最新-高二数学期末综合练习 精品
高中数学-期末高二数学综合训练(一)答案
2022~2023学年度第一学期高二11月阶段测试数学参考答案一、单项选择题:1、 C2、B3、A4、C5、B6、A7、B8、C二、多项选择题:9、 ACD 10、BC 11、AC 12、ACD三、填空题:13、11 14、23n a n = 15、π48+ 16、 55;1120四、解答题:17.解:(1)由题知,所求圆的圆心M 为线段AB 的垂直平分线和直线220x y −+=的交点. 线段AB 的中点坐标为()0,1,直线AB 的斜率()20111k −==−−,所以,AB 的垂直平分线的方程为1y x =−+. 解得圆心()0,1M .半径()()2210212r AM ==−+−=所以,圆M 的标准方程为()2212x y +−=.…………………………………………5分(2)由题意知圆心M 到直线的距离为2212CD d r ⎛⎫=−= ⎪⎝⎭,当直线l 斜率存在时,设直线方程为()31y k x −=−,即30kx y k −+−=. 所以,2211k d k −==+,解得34k =所以,直线l 的方程为3490x y −+=. 当直线l 斜率不存在时,直线方程为1x =,符合题意.所以,直线l 的方程为3490x y −+=或1x =.…………………………………………10分18.解:为定值419.解:(1)由已知得()1(1)4n n a n a n +−+=−,n a b n n −= 又1110,a −=≠∴数列{}n b 是公比为4的等比数列.……………………………………5分(2)由(1)知,14−=n n b⎩⎨⎧−=∴−数 奇 为, 22数偶 为 , 41n n n c n n ()[]()125312444444840−++++−++++=∴n n n S ()()16116142440−−+−+=n n n 154222151224−−+⨯=+n n n ………………………………………………………12分 20.解:(1)由于(2,2)在抛物线开口之内,且不在x 轴上, 直线l 的斜率存在,设为k ,且设A (x 1,y 1),B (x 2,y 2), 可得y 12=4x 1,y 22=4x 2,两式相减可得(y 1﹣y 2)(y 1+y 2)=4(x 1﹣x 2), 即k =2121x x y y −−=214y y +=44=1,则直线l 的方程为y ﹣2=x ﹣2,即y =x ,检验直线l 存在,且方程为y =x ;………………………………………………………6分 (2)证明:若直线l 的斜率不存在,可得x =x 1, 代入抛物线方程y 2=4x ,可得y 1=12x ,y 2=12x −, 则y 1y 2=﹣4x 1=﹣16,即x 1=4,直线AB 过(4,0):若直线l 的斜率存在,设为k ,当k =0时,直线l 与抛物线的交点仅有一个, 方程设为y =kx +b ,k ≠0, 代入抛物线的方程消去x 可得4k y 2﹣y +b =0, 可得y 1y 2=k b 4,即有﹣16=kb 4, 可得b =﹣4k ,直线l 的方程为y =k (x ﹣4),则直线l 恒过定点(4,0).综上,直线AB 恒过定点(4,0).……………………………………………………12分21.解:(1)因为()241n n S a =+,当*2,n n N ∈≥时,有()21141n n S a −−=+,两式相减得2211422n n n n n a a a a a −−=−+−,移项合并同类项因式分解得()()1120n n n n a a a a −−+−−=,因为0n a >,所以有120n n a a −−−=,在()241n n S a =+中,令1n =得11a =,所以数列{}n a 是以1为首项,以2为公差的等差数列,故有()*21n a n n N=−∈…………4分(2)由(1)知1124122−−⎪⎭⎫ ⎝⎛⨯==n n n n n b ,∴0443421 12+++++=−n n nT , ∴n n nT 443424104132+++++= , ∴n n n n n n n n n n T 44134344411411441414114312−⨯−=−−−=−++++=− , ∴14943916−⨯+−=n n n T………………………………………………………………………8分 由题意,对任意的*N n ∈,均有n n T n m n 2916)52()43(⋅⎪⎭⎫⎝⎛−−≥+恒成立, ∴()()n n n n m n 2494352)43(1⋅⨯+−≥+− ,即 nn m 25294−⨯≥恒成立,设n n n c 252−=,则111227252232+++−=−−−=−n n n nn nn n c c , 当n ≤3时,01>−+n n c c ,即n n c c >+1 ;当n ≥4时,01<−+n n c c ,即n n c c <+1, ∴n c 的最大值为1634=c , ∴12116394=⨯≥m .故m 的取值范围是⎪⎭⎫⎢⎣⎡+∞,121.………………………………………………………………12分 22.解:(1)设P (x ,y ),由题意知3221=+PF PF ,即3226262222=+⎪⎪⎭⎫ ⎝⎛−++⎪⎪⎭⎫ ⎝⎛+y x y x , 令()33 326 , 3262222≤≤−−=+⎪⎪⎭⎫ ⎝⎛−+=+⎪⎪⎭⎫⎝⎛+t t y x t y x , 等式两边同时平方得()222326t y x +=+⎪⎪⎭⎫ ⎝⎛+ ① ()222326t y x −=+⎪⎪⎭⎫⎝⎛− ②①﹣②得 ()()2222332626t t x x −−+=⎪⎪⎭⎫⎝⎛−−⎪⎪⎭⎫ ⎝⎛+ ,即x t 22=③ 代入①中得 22222326⎪⎪⎭⎫ ⎝⎛+=+⎪⎪⎭⎫ ⎝⎛+x y x ,整理可得123322=+y x , 故P 点的轨迹方程为123322=+y x ……………………………………………………5分 (2)设直线MA 的方程为y =k 1x ﹣k 1+1,直线MB 的方程为y =k 2x ﹣k 2+1, 由题知r k k =+−21111,所以()()2122111k r k +=−,所以()012121212=−+−−r k k r ,同理,()012122222=−+−−r k k r , 所以k 1,k 2是方程()0121222=−+−−r k kr 的两根,所以k 1k 2=1,设A (x 1,y 1),B (x 2,y 2),设直线AB 的方程为y =kx +m ,将y =kx +m 代入123322=+y x ,得(1+2k 2)x 2+4kmx +2m 2﹣3=0, 所以2212k 14km+−=+x x ①,22212k132m +−=⋅x x ②, 所以()221212122kmm x x k y y +=++=+ ③,()()()2222212122121213kk m m x x km x x k m kx m kx y y +−=+++=++= ④, 又因为()()111111121212121221121=++−++−=−−⨯−−=x x x x y y y y x y x y k k ⑤, 将①②③④代入⑤,化简得3k 2+4km +m 2+2m ﹣3=0,所以3k 2+4km +(m +3)(m ﹣1)=0,所以(m +3k +3)(m +k ﹣1)=0,若m +k ﹣1=0,则直线AB :y =kx +1﹣k =k (x ﹣1)+1,此时AB 过点M ,舍去, 若m +3k +3=0,则直线AB :y =kx ﹣3﹣3k =k (x ﹣3)﹣3,此时AB 恒过点(3,﹣3), 所以直线AB 过定点(3,﹣3).……………………………………………………………12分。
北京市海淀区2023-2024学年高二上学期期末练习数学试卷含答案
海淀区高二年级练习数学(答案在最后)2024.01考生须知1.本试卷共7页,共3道大题,19道小题.满分100分.考试时间90分钟.2.在试卷上准确填写学校名称、班级名称、姓名.3.答案一律填涂或书写在试卷上,用黑色字迹签字笔作答.4.考试结束,请将本试卷交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.椭圆C :2222x y +=的焦点坐标为()A.(1,0)-,(1,0) B.(0,1)-,(0,1)C.(),)D.(0,,(【答案】B 【解析】【分析】先化为标准方程2212y x +=,求得222,1,1a b c ====,判断焦点位置,写焦点坐标.【详解】因为椭圆C :2222x y +=,所以标准方程为2212y x +=,解得222,1,1a b c ===,因为焦点在y 轴上,所以焦点坐标为(0,1)-,(0,1).故选:B【点睛】本题主要考查椭圆的几何性质,还考查了理解辨析的能力,属于基础题.2.抛物线2y x =的准线方程是()A.12x =-B.14x =-C.12y =-D.14y =-【答案】B 【解析】【分析】由抛物线的标准方程及性质,直接求解.【详解】由抛物线方程2y x =可知1212p p ==,,故准线方程为:124p x =-=-.故选:B.3.直线310x ++=的倾斜角是()A.30°B.60°C.120°D.150°【答案】C 【解析】【分析】先求解出直线的斜率,然后根据倾斜角与斜率的关系求解出倾斜角的大小.【详解】因为直线方程为310x +=,所以斜率k ==设倾斜角为θ,所以tan θ=,所以120θ=°,故选:C.4.已知点P 与(0,2),(1,0)A B -共线,则点P 的坐标可以为()A.(1,1)- B.(1,4)C.1,12⎛⎫-- ⎪⎝⎭D.(2,1)-【答案】B 【解析】【分析】三点共线转化为向量共线,利用共线条件逐个判断即可.【详解】设(,)P x y ,则(,2),(1,2)AP x y AB =-=--,由,,P A B 三点共线,则//AP AB,所以2(2)0x y -+-=,则220x y -+=.选项A ,21(1)250⨯--+=≠,不满足220x y -+=,故A 错误;选项B ,21420⨯-+=,满足220x y -+=,故B 正确;选项C ,12(1)2202⎛⎫⨯---+=≠ ⎪⎝⎭,不满足220x y -+=,故C 错误;选项D ,2(2)1230⨯--+=-≠,不满足220x y -+=,故D 错误.故选:B.5.已知P 为椭圆222:14x y C b+=上的动点.(1,0),(1,0)A B -,且||||4PA PB +=,则2b =()A.1B.2C.3D.4【答案】C 【解析】【分析】根据题意,结合椭圆的定义,得到点P 的轨迹表示以,A B 为焦点的椭圆,进而求得2b 的值.【详解】因为(1,0),(1,0)A B -,可得2AB =,则||||42A PA PB B +>==,由椭圆的定义,可得点P 的轨迹表示以,A B 为焦点的椭圆,其中24,21a c ==,可得2,1a c ==,所以2223b a c =-=,又因为点P 在椭圆222:14x y C b+=,所以23b =.故选:C.6.已知三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,则“1CB BB ⊥”是“CB AB ⊥”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】由面面垂直的性质定理可证明“1CB BB ⊥”是“CB AB ⊥”的必要条件,由底面为正三角形的直三棱柱模型,可知“1CB BB ⊥”不是“CB AB ⊥”的充分条件.【详解】①已知侧面11ABB A ⊥底面ABC ,且侧面11ABB A 底面ABC AB =,又BC ⊂平面ABC ,若BC AB ⊥,则由面面垂直的性质定理可得BC ⊥平面11ABB A ,1BB ⊂平面11ABB A ,则1CB BB ⊥,所以则“1CB BB ⊥”是“CB AB ⊥”的必要条件;②若三棱柱111ABC A B C -是直三棱柱,底面ABC 是正三角形,则1BB ⊥底面ABC ,1BB ⊂平面11ABB A ,则满足条件侧面11ABB A ⊥底面ABC .又BC ⊂平面ABC ,则1CB BB ⊥,但BC 与AB 不垂直.所以“1CB BB ⊥”不是“CB AB ⊥”的充分条件.综上所述,“1CB BB ⊥”是“CB AB ⊥”的必要不充分条件.故选:B.7.在空间直角坐标系O xyz -中,点(2,3,1)-P 到x 轴的距离为()A.2B.3C.D.【答案】D 【解析】【分析】结合空间直角坐标系,数形结合利用勾股定理求解点(2,3,1)-P 到x 轴的距离.【详解】在空间直角坐标系O xyz -中,过P 作PH ⊥平面xOy ,垂足为H ,则PH x ⊥轴,在坐标平面xOy 内,过H 作1HP x ⊥轴,与x 轴交于1P ,由(2,3,1)-P ,则1(2,0,0)P -,(2,3,0)H -,由1PH HP H = ,PH ⊂平面1PHP ,1HP ⊂平面1PHP ,则x 轴⊥平面1PHP ,1PP ⊂平面1PHP ,则x 轴1PP ⊥,故1PP即点(2,3,1)-P 到x 轴的距离,则1PP ==故选:D.8.已知双曲线222:1y C x b-=的左右顶点分别为12,A A ,右焦点为F ,以1A F 为直径作圆,与双曲线C 的右支交于两点,P Q .若线段PF 的垂直平分线过2A ,则2b 的数值为()A.3B.4C.8D.9【答案】C 【解析】【分析】由双曲线方程得1a =,结合圆的性质及线段垂直平分线的性质得2A 是1A F 的中点,得到,a c 关系求c ,进而求出2b .