必修3教案2.1.2 系统抽样
人教B版高中数学必修三 2-1-2系统抽样 教案 精品
2.1.2系统抽样一、【教学目标】重点:理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题.难点:当Nn不是整数,如何实施系统抽样.知识点:理解系统抽样的定义及特点,会用系统抽样的方法从总体中抽取样本.能力点:通过对实际问题的探究,归纳应用数学知识解决实际问题的方法,理解分类讨论的数学方法.教育点:通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系.自主探究点:理解系统抽样与简单随机抽样的关系.考试点:会用系统抽样的方法从总体中抽取样本。
易错易混点:能运用所学知识判断、分析和选择抽取样本的方法.拓展点:通过对系统抽样的学习,更加突出的体会它在中学数学中的地位及在日常生活中的应用.二、【引入新课】回顾过去,诸多食品安全事件挑战公众神经.经历过瘦肉精事件的炸雷、上海染色馒头的喧闹、浙江地沟油事件的轰动,到如今的问题胶囊事件,如何检验食品安全问题已经成为社会大众的焦点。
问题1:一家药厂某时段生产一批胶囊10000件,要求抽取200件,检验该批药品质量指标是否合格.如何抽样?采用抽签法,这样抽取的样本能够反映总体的情况.考虑到总体数目为10000,较大,1生的方法在实际操作中会有两个问题:(1)制签比较繁琐.(2)不能保证总体“均匀搅拌”,即样本的代表性会降低.抽签法的优点是简单易行,缺点是当总体的个体很多时,将总体“搅拌均匀”会比较困难,就不能保证每个个体被抽中的机会均等,从而使样本的代表性变差.随机数表法的优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本.因此,本节课我们学习一种新的抽样方法-——系统抽样。
(板书课题:2.1.2 系统抽样)【设计意图】 通过设置问题情境,激发学生的求知欲,让他们积极主动配合老师的“诱导式”教学,顺利进入新课.三、【探究新知】问题2:系统抽样到底如何抽样?问题1中如何抽取这200个样本?(1)学生带着问题阅读教材58P 后,分组交流讨论,自由发言;(2)师生共同总结.讨论结果:可以将这10000件胶囊随机编号110000-,分成200组,每组50人,第1组是150-,第二组51100-,依次分下去,然后用简单随机抽样在第1组抽取1人,比如号码是2,然后每隔50个号抽取一个,得到2,52,102,,9952.这样就得到一个容量为200的样本.这种抽样方法称为系统抽样.【设计意图】通过问题比较,突显出总体特征的变化,引导学生探究发现新知识新方法.学生参与问题解决的全过程,通过交流与合作发现“等距抽样”的特征,从而形成感性的系统抽样的概念和方法.1.系统抽样的定义:一般地,要从容量为N 的总体中抽取容量为n 的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.说明:由系统抽样的定义可知系统抽样有以下特征:(1)当总体容量N 较大时,采用系统抽样.(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为N k n ⎡⎤=⎢⎥⎣⎦(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.(4)系统抽样与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用的是简单随机抽样;(5)简单随机抽样和系统抽样过程中,每个个体被抽取的可能性是相等的.练习:下列抽样中不是系统抽样的是( )A.从标有115-号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i ,以后为5,10i i ++ (超过15则从1再数起)号入样;B.工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验;C.搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止;D.电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈.解析:(2)C 不是系统抽样,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入样.问题4:若问题1中胶囊的件数为10003件,那又如何抽取一个容量为200的样本呢?教师引导学生讨论,并由此总结系统抽样的步骤.讨论结果:从10003件胶囊中随机的剔除3件,再按照系统抽样的方法进行抽样.【设计意图】当总体数目与样本容量不能整除时,学生完成思考,并形成一般思路与方法.问题5:系统抽样的步骤是怎样的?(全班统一意见,形成系统抽样的一般步骤,多媒体出示)2. 系统抽样的步骤1°编号:将总体中个体编号(可直接利用个体身份所带的号码,如学号、准考证号、门牌号等).2°分段:对编号进行分段.如果总体中的个体数不能被样本容量整除,则利用简单随机抽样的方法剔除多余(余数个)个体,确定的分段间隔为N k n =或'N k n=. 3°确定第一段中入样个体的编号:在第一段中用简单随机抽样的方法确定所抽取的号码l .4°等距抽样:在各段中等距抽样,依次得到编号为:,,2,,(1)l l k l k l n k +++-.【设计意图】由上述过程让学生概括系统抽样的特点和步骤,教师完善,强调关键点培养学生总结归纳的能力。
新课标A版必修3导学案 2.1.2系统抽样
编号:SX2-011第1页 第2页装订线批阅记录装订线评价预设/反思纠错评价预设/反思纠错 2.1.2系统抽样姓名 班级 组别 使用时间【学习目标】1.理解什么是系统抽样。
2. 会用系统抽样从总体中抽取样。
学习重点:系统抽样的概念及如何用系统抽样获取样本。
学习难点:与简单随机抽样一样,系统抽样也属于等可能抽样。
【知识链接】1简单随机抽样的实施方法:⑴抽签法:抽签法就是把总体中的N 个个体______,把号码写在号签上,将号签放在一个容器中,_________后,每次从中抽取一个号签,连续抽取n 次,就得到一个容量为n 的样本。
⑵随机数表法:1.制定随机数表;2.给 中各个个体编号;3.按照一定的规则确定所要抽取的样本的号码 (查随机数表的起始点任选,方向可以向上、向下、向左、向右。
)2.简单随机抽样的特点:(1)简单随机抽样要求被抽取的样本的总体个数N 是______的。
(2)简单随机样本数n__________样本总体的个数N 。
(3)简单随机样本是从总体中______抽取的。
(4)简单随机抽样是一种_______的抽样。
(5)简单随机抽样的每个个体入样的可能性均为n/N 。
【自主学习】1.系统抽样:当总体中的个体数较多时,可将总体分成 几个部分,然后按预先定出的规则,从每一部分抽取一个 ,得到需要的样本,这种抽样叫做系统抽样.2.系统抽样的步骤:①采用随机的方式将总体中的个体 为简便起见,有时可直接采用个体所带有的号码,如考生的准考证号、街道上各户的门牌号,等等②将整个的编号 (即分成几个部分),要确定分段的间隔k 当Nn(N 为总体中的个体的个数,n 为样本容量)是整数时,k=N n;当Nn不是整数时,通过从总体中剔除一些个体使剩下的总体中个体的个数N '能被n 整除,这时k=N n'.③在第一段用简单随机抽样确定起始的 编号l④按照事先确定的规则 (通常是将l 加上间隔k ,得到第2个编号l +k,第3个编号l +2k ,这样继续下去,直到获取整个样本)【探究提升】1.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k 为多少?2.为了了解参加某种知识竞赛的1000名学生的成绩,应采用什么抽样方法恰当?简述抽样过程.3.从N=103的总体中采用系统抽样的方法抽取一个容量n=10的样本,写出抽样过程。
人教版高中数学必修3第二章统计-《2.1.2系统抽样》教案(9)
数学备课大师 目录式免费主题备课平台!2.1.2 系统抽样尤溪一中 姜志茂设计理念:立足“以人为本,以学生发展为本”的基本理念,努力解决好以下三个问题:⑴依据课程目标,结合教材内容和学生实际,确定教学目标。
⑵依据建构主义理论,学习不是被动接受而是主动建构的过程,强调学习的情境性、个体性、生成性,选择教学方法,实现教学目标。
⑶以教师为主导,学生为主体,探究为主线,通过主动、探究、合作为主要特征的学习方式,强调“活动”的内化,让学生体验“学数学、用数学”的意识和能力。
教学内容:《普通高中课程标准实验教科书——数学③》(人教版)第二章第一课第二节2.1.2 系统抽样教学目标:1. 知识与技能:(1)通过案例及练习,使学生理解和掌握系统抽样的概念方法与步骤;(2)会用系统抽样法从总体中抽取个体,能根据总体的特征选择适当的抽样方法;(3)正确理解系统抽样与简单随机抽样的关系。
2. 过程与方法:通过对实际问题的探究,让学生体验从总体中抽取样本的全过程,归纳应用系统抽样来解决实际问题的具体方法步骤,体验“学数学、用数学”的意识和能力3. 情感态度与价值观:通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系。
学情与教材分析:学生已初步了解掌握了简单随机抽样的两种方法,即抽签法与随机数表法,在此基础上进一步学习系统抽样,可以创设一个恰当的问题情境,让学生类比简单随机抽样的方法步骤,尝试解决抽取样本的过程,并围绕代表性与公平性两原则,分析比较从而达到对新知识新方法的学习与掌握。
教学重点:正确理解系统抽样的概念方法步骤,能够灵活应用系统抽样的方法解决统计问题。
教学难点:当nN 不是整数时的处理办法,个体编号具有某种周期性时,“坏样本”的理解。
教学准备:制作相关ppt 幻灯片,如复习提问的问题与答案,系统抽样的方法步骤,例题及解答等教学过程:一、新课引入[教学内容]1、复习提问:(1)什么是简单随机抽样?有哪两种方法?(2)抽签法与随机数表法的一般步骤是什么?(3)简单随机抽样应注意哪两个原则?(4)什么样的总体适合简单随机抽样?为什么?[设计意图]通过复习提问进一步理解掌握简单随机抽样的概念方法和步骤?为新课学习打基础[教学内容]2、实例探究当总体数量较多时,应当如何抽取?结合课本课本P60探究问题,设计你的抽取样本的方法。
高中数学人教新课标B版必修3--《2.1.2 系统抽样》教学设计(表格式)
课题:2.1.2系统抽样
一、教学目标:
1.知识与技能:理解系统抽样的概念,会用系统抽样方法从总体中抽取样本.
2.过程与方法:通过探索、研究、归纳、总结形成科学的知识结构,并掌握知识之间的相互
联系.
3.情感态度与价值观:培养学生积极参与、大胆探索的精神以及合作意识,培养学生学数学
用数学的意识.
