C --为θ,因为θ为钝角,所以57cos θ=,即所求的二面角的余弦值为. 【点睛】本题考查等腰三角形的性质、线面垂直的判定、空间向量法求二面角夹角的余弦值,属于较难题.20. 已知函数()()ln 1,f x x x k x k R =-+∈(1)若1k =-,求()f x 的最值;(2)对于任意2[2,]x e ∈,都有()2f x x k >--成立,求整数k 的最大值.【答案】(1)最小值为1e-,没有最大值;(2)3. 【解析】【分析】 (1)当1k =-时,利用导数求得()f x 的最值.(2)利用分离常数法化简不等式()2f x x k >--,通过构造函数法,结合导数求得k 的范围,由此求得整数k 的最大值.【详解】(1)()f x 的定义域为()0,∞+.()'1ln f x x =+,令'0f x 解得1=x e, 所以()f x 在区间10,e ⎛⎫ ⎪⎝⎭上()'0f x <,()f x 递减;在区间1,e ⎛⎫+∞ ⎪⎝⎭上()'0f x >,()f x 递增,所以()f x 在1=x e 处取得极小值也即是最小值为1111ln f e ee e ⎛⎫=⋅=- ⎪⎝⎭,无最大值. (2)依题意对于任意2[2,]x e ∈,都有()2f x x k >--成立,即对于任意2[2,]x e ∈,都有()ln 12x x k x x k -+>--, 即对于任意2[2,]x e ∈,都有ln 1x x x k x +<-成立. 令()2,[2,]ln 1x x x g x x x e ∈+=-,则()()()()()'221ln 11ln ln 211x x x x x x x x x g x x x ⎛⎫+⋅+--+ ⎪-+-⎝⎭==--. 令()2]ln 2,[2,h x x x e x =-∈+-, ()'111x h x x x-=-+=,所以当2[2,]x e ∈时()'0h x >,()h x 递增. ()2ln 222ln 20h =-+-=-<,()2222ln 240h e e e e =-+-=->,所以存在202,x e ⎡⎤∈⎣⎦,使得()00h x =,即00ln 20x x -+-=,即00ln 2x x =-①,()3ln332ln310h =-+-=-+<,()4ln 442ln 420h =-+-=-+>,所以()03,4x ∈.所以在区间()02,x 上,()0h x <,()'0g x <,()g x 递减, 在区间()20,x e 上,()0h x >,()'0g x >,()g x 递增, 所以()()0000min 0ln 1x x x g x g x x +==-,将①代入上式得 ()()()()20000000000min 0002ln 3,4111x x x x x x x x g x g x x x x x -++-=====∈---, 所以()()0min 3,4k g x x <=∈,所以整数k 的最大值为3.【点睛】本小题主要考查利用导数求函数的最值,考查利用导数研究不等式恒成立问题,属于难题.21. 如图,椭圆22221(0)x y C a b a b+=>>:经过点P (1.),离心率e=,直线l 的方程为x=4.(1)求椭圆C的方程;(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为123,,k k k.问:是否存在常数λ,使得123+=k k kλ?若存在,求λ的值;若不存在,说明理由.【答案】(1)22143x y+=(2)存在【解析】2231911124Pa b+=()由(,)在椭圆上得:① 222,3a cb c=∴=②②代入①得222221,4,3, 1.43x yc a b C===∴+=椭圆:考点:本题主要考查圆锥曲线的定义、标准方程、几何性质,直线与圆锥曲线的交点等基础知识,考查分析问题、解决问题的能力,考查逻辑推理能力,推理论证能力和计算能力.请考生在(22)、(23)两题中任选一题做答.注意:只能做所选定题目.如果多做,则按所做第一题目计分,作答时请用2B铅笔在答题卡上将所选题号的方框涂黑.22. 在直角坐标系xOy中,曲线C的参数方程为2515xyθθ⎧=+⎪⎨=-+⎪⎩(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程;(2)若点P的极坐标为()1,π,过P的直线与曲线C交于A,B两点,求11PA PB+的最大值.【答案】(1)4cos 2sin ρθθ=-(2【解析】【分析】(1)先将21x y θθ⎧=⎪⎨=-+⎪⎩中的θ消去得普通方程,再利用cos sin x y ρθρθ==,可得极坐标方程;(2)先求出AB 的参数方程,代入曲线C 的普通方程,利用韦达定理及三角函数的性质可得11PA PB+的最大值. 【详解】解:(1)由21x y θθ⎧=+⎪⎨=-+⎪⎩,得()()22215x y -++=, 即2242x y x y +=-,所以24cos 2sin ρρθρθ=-, 即4cos 2sin ρθθ=-,故曲线C 的极坐标方程为4cos 2sin ρθθ=-.(2)因为P 的极坐标为()1,π,所以P 的直角坐标为()1,0-,故可设AB 的参数方程为1cos sin x t y t αα=-+⎧⎨=⎩(t 为参数). 将1cos sin x t y t αα=-+⎧⎨=⎩代入()()22215x y -++=,得()22sin 6cos 50t t αα+-+=, 设点,A B 对应的参数分别为12,t t ,则122sin 6cos t t αα+=-+,1250t t =>, 所以1112122sin 6cos 11115t t PA PB t t t t αα+-+=+===, 故11PA PB +的最大值为5. 【点睛】本题考查普通方程,参数方程,极坐标方程之间的互化,考查直线参数方程中参数几何意义的应用,是中档题.23. 已知函数()3f x x x a =-++.(1)当2a =-时,求不等式()3f x ≥的解集;(2)若()5f x x ≤-的解集包含[]1,3,求实数a 的取值范围.【答案】(1){}14x x x ≤≥或(2)[]3,1a ∈--【解析】【分析】(1)利用分类讨论法,求得不等式的解集.(2)(2)原命题等价于35x x a x -++≤-在[]1,3上恒成立,即22x a x --≤≤-+在[]1,3上恒成立,由此求得a 的范围.【详解】解:(1)当2a =-时,()3f x ≥,323x x ∴-+-≥2523x x ≤⎧∴⎨-≥⎩或2313x <<⎧⎨≥⎩或3253x x ≥⎧⎨-≥⎩1x ∴≤或x ∈∅或4x ≥, 所以不等式的解集为{1x x ≤或4}x ≥.(2)()5f x x ≤-,35x x a x ∴-++≤-由于[]1,3x ∈,所以上式2x a ⇔+≤,所以22x a x --≤≤-+在区间[]1,3上恒成立,所以[]3,1a ∈--.【点睛】本题主要考查分类讨论法解绝对值不等式,函数的恒成立问题,体现了转化的数学思想,属于中档题.。