【详解】由双曲线222:1y C x b-=,得1a =,12(1,0),(1,0),(,0)A A F c -,由题意,点P 在以1A F 为直径的圆上,则1A P PF ⊥,取PF 的中点M ,由线段PF 的垂直平分线过2A ,则2A M PF ⊥,则12//A P A M ,故2A 是1A F 的中点,122A A A F=且12222,1A A a A F c a c ===-=-,所以12c -=,解得3c =,故222918b c a =-=-=.故选:C.9.设动直线l 与()22:15C x y ++= 交于,A B 两点.若弦长AB 既存在最大值又存在最小值,则在下列所给的方程中,直线l 的方程可以是()A.2x y a +=B.2ax y a +=C.2ax y +=D.x ay a+=【答案】D 【解析】【分析】由动直线恒与圆相交得直线过圆内一定点,再验证弦长取最值即可.【详解】()22:15C x y ++= ,圆心(1,0)C -,半径5r =,选项A ,由直线2x y a +=斜率为12-,可得动直线为为平行直线系,圆心(1,0)C -到直线20x y a +-=的距离15a d --=当6a ≤-或4a ≥时,5d ≥A 错误;选项B ,由直线2ax y a +=可化为(2)0a x y -+=,则直线恒过(2,0),因为()2215+>,点(2,0)在圆外,故直线不一定与圆相交,故B 错误;选项C ,由直线2ax y +=恒过(0,2),点(0,2)在圆上,当12a =时,直线方程可化为240x y +-=,此时圆心(1,0)C -到直线240x y +-=的距离1455d r --===,圆与直线相切,不满足题意,故C 错误;选项D ,由直线方程x ay a +=可化为(1)0x a y +-=,则直线恒过(0,1)M ,且点M 在圆C 内,故直线恒与圆C 相交,当直线过圆心C 时,弦长最长,由(1,0)-在直线(1)0x a y +-=上,可得1a =-,AB 取到最大值;如图,取AB 中点T ,则CT AB ⊥,圆心到直线的距离d CT CM=≤AB ==,当d 取最大值CM 时,弦长最短,即当直线与CM 垂直时,弦长最短,由CM 的斜率为01110CM k -==--此时直线斜率为11k a==,即当1a =时,AB 取到最小值.故D 正确.故选:D.10.如图,已知菱形ABCD 的边长为2,且60,,A E F ∠=︒分别为棱,AB DC 中点.将BCF △和ADE V 分别沿,BF DE 折叠,若满足//AC 平面DEBF ,则线段AC 的取值范围为()A. B. C.2,⎡⎣ D.2,⎡⎣【答案】A 【解析】【分析】借助空间直观想象,折叠前在平面图形中求出AC 的长度,折叠过程中证明平面//EAB 平面FDC ,面面距离即为AC 的最小值,由此得到AC 的范围.【详解】折叠前,连接,AC BD .由题意,在菱形ABCD 中,2AB BC ==,18060120ABC ∠=-= ,则由余弦定理得,22212cos 44222122AC AB BC AB BC ABC ⎛⎫=+-⋅∠=+-⨯⨯⨯-= ⎪⎝⎭,所以,AC =,故在折叠过程中,AC ≤.折叠后,若//AC 平面DEBF ,则AC ⊄平面DEBF ,则AC <BD 项错误;折叠前,在菱形ABCD 中,2BA BD ==,60DAB ∠= ,则ABD △是正三角形,由,E F 分别为棱,AB DC 中点,则,,//DE AB BF DC AB DC ⊥⊥,所以//DE BF .折叠后,,,DE AE DE EB AE EB E ⊥⊥= ,又AE ⊂平面EAB ,且EB ⊂平面EAB ,则DE ⊥平面EAB ,同理BF ⊥平面FDC ,所以平面//EAB 平面FDC ,则平面EAB 与平面FDC 的距离即为22DE =⨯=,由点A ∈平面EAB ,点C ∈平面FDC ,则AC ≥.在折叠过程中,当60DFC AEB ∠=∠= 时,由,AE EB DF FC ==,则,EBA DFC 均为正三角形,可构成如图所示的正三棱柱DFC EBA -,满足//AC 平面DEBF ,此时AC DE ==.所以AC A 正确,C 项错误.故选:A.第二部分(非选择题共60分)二、填空题共5小题,每小题4分,共20分.11.双曲线22:14y C x -=的渐近线方程为_________.【答案】2y x =±【解析】【分析】利用双曲线的性质即可求得渐近线方程.【详解】由双曲线的相关知识可知:1a =,2b =所以焦点在x 轴双曲线的渐近线方程为:2by x x a=±=±故答案为:2y x=±12.如图,已知E ,F 分别为三棱锥D ABC -的棱,AB DC 的中点,则直线DE 与BF 的位置关系是__________(填“平行”,“异面”,“相交”).【答案】异面【解析】【分析】假设共面推出矛盾.【详解】假设直线,DE BF 共面,EB ⊂平面DEBF ,由A EB ∈,则AB ⊂平面DEBF ,同理,DC ⊂平面DEBF ,故,AB CD 共面,这与D ABC -是三棱锥矛盾,故假设错误,故直线,DE BF 异面.故答案为:异面.13.经过点(0,1)A 且与直线:210l x y +-=垂直的直线方程为_______________.【答案】210x y -+=【解析】【分析】求出所求直线的斜率,利用点斜式方程可得出所求直线的方程.【详解】直线:210l x y +-=的斜率为12-,则与直线:210l x y +-=垂直的直线的斜率为2,则直线方程为12(0)y x -=-,即210x y -+=.故答案为:210x y -+=14.作为我国古代称量粮食的量器,米斗有着吉祥的寓意,是丰饶富足的象征,带有浓郁的民间文化韵味.右图是一件清代老木米斗,可以近似看作正四棱台,测量得其内高为12cm ,两个底面内棱长分别为18cm 和9cm ,则估计该米斗的容积为__________3cm .【答案】2268【解析】【分析】先画出正四棱台的直观图,再利用台体的体积公式即可求解.【详解】根据题意,正四棱台的直观图如下:由题意可知,高112cm OO h ==,下底面正方形的变长9cm AB =,其面积()219981cmS =⨯=,上底面正方形的变长18cm AB =,其面积()221818324cm S =⨯=,由台体的体积公式可得,该正四面体的体积:()()()3121181324122268cm 33V S S h =++=⨯++⨯=.故该米斗的容积为32268cm .故答案为:2268.15.已知四边形ABCD 是椭圆22:12x M y +=的内接四边形,其对角线AC 和BD 交于原点O ,且斜率之积为13-.给出下列四个结论:①四边形ABCD 是平行四边形;②存在四边形ABCD 是菱形;③存在四边形ABCD 使得91AOD ∠=︒;④存在四边形ABCD 使得2264||||5AC BD +=.其中所有正确结论的序号为__________.【答案】①③④【解析】【分析】利用椭圆的对称性判断①;利用菱形的对角线互相垂直可判断②;利用正切函数的和差公式与性质判断③;利用斜率关系得到22||||OA OB +的表达式,然后利用基本不等式求22||||AC BD +的最大值,可判断④.【详解】因为四边形ABCD 是椭圆22:12x M y +=的内接四边形,AC 和BD 交于原点O ,由椭圆的对称性可知OA OC =且OB OD =,所以四边形ABCD 是平行四边形,故①正确;假设对角线AC 和BD 的斜率分别为12,k k ,若四边形ABCD 是菱形,则其对角线互相垂直,即121k k ×=-,而这与1213k k ⋅=-矛盾,所以不存在四边形ABCD 是菱形,故②错误;不妨设直线AC 的倾斜角为α,直线BD 的倾斜角为β,且αβ>,则12tan ,tan 0k k αβ==>,又1213k k ⋅=-,则1213k k =-,则()122122tan tan 31tan tan 1tan tan 123k k AOD k k k k αβαβαβ⎛⎫--∠=-===-- ⎪++⎝⎭3tan1202≤-⨯=︒,又0180AOD ︒<∠<︒,则90120AOD ︒<∠<︒,所以存在四边形ABCD 使得91AOD ∠=︒,故③正确;直线AC 的方程1y k x =,直线BD 的方程2y k x =,由12212y k xx y =⎧⎪⎨+=⎪⎩,得()22122x k x +=,即122122k x =+,可得1222212A C x k x =+=,同理可得2222212B D x k x =+=,则()()22122222221212212111||221212121k kOA OB k k k k +++=+=++++++,由1213k k ⋅=-,得222119k k =,令()22121,09k t k t t==>,则22211119||||222221199t t t ttOA OB +=+++++=+++()()()92221123321922192t t t t t t +-+-=++=+++++2552181321813116333355t t t t t ++++=+=+≤++=,当且仅当218t t =,即221211,33t k k ===时,等号成立;于是()()()22222264||224||5AC BD OA OB OA OB +=+=+≤,当且仅当221213k k ==,即四边形ABCD 矩形时,等号成立,所以存在四边形ABCD 使得2264||||5AC BD +=,故④正确.故答案为:①③④.【点睛】关键点睛:本题结论④的解决关键是利用弦长公式得到22||||AC BD +关于t 的表达式,从而利用基本不等式即可得解.三、解答题共4小题,共40分.解答应写出文字说明、演算步骤或证明过程.16.已知圆222:(2)(0)C x y r r -+=>与y 轴相切.(1)直接写出圆心C 的坐标及r 的值;(2)直线:3410l x y --=与圆C 交于两点,A B ,求||AB .【答案】(1)圆心(2,0)C ,2r =(2)【解析】【分析】(1)由圆的方程得圆心坐标,结合图形,圆与y 轴相切得半径;(2)法一由弦长公式求解;法二利用几何法勾股定理求解.【小问1详解】圆222:(2)(0)C x y r r -+=>,则圆心(2,0)C ,因为圆222:(2)(0)C x y r r -+=>与y 轴相切,则半径2r =.【小问2详解】由(1)知,圆的方程为22:(2)4C x y -+=,圆心(2,0)C ,半径为2.法一:设()()1122,,,A x y B x y ,联立()22341024x y x y --=⎧⎪⎨-+=⎪⎩,得2257010x x -+=,2(70)42548000∆=--⨯=>,则1212141,525x x x x +==,所以12AB x=-===法二:圆心(2,0)C到直线:3410l x y--=的距离12d==<,则AB===故AB=.17.已知直线:1l y kx=+经过抛物线2:2C x py=的焦点F,且与C的两个交点为P,Q.(1)求C的方程;(2)将l向上平移5个单位得到,l l''与C交于两点M,N.若24MN=,求k值.【答案】(1)24x y=(2)k=【解析】【分析】(1)由直线l与y轴交点得焦点F,待定p可得方程;(2)联立直线l'与抛物线C的方程,由已知弦长利用弦长公式建立关于k的方程,求解可得.【小问1详解】抛物线2:2C x py=的焦点F在y轴上,直线:1l y kx=+,令0x=,得1y=,则焦点(1,0)F,所以12p=,即2p=,所以抛物线C的方程为24x y=;【小问2详解】直线:1l y kx=+向上平移5个单位得到:6l y kx'=+,由246x y y kx ⎧=⎨=+⎩,消y 得24240x kx --=,设直线l '与C 交于两点1122(,),(,)M x y N x y ,则216960k ∆=+>,且12124,24x x k x x +==-,MN =====,由24MN =,化简整理得427300k k +-=,解得210k =-(舍)或23k =,所以k =.18.如图,四棱锥E ABCD -中,⊥AE 平面,,,2,1ABCD AD AB AD BC AE AB BC AD ⊥====∥,过AD 的平面分别与棱,EB EC 交于点M ,N .(1)求证:AD MN ∥;(2)记二面角A DN E --的大小为θ,求cos θ的最大值.【答案】(1)证明见解析(2)33【解析】【分析】(1)由线面平行判定定理与性质定理可证;(2)建立空间直角坐标系,设[],0,1BM BE λλ=∈,利用法向量方法,用λ表示两平面法向量夹角的余弦,再由向量夹角与二面角大小关系求cos θ最大值.【小问1详解】因为//AD BC ,AD ⊄平面BCE ,BC ⊂平面BCE ,所以//AD 平面BCE .