二、教学重点难点:
重点:系统抽样方法的应用.
难点:系统抽样方法的合理性、公平性.
三、教学方法:
在教法上:我采用引导发现,自主探究,合作交流的教学方法。
本节课以问题为载体,通过问题链,使学生主动参与,并让学生成为探究问题的主体.
在学法上:让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力.
四、教学手段:采用多媒体辅助教学,增强直观性,提高课堂效率.。
高中数学优质教学设计3:2.1.2 系统抽样 教案
2.1.2 系统抽样三维目标1.知识与技能(1)了解系统抽样的定义,特点及操作步骤.(2)理解科学、合理选用抽样方法的必要性.2.过程与方法(1)系统抽样的操作步骤.(2)通过生活实例的对比分析,让学生了解各种抽样方法的使用范围,能根据实际情况选择适当的抽样方法.3.情感、态度与价值观(1)将生活实例与数学进行结合,使学生感受到生活处处有数学;激发学生学习的兴趣,渗透“运用数学”解决实际问题的意识.(2)培养学生科学的探索精神,培养学生合作探讨,相互交流的能力,概括归纳的能力,合情推理的意识.重点难点重难点:系统抽样的定义及操作步骤.在探讨中总结定义,培养学生合作探讨,相互交流的能力.培养学生概括归纳的能力,让学生体会学数学的成就感.通过师生的互动,深化系统抽样和分层抽样概念及遵循原则的理解,用程序框图来表示分层抽样的步骤,加深学生对分层步骤的理解,进而强化了重点.学生对系统抽样和分层抽样刚刚接触,还没有形成理性认识,所以鼓励学生相互交流,让他们先想、先说、先做,再规范学生的解题过程,避免了老师的单独说教,既降低了学习难度,又激发了学习兴趣.在兴趣中化解了难点.教学建议本课利用多媒体辅助教学,在教法上充分体现教师“问题诱导,启发讨论”的引导作用,在学法上突出学生的“自主探究,合作交流”的学习方式,真正实现“教师为主导,学生为主体”的新课程理念,让学生通过“析案例、议疑难、现过程、得结论、做小结”等一系列学习活动来掌握重点,突破难点,充分发挥学生的主动性和参与性.以促进学生发展为出发点,着眼于知识的形成和发展以及学生的学习体验,以问题链形式,由浅入深、循序渐进,让不同层次的学生都能参与到课堂教学中,体验成功的喜悦.知识1系统抽样【问题导思】1.某中学从5 000名学生中选出50人参加2013年10月1日的庆国庆文娱活动,若用抽签法可行吗?【提示】 可行,但费时费力、操作不变.2.能否设计一个合理的抽样方法完成此样本的抽取?【提示】 能.先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后逐个抽取的号码依次增加间隔数即得到所求样本.题型一 系统抽样的概念[例1] (1)某商场欲通过检查部分发票及销售记录来快速估计每月的销售金额,采用如下方法:从某本发票的存根中随机抽一张,如15号,然后按顺序将65号,115号,165号,…,发票上的销售金额组成一个调查样本.这种抽取样本的方法是( )A .抽签法B .随机数法C .系统抽样法D .以上都不对(2)为了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k =________.【解析】(1)上述抽样方法是将发票平均分成若干组,每组50张,从第一组抽出了15 号,以后各组抽15+50n (n ∈N *)号,符合系统抽样的特点.(2)根据样本容量为30,将1 200名学生分为30段,每段人数即间隔k =1 20030=40. 【答案】(1)C (2)40[类题通法]系统抽样的判断方法判断一个抽样是否为系统抽样:(1)首先看是否在抽样前知道总体是由什么组成,多少个个体,(2)再看是否将总体分成几个均衡的部分,并在每一个部分中进行简单随机抽样,(3)最后看是否等距抽样.[活学活用]某影院有40排座位,每排有46个座位,一个报告会上坐满了听众,会后留下座号为20的所有听众进行座谈,这是运用了( )A .抽签法B .随机数表法C .系统抽样法D .放回抽样法【解析】选C 此抽样方法将座位分成40组,每组46个个体,会后留下座号为20的相当于第一组抽20号,以后各组抽取20+46n ,符合系统抽样特点.【答案】C 题型二 系统抽样的设计[例2] (1)某初级中学领导采用系统抽样方法,从该校预备年级800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数k =80050=16,即每16人抽取一个人.在1~16中随机抽取一个数,如果抽到的是7,则从33~48这16个数中应 取的数是________.【解析】∵采用系统抽样方法,每16人抽取一个人,1~16中随机抽取一个数抽到的是7,∴在第k 组抽到的是7+16(k -1),∴从33~48这16个数中应取的数是7+16×2=39.【答案】39(2)某企业对新招的504名员工进行岗前培训,为了了解员工的培训情况,试用系统抽样的方法按照下列要求抽取员工,请你写出具体步骤.①从中抽取8名员工,了解基本理论的掌握情况.②从中抽取50名员工,了解实际操作的掌握情况.解 ①第一步,将504名员工随机编号,依次为001,002,003,…,503,504,将其等距分成8段,每一段有63个个体;第二步,在第一段(001~063)中用简单随机抽样方法随机抽取一个号码作为起始号码,比如26号;第三步,起始号+间隔的整数倍,确定各个个体:将编号为26,26+63,26+63×2,…,26+63×7的个体抽出组成样本.②第一步,用随机方式给每个个体编号:001,002,003,…,503,504;第二步,利用随机数表法剔除4个个体,比如剔除编号为004,135,069,308的4个个体,然后再对余下的500名员工重新编号,分别为001,002,003,…,499,500,并等距分成50段,每段10个个体;第三步,在第一段001,002,003,…,010中用简单随机抽样方法抽出一个号码(如006)作为起始号码;第四步,起始号+间隔的整数倍,确定各个个体,将编号为006,016,026,…,486,496的个体抽出组成样本.[类题通法]设计系统抽样应关注的几个问题(1)系统抽样一般是等距离抽取,适合总体中个体数较多,个体无明显差异的情况;(2)总体均匀分段,通常在第一段(也可以选在其他段)中采用简单随机抽样的方法抽取一个编号,再通过将此编号加段距的整数倍的方法得到其他的编号.注意要保证每一段中都能取到一个个体;(3)若总体不能均匀分段,要将多余的个体剔除(通常用随机数表的方法),不影响总体中每个个体被抽到的可能性.某校高中二年级有253名学生,为了了解他们的视力情况,准备按1∶5的比例抽取一个样本,试用系统抽样方法进行抽取,并写出过程.解(1)先把这253名学生编号000,001, (252)(2)用随机数表法任取出3个号,从总体中剔除与这三个号对应的学生.(3)把余下的250名学生重新编号1,2,3, (250)(4)分段.取分段间隔k=5,将总体均分成50段.每段含5名学生.(5)以第一段即1~5号中随机抽取一个号作为起始号,如l.(6)从后面各段中依次取出l+5,l+10,l+15,…,l+245这49个号.这样就按1∶5的比例抽取了一个样本容量为50的样本.题型三简单随机抽样与系统抽样的综合问题[例3]某集团有员工1 019人,其中获得过国家级表彰的有29人,其他人员990人.该集团拟组织一次出国学习,参加人员确定为:获得过国家级表彰的人员5人,其他人员30人,如何确定人选?解获得过国家级表彰的人员选5人,适宜使用抽签法:其他人员选30人,适宜使用系统抽样法.(1)确定获得过国家级表彰的人员人选:①用随机方式给29人编号,号码为1,2, (29)②将这29个号码分别写在一个小纸条上,揉成小球,制成号签;③将得到的号签放入一个不透明的袋子中,搅拌均匀;④从袋子中逐个抽取5个号签,并记录上面的号码;⑤从总体中将与抽到的号签的号码相一致的个体取出,人选就确定了.(2)确定其他人员人选:第一步:将990名其他人员重新编号(分别为1,2,…,990),并分成30段,每段33人;第二步,在第一段1,2,…,33这33个编号中用简单随机抽样法抽出一个(如3)作为起始号码;第三步,将编号为3,36,69,…,960的个体抽出,人选就确定了.(1),(2)确定的人选合在一起就是最终确定的人选.[类题通法]系统抽样与简单随机抽样的区别和联系1.区别(1)系统抽样比简单随机抽样更容易实施,可节约抽样成本;(2)系统抽样所得样本的代表性与具体的编号有关,而简单随机抽样所得样本的代表性与个体的编号无关.如果编号的个体特征随编号的变化呈一定的周期性,可能会使抽样的代(3)系统抽样的应用比简单随机抽样的应用更广泛,尤其是工业生产线上产品质量的检验,不知道产品的数量,因此不能用简单随机抽样.2.联系(1)将总体均分后的起始部分进行抽样时,采用的是简单随机抽样;(2)与简单随机抽样一样,系统抽样是等概率抽样,它是客观的、公平的;(3)与简单随机抽样一样是不放回的抽样;(4)总体中的个体数恰好能被样本容量整除时,可用它们的比值作为系统抽样的间隔;当总体中的个体数不能被样本容量整除时,可用简单随机抽样先从总体中剔除少量个体,使剩下的个体数能被样本容量整除再进行系统抽样.[活学活用]下面给出某村委会调查本村各户收入情况做的抽样,阅读并回答问题.本村人口数: 1 200,户数300,每户平均人口数4人;应抽户数:30;抽样间隔:1 20030=40; 确定随机数字:取一张人民币,后两位数为12;确定第一样本户:编号12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户……(1)该村委会采用了何种抽样方法?(2)抽样过程存在哪些问题,试修改.