因为过AD 的平面分别与棱,EB EC 交于,M N ,所以//AD MN ;【小问2详解】因为⊥AE 平面ABCD ,AB ⊂平面ABCD ,AD ⊂平面ABCD ,所以,AE AB AE AD ⊥⊥,又因为AB AD ⊥,如图,建立空间直角坐标系A xyz -,则(2,0,0),(2,0,2),(0,2,0),(0,0,1)B C E D ,所以(0,2,1),(2,2,2),(2,2,0),(0,0,1)ED EC BE AD =-=-=-=,设[],0,1BM BE λλ=∈,则(2,0,0)(2,2,0)(22,2,0)AM AB BM λλλ=+=+-=-,设平面AND 即平面AMND 的法向量为111(,,)m x y z =,则1110(22)20m AD z m AM x y λλ⎧⋅==⎪⎨⋅=-+=⎪⎩ ,令1x λ=,则11y λ=-,于是(,1,0)m λλ=-;设平面END 即平面ECD 的法向量为222(,,)n x y z =,则22222202220n ED y z n EC x y z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令21y =,则222,1z x ==-,于是(1,1,2)n =-,所以cos ,m nm n m n ⋅===⋅,因为[]0,1λ∈,所以cos ,,36m n ⎡∈--⎢⎣⎦,由二面角A DN E --的大小为θ,根据(,1,0),(1,1,2)m n λλ=-=- 的方向判断可得π,m n θ=-,所以,当12λ=时,cos θ的最大值为33.19.已知椭圆2222:1(0)x y E a b a b +=>>的两个顶点分别为(2,0),(2,0)A B -,离心率()()0001,,02e P x y y =≠为椭圆上的动点,直线,PA PB 分别交动直线x t =于点C ,D ,过点C 作PB 的垂线交x 轴于点H .(1)求椭圆E 的方程;(2)HC HD ⋅是否存在最大值?若存在,求出最大值;若不存在,说明理由.【答案】19.22143x y +=20.存在;12【解析】【分析】(1)由离心率及顶点坐标结合222b c a +=即可求解;(2)结合两点式得直线,PA PB 方程,进而得到点,C D 坐标,由直线CH 与直线PB 垂直得到直线CH 的斜率,结合点斜式得直线CH 的方程,进而的到点H 坐标,结合数量积的坐标运算及二次函数的最值即可求解.【小问1详解】由12ce a==,又两个顶点分别为(2,0),(2,0)A B -,则2,1a c ==,2223b a c =-=,故椭圆E 的方程为22143x y +=;【小问2详解】()()000,0P x y y ≠为椭圆上的动点,则02x ≠±,故直线,PA PB 的斜率存在且不为0,则直线PA :0022y x y x +=+,即00(2)2y y x x =++,则点00(,(2))2y C t t x ++,则直线PB :0022y x y x -=-,即00(2)2y y x x =--,则点00(,(2))2y D t t x --,则直线CH 的斜率为002x y -,故直线CH :00002(2)()2y x y t x t x y --+=-+,令0y =,得2020(2)4H t y x t x +=+-,又()00,P x y 在椭圆上,则2200143x y +=,整理得()2020344x y -=,所以36(2)44H t x t t -=-+=,则6,04t H -⎛⎫⎪⎝⎭,所以()22200020004(2)(2)3636(36),,4242164t y t y t y t t t HC HD x x x -⎛⎫⎛⎫+-+++⋅=⋅=+ ⎪ ⎪+--⎝⎭⎝⎭ ()22234(36)3(6)1216416t t t -+-=-=-+综上,存在6t =,使得HC HD ⋅有最大值12.确,运算要细心,是中档题.。
高二下学期期末数学考试试卷含答案(共5套)
i A. > B. > 1 C. a 2 > b 2 D. ab < a + b - 18、已知 x > 0 , y > 0 ,若 2 y + > m 2 + 2m 恒成立,则实数 m 的取值范围是()高二年级下学期期末考试数学试卷一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、不等式 2x - 3 < 5 的解集为()A. (-1,4)B. (1,4)C. (1,-4)D. (-1,-4)2、设复数 z 满足 (1 + i) z = 2 ( i 为虚数单位),则复数 z 的共轭复数在复平面中对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3、某市对公共场合禁烟进行网上调查,在参与调查的 2500 名男性市民中有 1000 名持支持态度,2500 名女性市民中有 2000 人持支持态度,在运用数据说明市民对在公共场合禁烟是 否支持与性别有关系时,用什么方法最有说明力( ) A. 平均数与方差 B. 回归直线方程 C. 独立性检验 D. 概率4、若函数 f ( x ) = ax 4 + bx 2 + c 满足 f '(1) = 2 ,则 f '(-1) 等于()A. - 1B. - 2C. 2D. 05 、函数 y = f ( x ) 的图象过原点,且它的导函数y = f '( x ) 的图象是如图所示的一条直线,y = f ( x ) 的图象的顶点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6、在一组样本数据 ( x , y ) , ( x , y ) ,……, ( x , y ) (n ≥ 2, x , x ⋅ ⋅ ⋅ x 不全相等)的散点图中, 1 122nn12n若所有样本点 ( x , y ) (i = 1,2 ⋅ ⋅ ⋅ n) 都在直线 y = i i ( )1 2x + 1上,则这组样本数据的样本相关系数为A. - 1B. 0C. 12D. 17、若 a < 1 , b > 1 那么下列命题正确的是( )1 1 b a b a8xx yA. m ≥ 4 或 m ≤ -2B. m ≥ 2 或 m ≤ -4C. - 4 < m < 2D. - 2 < m < 49、某同学为了了解某家庭人均用电量( y 度)与气温( x o C )的关系,曾由下表数据计算回归直线方程 y = - x + 50 ,现表中有一个数据被污损,则被污损的数据为()+ 的取值范围A. ⎢ ,+∞ ⎪B. - ∞, ⎥C. ⎢ ,+∞ ⎪D. - ∞,- ⎥气温 30 2010 0 人均用电量20 30*50A. 35B. 40C. 45D. 4810、已知函数 f ( x ) 的导函数 f '( x ) = a( x + 1)( x - a) ,若 f ( x ) 在 x = a 处取得极大值,则a 的取值范围是()A. (-∞,1)B. (-1,0)C. (0,1)D. (0,+∞ )11、已知函数 f ( x ) = x 3 - 2ax 2 - bx 在 x = 1 处切线的斜率为 1 ,若 ab > 0 ,则 1 1a b( )⎡ 9 ⎫ ⎛ 9 ⎤ ⎡ 1 ⎫ ⎛ 1 ⎤ ⎣ 2 ⎭⎝ 2 ⎦ ⎣ 2 ⎭ ⎝2 ⎦12、已知 a > b > c > 1 ,设 M = a - cN = a - bP = 2( a + b- ab ) 则 M 、 N 、 P 的大小2关系为( )A. P > N > MB. N > M > PC. M > N > P二、填空题(本大题共 4 个小题,每小题 5 分,共 20 分) 13、下列的一段推理过程中,推理错误的步骤是_______ ∵ a < b∴ a + a < b + a 即 2a < b + a ……①∴ 2a - 2b < b + a - 2b 即 2(a - b ) < a - b ……②∴ 2(a - b )(a - b ) < (a - b )(a - b ) 即 2(a - b )2 < (a - b )2 ……③∵ (a - b )2 > 0∴ 可证得 2 < 1 ……④D. P > M > N14、已知曲线 y = x 2 4- 3ln x 在点( x , f ( x ) 处的切线与直线 2 x + y - 1 = 0 垂直,则 x 的值为0 0 0________15、 f ( x ) = x +1( x > 2) 在 x = a 年取得最小值,则 a =________x - 216、设 a 、 b ∈ R , a - b > 2 ,则关于实数 x 的不等式 x - a + x - b > 2 的解集是_______三、解答题(本大题共 6 小题,共 70 分。
2023年最新北师大版高二数学综合练习
2023年最新北师大版高二数学综合练习2023年最新北师大版高二数学综合练习一、第一章函数与方程1.理解函数的概念,掌握函数的表示方法,会求函数的定义域和值域。
2.了解函数的单调性、奇偶性和周期性,会判断函数的各种性质。
3.掌握常见函数图像的画法及图像变换,理解函数图像的性质及意义。
4.掌握函数与方程的关系,熟悉函数零点与方程根的关系,会用二分法求方程的近似解。
5.了解指数函数、对数函数和幂函数的性质,会解指数不等式、对数不等式和幂不等式。
6.掌握函数与方程在实际问题中的应用,会用所学知识解决实际问题。
二、第二章数列1.理解数列的概念,掌握数列的通项公式和递推公式,会求数列的前n项和。
2.了解等差数列和等比数列的概念、性质和判定方法,会求等差数列和等比数列的通项公式和前n项和。
3.掌握数列的极限概念,理解数列的收敛性和发散性,会求数列的极限。
4.了解数列的应用,会用数列知识解决实际问题。
三、第三章三角函数1.掌握三角函数的概念、性质和图像,会求三角函数的值域和最值。
2.了解两角和与差的正弦、余弦和正切公式,会进行简单的三角函数运算。
3.理解正弦定理和余弦定理的概念和应用,会解三角形。
4.掌握三角函数在实际问题中的应用,会用三角函数知识解决实际问题。
四、第四章向量与复数1.掌握向量的概念、性质和运算,会用向量表示向量投影和向量的数量积。
2.理解复数的概念、表示方法和运算,会求复数的模和辐角。
3.掌握复数与向量之间的关系,会用复数表示向量并进行向量运算。
4.了解复数在实际问题中的应用,会用复数知识解决实际问题。
五、第五章解析几何1.掌握直线、圆、椭圆、双曲线等常见曲线的方程和性质,会求曲线的交点、距离和面积。
2.理解直线的斜率和截距的概念及求解方法,会求直线的方程。
3.掌握圆的方程和性质,会求圆的标准方程和一般方程。
4.理解椭圆、双曲线和抛物线的方程和性质,会求椭圆、双曲线和抛物线的标准方程。
5.掌握解析几何在实际问题中的应用,会用解析几何知识解决实际问题。
2023北京八中高二(上)期末数学
2022-2023学年度第一学期期末练习题年级:高二 科目:数学考试时间120分钟,满分150分一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知直线l 1:ax −y −1=0,l 2:ax +(a +2)y +1=0. 若l 1⊥l 2,则实数a =( )A. −1或1B. 0或1C. −1或2D. −3或22. 在832()x x-的展开式中,常数项为 ( )A. −112B. 112C. −1120D. 11203. 已知双曲线2222:1x y C a b -=(0,0)a b >>的离心率为52,则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =±4. 如图,在四面体ABCD 中,设E ,F 分别是BC ,CD 的中点,则AD ⃗⃗⃗⃗⃗⃗ +12(BC ⃗⃗⃗⃗⃗ −BD ⃗⃗⃗⃗⃗⃗ )等于 ( ) A. AD⃗⃗⃗⃗⃗⃗ B. FA⃗⃗⃗⃗⃗ C. AF ⃗⃗⃗⃗⃗D. EF⃗⃗⃗⃗⃗ 5. 下列利用方向向量、法向量判断线、面位置关系的结论中,正确的是( )A. 两条不重合直线l 1,l 2的方向向量分别是a =(2,3,−1),b =(2,3,1),则l 1//l 2B. 直线l 的方向向量为a =(1,−1,2),平面α的法向量为u =(6,4,−1),则l ⊥αC. 两个不同的平面α,β的法向量分别是u =(2,2,−1),v =(−3,4,2),则α⊥βD. 直线l 的方向向量a =(0,3,0),平面α的法向量是u =(0,−5,0),则l//α6. 1a >“”是“直线1y ax =-的倾斜角大于4π”的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件7. 当动点P 在正方体1111ABCD A B C D -的体对角线1AC 上运动时,异面直线BP 与AD 1所成角的取值范围是( )A. [,]64ππB. [,]63ππC. [,]43ππD. [,)32ππ8. 过抛物线的焦点的直线交抛物线于两点,点是原点,若,则的面积为( ) A .BC .D.9. 已知22:2220M x y x y +---=,直线:220l x y ++=,P 为l 上的动点.过点P 作M 的切线PA ,PB ,切点为A ,B ,当||||PM AB ⋅ 最小时,直线AB 的方程为( ) A .210x y --= B .210x y +-= C .210x y -+= D .210x y ++=10.点P 在直线:(0)l y x p p =+>上,若存在过P 的直线交抛物线22(0)y px p =>于,A B 两点,且2||||PA AB =,则称点P 为“M 点”,那么下列结论中正确的是( )A .直线l 上的所有点都是“M 点”B .直线l 上仅有有限个点是“M 点”C .直线l 上的所有点都不是“M 点”D .直线l 上有无穷多个点(但不是所有的点)是“M 点”24y x =F ,A B O 3AF =AOB ∆22二、填空题共5小题,每小题5分,共25分。
2023-2024学年北京市丰台区高二上学期期末练习数学试卷+答案解析
2023-2024学年北京市丰台区高二上学期期末练习数学试卷一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知直线l经过,两点,则直线l的倾斜角为()A. B. C. D.2.已知数列的前n项和为,且,,则()A. B. C.1 D.33.已知抛物线的焦点为F,点在抛物线C上.若,则()A.2B.3C.4D.54.已知椭圆的焦点在x轴上,则m的取值范围是()A. B. C. D.5.如图,在四面体OABC中,,,点M在OC上,且,N为AB 的中点,则()A. B.C. D.6.已知椭圆的左、右焦点分别为,,点P在椭圆C上.若,则的面积为()A.2B.4C.8D.97.月相是指天文学中对于地球上看到的月球被太阳照亮部分的称呼年,爱尔兰学者在大英博物馆所藏的一块巴比伦泥板上发现了一个记录连续15天月相变化的数列,记为,其将满月等分成240份,且表示第i天月球被太阳照亮部分所占满月的份数.例如,第1天月球被太阳照亮部分占满月的,即;第15天为满月,即已知的第1项到第5项是公比为q的等比数列,第5项到第15项是公差为d的等差数列,且q,d均为正整数,则()A.40B.80C.96D.1128.已知点P在由直线,和所围成的区域内含边界运动,点Q在x轴上运动.设点,则的最小值为()A. B. C. D.9.如图,在棱长为2的正方体中,E为棱的中点,F为棱上一动点.给出下列四个结论:①存在点F,使得平面;②直线EF与所成角的最大值为;③点到平面的距离为;④点到直线的距离为其中所有正确结论的个数为()A.1B.2C.3D.410.过双曲线的右焦点F引圆的切线,切点为P,延长FP交双曲线C的左支于点若,则双曲线C的离心率为()A. B. C. D.二、填空题:本题共5小题,每小题5分,共25分。
11.已知向量,,若与共线,则__________.12.双曲线的渐近线方程为__________.13.已知等差数列的前n项和为,能够说明“对,若,则”是假命题的的一个通项公式为__________.14.在平面直角坐标系xOy中,已知点,点Q在圆上运动,当取最大值时,PQ 的长为__________.15.已知是各项均为正数的无穷数列,其前n项和为,且给出下列四个结论:①;②各项中的最大值为2;③,使得;④,都有其中所有正确结论的序号是__________.三、解答题:本题共6小题,共72分。
天津市部分区2023-2024学年高二上学期期末考试 数学(含答案)
天津市部分区2023~2024学年度第一学期期末练习高二数学(答案在最后)第Ⅰ卷(共36分)一、选择题:本大题共9小题,每小题4分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知空间向量()1,2,3a =-,()2,1,1b =-,则2a b -= ()A.()3,4,5--B.()5,0,5-C.()3,1,2- D.()1,3,4--2.已知直线1l :330x ay +-=与直线2l :()210a x y +++=平行,则实数a 的值为()A.1B.3- C.1或3- D.不存在3.抛物线24x y =的焦点坐标为()A.()1,0 B.()0,1 C.()1,0- D.()0,1-4.在等比数列{}n a 中,135a a +=,2410a a +=,则{}n a 的公比为()A.1B.2C.3D.45.若双曲线()222210,0x y a b a b -=>>经过椭圆221259x y +=的焦点,且双曲线的一条渐近线方程为20x y +=,则该双曲线的方程为()A.221259x y -= B.221416x y -=C.2211664x y -= D.221164x y -=6.过(1,0)点且与圆224470x y x y +--+=相切的直线方程为()A.220x y --=B.3430x y --=C.220x y --=或1x = D.3430x y --=或1x =7.在棱长为1的正方体1111ABCD A B C D -中,E 为AB 的中点,则点1B 到平面1ACE 的距离为()A.3B.6C.4D.148.已知1F ,2F 是椭圆C :()222210x y a b a b+=>>的左、右焦点,以12F F 为直径的圆与椭圆C 有公共点,则C 的离心率的最小值为()A.13B.12C.22D.329.设数列{}n a 满足()*1232321n a a a na n n +++⋅⋅⋅=+∈N ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前10项和为()A.2011B.116C.5122 D.236第Ⅱ卷(共84分)二、填空题:本大题共6小题,每小题4分,共24分.10.已知空间向量()2,1,3a =- ,()4,2,1b = ,则a b ⋅=__________.11.直线10x -=的倾斜角为_______________.12.设n S 为等差数列{}n a 的前n 项和,且315S =-,612S =-,则101112a a a ++=_________.13.已知空间三点()0,2,3A ,()2,1,5B -,()0,1,5C -,则点A 到直线BC 的距离为__________.14.圆2210100x y x y +--=与圆2262400x y x y +-+-=的公共弦长为___________.15.已知抛物线E :()220y px p =>的焦点为F ,过点F 的直线l 与抛物线E 交于A ,B 两点,若直线l 与圆220x y px +-=交于C ,D 两点,且38AB CD =,则直线l 的一个斜率为___________.三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.16.记n S 为等差数列{}n a 的前n 项和,已知15a =-,42S =-.(1)求{}n a 的通项公式;(2)若{}n b 是等比数列,且24b a =,335b a a =+,求{}n b 的前n 项和n T .17.已知圆C 经过()4,0A ,()0,2B 两点和坐标原点O .(1)求圆C 的方程;(2)垂直于直线0x y +=的直线l 与圆C 相交于M ,N 两点,且MN =,求直线l 的方程.18.如图,三棱柱111ABC A B C -中,侧棱1AA ⊥平面ABC ,ABC 为等腰直角三角形,90BAC ∠=︒,且12AB AA ==,D ,E ,F 分别是1B A ,1CC ,BC 的中点.(1)求直线DE 与BC 所成角的余弦值;(2)求证:1B F ⊥平面AEF ;(3)求平面1AB E 与平面AEF 夹角的余弦值.19.在数列{}n a 中,11a =,()*122nn n a a n +-=∈N .(1)求2a ,3a ;(2)记()*2n n n a b n =∈N .(i )证明数列{}n b 是等差数列,并求数列{}n a 的通项公式;(ii )对任意的正整数n ,设,,,.n n n a n c b n ⎧=⎨⎩为奇数为偶数,求数列{}n c 的前2n 项和2n T .20.已知椭圆C :()222210x y a b a b +=>>,离心率为2,且经过点()4,1M .(1)求C 的方程:(2)过点M 且斜率大于零的直线l 与椭圆交于另一个点N (点N 在x 轴下方),且OMN 的面积为3(O 为坐标原点),求直线l 的方程.天津市部分区2023~2024学年度第一学期期末练习高二数学第Ⅰ卷(共36分)一、选择题:本大题共9小题,每小题4分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知空间向量()1,2,3a =-,()2,1,1b =-,则2a b -= ()A.()3,4,5--B.()5,0,5-C.()3,1,2- D.()1,3,4--【答案】A 【解析】【分析】直接由空间向量的坐标线性运算即可得解.【详解】由题意空间向量()1,2,3a =-,()2,1,1b =- ,则()()()()()21,2,322,1,11,2,34,2,23,4,5a b -=---=---=--.故选:A.2.已知直线1l :330x ay +-=与直线2l :()210a x y +++=平行,则实数a 的值为()A.1B.3- C.1或3- D.不存在【答案】A 【解析】【分析】求出直线1l 与2l 不相交时的a 值,再验证即可得解.【详解】当直线1l 与2l 不相交时,(2)30a a +-=,解得1a =或3a =-,当1a =时,直线1l :330x y +-=与直线2l :310x y ++=平行,因此1a =;当3a =-时,直线1l :3330x y --=与直线2l :10x y -++=重合,不符合题意,所以实数a 的值为1.故选:A3.抛物线24x y =的焦点坐标为()A.()1,0 B.()0,1 C.()1,0- D.()0,1-【答案】B 【解析】【分析】根据抛物线的方程与焦点之间的关系分析求解.【详解】由题意可知:此抛物线的焦点落在y 轴正半轴上,且24p =,可知12p=,所以焦点坐标是()0,1.故选:B.4.在等比数列{}n a 中,135a a +=,2410a a +=,则{}n a 的公比为()A.1B.2C.3D.4【答案】B 【解析】【分析】直接由等比数列基本量的计算即可得解.【详解】由题意()()21242131110251a q q a a q a a a q ++====++(1,0a q ≠分别为等比数列{}n a 的首项,公比).故选:B.5.若双曲线()222210,0x y a b a b -=>>经过椭圆221259x y +=的焦点,且双曲线的一条渐近线方程为20x y +=,则该双曲线的方程为()A.221259x y -= B.221416x y -=C.2211664x y -= D.221164x y -=【答案】D 【解析】【分析】先求椭圆的焦点坐标,再代入双曲线方程可得2a ,利用渐近线方程可得2b ,进而可得答案.【详解】椭圆221259x y +=的焦点坐标为()4,0±,而双曲线()222210,0x y a b a b -=>>过()4,0±,所以()2222401a b ±-=,得216a =,由双曲线的一条渐近线方程为20x y +=可得2214y x =,则2214b a =,于是21164b =,即24b =.所以双曲线的标准标准为221164x y -=.故选:D.6.过(1,0)点且与圆224470x y x y +--+=相切的直线方程为()A.220x y --=B.3430x y --=C.220x y --=或1x = D.3430x y --=或1x =【答案】D 【解析】【分析】由题意分直线斜率是否存在再结合直线与圆相切的条件进行分类讨论即可求解.【详解】圆224470x y x y +--+=,即圆()()22221x y -+-=的圆心坐标,半径分别为()2,2,1,显然过(1,0)点且斜率不存在的直线为1x =,与圆()()22221x y -+-=相切,满足题意;设然过(1,0)点且斜率存在的直线为()1y k x =-,与圆()()22221x y -+-=相切,所以1d r ===,所以解得34k =,所以满足题意的直线方程为3430x y --=或1x =.故选:D.7.在棱长为1的正方体1111ABCD A B C D -中,E 为AB 的中点,则点1B 到平面1A CE 的距离为()A.63B.66C.24D.14【答案】A 【解析】【分析】建立空间直角坐标系,利用空间向量法求点到平面的距离公式即可求出结果.【详解】分别以1,,DA DC DD 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,()11,0,1A ,11,,02E ⎛⎫⎪⎝⎭,()0,1,0C ,()11,1,1B ,110,,12A E ⎛⎫=- ⎪⎝⎭ ,()11,1,1AC =-- ,()110,1,0A B = 设平面1A CE 的法向量为(),,n x y z =,1100A E n A C n ⎧⋅=⎪⎨⋅=⎪⎩,即1020y z x y z ⎧-=⎪⎨⎪-+-=⎩,取1,2,1x y z ===,()1,2,1n = 所以点1B 到平面1ACE的距离为113A B n d n⋅===uuu u r rr .故选:A.8.已知1F ,2F 是椭圆C :()222210x y a b a b+=>>的左、右焦点,以12F F 为直径的圆与椭圆C 有公共点,则C 的离心率的最小值为()A.13B.12C.2D.2【答案】C 【解析】【分析】由圆222x y c +=与椭圆有交点得c b ≥,即2222c b a c ≥=-,可得212e ≥,即可求解.【详解】由题意知,以12F F 为直径的圆的方程为222x y c +=,要使得圆222x y c +=与椭圆有交点,需c b ≥,即2222c b a c ≥=-,得222c a ≥,即212e ≥,由01e <<,解得12e ≤<,所以椭圆的离心率的最小值为2.故选:C9.设数列{}n a 满足()*1232321n a a a na n n +++⋅⋅⋅=+∈N ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前10项和为()A.2011B.116C.5122 D.236【答案】C 【解析】【分析】由题意首项得()*121n n n a +=∈+N ,进而有()()*3,1221112,211n n a n n n n n n n ⎧=⎪⎪=∈⎨⎛⎫+⎪=-≥ ⎪++⎪⎝⎭⎩N ,由裂项相消法求和即可.