(3)何处是用简单随机抽样?解(1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样.抽样间隔30030=10,其他步骤相应改为确定随机数字:取一张人民币,末位数为2.(假设)确定第一样本户:编号02的住户为第一样本户;确定第二样本户:2+10=12,12号为第二样本户.(3)确定随机数字:取一张人民币,其末位数为2. 题型四 需要剔除个体的系统抽样[例4]为了了解参加某种知识竞赛的1 003名学生的成绩,抽取一个容量为50的样本,选用什么抽样方法比较恰当?简述抽样过程.【思路探究】 编号→剔除→再编号→分段→在第一段上抽样→在其他段上抽样→成样 解 (1)随机地将这1 003个个体编号为1,2,3,…,1 003;(2)利用简单随机抽样,先从总体中随机剔除3个个体,剩下的个体数1 000能被样本容量50整除,然后将1 000个个体重新编号为1,2,3,…,1 000;(3)将总体按编号顺序均分成50组,每组包括20个个体;(4)在编号为1,2,3,…,20的第一组个体中,利用简单随机抽样抽取一个号码,比如是18;(5)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998.[类题通法]当总体容量不能被样本容量整除时,可以先从总体中随机剔除几个个体,但要注意的是剔除过程必须是随机的,也就是总体中的每个个体被剔除的机会均等.剔除几个个体后使总体中剩余的个体数能被样本容量整除.[活学活用]从某厂生产的802辆轿车中抽取80辆测试某项性能.请用系统抽样方法进行抽样,并写出抽样过程.解 第一步,先从802辆轿车中剔除2辆轿车(剔除方法可用随机数法);第二步,将余下的800辆轿车编号为1,2,…,800,并均匀分成80段,每段含k =80080=10个个体;第三步,从第1段即1,2,…,10这10个编号中,用简单随机抽样的方法抽取一个号(如5)作为起始号;第四步,从5开始,再将编号为15,25,…,795的个体抽出,得到一个容量为80的样本.易错易误辨析系统抽样概念不清致误[典例] 从2 009名学生中选取50名学生参加数学竞赛,若采用下面方法选取:先用简单随机抽样从2 009人中剔除9人,剩下的2 000人再按系统抽样的方法抽取50人,则在2 009人中,每个人入选的机会( )A .都相等,且为502 009 B .不全相等 C .均不相等 D .都相等,且为140【解析】因为在系统抽样中,若所给的总体个数不能被样本容量整除,则要先剔除几个个体,本题要先剔除9人,然后再分组,在剔除过程中,每个个体被剔除的机会相等,所以每个个体被抽到包括两个过程,一是不被剔除,二是被选中,这两个过程是相互独立的,所以,每个人入选的机会都相等,且为502 009.【答案】A课堂小结抽样方法的选取:1.若总体由差异明显的几个层次组成,则选用分层抽样.2.若总体没有差异明显的层次,则考虑采用简单随机抽样或系统抽样.当总体容量较小时宜用抽签法;当总体容量较大、样本容量较小时宜用随机数表法;当总体容量较大、样本容量也较大时宜用系统抽样.3.采用系统抽样时,当总体容量N 能被样本容量n 整除时,抽样间隔为k =N n;当总体容量不能被样本容量整除时,先用简单随机抽样剔除多余个体,抽样间隔为k =[N n]. 当堂检测1.老师从全班50名同学中抽取学号为3,13,23,33,43的五名同学了解学习情况,其最可能用到的抽样方法为( )A .简单随机抽样B .抽签法C .随机数表法D .系统抽样【解析】符合系统抽样的特征.【答案】D2.为了解2 400名学生对某项教改的意见,打算从中抽取60名学生调查,采用系统抽样法,则分段间隔k 为( )A .40B .30C .20D .60【解析】k =2 40060=40. 【答案】A3.某单位有职工200人,35岁以下有40人,35岁到50岁的有120人,51岁及以上的有40人,用分层抽样的方法从中抽取40人,各年龄段分别抽取人数为( )A .8,24,8B .4,12,20C .24,28,30D .16,16,32 【解析】各年龄段的比为1∶3∶1,∴各段人数分别为40×15=8,40×35=24,40×15=8. 【答案】A4.某运输队有货车1 200辆,客车800辆,从中抽取110调查车辆的使用和保养情况,请给出抽样过程.解利用分层抽样.第一步,确定货车和客车各应抽取多少辆.货车:1 200×110=120(辆),客车:800×110=80(辆);第二步,用系统抽样法分别抽取货车120辆,客车80辆;第三步,把抽取的货车和客车组成样本.。
高中数学第2章统计2.1抽样方法2.1.2系统抽样教案苏教版必修3
2.1.2 系统抽样整体设计教材分析当总体中个体比拟多,抽签法与随机数表法用于选取样本就比拟烦琐,而且也不能保证样本代表性,所以本节课将要学习又一种新抽样方法——系统抽样.在教学时教师不仅要让学生了解系统抽样概念,而且还要让学生掌握如何进展系统抽样,以及在进展系统抽样时所要注意一些事项,如怎样进展分段,应该分成多少段,分段时如总体个数不能被样本容量整除怎么办等等.在教学中要教会学生会比拟各种方法适用范围与各自优缺点,并会根据实际情况选择恰当抽样方法,且在讲解系统抽样时必须紧扣“每个个体被抽取概率是相等〞理论依据.黑格尔说:“教师是学生心目中‘权威人物’,是儿童心目中最神圣偶像.〞因此,我们教师在教学中要建立民主师生关系,要有意突破常规,让学生敢于在课堂上表现自己,教师也要善于表扬他们.教学时,教师要让学生充分发挥自己潜能,培养他们会对现有知识独立钻研创新精神,并培养他们会用现有知识合理辐射数学思维,得出一些具有个人特色正确结论.三维目标了解系统抽样概念及抽样步骤,会用系统抽样从总体中抽取样本,能运用所学知识判断、分析与选择抽取样本方法.能从现实生活或其他学科提出有价值数学问题,并能加以解决,培养学生运用统计思想表达思考与解决现实世界中问题能力,让学生感受数学美学价值在于鲜活实际应用,立志于学习与研究数学,最大限度地用数学知识效劳于社会,同时自身也能获得最正确生存环境.重点难点教学重点:系统抽样应用.教学难点:对系统抽样中“系统〞思想理解;对样本随机性理解.课时安排1课时教学过程导入新课当总体中个体数比拟多时,采用抽签法或随机数表法那么比拟烦琐,那么该如何抽样?如:某校高一年级共有20个班,每班有50名学生.为了了解高一学生视力状况,从这1 000人中抽取一个容量为100样本进展检查,应该怎样抽取?学生思考,交流讨论,然后代表发言,教师修改总结.推进新课新知探究1.将总体平均分成几个局部,然后按照一定规那么,从每个局部中抽取一个个体作为样本,这样抽样方法称为系统抽样〔systematic sampling〕.2.假设要沉着量为N总体中抽取容量为n样本,系统抽样步骤为:〔1〕采用随机方式将总体中N 个个体编号;〔2〕将编号按间隔k 分段,当n N 是整数时,取k=n N ;当n N 不是整数时,从总体中剔除一些个体,使剩下总体中个体个数N′能被n 整除,这时取k=nN ,并将剩下总体重新编号; 系统抽样与简单随机抽样联系:将总体均分后每一局部进展抽样时,采用是简单随机抽样.系统抽样优点是简便易行,当对总体构造有一定了解时,充分利用已有信息对总体中个体进展排队再抽样,可提高抽样效率;当总体中个体存在一种自然编号时,便于施行系统抽样法.系统抽样缺点是在不了解样本总体情况下,所抽出样本具有一定偏差.〔3〕在第一段中用简单随机抽样确定起始个体编号l ;〔4〕按照一定规那么抽取样本,通常将编号为l,l+k,l+2k,…,l+(n-1)k 个体抽出.应用例如〔多媒体出示题目,学生思考〕例1 一条流水线生产某种产品,每天都可生产128件这种产品,我们要对一周内生产这种产品作抽样检验,方法是抽取这一周内每天下午2点到2点半之间下线8件产品作检验.这里采用了哪种抽取样本方法分析:此抽样选用了“等时〞抽样,与“等间距〞类似而作出判断.解:系统抽样.点评:解决此题要弄清楚目前所学两种抽样概念与特点.例2 某校为了了解全校住校生对学校食堂意见,打算从全校1 000名住校生中抽取50名进展调查,用系统抽样法进展抽取,并写出过程.分析:根据系统抽样步骤可解此题.解:首先将这1 000名学生从1开场进展编号,然后按号码顺1000=20,再从号码1~20第一段中序均分成50段,每段个体数为50用简单随机抽样抽取一个号码,假设抽到是9号,然后从9 开场,每隔20个号码抽取一个,这样就得到容量为50样本编号:9、29、49、…、989,这样,我们就得到一个容量为50样本,这种抽样方法就是系统抽样.N是整数.点评:此题“分段〞比拟方便,因为分段间隔k=n例3 某单位在岗职工共624人,为了调查工人用于上班途中所用时间,决定抽取10%工人进展调查,如何采用系统抽样方法完成这一抽样?分析:总体中每一个个体,都必须等可能地入样.为了实现“等距〞入样,且又等概率,应先剔除,再“分段〞,后定起始数.解:抽样过程如下:〔1〕先将在岗工人624人,用随机方式编号〔如按出生年月日编号〕:000,001,002, (623)〔2〕由题知应抽取62人作为样本,因为624不能被62整除,所以应从总体中剔除4个,将余下620人按编号顺序补齐000,001,002,…,619,并分成62个段,每段10人.〔3〕在第一段000,001,002,…,009这十个编号中,随机定一个起始号l 〔如006〕.〔4〕最后编号为006,016,026,…,59610名工人就为所要抽取样本.点评:1.系统抽样步骤可概括为:〔1〕编号〔采用随机方式将总体中个体编号,为简便起见,有时可直接利用个体所带号码,如考生准考证号、街道上各户门牌号,等等〕.n N 〔N 为总体中个体数,n 为样本容量〕是整数时, k=n N ;当n N 不是整数时,通过从总体中剔除一些个体,使剩下个体数N′能被n 整除,这时k=nN 〕. 