【详解】由题意()*1232321n a a a na n n +++⋅⋅⋅=+∈N ,则()()()*1231232111n n n a a a na n n a ++++⋅⋅⋅++++=∈N ,两式相减得()()*112n n n a ++=∈N ,所以()*121n n n a+=∈+N ,又1221131a =⨯+=≠,所以()*3,12,2n n a n n n =⎧⎪=∈⎨≥⎪⎩N ,()()*3,1221112,211n n a n n n n n n n ⎧=⎪⎪=∈⎨⎛⎫+⎪=-≥ ⎪++⎪⎝⎭⎩N ,所以数列1n a n ⎧⎫⎨⎬+⎩⎭的前10项和为31111113115122223341011221122⎛⎫⎛⎫+⨯-+-++-=+⨯-= ⎪ ⎪⎝⎭⎝⎭.故选:C.第Ⅱ卷(共84分)二、填空题:本大题共6小题,每小题4分,共24分.10.已知空间向量()2,1,3a =- ,()4,2,1b = ,则a b ⋅=__________.【答案】9【解析】【分析】根据空间向量数量积的坐标表示即可求解.【详解】由题意知,(2,1,3)(4,2,1)24(1)2319a b ⋅=-⋅=⨯+-⨯+⨯=.故答案为:911.直线10x -=的倾斜角为_______________.【答案】150 【解析】【分析】由直线10x +-=的斜率为3k =-,得到00tan [0,180)3αα=-∈,即可求解.【详解】由题意,可知直线10x +-=的斜率为3k =-,设直线的倾斜角为α,则00tan [0,180)3αα=-∈,解得0150α=,即换线的倾斜角为0150.【点睛】本题主要考查直线的倾斜角的求解问题,其中解答中熟记直线的倾斜角与斜率的关系,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.12.设n S 为等差数列{}n a 的前n 项和,且315S =-,612S =-,则101112a a a ++=_________.【答案】39【解析】【分析】由题意36396129,,,S S S S S S S ---成等差数列,结合315S =-,612S =-即可求解.【详解】由题意n S 为等差数列{}n a 的前n 项和,且315S =-,612S =-,所以()()36312151518S S S -=++=--,而36396129,,,S S S S S S S ---成等差数列,所以3101112129318155439a S a S a S =++=⨯+-+=-=.故答案为:39.13.已知空间三点()0,2,3A ,()2,1,5B -,()0,1,5C -,则点A 到直线BC 的距离为__________.【答案】2【解析】【分析】利用空间向量坐标法即可求出点到直线的距离.【详解】因为()0,2,3A ,()2,1,5B -,()0,1,5C -,所以()2,2,0BC =-,()2,1,2AB =-- 与BC同向的单位方向向量BC n BC ⎫==-⎪⎭uu u rr uu u r,2AB n ⋅=-uu u r r 则点A 到直线BC 的距离为2=.故答案为:214.圆2210100x y x y +--=与圆2262400x y x y +-+-=的公共弦长为___________.【答案】【解析】【分析】由两圆的方程先求出公共弦所在的直线方程,再利用点到直线的距离公式,弦长公式,求得公共弦长即可.【详解】 两圆方程分别为:2210100x y x y +--=①,2262400x y x y +-+-=②,由②-①可得:412400x y +-=,即3100x y +-=,∴两圆的公共弦所在的直线方程为:3100x y +-=,2210100x y x y +--=的圆心坐标为()5,5,半径为,∴圆心到公共弦的距离为:d ==,∴公共弦长为:=.综上所述,公共弦长为:故答案为:.15.已知抛物线E :()220y px p =>的焦点为F ,过点F 的直线l 与抛物线E 交于A ,B 两点,若直线l 与圆220x y px +-=交于C ,D 两点,且38AB CD =,则直线l 的一个斜率为___________.,答案不唯一)【解析】【分析】设l 的方程为2p y k x ⎛⎫=- ⎪⎝⎭,()()1122,,,A x y B x y ,联立直线方程和抛物线方程,再由焦点弦公式得12222p AB x x p p k=++=+,由圆220x y px +-=的方程可知,直线l 过其圆心,2CD r =,由38AB CD =列出方程求解即可.【详解】由题意知,l 的斜率存在,且不为0,设l 的方程为2p y k x ⎛⎫=- ⎪⎝⎭,()()1122,,,A x y B x y ,联立222p y k x y px ⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,得()22222204k p k x k p p x -++=,易知0∆>,则2122222k p p p x x p k k ++==+,所以12222p AB x x p p k =++=+,圆220x y px +-=的圆心,02p ⎛⎫ ⎪⎝⎭,半径2p r =,且直线l 过圆心,02p ⎛⎫ ⎪⎝⎭,所以2CD r p ==,由38AB CD =得,22328p p p k ⎛⎫+= ⎪⎝⎭,k =..三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.16.记n S 为等差数列{}n a 的前n 项和,已知15a =-,42S =-.(1)求{}n a 的通项公式;(2)若{}n b 是等比数列,且24b a =,335b a a =+,求{}n b 的前n 项和n T .【答案】(1)38n a n =-(2)122n n T +=-【解析】【分析】(1)由已知条件求出数列首项与公差,可求{}n a 的通项公式;(2)由23,b b 可得{}n b 的首项与公比,可求前n 项和n T .【小问1详解】设等差数列{}n a 公差为d ,15a =-,4143422S a d ⨯=+=-,解得3d =,所以()1138n a a n d n =+-=-;【小问2详解】设等比数列{}n b 公比为q ,244==b a ,335178b a a +=+==,得2123148b b q b b q ==⎧⎨==⎩,解得122b q =⎧⎨=⎩,所以()()11121222112nnn n b q T q +--===---.17.已知圆C 经过()4,0A ,()0,2B 两点和坐标原点O .(1)求圆C 的方程;(2)垂直于直线0x y +=的直线l 与圆C 相交于M ,N两点,且MN =,求直线l 的方程.【答案】(1)()()22215x y -+-=(2)30x y --=或10x y -+=【解析】【分析】(1)由题意可知OA OB ⊥,由此得圆的半径,圆心,进而得解.(2)由直线垂直待定所求方程,再结合点到直线距离公式、弦长公式即可得解.【小问1详解】由题意可知OA OB ⊥,所以圆C 是以()4,0A ,()0,2B 中点()2,1C 为圆心,12r AB ===为半径的圆,所以圆C 的方程为()()22215x y -+-=.【小问2详解】因为垂直于直线0x y +=的直线l 与圆C 相交于M ,N 两点,且MN =,所以不妨设满足题意的方程为0x y m -+=,所以圆心()2,1C 到该直线的距离为d =所以MN ==,解得123,1m m =-=,所以直线l 的方程为30x y --=或10x y -+=18.如图,三棱柱111ABC A B C -中,侧棱1AA ⊥平面ABC ,ABC 为等腰直角三角形,90BAC ∠=︒,且12AB AA ==,D ,E ,F 分别是1B A ,1CC ,BC 的中点.(1)求直线DE 与BC 所成角的余弦值;(2)求证:1B F ⊥平面AEF ;(3)求平面1AB E 与平面AEF 夹角的余弦值.【答案】(1)10(2)证明见解析(3)6【解析】【分析】(1)建立适当的空间直角坐标系,求出()()1,2,0,2,2,0DE BC =-=- ,结合向量夹角余弦公式即可得解.(2)要证明1B F ⊥平面AEF ,只需证明11,B F AE B F AF ⊥⊥,即只需证明110,0B F AF B F AE ⋅=⋅= .(3)由(2)得平面AEF 的一个法向量为()11,1,2B F =-- ,故只需求出平面1AB E 的法向量,再结合向量夹角余弦公式即可得解.【小问1详解】由题意侧棱1AA ⊥平面ABC ,又因为,AB AC ⊂平面ABC ,所以11,AA AB AA AC ⊥⊥,因为90BAC ∠=︒,所以BA BC ⊥,所以1,,AB AC AA 两两互相垂直,所以以点A 为原点,1,,AB AC AA 所在直线分别为,,x y z 轴建立如图所示的空间直角坐标系:因为ABC 为等腰直角三角形,90BAC ∠=︒,且12AB AA ==,D ,E ,F 分别是1B A ,1CC ,BC 的中点.所以()()()()()()1110,0,0,2,0,0,0,2,0,0,0,2,2,0,2,0,2,2A B C A B C ,()()()1,1,0,0,2,1,1,0,1F E D ,所以()()1,2,0,2,2,0DE BC =-=- ,设直线DE与BC所成角为θ,所以cos cos,10DE BCDE BCDE BCθ⋅===⋅.【小问2详解】由(1)()()()11,1,2,1,1,0,0,2,1B F AF AE=--==,所以111100,0220B F AF B F AE⋅=-+-=⋅=-+-=,所以11,B F AE B F AF⊥⊥,又因为,,AE AF A AE AF=⊂平面AEF,所以1B F⊥平面AEF.【小问3详解】由(2)可知1B F⊥平面AEF,即可取平面AEF的一个法向量为()11,1,2B F=--,由(1)可知()()12,0,2,0,2,1AB AE==,不妨设平面1AB E的法向量为(),,n x y z=,则22020x zy z+=⎧⎨+=⎩,不妨令2z=-,解得2,1x y==,即可取平面1AB E的法向量为()2,1,2n=-,设平面1AB E与平面AEF夹角为α,则111cos cos,6B F nB F nB F nα⋅===⋅.19.在数列{}n a中,11a=,()*122nn na a n+-=∈N.(1)求2a,3a;(2)记()*2nnnab n=∈N.(i)证明数列{}n b是等差数列,并求数列{}n a的通项公式;(ii)对任意的正整数n,设,,,.nnna ncb n⎧=⎨⎩为奇数为偶数,求数列{}n c的前2n项和2n T.【答案】19.24a=,312a=20.(i )证明见解析;()1*2n n a n n -=⋅∈N .(ii )()()*216554929n n n n n T n +-⎛⎫=++∈⎪⎝⎭N .【解析】【分析】(1)由递推公式即可得到2a ,3a ;(2)对于(i ),利用已知条件和等差数列的概念即可证明;对于(ii ),先写出n c ,再利用错位相减法求得奇数项的前2n 项和,利用等差数列的前n 项和公式求得偶数项的前2n 项和,进而相加可得2n T .【小问1详解】由11a =,()*122n n n a a n +-=∈N ,得()*122n n n a a n +=+∈N ,所以121224a a =+=,2322212a a =+=,即24a =,312a =.【小问2详解】(i )证明:由122n n n a a +-=和()*2n n n a b n =∈N 得,()*11111122122222n n n n n n n n n n n a a a a b b n ++++++--=-===∈N ,所以{}n b 是111122a b ==,公差为12的等差数列;因为()1111222n b n n =+-⨯=,所以()*1,22n n n a b n n ==∈N ,即()1*2n n a n n -=⋅∈N .(ii )由(i )得12,1,2n n n n c n n -⎧⋅⎪=⎨⎪⎩为奇数为偶数,当n 为奇数,即()*21n k k =-∈N 时,()()()221*21212214N k k k c k k k ---=-⋅=-⋅∈,设前2n 项中奇数项和为n A ,前2n 项中偶数项和为nB 所以()()0121*143454214n n A n n -=⨯+⨯+⨯++-⋅∈N ①,()()123*4143454214n n A n n =⨯+⨯+⨯++-⋅∈N ②,由①-②得:()()()()()012131431453421234214n n n A n n k -⎡⎤-=⨯+-⨯+-⨯++---⋅--⋅⎣⎦,()()121121444214n n n -=-+⨯++++--⋅ ,()()1142214114nn n ⨯-=⨯--⋅--()242214133n n n ⨯=---⋅-()2521433n n ⎡⎤=---⎢⎥⎣⎦()*552433n n n ⎛⎫=--∈ ⎪⎝⎭N ,即()*5532433n n A n n ⎛⎫-=--∈ ⎪⎝⎭N ,则()*655499n n n A n -⎛⎫=+∈ ⎪⎝⎭N ;当n 为偶数,即()*2n k k =∈N 时,()*212N 2k c k k k =⨯=∈,所以()()*11232n n n B n n +=++++=∈N .综上所述,()()*216554929n n n n n n n T A B n +-⎛⎫=+=++∈ ⎪⎝⎭N .20.已知椭圆C :()222210x y a b a b +=>>,离心率为2,且经过点()4,1M .(1)求C 的方程:(2)过点M 且斜率大于零的直线l 与椭圆交于另一个点N (点N 在x 轴下方),且OMN 的面积为3(O 为坐标原点),求直线l 的方程.【答案】(1)221205x y +=(2)220x y --=【解析】【分析】(1)由离心率和椭圆上的点,椭圆的方程;(2)设直线方程,代入椭圆方程,利用弦长公式和面积公式求出直线斜率,可得直线方程.【小问1详解】椭圆C :()222210x y a b a b +=>>,离心率为2,且经过点()4,1M ,则有22222161132a b a b c c e a ⎧+=⎪⎪⎪=+⎨⎪⎪==⎪⎩,解得2220,5a b ==,所以椭圆C 的方程为221205x y +=.【小问2详解】过点M 且斜率大于零的直线l 与椭圆交于另一个点N (点N 在x 轴下方),设直线l 的方程为()41y k x =-+,椭圆左顶点为()A -,MA k =,点N 在x 轴下方,直线l的斜率k >,由()22411205y k x x y ⎧=-+⎪⎨+=⎪⎩,消去y 得()()222214846432160k x k k x k k ++-+--=,设(),N m n ,则有()2284414k k m k -+=+,得22168414k k m k --=+,)288414k MN k +==-=+,原点O 到直线l 的距离d =则有)2388121124OMN S MN d k k =⋅⋅++=⋅= ,当41k >时,方程化简为241270k k +-=,解得12k =;当041k <<时,方程化简为2281210k k +-=,解得114k =,不满足k >所以直线l 的方程为()1412y x =-+,即220x y --=.【点睛】方法点睛:解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.要强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.。