〔3〕确定起始个体编号l 〔在第一段用简单随机抽样确定起始个体编号l 〕.〔4〕按照事先确定规那么.......抽取样本〔通常是将l 加上间隔k ,得第二个编号l+k ,再将〔l+k 〕加上k ,得第三个编号l+2k ,这样继续下去,直至获取整个样本〕.“事先确定规那么〞说明不一定按“通常〞方法〔即将l 加上间隔k ,得第二个编号l+k ,再将〔l+k 〕加上k ,得第三个编号l+2k ,这样继续下去,直至获取整个样本〕来抽取样本.2.学生解答,归纳步骤后由学生修改整理,教师巡视点拨,对整理较好同学进展及时表扬或鼓励,激发学生自信.思考:在用系统抽样方法抽样过程中,会用怎样“规那么〞来取除起始号以外其他编号呢?看例4.例4 一个总体中有100个个体,随机编号为0、1、2、 (99)依编号顺序平均分成10个小组,组号依次为1、2、3、…、10,现用系统抽样方法抽取一个容量为10样本,规定如果在第1组随机抽取号码为m,那么在第k(k≥2)组中抽取号码个位数字与m+k个位数字一样.假设m=6,那么第7组中抽取号码为__________________.分析:此题与课本中总结“通常〞方法〔即每隔10抽出一个号码〕有所不同,挖掘点在于条件“第一个号码m之后,在第k组中抽取号码个位数字与m+k个位数字一样〞.解:因为,第1组号码0~9;第2组号码10~19;第3组号码20~29;依次下去第7组中抽取号码十位数字是6.此题要求“在抽取了第一个号码m之后,在第k组中抽取号码个位数字与m+k 个位数字一样〞限制了各组抽出号码个位数.利用m及k值,求出m+k个位数字,即此题中由m=6,k=7得m+k=13,显然,m+k=13个位数字是3,故从第7组中抽取号码是63.所有被抽出号码依次为:6,18,29,30,41,52,63,74,85,96.它们“不等距〞.点评:此题是福建2004年高考卷第15〔文〕题,如果按照系统抽样经历做法“等间距〞做此题话,那么不达.一位教育专家曾指出:学习如果过分地依赖学习者经历或感情世界,即通过纯粹经历积累,而不是通过认知活动对经历进展加工,那么学习将会出现危机,因此必须重视人思维教育.所以,我们在教学时要留足够时间给学生探究,充分暴露学生思维,让学生自己打破思维中过多“经历〞束缚,展示学生创造性学习思维活动过程.知能训练课本本节练习.解答:1.系统抽样中总体与样本比必须是整数,而1 252被50整除余2,因此必须随机剔除2人.应选A.2.具体步骤为:第一步,将1 003名学生,用随机方式编号〔如按出生年月日编号〕:0000,0001,0002,…,1 002.第二步,由题知:应抽取20名学生作为样本,因为1 003不能被20整除,所以应从总体中随机剔除3名学生,将余下1 000名学生按编号顺序补齐为0000,0001,0002,…,0999,并分成20个段,每段50名学生.第三步,在第一段0000,0001,0002,…,0049这50个编号中,随机定一个起始号l〔如0006〕.第四步,编号为0006,0056,0106,…,095620名学生就是所要抽取样本.3.可选择在某个年级进展,如选择高一年级.先将所有学生随机地进展编号;然后将他们分成m段,每段n人〔如总人数不能被均分,可随机地剔除几个人再分〕;再从第一段随机抽取一个号码〔如l〕;那么编号为l,l+n,l+2n,…,l+(m-1)n学生就是需要.最后测量这些学生两臂平展长度及身高,再分别计算两组数据平均数.课堂小结〔先让一位同学总结,其他同学补充,教师完善,并用多媒体展示出来〕(1)系统抽样适用于总体中个数较多情况,因为这时采用简单随机抽样显得不方便.(2)系统抽样与简单随机抽样之间存在着密切联系,即在将总体中个体均分后每一段进展抽样时,采用是简单随机抽样.(3)与简单随机抽样一样,系统抽样也属于等概率抽样.作业为了了解某地参加英语口语水平测试5 027名学生成绩,从中抽取了200名学生成绩进展统计分析,请写出运用系统抽样抽取样本步骤.解:具体步骤为:第一步,将参加计算机水平测试5 027名学生用随机方式编号〔如按准考证编号〕0000,0001, (5026)第二步,由题知:应抽取200人作为样本,因为5 027不能被200整除,所以应从总体中剔除27个,将余下5 000人按编号顺序补齐0000,0001,…,4999,分成200个段,每段25人.第三步,在第一段0000,0001,…,0024这25个编号中,随机定一个起始号l〔如0022〕.第四步,编号为0022,0047,…,4997工人就为所要抽取样本.设计感想由于这局部内容比拟简单,所以整节课以学生为主,尤其是根底在中下游学生,要激发他们学习积极性,从而活泼课堂气氛,使每个学生都全身心投入,动脑、举例.。
人教版高中数学必修3教案2.1.2 系统抽样
2.1.2 系统抽样教学目标:1、知识与技能:(1)正确理解系统抽样的概念;(2)掌握系统抽样的一般步骤;(3)正确理解系统抽样与简单随机抽样的关系;2、过程与方法:通过对实际问题的探究,归纳应用数学知识解决实际问题的方法,理解分类讨论的数学方法,3、情感态度与价值观:通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系。
4、重点与难点:正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题。
教学设想:【创设情境】:某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?【探究新知】一、系统抽样的定义:一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。
【说明】由系统抽样的定义可知系统抽样有以下特证:(1)当总体容量N较大时,采用系统抽样。
(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系N].统抽样又称等距抽样,这时间隔一般为k=[n(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号。
思考?(1)你能举几个系统抽样的例子吗?(2)下列抽样中不是系统抽样的是()A、从标有1~15号的15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样B工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈点拨:(2)c不是系统抽样,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入样。
《必修3版第2章2.1.2系统抽样》优秀教案
212 系统抽样1.理解系统抽样的概念.重点2.掌握系统抽样的一般步骤,会用系统抽样从总体中抽取样本.重点3.能用系统抽样解决实际问题.难点[基础·初探]教材整理系统抽样的概念阅读教材P52,完成下列问题.当总体元素个数很大时,样本容量就不宜太小,采用简单随机抽样,就显得费事.这时,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.在系统抽样中,由于抽样的间隔相等,因此系统抽样也被称作等距抽样.1.判断正确的打“√”,错误的打“×”1总体个数较多时可以用系统抽样.2系统抽样的过程中,每个个体被抽到的概率不相等.3用系统抽样从N个个体中抽取一个容量为n的样本,要平均分成n段,每段各有错误!个号码.【答案】1√2×3×2.有2021学,编号为1~2021在从中抽取4人的作文卷进行调查,用系统抽样方法确定所抽的编号为A.5,10,15,2021.2,6,10,14C.2,4,6,8 D.5,8,11,14【解析】将20214个组,每组5个号,间隔等距离为5【答案】 A3.已知标有1~2021小球2021按下面方法抽样按从小号到大号排序:1以编号2为起点,采用系统抽样抽取4个球,则这4个球的编号的平均值为________;2以编号3为起点,采用系统抽样抽取4个球,则这4个球的编号的平均值为________.【解析】这2021球分4组,每组5个,1若以2号为起点,则另外三个球的编号依次为7,12,17,这4球编号平均值为错误!=952若以3号为起点,则另外三个球的编号依次为8,13,18,这4球编号平均值为错误!=105【答案】1952105[小组合作型]系统抽样的概念1某商场欲通过检查部分发票及销售记录来快速估计每月的销售金额,采用如下方法:从某本发票的存根中随机抽一张,如15号,然后按顺序将65号,115号,165号,…,发票上的销售金额组成一个调查样本.这种抽取样本的方法是A.抽签法B.随机数法C.系统抽样法D.以上都不对2为了解1 2021学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔=________【精彩点拨】解决此类问题的关键是根据系统抽样的概念及特征,抓住系统抽样适用的条件作出判断.【尝试解答】1上述抽样方法是将发票平均分成若干组,每组50张,从第一组抽出了15号,以后各组抽15+50nn∈N*号,符合系统抽样的特点.2根据样本容量为30,将1 2021学生分为30段,每段人数即间隔=错误!=40【答案】1C240判断一个抽样是否为系统抽样:(1)首先看是否在抽样前知道总体是由什么组成,多少个个体;(2)再看是否将总体分成几个均衡的部分,并在每一个部分中进行简单随机抽样;(3)最后看是否等距抽样[再练一题]1下列抽样问题中最适合用系统抽样法抽样的是A从全班48名学生中随机抽取8人参加一项活动B一个城市有210家百货商店,其中大型商店2021中型商店40家,小型商店150家为了掌握各商店的营业情况,要从中抽取一个容量为21的样本C从参加模拟考试的1 2021高中生中随机抽取100人分析试题作答情况D从参加模拟考试的1 2021高中生中随机抽取10人了解某些情况【解析】A总体容量较小,样本容量也较小,可采用抽签法;B总体中的个体有明显的层次不适宜用系统抽样法;C总体容量较大,样本容量也较大,可用系统抽样法;D若总体容量较大,样本容量较小时可用随机数表法【答案】 C系统抽样的方案设计某校高中三年级的要按1∶5的比例抽取一个样本,请用系统抽样的方法进行抽取,并写出过程【导学号:00732021】【精彩点拨】按1∶5的比例确定样本容量,再按系统抽样的步骤进行,关键是确定第1段的编号【尝试解答】按照1∶5的比例抽取样本,则样本容量为错误!×295=59抽样步骤是:1编号:按现有的号码;2确定分段间隔=5,把295名同学分成59组,每组5人,第1组是编号为1~5的5名学生,第2组是编号为6~10的5名学生,依次下去,第59组是编号为291~295的5名学生;3采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为1≤≤5;4那么抽取的学生编号为+5=0,1,2,…,58,得到59个个体作为样本,如当=3时的样本编号为3,8,13,…,288,293当总体容量能被样本容量整除时,分段间隔=错误!;当用系统抽样抽取样本时,通常是将起始数加上间隔得到第2个个体编号(+),再加得到第3个个体编号(+2),依次进行下去,直到获取整个样本[再练一题]2某班共有52人,现根据学生的学号,用系统抽样的方法抽取一个容量为4的样本已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是A10 B11 C12 D16【解析】分段间隔=错误!=13,可推出另一个同学的学号为16,故选D【答案】 D[探究共研型]系统抽样的特点探究1【提示】1系统抽样适用于总体容量较大,且个体之间无明显差异的情况;2剔除多余的个体及第1段抽样都用简单随机抽样的方法;3系统抽样是等可能抽样,每个个体被抽到的可能性相等探究2怎样判断一种抽样是否为系统抽样?【提示】判断一种抽样是否为系统抽样,关键有两点:1是否在抽样前知道总体是由什么构成的,抽样的方法能否保证每个个体被抽到的机会均等;2是否能将总体分成几个均衡的部分,在每个部分中是否能进行简单随机抽样探究3在系统抽样中,N不一定能被n整除,那么系统抽样还公平吗?【提示】在系统抽样中,1若N能被n整除,则将比值错误!作为分段间隔由于起始编号的抽取采用简单随机抽样的方法,因此每个个体被抽取的可能性是一样的2若N不能被n整除,则用简单随机抽样的方法从总体中剔除几个个体,使得总体中剩余的个体数能被n整除,再确定样本因此每个个体被抽取的可能性还是一样的所以,系统抽样是公平的为了了解参加某种知识竞赛的1 003名学生的成绩,抽取一个容量为50的样本,选用什么抽样方法比较恰当?简述抽样过程【精彩点拨】错误!→错误!→错误!→错误!→错误!→错误!→错误!【尝试解答】1随机地将这1 003个个体编号为1,2,3,…,1 003;2利用简单随机抽样,先从总体中随机剔除3个个体,剩下的个体数1 000能被样本容量50整除,然后将1 000个个体重新编号为1,2,3,…,1 000;3将总体按编号顺序均分成50组,每组包括2021体;4在编号为1,2,3,…,2021一组个体中,利用简单随机抽样抽取一个号码,比如是18;5以18为起始号码,每间隔2021一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998当总体容量不能被样本容量整除时,可以先从总体中随机剔除几个个体,但要注意的是剔除过程必须是随机的,也就是总体中的每个个体被剔除的机会均等剔除几个个体后使总体中剩余的个体数能被样本容量整除[再练一题]3从某厂生产的802辆轿车中抽取80辆测试某项性能请用系统抽样方法进行抽样,并写出抽样过程【解】第一步,先从802辆轿车中剔除2辆轿车剔除方法可用随机数表法;第二步,将余下的800辆轿车编号为1,2,…,800,并均匀分成80段,每段含=错误!=10个个体;第三步,从第1段即1,2,…,10这10个编号中,用简单随机抽样的方法抽取一个号如5作为起始号;第四步,从5开始,再将编号为15,25,…,795的个体抽出,得到一个容量为80的样本1为了了解参加某次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么从总体中应随机剔除的个体数目为A2 B3C4D5【解析】因为1 252=50×25+2,所以应随机剔除2个个体,故选A【答案】 A2为了了解某地参加计算机水平测试的5008名学生的成绩,从中抽取了2021学生的成绩进行统计分析,运用系统抽样方法抽取样本时,每组的容量为A24 B25 C26 D28【解析】因为5 008=202125+8,所以选B【答案】 B3要从160名学生中抽取容量为2021本,用系统抽样法将160名学生从1~160编号按编号顺序平均分成2021~8号,9~16号,…,153~160号,若第16组应抽出的号码为125,则第一组中按此抽签方法确定的号码是A7 B5 C4 D3【解析】由系统抽样知第一组确定的号码是125-15×8=5【答案】 B4在一个个体数目为2 017的总体中,利用系统抽样抽取一个容量为100的样本,则总体中每个个体被抽到的机会为_________【导学号:00732021】【解析】因为采用系统抽样的方法从个体数目为2 017的总体中抽取一个样本容量为100的样本,每个个体被抽到的可能性都相等,于是每个个体被抽到的机会都是错误!【答案】错误!5中秋节,相关部门对某食品厂生产的303盒中秋月饼进行质量检验,需要从中抽取10盒,请用系统抽样的方法完成对此样本的抽取【解】1将303盒月饼用随机的方式编号;2从总体中用简单随机抽样的方式剔除3盒月饼,将剩下的月饼重新用000~299编号,并等距分成10段;3在第一段000,001,002,…,029这三十个编号中用简单随机抽样确定起始号码;4将编号为,+30,+2×30,+3×30,…,+9×30的个体抽出,组成样本。
人教版高中必修3(B版)2.1.2系统抽样教学设计
人教版高中必修3(B版)2.1.2系统抽样教学设计引言在今天激烈的竞争中,教育已成为保持国家发展竞争力的重要拼图之一。
作为教师,如何提高教学质量,有助于培养学生的综合素质和创新能力,是我们面临的重要任务。
本文将以人教版高中必修3(B版)2.1.2系统抽样教学设计为研究对象,探讨其中的有效教学方法。
课程背景2.1.2系统抽样是高中数学必修三的一个重要知识点,是易混淆难理解的概率统计部分。
许多学生在学习时会出现一些错误的理解和认识,因此需要教师用科学的方法来对学生进行教学。
教学设计思路本次教学设计的主要目的是帮助学生理清系统抽样的概念并运用到实际问题中去。
针对这个目标,我们可以设计以下的教学活动。
第一步:引入概念在开始教学之前,需要先介绍系统抽样的概念,并将其与其他抽样方法进行比较。
可以在黑板上画出不同类型的抽样方法的流程图,这样可以帮助学生更加清晰地了解各种抽样方法之间的区别和联系。
第二步:例题演示教师可以先介绍一些简单的例子,来帮助学生更好地理解系统抽样的概念和方法。
例如,让学生通过一组数据抽取样本,对不同类型的抽样方法进行比较,以此来加深对系统抽样的认识。
第三步:实际应用在学生掌握了系统抽样的基础知识之后,可以让他们运用到实际问题中。
例如,老师可以提供一些有关于人口、医学或者社会调查的问题,让学生自己设计系统抽样方案并完成相应数据的分析。
这样,不仅能够提高学生的实际操作能力,同时也能够深入了解系统抽样的实际应用。
教学效果评估为了及时了解教学效果,教师可以通过一些途径来收集学生对教学的意见和建议。
例如可以通过问卷或者课堂小测验的形式来收集,了解学生对系统抽样的理解和应用能力情况。
结论针对人教版高中必修3(B版)2.1.2系统抽样这一难点,我们可以通过写明教学设计思路,采用多种方法来帮助学生理解和应用系统抽样。
同时,评估教学效果并改进教学方法,有助于提高学生的学习兴趣和能力,实现教学的优化。
《系统抽样》教学设计
探究 2
概念抽象、步骤
《系统抽样》教学设计
教材:人教版《普通高中课程标准实验教科书·数学(A 版)》必修 3
课题:2.1.2 系统抽样(第一课时)
课时:1 课时
【教学内容分析】本节是在学习了前两节简单随机抽样基础上,结合此种随机抽样特点和适用范围,针对
总体的数量较大时,有学习掌握系统抽样这种随机抽样的必要性;为下节“分层抽样”的学习打下了基
各自特点
(1)总体中的个体数较少 (2)先均分,再按事先确定的
种抽样的区别和联系,为
(2)从总体中逐一抽取 规则在各部分抽取
抽样方法选取奠定基础。
相互联系
在起始部分抽样时采用简单随 机抽样
教学活动:学生讨论,投影仪展台展示结果,其他同学评价与补充。
探究 2:若某条生产线一天生产 503 瓶饮料,从中抽取 50 瓶进行检验, 当 总体数目 与样本 容量
教学活动:学生分组讨论交流,小组派代表发言,其他组补充完善, 究发现新知识新方法,完
教师板书关键点。
成从总体中抽取样本,并
发现“等距抽样”的特
性,从而形成感性的系统
抽样的概念与方法。
通过对实际问题的探讨,
探究一:若某条生产线某一时段生产 500 瓶饮料,从中抽取 50 瓶进行 让学生参与解决实际问
检验,假如你是这位质检员,你会如何抽取呢?下面我们分组讨论,并 题全过程,在过程中探究
且思考该抽样方法抽取的样本是否具有代表性和公平性?