高中数学新教材2022-2023高二下学期期末综合测试卷1解析版
高中数学新教材2022-2023高二下学期期末综合测试卷1一、单选题1.设集合{(5)0},{01}A x x x B x x =-<=<<∣∣,则()A B ⋂R 等于( ) A .{15}xx <≤∣ B .{1}xx ≥∣ C .{5}x x <∣ D .{15}xx ≤<∣ ,{B x x =R(){1B x =R 故选:D.2.“0x y +=”是“0x y ⋅=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要【答案】A【详解】解析过程略3.已知函数()y f x =满足()010f x '=,当0x ∆→时,()()002f x x f x x+∆-→∆( )A .20B .20-C .120D .120-4.函数()f x = A .{2}x x ≤ B .{5}x x <C .{5}x x ≥D .{2}x x ≥【答案】C【解析】根据被开方数是非负数,列出不等式即可求得. 【详解】要使得函数有意义,则50x -≥,解得5x ≥,故选:C.【点睛】本题考查具体函数的定义域,属基础题.5.2021年6月14日是我国的传统节日“端午节”.这天,王华的妈妈煮了五个粽子,其中两个蜜枣馅,三个豆沙馅,王华随机拿了两个粽子,若已知王华拿到的两个粽子为同一种馅,则这两个粽子都为蜜枣馅的概率为()A.14B.34C.110D.3106.有一个食品商店为了调查气温对热饮销售的影响,经过调查得到关于卖出的热饮杯数与当天气温的数据如下表,绘出散点图如下.通过计算,可以得到对应的回归方程y =-2.352x+147.767,根据以上信息,判断下列结论中正确的是()A.气温与热饮的销售杯数之间成正相关B.当天气温为2∵时,这天大约可以卖出143杯热饮C.当天气温为10∵时,这天恰卖出124杯热饮D .由于x =0时,y 的值与调查数据不符,故气温与卖出热饮杯数不存在线性相关性 【答案】B【分析】对每一个选项逐一分析判断得解.【详解】A. 气温与热饮的销售杯数之间成负相关,所以该选项错误;B.当x =2时,y =-2×2.352+147.767=143.063,即这一天大约可以卖出143杯热饮,所以该选项是正确的;C. 当天气温为10°C 时,这天大约可以124杯热饮,所以该选项错误;D.不能根据x=0时, y 的值与调查数据不符,判断气温与卖出热饮杯数不存在线性相关性.所以该选项错误. 故选B【点睛】本题考查线性回归方程的应用,即根据所给出的线性回归方程,预报y 的值,这是填空题中经常出现的一个问题,属于基础题. 7.下列函数中,在区间(1)+∞,上为减函数的是 A .11y x =- B .12x y -=C .y =D .ln(1)y x =-【答案】A【详解】试题分析:选项B 、C 、D 是减函数,故选A. 考点:函数的单调性.8.已知m n >,且0m <,0n >,则下列不等式中正确的是( ) A .0m n +> B .110m n+> C .()()0m n m n +-< D .1122mn⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭二、多选题9.下列说法正确的是( )A .设离散型随机变量X 等可能取1,2,3,…,n ,若(4)0.3P X <=,则10n =B .设随机变量X 服从二项分布16,2B ⎛⎫⎪⎝⎭,则15(2)32P X ==C .设离散型随机变量η服从两点分布,若(1)2(0)P P ηη===,则1(0)3P η== D .设随机变量x 服从正态分布()22,N σ且(4)0.9P X <=,则(02)0.3P X <<=,随机变量(4)P X <(0P X ∴<(0P X ∴<故选:AC 10.下列函数中为奇函数的是( ) A .()||f x x = B .1()f x x x=+C .3()2f x x x=+D .2()1f x x x =++【答案】BC【分析】根据奇函数的定义即可逐一选项求解.00,,,关于原点对称,且,为奇函数,的定义域为R ,关于原点对称,且11.已知函数()221,021,0x x f x x x x -+<⎧=⎨-++≥⎩,则( )A .()12f -=-B .若()1f a =,则0a =或2a =C .函数()f x 在()0,1上单调递减D .函数()f x 在[]1,2-的值域为[]1,3【答案】BD【分析】作出函数图象,根据图象逐个分析判断即可 【详解】函数()f x 的图象如左图所示.()()12113f -=-⨯-+=,故A 错误;当a<0时,()12110f a a a =⇒-+=⇒=,此时方程无解;当0a ≥时,()2121f a a a =⇒-++1=0a ⇒=或2a =,故B 正确;由图象可得,()f x 在()0,1上单调递增,故C 错误; 由图象可知当[]1,2x ∈-时,()()(){}min min 0,21f x f f ==,()()(){}max max 1,13f x f f =-=,故()f x 在[]1,2-的值域为[]1,3,D 正确.故选:BD .12.已知函数()1y f x =-的图象关于直线1x =对称,且对于()()y f x x =∈R ,当1x ,[)20,x ∈+∞,且12x x ≠时,()()12210f x f x x x -<-恒成立.若()()2221f ax f x <+对任意的x ∈R 恒成立,则实数a 的范围可以是下面选项中的( )A .()B .1,12⎛⎫- ⎪⎝⎭C .(D .)2三、填空题13.不等式(5)(1)8x x +-≥的解集是________.【答案】[]3,1--【分析】根据一元二次不等式的解法求得正确答案. 【详解】由(5)(1)8x x +-≥得2558x x x +--≥, 2430x x ++≤,()()130x x ++≤,解得31x -≤≤-,所以不等式(5)(1)8x x +-≥的解集是[]3,1--. 故答案为:[]3,1--14.已知随机变量X 服从正态分布()22,N σ,若(3)0.8P X <=,则(1)P X ≤=__________. 【答案】0.2【分析】根据随机变量X 服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得(1)P X ≤.【详解】∵随机变量X 服从正态分布()22,N σ,∵正态曲线的对称轴是2x =. 又(3)0.8P X <=,∵()30.2P X ≥=, 由对称性可知,()()130.2P X P X ≤=≥=.故答案为:0.2.15.曲线x y e =在点()1,e 处的切线方程为__________. 【详解】解:y x e =⋅()12x x e '+11【点睛】本题考查导数的几何意义,利用导数求在一点处的切线方程,属于基础题. 16.已知()nx y +的展开式的二项式系数和为128,若()()()20122322nx a a x a x +=+++++⋅⋅⋅+()2nn a x +,则12a a +=________.【答案】70-【分析】根据二项式系数和,可求得n 值,设2x t +=,则2x t =-,所求即为()()270172772321a a t a t a t x t =+++⋅⋅⋅++=-,根据展开式的通项公式,即可求得12、a a ,即可得答案.【详解】由()nx y +的展开式的二项式系数和为128,则2128n =,∵7n =. 设2x t +=,则2x t =-,则()()270172772321a a t a t a t x t =+++⋅⋅⋅++=-,∵()6617C 2114a t =⨯⨯-=,()55227C 21a =⨯⨯-=84-,∵12148470a a +=-=-. 故答案为:70-四、解答题17.在100件产品中,有97件合格品,3件次品从这100件产品中任意抽出5件.(此题结果用式子作答即可)(1)抽出的5件中恰好有2件是次品的抽法有多少种; (2)抽出的5件中至少有2件是次品的抽法有多少种; (3)抽出的5件中至多有2件是次品的抽法有多少种?【答案】(1)23397C C 种;(2)2332397397C C C C +种;(3)5142397397397C C C C C ++种. 【分析】(1)抽出的5件中恰好有2件是次品,则3件合格品,从而可得答案; (2)抽出的5件中至少有2件是次品包含2件次品3件合格品和3件次品2件合格品,再利用分类计数原理可求得结果;(3)抽出的5件中至多有2件是次品包含5件全是合格品,1件次品4件合格品和2件次品3件合格品,再利用分类计数原理可求得结果 【详解】解:(1)抽出的产品中恰好有2件是次品的抽法 共有23397C C 种抽法..(2)抽出的产品中至少有2件是次品的抽法共有2332397397C C C C +种抽法.(3)抽出的产品中至多有2件是次品的抽法 共有5142397397397C C C C C ++种抽法.18.一次考试中,五名学生的数学、物理成绩如下表所示:(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;(2)请在所给的直角坐标系中画出它们的散点图,并求这些数据线性回归方程y bx a =+.8991939597++++300.7540b ==故线性回归方程是:【点睛】本题主要考查了古典概型和线性回归方程等知识,和应用意识,属于基础题.19.若函数3()4,2f x ax bx x =-+=当时,函数()f x 有极值43.(1)求函数()f x 的解析式; (2)求函数()f x 的单调区间.20.某大学希望研究性别与职称之间是否有关系,你认为应该收集哪些数据?【答案】答案见解析.【分析】根据列联表的内容,选择要统计的数据即可.【详解】女教授人数,男教授人数,女副教授人数,男副教授人数.或高级职称中女性的人数,高级职称中男性的人数,中级职称中女性的人数,中级职称中男性的人数. 21.某射击运动员平时训练成绩的统计结果如下:如果这名运动员只射击一次,以频率作为概率,求下列事件的概率;(1)命中10环;(2)命中的环数大于8环;(3)命中的环数小于9环;(4)命中的环数不超过5环.【答案】(1)0.2 (2)0.5 (3)0.5 (4)0【解析】利用频率表以及互斥事件的概率公式得出(1),(2),(3)对应的概率,由对立事件的概率公式得出(4)的概率.【详解】解:用x 表示命中的环数,由频率表可得.(1)(10)0.2P x ==;(2)(8)P x P >=(9x =或10x =)(9)(10)0.30.20.5P x P x ==+==+=;(3)(9)(6)(7)(8)0.10.150.250.5P x P x P x P x <==+=+==++=;(4)(5)1(6)1(0.10.150.250.30.2)0P x P x =-=-++++=.【点睛】本题主要考查了利用互斥事件以及对立事件的概率公式求概率,属于中档题. 22.设函数()f x 对任意,R x y ∈,都有()()()f x y f x f y +=+,当0x ≠时,()()0,12xf x f <=-(1)求证:()f x 是奇函数;(2)试问:在n x n -≤≤时 (N )n *∈,()f x 是否有最大值?如果有,求出最大值,如果没有,说明理由.(3)解关于x 的不等式()2211()()()(),0f bx f x f b x f b b -≥->()f x在22∴+bx b∵0b<<∵2b>,则解集为。
高二数学下期末考试综合练习试卷
高二数学下期末考试综合练习试卷【导语】高二一年,强人将浮出水面,鸟人将沉入海底。