发现新知识新方法,完成
从总体中抽取样本,并发
教学活动:学生分组讨论交流,小组派代表发言,其他组补充完善, 现“等距抽样”的特性,
教师板书关键点,引导学生将自然语言抽象成数学语言。
从而形成感性的系统抽
2.1.2系统抽样(解析版)
2.1.2 系统抽样【教学目标】知识目标:理解系统抽样的概念;能力目标:掌握系统抽样的方法与步骤,能用系统抽样从总体中抽取样本;思想目标:借助系统抽样步骤的理解,养成数学建模素养。
【教学过程】一.自主学习知识检测1.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔逐个抽取即得到所需样本.2.系统抽样的步骤一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:2.自主检测:1.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)总体个数较多时可以用系统抽样.()(2)系统抽样的过程中,每个个体被抽到的概率不相等.()(3)用系统抽样从N个个体中抽取一个容量为n的样本,要平均分成n段,每段各有Nn个号码.() [答案](1)√(2)×(3)×二.名师引路1.系统抽样适用的总体应是()A.容量较小的总体B.容量较大的总体C.个体数较多但均衡的总体D.任何总体C[根据系统抽样的概念,只能是个体数较多且个体之间均衡的总体才能使用系统抽样.]【例2】采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7 B.9C.10 D.15思路点拨:求出第n组抽到的号码,然后解不等式即可.C[从960人中用系统抽样的方法抽取32人,则抽样间隔为k=96032=30.因为第一组号码为9,则第二组号码为9+1×30=39,…,第n组号码为9+(n-1)×30=30n-21.由451≤30n-21≤750,即151115≤n≤25710,所以n=16,17, (25)共有25-16+1=10(人).]系统抽样计算问题的解法及技巧(1)若已知总体数,且样本容量已知,则采用系统抽样方法进行抽样时,如果要剔除一些个体,那么需要剔除的个体数为总体数除以样本容量所得的余数.(2)利用系统抽样的概念与等距特点,若在第一段抽取的编号为m,分段间隔为d,则在第k段中抽取的第k个编号为m+(k-1)d.(3)若求落入区间[a,b]的样本个数,则可通过列出不等式a≤m+(k-1)d≤b,解出满足条件的k的取值范围.再根据k∈N*,求出其范围内的正整数个数即可.【例3】某工厂有工人1 007名,现从中抽取100人进行体检,试写出抽样方案.思路点拨:样本容量为100,总体容量为1 007,不能被100整除,因此首先需要剔除7个个体,然后确定分段间隔为1 000100=10,利用系统抽样即可.[解]用系统抽样的方法抽取样本.第一步,编号.将1 007名工人编号,号码为0001,0002, (1007)第二步,利用随机数表法抽取7个号码,将对应编号的工人剔除.第三步,将剩余的1 000名工人重新编号,号码为0001,0002, (1000)第四步,确定分段间隔k=1 000100=10,将总体分成100段,每段10名工人.第五步,在第1段中,利用抽签法或者随机数表法抽取一个号码m.第六步,利用分段间隔,将m,m+10,m+20,…,m+990共100个号码抽出.三.课后练习1.下列抽样方法不是系统抽样的是()A.从标有1~15号的15个球中,任选三个作样本,按从小号到大号的顺序,随机选起点i0,以后选i0+5,i0+10(超过15则从1再数起)号入选B.工厂生产的产品用传送带将产品送入包装车间前,在一天时间内检验人员从传送带上每隔五分钟抽一件产品进行检验C.做某项市场调查,规定在商场门口随机抽一个人进行询问调查,直到达到事先规定的调查人数为止D.电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈C[A编号间隔相同,B时间间隔相同.D相邻两排座位号的间隔相同,均满足系统抽样的特征.只有C项无明显的系统抽样的特征.]2.用系统抽样法从130件产品中抽取容量为10的样本,将130件产品从1~130编号,按编号顺序平均分成10组(1~13号,14~26号,…,118~130号),若第9组抽出的号码是114,则第3组抽出的号码是()A.36 B.37C.38 D.39A[由题意可知系统抽样的组数为10组,间隔为13,设第一组抽取的号码为x,由系统抽样的法则,可知第n组抽取的号码为x+13(n-1),所以第9组抽取的号码为x+13(9-1)=114,解得x=10.所以第3组抽取的号码为10+13(3-1)=36.故选A.] 3.为了了解参加某次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么从总体中应随机剔除的个体数目为() A.2B.3C.4 D.5A[1 252=50×25+2,故应从总体中随机剔除2个个体.]4.为了了解某地参加计算机水平测试的5 008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样方法抽取样本时,每组的容量为() A.24 B.25C.26 D.28B[5 008=200×25+8,故每组容量为25.]5.某校为了庆祝建校50周年,举行了为期3天的迎校庆教职工体育运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校教职工中产生的影响,对全校500名教职工进行了问卷调查.如果要在所有答卷中抽出10份用于评估,应该如何抽样?请详细叙述抽样过程.[解]法一:采用随机数法,步骤如下:(1)先将500份答卷编号,可以编号为000,001,002, (499)(2)在随机数表中随机选取一个起始位置.(3)规定向右连续读取数字,以3个数为一组,如果读取的三位数大于499,则跳过去不读,如果遇到前面已经读过的,也跳过去不读,这样一直到取满10个号码为止.法二:系统抽样法,步骤如下:(1)将500份答卷编号:1,2,3, (500)(2)按1~50,51~100,101~150,…,451~500分成10组,每组50个编号.(3)在每一组中运用抽签法随机选择一个编号(步骤略),比如所选号码为17,则其他各组应取出的号码分别为67,117,167,217,267,317,367,417,467.(4)将上述10个号码代表的答卷取出作为样本即可.四.课堂小结1.系统抽样的实质是“分组”抽样,适用于总体中的个体数较大的情况.2.解决系统抽样问题的两个关键步骤为(1)分组的方法应依据抽取比例而定,即根据定义每组抽取一个样本.(2)用系统抽样法抽取样本,当Nn不为整数时,取k=⎣⎢⎡⎦⎥⎤Nn,即先从总体中用简单随机抽样的方法剔除N-nk个个体,且剔除多余的个体不影响抽样的公平性。
人教版高中数学必修三2.1.2系统抽样
2.1.2 系统抽样[读教材·填要点]1.系统抽样的概念先将总体从1开始编号,然后按号码顺序以一定的间隔进行抽取,然后从号码为1~k 的第一个间隔中随机地抽取一个号码,然后按此间隔等距抽取即得所求样本.2.系统抽样的步骤一般地,假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N 个个体编号,有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第一个个体编号l (l ≤k );(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),依次进行下去,直到获取整个样本.[小问题·大思维]1.系统抽样有什么特点?提示:(1)适用于总体中个体数较大且个体差异不明显的情况.(2)剔除多余个体及第一段抽样都用简单随机抽样,因而与简单随机抽样有密切联系;(3)是等可能抽样.每个个体被抽到的可能性相等.2.如何区分一种抽样方法是系统抽样还是简单随机抽样?提示:(1)系统抽样的显著特点是抽出个体的编号是等距的.(2)简单随机抽样的间隔不是恒定的.系统抽样的概念[例1] A .从全班48名学生中随机抽取8人参加一项活动B .一个城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本C.从参加模拟考试的1 200名高中生中随机抽取100人分析试题作答情况D.从参加模拟考试的1 200名高中生中随机抽取10人了解某些情况[自主解答]A总体容量较小,样本容量也较小,可采用抽签法;B总体中的个体有明显的层次不适宜用系统抽样法;C总体容量较大,样本容量也较大,可用系统抽样法;D若总体容量较大,样本容量较小时可用随机数表法.[答案] C——————————————————1.应用系统抽样的前提条件(1)个体较多,但均衡的总体;(2)当总体容量较大,样本容量也较大时,适宜用系统抽样.2.系统抽样方法的判断(1)看能否保证每个个体被等可能抽到;(2)看是否将总体分成几个均衡的部分,是不是等间距抽样,且每一个部分都有个体入样.——————————————————————————————————————1.某商场想通过检查发票及销售记录的2%来快速估计每月的销售总额并采取如下方法:从某月发票的存根中随机抽一张,如15号,然后按顺序往后取出65号,115号,165号,…,将发票上的销售额组成一个调查样本.这种抽取样本的方法是() A.抽签法B.随机数表法C.系统抽样法D.其他方式的抽样解析:上述方法符合系统抽样的形式.答案:C系统抽样的应用[例2]50的样本,那么采用什么抽样方法比较恰当?简述抽样过程.[自主解答]适宜选用系统抽样,抽样过程如下:(1)随机地将这1 000名学生编号为000,001,002, (999)(2)将总体按编号顺序均分成50部分,每部分包括20个个体.(3)在第一部分的个体编号000,001,002,…,019中,利用简单随机抽样抽取一个号码,比如是017.(4)以017为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:017,037,057,…,977,997.若将“1 000名学生的成绩”改为“1 002名学生的成绩”,又该如何抽样?请写出抽样过程. 解:因为1 002=50×20+2,为了保证“等距”分段,应先剔除2人.(1)将1 002名学生用随机方式编号;(2)从总体中剔除2人(剔除方法可用随机数法),将剩下的1 000名学生重新编号(编号分别为000,001,002,…,999),并分成50段;(3)在第一段000,001,002,…,019这二十个编号中用简单随机抽样抽出一个(如003)作为起始号码;(4)将编号为003,023,043,…,983的个体抽出,组成样本.——————————————————1.解决系统抽样问题中两个关键的步骤为(1)分组的方法应依据抽取比例而定,即根据定义每组抽取一个样本.(2)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定了.2.当总体中的个体不能被样本容量整除时,需要在总体中剔除一些个体.——————————————————————————————————————2.某单位的在岗职工为620人,为了调查上班时,从家到单位的路上平均所用的时间,决定抽取10%的职工调查这一情况,如何采用系统抽样抽取样本?解:用系统抽样抽取样本,样本容量是620×10%=62.步骤是:(1)编号:把这620人随机编号为001,002,003, (620)(2)确定分段间隔k =62062=10,把620人分成62组,每组10人,每1组是编号为001~010的10人,第2组是编号为011~020的10人,依次下去,第62组是编号为611~620的10人.(3)采用简单随机抽样的方法,从第1组10人中抽出一人,不妨设编号为l (1≤l ≤10).(4)那么抽取的职工编号为l+10k(k=0,1,2,…,61),得到62个个体作为样本,如当l =3时的样本编号为003,013,023,…,603,613.从2 004名同学中,抽取一个容量为20的样本,写出用系统抽样法抽取的步骤.[错解](1)将2 004名同学随机方式编号;(2)从总体中剔除4名同学,将剩下的分成20段;(3)在第一段中用简单随机抽样抽取起始号码,比如66;(4)将编号为66,166,266,366,…,1 866,1 966作为样本.[错因]在第二步剔除4名同学后没有对剩余进行从0 000,0 001,…,1 999重新编号.