高二重点解决三个问题:一,吃透课本;二,找寻适合自己的学习方法;三,总结自己考试技巧,形成习惯。
为了帮助你的学习更上一层楼,无忧考网高中频道为你准备了《高二数学下期末考试综合练习试卷》希望可以帮到你!一、选择题(共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个是符合要求的。
正确的选项涂在机读答题卡上)1.不等式的解集是A.B.C.D.2.已知且则的值为A.B.C.D.23.已知是空间一个基底,则与能构成空间另一基底的是A.B.C.D.4.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是A.至少有1个白球,都是白球B.至少有一个白球,至少有一个红球C.恰有一个白球,恰有2个白球D.至少有一个白球,都是红球5.将4个不同颜色的小球,全部放入3个不同的盒子中,不同放法有A.4种B.24种C.64种D.81种6.若一条直线与平面所成的角是,则此直线与这平面内任意一条直线所成角的范围是A.B.C.D.7.(文)已知二面角为60°,,点A到棱的距离等于,则点A到平面的距离是A.B.C.D.(理)在二面角的一个面内有一点,它到棱的距离等于到另一格距离的2倍,则这个二面角的度数是A.30°B.60°C.150°D.30°或150°8.设,式中,满足则的值是A.14B.3C.D.9.(文)直线与圆相切,则实数的值为A.或B.或C.或D.或2(理)圆C的方程式,直线的方程是,则对任意的实数,圆C 与直线的位置关系是A.相交B.相切C.相离D.由k值确定10.给出下列四个命题①如果直线a//c,b//c,那么a,b可矣确定一个平面②如果直线a和b都与直线c相交,那么a,b可确定一个平面③如果,那么a,b可确定一个平面④直线a过平面内一点与平面外一点,直线b在平面内不过该点,那么与b是异面直线上述命题真命题的个数是A.1个B.2个C.3个D.4个11.(文)一个正方体的定点都在球面上,它的棱长是4cm,这个球的半径是A.4cmB.2cmC.cmD.cm(理)在正四面体ABCD中,它的外接球半径R与内切球半径r的比为A.5B.C.D.12.电视台连续播放了5个广告,其中3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且2个奥运会宣传广告不能连续播放,则不同的播放方式有A.18种B.36种C.48种D.120种二、填空题(共4个小题,每小题5分,共20分)把答案填在横线上13.已知=a,=b,则等于14.(文)3个男生和2个女生排成一排照相,要求2个女生不相邻,则不同的排法有种(用数字作答)(理)宿舍楼内走廊一排有8盏灯,为了节约用电又不影响照明,要求同时关掉其中的3盏,但这3盏灯不相邻,则不同的关灯方法有种(用数字作答)。
2023年最新人教版高二数学综合练习
2023年最新人教版高二数学综合练习2023年最新人教版高二数学综合练习一、集合与逻辑1.理解集合、元素及其关系,掌握集合的表示方法。
2.理解子集、真子集、集合运算的含义,并能运用其解决实际问题。
3.掌握逻辑联结词“或”、“且”、“非”的含义,能够正确运用逻辑联结词表述简单命题。
4.掌握四种命题(正、逆、否、逆否)及其关系,并能运用其进行简单推理。
二、不等式与函数1.掌握不等式的性质及其简单变形,能够解一元一次不等式、一元二次不等式。
2.理解函数的概念及构成要素,能够判断函数的单调性、奇偶性,并会求函数的定义域和值域。
3.掌握二次函数的性质,能够进行简单的函数图像描绘。
4.了解函数的实际应用,如最优化问题、增长率问题等。
三、三角函数与解三角形1.理解正弦、余弦、正切函数的概念及性质,能够进行简单的三角函数计算和图像描绘。
2.掌握两角和与差的正弦、余弦、正切公式,二倍角公式以及辅助角公式,能够进行简单的三角函数求值和化简。
3.理解正弦定理和余弦定理的含义,能够运用其解决简单的三角形问题。
4.了解三角函数在生活中的应用,如测量、工程等领域。
四、数列与数学归纳法1.理解数列的概念及分类,掌握等差数列和等比数列的通项公式及求和公式。
2.理解数列的递推关系,能够运用其解决简单的数列问题。
3.掌握数学归纳法的概念及步骤,能够运用其证明简单的数学问题。
4.了解数列在实际生活中的应用,如存款、利息等领域。
五、平面向量与复数1.理解平面向量的概念及表示方法,掌握向量的加法、减法、数乘和数量积的运算。
2.理解复数的概念及表示方法,掌握复数的加减乘除运算。
3.了解平面向量和复数在生活中的应用,如物理、工程等领域。
六、立体几何与空间向量1.理解空间几何体的概念及性质,能够正确认识空间几何体的形状和大小。
2.掌握空间向量的概念及表示方法,能够进行空间向量的加法、减法、数乘和数量积的运算。
3.理解空间向量的应用,如力的合成与分解、速度和加速度等。
高二期末综合数学试卷答案
一、选择题(每题5分,共50分)1. 已知函数f(x) = 2x^2 - 3x + 1,若f(x)的图像关于直线x = 1对称,则f(2)的值为:A. 3B. 5C. 7D. 9答案:A解析:由于f(x)的图像关于直线x = 1对称,因此f(1) = f(2)。
将x = 1代入函数f(x),得f(1) = 21^2 - 31 + 1 = 0,所以f(2) = 0。
2. 已知等差数列{an}的前n项和为Sn,且S5 = 50,S10 = 100,则公差d的值为:A. 2B. 3C. 4D. 5答案:A解析:等差数列的前n项和公式为Sn = n/2 (2a1 + (n-1)d),其中a1为首项,d为公差。
根据题目条件,可以列出方程组:5/2 (2a1 + 4d) = 5010/2 (2a1 + 9d) = 100解得d = 2。
3. 已知函数f(x) = x^3 - 6x^2 + 9x,若f(x)在区间(0, 3)上单调递增,则f(1)的值为:A. -4B. 0C. 2D. 4答案:C解析:函数f(x)的导数为f'(x) = 3x^2 - 12x + 9。
要使f(x)在区间(0, 3)上单调递增,即f'(x) > 0,解不等式3x^2 - 12x + 9 > 0,得x < 1或x > 3。
因此,f(x)在区间(0, 1)上单调递增。
将x = 1代入f(x),得f(1) = 1^3 - 61^2 + 91 = 4。
4. 在平面直角坐标系中,若点A(2, 3)关于直线y = x的对称点为B,则直线AB的方程为:A. 2x + 3y = 0B. 3x - 2y = 0C. x + y = 5D. x - y = 5答案:B解析:点A(2, 3)关于直线y = x的对称点B的坐标为(3, 2)。
直线AB的斜率为(2 - 3) / (3 - 2) = -1,过点A的直线方程为y - 3 = -1(x - 2),即x + y - 5 = 0。
高二数学期末综合训练(含答案)
高二期末数学综合训练一.单选题1.设x=﹣是函数f(x)=ln(x+2)﹣ax2﹣3a2x的极小值点,则f(x)的极大值为()A.2B.1C.D.2.2019年10月17日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院A,医生乙只能分配到医院A或医院B,医生丙不能分配到医生甲、乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有()A.18种B.20种C.22种D.24种3.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱B.钱C.钱D.钱4.已知集合A={1,2,3,4},B={1,2,3,4,5},从集合A中任取3个不同的元素,其中最小的元素用a表示,从集合B中任取3个不同的元素,其中最大的元素用b表示,记X=b﹣a,则随机变量X的期望为()A.B.C.3D.45.在二项式(x﹣2y)6的展开式中,设二项式系数和为A,各项系数和为B,x的奇次幂项的系数和为C,则=()A.﹣B.C.﹣D.6.已知数列{a n}:,,,,,,,,,,,,,…(其中第一项是,接下来的22﹣1项是,,再接下来的23﹣1项是,,,,,,,依此类推.)的前n项和为S n,下列判断:①是{a n}的第2036项;②存在常数M,使得S n<M恒成立;③S2036=1018;④满足不等式S n >1019的正整数n 的最小值是2100.其中正确的序号是( ) A .①②③B .①②④C .①③④D .②③④7.在平面直角坐标系xOy 中,设双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,若双曲线的右支上存在一点P ,使得△OPF 是以P 为直角顶点的等腰直角三角形,则双曲线C 的离心率为( )A.2B.2C.3D.5 8. 已知实数1x ,2x 满足131x x e e =,()522ln 2x x e -=,则12x x =( )二.多选题9.设等比数列{a n }的公比为q ,其前n 项和为S n ,前n 项积为T n ,并满足条件a 1>1,且a 2020a 2021>1,(a 2020﹣1)(a 2021﹣1)<0,下列结论正确的是( ) A .S 2020<S 2021 B .a 2020a 2022﹣1<0 C .数列{T n }无最大值D .T 2020是数列{T n }中的最大值10.已知函数f (x )的定义域为(0,+∞),导函数为f ′(x ),xf ′(x )﹣f (x )=xlnx ,且,则( )A .f ′()=0B .f (x )在处取得极大值C .0<f (1)<1D .f (x )在(0,+∞)单调递增11.已知椭圆(222:105x y C b b+=<<的左、右焦点分别为1F 、2F ,点P 在椭圆上,点Q 是圆()2241x y +-=关于直线0x y -=对称的曲线E 上任意一点,若2PQ PF -的最小值为5- ).A .椭圆C 的焦距为2B .曲线E 过点2F 的切线斜率为±C .若A 、B 为椭圆C 上关于原点对称的异于顶点和点P 的两点,则直线PA 与PB 斜率之积为15- D .2PQ PF +的最小值为212.已知某校有1200名同学参加某次模拟考试,其中数学考试成绩X 近似服从正态分布(100225)N ,,则下列说法正确的有( )(参考数据:①()0.6827P X μσμσ-<≤+=;②(22)0.9545P X μσμσ-<≤+=; ③3309().973P X μσμσ-<≤+=)A .这次考试成绩超过100分的约有500人B .这次考试分数低于70分的约有27人C .(115130)0.0514P X <=≤D .从中任取3名同学,至少有2人的分数超过100分的概率为12三.填空题 13. 定义max {a ,b }=且f (x )=﹣2e ,g (x )=,令h (x )=max {f (x ),g (x )},则h (x )的极大值为 ,单调递增区间为 .14.已知一袋中有标有号码1、2、3、4的卡片各一张,每次从中取出一张,记下号码后放回,当四种号码的卡片全部取出时即停止,则恰好取6次卡片时停止的概率为 .15.已知函数()f x 定义在R 上的函数,若2()()0xf x e f x --=,当0x ≤时,()()0f x f x '+<,则不等式21()(1)x f x e f x -≥-的解集为__________16.设12,F F 分别为椭圆2212211:1x y C a b +=(110a b >>)与双曲线2222222:1x y C a b -=(220a b >>)的公共焦点,它们在第一象限内交于点M ,01290F MF ∠=,若椭圆的离心率13,43e ⎡∈⎢⎣⎦,则双曲线2C 的离心率2e 的取值范围为__________.四.解答题17.小李在县城租房开了一间服装店,每年只卖甲品牌和乙品牌中的一种.若当年卖甲品牌,则下一年卖甲品牌的概率为23,卖乙品牌的概率为13;若当年卖乙品牌,则下一年卖甲品牌的概率为14,卖乙品牌的概率为34.已知第一年该店卖甲品牌,且第x 年卖甲品牌有6.50.5x +万元利润,卖乙品牌有9.50.5x +万元利润.(1)求前3年的利润之和超过25万元的概率; (2)求该服装店第四年的利润的数学期望.18.在平面直角坐标系中,圆O 交x 轴于点F 1,F 2,交y 轴于点B 1,B 2.以B 1,B 2为顶点,F 1,F 2分别为左、右焦点的椭圆E 恰好经过点⎝⎛⎭⎫1,22. (1)求椭圆E 的方程;(2)设经过点(-2,0)的直线l 与椭圆E 交于M ,N 两点,求△F 2MN 面积的最大值.19.设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R .(1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围.高二期末综合训练答案一、单选题1【解答】解:函数f(x)=ln(x+2)﹣ax2﹣3a2x,定义域是:{x|x>﹣2}f′(x)=﹣2ax﹣3a2因为x=﹣是函数f(x)=ln(x+2)﹣ax2﹣3a2x的极小值点,则:f′(﹣)=0,解得:9a2﹣3a﹣2=0,即:a=﹣,或a=,讨论a;①当a=﹣时,函数f′(x)=+x﹣=,在(﹣2,﹣1),f′(x)>0在(﹣1,﹣)f′(x)<0在(﹣,+∞)f′(x)>0∴函数f(x)在x=﹣取得极小值点,在x=﹣1取得极大值点,∵函数定义域是:{x|x>﹣2}∴f(x)的极大值为f(﹣1)=②当a=时,函数f′(x)=﹣x﹣=﹣,在(﹣2,﹣),f′(x)>0在(﹣,+∞),f′(x)<0∴x=﹣不是函数f(x)=ln(x+2)﹣ax2﹣3a2x的极小值点,与题设矛盾,a=舍去.