[正解](1)采用随机的方式给这2 004名同学编号为0 001,0 002,…,2 004.(2)利用简单随机抽样剔除4个个体,并对剩余的2 000个个体重新编号为0 001,0 002,…,2 000.(3)分段.由于20∶2 000=1∶100,故将总体分为20个部分,其中每一部分100个个体.(4)在第1部分随机抽取1个号码,比如0 066号.(5)从第0 066号起,每隔100个抽取1个号码,这样得到容量为20的样本:0 066,0 166,0 266,0 366,0 466,0 566,0 666,0 766,0 866,0 966,1 066,1 166,1 266,1 366,1 466,1 566,1 666,1 766,1 866,1 966.1.在10 000个有机会中奖的号码(编号为0 000~9 999)中,有关部门按照随机抽样的方式确定后两位数字是68的号码为中奖号码.这是运用哪种抽样方法来确定中奖号码的()A.抽签法B.系统抽样法C.随机数表法D.其他抽样方法解析:由题意,中奖号码分别为0 068,0 168,0 268,…,9 968.显然这是将10 000个中奖号码平均分成100组,从第一组号码中抽取出0 068号,其余号码是在此基础上加上100的整数倍得到的,可见,这是用的系统抽样法.答案:B2.用系统抽样的方法从个体为1 003的总体中,抽取一个容量为50的样本,在整个抽样过程中每个个体被抽到的可能性是( )A.11 000B.11 003C.501 003D.120解析:根据系统抽样的方法可知,每个个体入样的可能性相同,均为n N,所以每个个体入样的可能性是501 003. 答案:C3.(2012·山东高考)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( )A .7B .9C .10D .15解析:从960人中用系统抽样方法抽取32人,则每30人抽取一人,因为第一组抽到的号码为9,则第二组抽到的号码为39,第n 组抽到的号码为a n =9+30(n -1)=30n -21,由451≤30n -21≤750,得23615≤n ≤25710,所以n =16,17,…,25,共有25-16+1=10人. 答案:C4.采用系统抽样从含有8 000个个体的总体(编号为0 000,0 001,…,7 999)中抽取一个容量为50的样本.已知最后一个入样的编号为7 894,则第一个入样的编号是________.解析:样本间隔k =8 00050=160.最后一个编号为7 894,则7 894-49×160=54,所以第一个入样编号为0 054.答案:0 0545.下列抽样中,是系统抽样的是________(填上所有是系统抽样的序号).①电影院调查观众的某一指标,通知每排(每排人数相等)座号为16的观众留下来座谈;②搞某一市场调查,规定在商场门口随机抽一人询问,直到调查到规定的人数为止;③工厂生产的产品,用传送带将产品送入包装车间,质检人员从传送带上每隔5分钟抽取一件产品进行检验;④从标有1~15的15个球中,任选3个作样本,按从小到大的顺序排列,随机选起点i 0,以后i 0+5,i 0+10(超过15则从1再数起)号入样.解析:由系统抽样步骤可知,①③④符合要求.答案:①③④6.为了了解某地区今年高一学生期末考试数学科的成绩,拟从参加考试的15 000名学生的数学成绩中抽取容量为150的样本.请用系统抽样写出抽取过程.解:(1)将参加考试的15 000名学生随机地编号:1,2,3,…,15 000.(2)分段:由于样本容量与总体容量的比是1∶100,我们将总体平均分为150个部分,其中每一部分包括100个个体.(3)在第一部分,即1号到100号用简单随机抽样,抽取一个号码,比如是56.(4)以56作为起始数,然后顺次抽取156,256,356,…,14 956,这样就得到一个容量为150的样本.一、选择题1.有40件产品,编号从1至40,现在从中抽取4件检验,用系统抽样方法确定所抽的编号为()A.5,10,15,20B.2,12,22,32C.2,14,28,38 D.5,8,31,36答案:B2.中央电视台“动画城节目”为了对本周的热心小观众给予奖励,要从已确定编号的一万名小观众中抽出十名幸运小观众.现采用系统抽样的方法抽取,每组容量为() A.10 B.100C.1 000 D.10 000答案:C3.为了了解一次期终考试的1 253名学生的成绩,决定采用系统抽样方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是()A.2 B.3C.4 D.5解析:1 253÷50=25…3,故剔除3个.答案:B4.从2 004名学生中选取50名组成参观团,若采用下面的方法选取:先利用简单随机抽样从2 004人中剔除4人,剩下的2 000人再按系统抽样的方法进行,则每人入选的机会()A .不全相等B .均不相等C .都相等D .无法确定解析:系统抽样是等可能的,每人入样的机率均为502 004. 答案:C二、填空题5.一个总体中共有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样的方法抽取一个容量为10的样本,规定:如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码的个位数字与m +k 的个位数字相同.若m =6,则在第7组中抽取的号码是________.解析:本题的入手点在于题设中的“第k 组中抽取的号码的个位数字与m +k 的个位数字相同”.由题设可知:第7组的编号为60,61,62,63,…,69,而第7组中抽取的号码的个位数字与6+7=13的个位数字相同,故第7组抽取的号码是63.答案:636.(2011·罗源高一检测)为了了解1 203名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,现采用选取的号码间隔一样的系统抽样方法来确定所选取样本,则抽样间隔k =________.解析:由于1 20340不是整数,所以从1 203名学生中随机剔除3名,则分段间隔k =1 20040=30.答案:407.某班有学生48人,现用系统抽样的方法,抽取一个容量为4的样本,已知座位号分别为6,30,42的同学都在样本中,那么样本中另一位同学的座位号应该是________.解析:由题意,分段间隔k =484=12,所以6应该在第一组,所以第二组为6+484=18. 答案:188.已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否达标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为________.解析:分段间隔是3 000150=20,由于第一组抽出号码为11,则第61组抽出号码为11+(61-1)×20=1 211.答案:1 211三、解答题9.要装订厂平均每小时大约装订图书362册,需要检验员每小时抽取40册图书,检验其质量状况,请你设计一个抽样方案.解:第一步,把这些图书分成40个组,由于36240的商是9,余数是2,所以每个小组有9册书,还剩2册书.这时抽样距就是9.第二步,先用简单随机抽样的方法从这些书中抽取2册,不进行检验.第三步,将剩下的书进行编号,编号分别为0,1, (359)第四步,从第一组(编号为0,1,…,8)的书中用简单随机抽样的方法,抽取1册书,比如说,其编号为k .第五步,顺次抽取编号分别为下面数字的书:k ,k +9,k +18,k +27,…,k +39×9.这样总共就抽取了40个样本.10.下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题:本村人口:1 200人,户数300,每户平均人口数4人;应抽户数:30户;抽样间隔:1 20030=40; 确定随机数字:取一张人民币,编码的后两位数为12;确定第一样本户:编码的后两位数为12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户;……(1)该村委采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样.解:(1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔为:30030=10,其他步骤相应改为:取一张人民币,编码的后两位数为02(或其他00~09中的一个),确定第一样本户:编号为02的户为第一样本户;确定第二样本户:02+10=12,12号为第二样本户,….(3)确定随机数字用的是简单随机抽样即为取一张人民币,编码的后两位数为02.。
2.1.系统抽样-人教B版必修三教案
2.1 系统抽样-人教B版必修三教案一、教学目标1.理解抽样的概念。
2.掌握系统抽样的方法和步骤。
3.能够应用系统抽样解决实际问题。
二、教学重点1.系统抽样的方法和步骤。
2.实际问题中如何应用系统抽样。
三、教学难点1.如何合理确定系统抽样的步长。
2.如何评估系统抽样的精度和可靠性。
四、教学方法1.讲授法2.组织学生进行小组讨论和自主探究3.提供案例进行课堂演示和讨论五、教学内容1. 抽样概念抽样是统计学中常用的一种数据收集方法,指从总体中抽取一部分样本进行研究,以推断总体的某些特征。
其目的是基于样本数据推断总体的统计特征,如总体的均值、方差等。
2. 系统抽样的方法和步骤系统抽样是一种抽样方法,其步骤如下:1.确定总体容量N。
2.确定抽样容量n,计算抽样比例n/N。
3.确定步长k,k=N/n,即每隔k个单位选一个样本。
4.确定起始位置r,随机选取r,其值范围为1到k。
5.按照k的间隔选取样本,直到取到n个样本为止。
3. 应用系统抽样解决实际问题以下是一个应用系统抽样解决实际问题的例子:某商场想要了解购物者对其服务的满意度,总人口为10,000人,商场决定抽取500个购物者进行调查。
商场将每周6天的时间分成500个时间段,分别对应抽样中每个人的抽样编号,随机抽出了左闭右开区间[1, 6]的一个整数r作为开始选人的标记,每隔20个时间段进行一次标记,即每隔20个时间段选一个人进行调查。
在本例中,总人口容量为10,000人,抽样容量为500人,抽样比例为500/10000=5%。
步长为k=N/n=10000/500=20,起始位置r随机选取,其值范围为1到20。
4. 重要知识点提醒1.注意总体容量和抽样容量的定义和计算方法。
2.理解系统抽样的步骤和基本原理。
3.熟悉系统抽样的样本选择方法。
六、课后练习及参考答案1. 一个有5000个元素的总体需要进行抽样调查,抽样人数为250个。
请问应该采用什么样的抽样方法?抽样步骤是什么?答:可使用系统抽样,抽样步骤如下:1.确定总体容量N=5000。
2.1.系统抽样-苏教版必修3教案
2.1 系统抽样 - 苏教版必修3教案1. 前言在统计学习中,数据的收集是非常重要的一个环节。
如何采集合适的数据,使得数据的结果具有统计意义,成为了一个需要解决的问题。
本文将介绍统计学中一种常用的数据采集方法—系统抽样,以及如何在苏教版必修3中进行系统抽样的教学。
2. 系统抽样的定义系统抽样是指在一个总体中,按照一定的规则每隔若干个单位(也称作抽样间距)抽取一个样本单位的方法。
具体来说,假设总体大小为N,样本大小为n,抽样间距为k,则系统抽样的抽样过程是这样的:1.随机选取一个介于1到k之间的整数j,即起始点;2.从第j个个体开始,每k个单位取一个;再重复该过程n/k次,直至选出n 个单位为止。
3. 系统抽样的特点与随机抽样相比,系统抽样有如下几个特点:1.系统抽样比随机抽样更加容易实施,因为只需要确定抽样间距即可;2.系统抽样的样本单位期望均匀分布于总体中;3.系统抽样可以借助一些特殊的性质,如周期性等,更好地应用于某些场合。
4. 系统抽样在苏教版必修3中的教学在苏教版必修3(数学)中,系统抽样的教学可以在以下几个方面展开:4.1 系统抽样的基本方法在课堂上,教师可以通过讲解系统抽样的基本方法,让学生理解抽样间距对样本的影响,并演示如何进行系统抽样的具体操作。
同时,可以给学生提供课后练习,检验学生对于系统抽样的掌握情况。
4.2 系统抽样的应用举例在实际应用中,系统抽样可以用于生产工艺的监控、城市排放的监测、自然资源的调查等等。
在教学中,教师可以给学生提供实际应用的样例,让学生理解系统抽样在实际问题中的应用情况,并考虑如何合理设定抽样间距。
4.3 系统抽样与其他抽样方法的比较在教学中,可以让学生比较系统抽样与其他抽样方法(如随机抽样、分层抽样等)的区别与优缺点,帮助学生了解何时应该选择何种抽样方法。
5. 结论通过本文的介绍,我们了解到了系统抽样在统计学中的定义、特点以及在苏教版必修3中的教学方法。
高中数学教案必修三:2.1.2 系统抽样
教学目标:1.正确理解系统抽样的概念,掌握系统抽样的一般步骤;2.通过对解决实际问题的过程的研究学会抽取样本的系统抽样方法,体会系统抽样与简单随机抽样的关系.教学重点:系统抽样的应用.教学难点:对系统抽样中的"系统"的思想的理解,并能加以解决.教学方法:能运用所学知识判断、分析和选择抽取样本的方法;能从现实生活或其他学科中提出有价值的数学问题,并能加以解决.教学过程:二、学生活动用简单随机抽样获取样本,但由于样本容量较大,操作起来费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,你能否设计其他抽取样本的方法?三、建构数学1.系统抽样的定义:一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.说明:由系统抽样的定义可知系统抽样有以下特征:(1)当总体容量N 较大时,采用系统抽样.(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为⎥⎦⎤⎢⎣⎡=n N k (3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.(4)系统抽样与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用的是简单随机抽样;(5)简单随机抽样和系统抽样过程中,每个个体被抽取的可能性是相等的.2.系统抽样的一般步骤:(1)采用随机的方式将总体中的个体编号(编号方式可酌情考虑,为方便起见,有时可直接利用个体所带有的号码,如学生的准考证号、街道门牌号等);(2)为将整个的编号分段(即分成几个部分),要确定分段的间隔,当N n (N 为总体个数,n 为样本容量)是整数时,n N k =,当N n不是整数时,通过从总体中删除一些个体(用简单随机抽样的方法)使剩下的总体中个体的个数N '能被n 整除,这时nN k '=;四、数学运用1.例题:例1 某单位在职职工共624人,为了调查工人用于上班途中的时间,决定抽取10%的工人进行调查,试采用系统抽样方法抽取所需的样本.解:第一步:将624名职工用随机方式进行编号;第二步:从总体中用随机数表法剔除4人,将剩下的620名职工重新编号(分别为000,001,002,…,619),并分成62段;第三步:在第一段000,001,002,…, 009这十个编号中用简单随机抽样确定起始号码l;第四步:将编号为,10,20,,60+++的个体抽出,组成样本.l l l l例2从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是(B)(A)5,10,15,20,25(B)3,13,23,33,43(C)1,2,3,4(D)2,4,6,16,2.练习:课本第47页第1,3,4题.五、要点归纳与方法小结本节课我们学习了以下内容:系统抽样的概念及步骤.。
推荐-新人教版高中数学2.1.2系统抽样教案必修三
果来夸大产品的有效性,以提高学生理论联系实际的能力.一、目标展示某中学有5 000名学生,打算抽取200名学生,调查他们对奥运会的看法,采用简单随机抽样时,无论是抽签法还是随机数法,实施过程很复杂,需要大量的人力和物力,那么有没有更为方便可行的抽样方法呢?这就是今天我们学习的内容:系统抽样. 二、预习检测(1)某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法? (2)请归纳系统抽样的定义和步骤. (3)系统抽样有什么特点 三、质疑探究 讨论结果:(1)可以将这500名学生随机编号1—500,分成50组,每组10人,第1组是1—10,第二组11—20,依次分下去,然后用简单随机抽样在第1组抽取1人,比如号码是2,然后每隔10个号抽取一个,得到2,12,22,…,492. 这样就得到一个容量为50的样本. 这种抽样方法称为系统抽样.(2)一般地,要从容量为N 的总体中抽取容量为n 的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样. 其步骤是:1°采用随机抽样的方法将总体中的N 个个体编号;2°将整体按编号进行分段,确定分段间隔k (k ∈N ,l ≤k );3°在第1段用简单随机抽样确定起始个体的编号l (l ∈N ,l ≤k );4°按照一定的规则抽取样本.通常是将起始编号l 加上间隔k 得到第2个个体编号(l +k ),再加上k 得到第3个个体编号(l +2k ),这样继续下去,直到获取整个样本.说明:从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想.(3)系统抽样的特点是:1°当总体容量N 较大时,采用系统抽样;2°将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k =[nN ]. 3°预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号 四讲点拨例1 为了了解参加某种知识竞赛的1 000名学生的成绩,应采用什么抽样方法较恰当?简述抽样过程. 解:适宜选用系统抽样,抽样过程如下:(1)随机地将这1 000名学生编号为1,2 ,3,…,1000. (2)将总体按编号顺序均分成50部分,每部分包括20个个体.(3)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码,比如18.(4)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998五 当堂检测1.从学号为0—50的高一某班50名学生中随机选取5名同学参加数学竞赛,采用系统抽样的方法,则所选5名学生的学号不可能是( )A.1,2,3,4,5B.5,15,25,35,459编号进行分段用简单随机抽样确定起始个体的编号④按照一定的规则抽取样本,通常是将起始编号宁县五中导学案仅此学习交流之用谢谢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.2 系统抽样
教学目标:
1、知识与技能:
(1)正确理解系统抽样的概念;
(2)掌握系统抽样的一般步骤;
(3)正确理解系统抽样与简单随机抽样的关系;
2、过程与方法:通过对实际问题的探究,归纳应用数学知识解决实际问题的方法,理解分类讨论的
数学方法,
3、情感态度与价值观:通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联
系。
4、重点与难点:正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题。
教学设想:
【创设情境】:某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?
【探究新知】
一、系统抽样的定义:
一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。
【说明】由系统抽样的定义可知系统抽样有以下特证:
(1)当总体容量N较大时,采用系统抽样。
(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等
N].
距抽样,这时间隔一般为k=[
n
(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号。
思考?
(1)你能举几个系统抽样的例子吗?
(2)下列抽样中不是系统抽样的是()
A、从标有1~15号的15号的15个小球中任选3个作为样本,按从小号到
大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样
B工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验
C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止
D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈
点拨:(2)c不是系统抽样,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入
样。
二、系统抽样的一般步骤。
(1)采用随机抽样的方法将总体中的N 个个编号。
(2)将整体按编号进行分段,确定分段间隔k(k ∈N,L ≤k).
(3)在第一段用简单随机抽样确定起始个体的编号L (L ∈N,L ≤k )。
(4)按照一定的规则抽取样本,通常是将起始编号L 加上间隔k 得到第2个个体编号L+K ,再加上
K 得到第3个个体编号L+2K ,这样继续下去,直到获取整个样本。
【说明】从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复
杂问题简单化,体现了数学转化思想。
【例题精析】
例1、某校高中三年级的295名学生已经编号为1,2,……,295,为了了解学生的学习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程。
[分析]按1:5分段,每段5人,共分59段,每段抽取一人,关键是确定第1段的编号。
解:按照1:5的比例,应该抽取的样本容量为295÷5=59,我们把259名同学分成59组,每组5人,第一组是编号为1~5的5名学生,第2组是编号为6~10的5名学生,依次下去,59组是编号为291~295的5名学生。
采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为k(1≤k ≤5),那么抽取的学生编号为k+5L(L=0,1,2,……,58),得到59个个体作为样本,如当k=3时的样本编号为3,8,13,……,288,293。
例2、从忆编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用
每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是
A .5,10,15,20,25
B 、3,13,23,33,43
C .1,2,3,4,5
D 、2,4,6,16,32
[分析]用系统抽样的方法抽取至的导弹编号应该k,k+d,k+2d,k+3d,k+4d,其中d=50/5=10,k 是1到10
中用简单随机抽样方法得到的数,因此只有选项B 满足要求,故选B 。
【课堂练习】P49 练习1. 2. 3
【课堂小结】
1、在抽样过程中,当总体中个体较多时,可采用系统抽样的方法进行抽样,系统抽样的步骤为:
(1)采用随机的方法将总体中个体编号;
(2)将整体编号进行分段,确定分段间隔k(k ∈N);
(3)在第一段内采用简单随机抽样的方法确定起始个体编号L ;
(4)按照事先预定的规则抽取样本。
2、在确定分段间隔k 时应注意:分段间隔k 为整数,当n N
不是整数时,应采用等可能剔除的方剔除
部分个体,以获得整数间隔k 。
【评价设计】
1、从2005个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的间隔为
()
A.99 B、99,5
C.100 D、100,5
2、从学号为0~50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,
则所选5名学生的学号可能是()
A.1,2,3,4,5 B、5,16,27,38,49
C.2, 4, 6, 8, 10 D、4,13,22,31,40
3、采用系统抽样从个体数为83的总体中抽取一个样本容量为10的样本,那么每个个体人样的可能性
为()
A.8 B.8,3
C.8.5 D.9
4、某小礼堂有25排座位,每排20个座位,一次心理学讲座,礼堂中坐满了学生,会后为了了解有关
情况,留下座位号是15的所有25名学生进行测试,这里运用的是抽样方法。
5、某单位的在岗工作为624人,为了调查工作上班时,从家到单位的路上平均所用的时间,决定抽取10%的工作调查这一情况,如何采用系统抽样的方法完成这一抽样?。