综合可得:x=﹣是函数f(x)=ln(x+2)﹣ax2﹣3a2x的极小值点时,f(x)的极大值为:.故选:D.2.【解答】解:根据题意,分4种情况讨论:①甲乙都分到A医院,剩下3人全排列,分配到其三个医院,有A33=6种分派方案;②甲分配到医院A,乙分配到医院B,剩下3人分成2组,安排到C、D医院,有C32A22=6种分派方案;③甲和一名医生一起分到A医院,乙在B医院,剩下2人全排列,安排到C、D医院,有C21A22=4种分派方案;④甲单独分到A医院,乙和一名医生一起分到B医院,剩下2人全排列,安排到C、D医院,有C21A22=4种分派方案;则一共有6+6+4+4=20种分配方案;故选:B.3.【解答】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=5,∴a=1,则a﹣2d=a﹣2×=.故选:B.4.【解答】解:根据题意,从集合A中任取3个不同的元素,则集合A有4种可能,分别为:{1,2,3},{1,2,4},{1,3,4},{2,3,4},其中最小的元素a取值分别为:1,2.从集合B中任取3个不同的元素,则集合B有10种可能,分别为:{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5},其中最大的元素b取值分别为:3,4,5.∵X=b﹣a,则X的取值为:1,2,3,4.P(X=1)==;P(X=2)===;P(X=3)===;P(X=4)===.随机变量X的分布列如下:X1234PE(X)=1×+2×+3×+4×=.故选:A.5.【解答】解:在二项式(x﹣2y)6的展开式中,二项式系数和A=26=64,令x=y=1,得各项系数和B=(﹣1)6=1,令f(x)=(x﹣2)6,得x的奇次幂项的系数和C===﹣364,所以=﹣=﹣.故选:A .6.【答案】C 【解答】解:①是{a n }的第k 项,则k =21﹣1+22﹣1+……+210﹣1=﹣10=2036;②由题意可得:分母为2k 时,==(k ∈N *),可得:S n 单调递增,且n →+∞时,S n →+∞,因此不存在常数M ,使得S n <M 恒成立,因此不正确; ③由②可得:S 2036=++……+=++……+==1018,因此正确.④S 2036=1018,设S 2036+=1018+>1019,则k (k +1)>212,解得k >64.∴满足不等式S n >1019的正整数n 的最小值=2036+64=2100,因此正确. 其中正确的序号是①③④. 故选:C .7.或2) 【分析】先根据OPF △的形状先确定出P 点坐标,然后将P 点坐标代入双曲线方程,根据,a c 的齐次式求解出离心率的值. 【详解】因为OPF △是以P 为直角顶点的等腰直角三角形, 不妨假设P 在第一象限,所以122P P F c x y x ===,所以,22c c P ⎛⎫ ⎪⎝⎭, 所以2222144c c a b-=,所以2222224c b c a a b -=,所以()()222222224cca c a a c a --=-,所以4224640c a c a -+=,所以42640e e -+=,所以23e ==又因为1e >,所以2e ===,2).8.解法一:实数1x ,2x 满足131xx e e =,()522ln 2x x e -=,2120,x x e >>,222ln 20,t x t x e +-=>=,则3t te e =,()(0),()(1)0(0)x x f x xe x f x x e x '=>=+>>,所以()f x 在(0,)+∞单调递增,而31()()f x f t e ==,5121222ln 2,(ln 2)x t x x x x x e ∴==-∴=-=.解析二:对131x x e e =两边取自然对数得:11ln 3x x +=,对()522ln 2x x e -=两边取自然对数得:()22ln ln ln 25x x +-= (※)为使两式结构相同,将(※)进一步变形为:()()22ln 2ln ln 23x x -+-= 设()ln f x x x =+,则1()10f x x'=+> 所以()f x 在(0,)+∞单调递增,()3f x =的解只有一个.∴12ln 2x x =-, ∴()51222ln 2x x x x e =-=二、多选题9.【解答】解:根据题意,根据题意,等比数列{a n }的公比为q ,若a 2020a 2021>1,则(a 1q 2019)(a 1q 2020)=(a 1)2(q 4039)>1,又由a 1>1,必有q >0,则数列{a n }各项均为正值,若(a 2020﹣1)(a 2021﹣1)<0,必有a 2020>1,0<a 2021<1,则必有0<q <1, 依次分析选项:对于A ,数列{a n }各项均为正值,则S 2021﹣S 2020=a 2021>0,必有S 2020<S 2021,A 正确;对于B ,若0<a 2021<1,则a 2020a 2022﹣1=(a 2021)2﹣1<0,B 正确,对于C ,根据a 1>a 2>…>a 2020>1>a 2021>…>0,可知T 2020是数列{T n }中的最大项,C 错误;对于D ,易得D 正确, 故选:ABD .10.【解答】解:令g (x )=,则g ′(x )==,∴g (x )=,即,则f (x )=. 又f ()=,∴c =. 则f (x )=. f ′(x )==≥0, 则f ′()=0,故A 正确;f (x )在(0,+∞)单调递增,故B 错误,D 正确; f (1)=∈(0,1),故C 正确. 故选:ACD .11.【答案】BC圆()2241x y +-=关于直线0x y -=对称的曲线为以(4,0)C 为圆心,1为半径的圆,即曲线E 的方程为()2241x y -+=,由椭圆定义有122PF PF a +==2111)'PQ PF PQ PF PQ PF Q F -=-=+--由图知'(3,0)Q ,1'352Q F c c -=+-=-⇒=,1b =,椭圆方程为2215x y +=故焦距2124F F c ==,A 错误;22'31PQ PF Q F c +≥=-=,D 错误;设曲线E 过点2F 的切线斜率为k ,则切线方程为20kx k y --=,1k =⇒=,B 正确; 设00(,)P x y ,11(,)A x y ,11(,)B x y -- 则2210101022101010PA PBy y y y y y k k x x x x x x ----⋅=⋅=----, 又,,P A B 都在椭圆上,即222222010101221011555x y y x y y x x -+=+=⇒=--,C 正确; 故选:BC. 12.【详解】由题意可知,对于选项A ,100μ=,15σ=,则()11002P X >=,则成绩超过100分的约有112006002⨯=人,所以选项A 错误; 对于选项B ,()()()7070100100P X P X P X >=<<+>=()111002151002150.50.95450.50.9772522P X -⨯<<+⨯+=⨯+=,所以()701P X <=-()7010.977250.02275P X >=-=,所以分数低于70分的人数约为0.02275×1200=27.3,即约为27人,所以选项B 正确; 对于选项C ,()()()111510010015100150.52P X P X P X <=<+-<<+=+10.68270.841352⨯=,()()()11301001002151002150.52P X P X P X <=<+-⨯<<+⨯=+10.95450.97272⨯=,所以()()()1151301301150.97270.84135P X P X P X <≤=≤-<=-=0.13135,所以选项C错误;对于选项D,因为()11002P X>=,且至少有2人的分数超过100分的情况如下:①恰好2人时概率为223113228C⎛⎫⋅=⎪⎝⎭;②3人均超过100分时的概率为31128⎛⎫=⎪⎝⎭,则至少有2人的分数超过100分的概率为311882+=,所以选项D正确;故选:BD.三、填空题13.【解答】解:因为g(x)=(x>0),所以g′(x)=,令g′(x)=0,则x=e,当0<x<e时,g′(x)>0,g(x)单调递增,当x>e时,g′(x)<0,g(x)单调递减,所以g(x)极大值=g(e)=,由f(x)=g(x),即x﹣2e=,得x=,作出h(x)=max{f(x),g(x)}的大致图象如下:则h(x)极大值=g(e)=,且在(0,),(e,+∞)上单调递减,在[,e]上单调递增,则h(x)的单调递增区间为[,e].故答案为:,[,e].14.【解答】解:由分步计数原理知,每次从中取出一张,记下号码后放回,进行6次一共有45种不同的取法.恰好取6次卡片时停止,说明前5次出现了3种号码且第6次出现第4种号码,三种号码出现的次数分别为3,1,1或者2,2,1.三种号码分别出现3,1,1且6次时停止的取法由, 三种号码分别出现2,2,1且6次时停止的取法由, 由分步加法计数原理知恰好取6次卡片时停止,共有240+360=600种取法, 所以恰好取6次卡片时停止的概率为P =,故答案为. 15.【答案】12x x ⎧⎫≥⎨⎬⎩⎭【解析】令()()x g x f x e =,则()()xg x f x e --=-, 因为2()()0x f x e f x --=,所以()()x x f x e f x e -=-,即()()g x g x =-, 所以函数()g x 为偶函数;又()[]()()()()x x xg x f x e f x e f x f x e '''=+=+, 当0x ≤时,()()0f x f x '+<,所以()[]()()0xg x f x f x e ''=+<,即函数()g x 在(),0-∞上单调递减; 则()g x ()0,∞+上单调递增;又不等式21()(1)x f x e f x -≥-可化为1()(1)x x f x e f x e -≥-,即()()1g x g x ≥-, 所以只需1x x ≥-,则()221x x ≥-,解得12x ≥. 故答案为:12x x ⎧⎫≥⎨⎬⎩⎭. 16.解法一:由椭圆及双曲线定义得1211221122122,2,MF MF a MF MF a MF a a MF a a +=-=⇒=+=-因为01290F MF ∠=,所以222222121212221211()()422a a a a c a a c e e ++-=⇒+=⇒+=因为13,43e ⎡∈⎢⎣⎦,所以2222111272[,][9872e e e =-∈⇒∈ 因为22a b >,所以21e <<,因此2[7e ∈ 解法二:直接用结论212122221cos 221cos 1221e e e e ππ+=⇒+-=+,因为13,43e ⎡∈⎢⎣⎦,所以2222111272[,][9872e e e =-∈⇒∈因为22a b >,所以21e <<,因此2[7e ∈四、解答题17.【详解】(1)由题意,该服装店前3年卖的品牌有4种情况:“甲、甲、甲”的概率为224339⨯=,利润为77.5822.5++=万元;“甲、甲、乙”的概率为212339⨯=,利润为77.51125.5++=万元;“甲、乙、甲”的概率为1113412⨯=,利润为710.5825.5++=万元;“甲、乙、乙”的概率为131344⨯=,利润为710.51128.5++=万元所以前3年的利润之和超过25万元的概率为211591249++=.(2)由(1)知该服装店第三年卖甲品牌的概率为411991236+=, 卖乙品牌的概率为21179436+=, 所以第四年卖甲品牌的概率为192171203363364432⨯+⨯=, 从而第四年卖乙品牌的概率为2032291432432-=,又第四年卖甲品牌的利润为8.5万元,卖乙品牌的利润为11.5万元, 因此第四年的利润的数学期望为20322914538.511.5432432144⨯+⨯=. 18.解:(1)由已知可得,椭圆E 的焦点在x 轴上.设椭圆E 的标准方程为x 2a 2+y 2b 2=1(a >b >0), 焦距为2c ,则b =c ,∴a 2=b 2+c 2=2b 2,∴椭圆E 的方程为x 22b 2+y 2b 2=1. 又椭圆E 过点⎝⎛⎭⎫1,22,∴12b 2+12b 2=1,解得b 2=1. ∴椭圆E 的方程为x 22+y 2=1. (2)∵点(-2,0)在椭圆E 外,∴直线l 的斜率存在。
高二数学期末综合练习二
高 二 数 学期末综合练习二一、选择题(每小题5分,共60分)1、a 、b ∈R ,当11a b a b>>和 同时成立时,a 、b 必须满足的条件是( ) A 、ab>0 B 、ab<0 C 、-b > 0 > -a D 、-a > 0 > -b2、若a > 0且a ≠1,p=3log (1)a a +,q=2log (1)a a +,则p 、q 的大小关系是( ) A 、p < q B 、p ≤ q C 、p > q D 、p ≥ q3、已知四个条件:○10,b a >> ○20,a b >>○30a b >>, ○40a b >>。
能推出11a b<成立的有( )个。
A 、1B 、2C 、3D 、44、已知正数a 、b 满足a + b = 1,则11a b +的最小值为( )A 、2B 、4C 、 12D 、 145、若b < 0, 0||||||a b c <<<,且b c=则有( )A 、c < b < aB 、a< b < cC 、b < a < cD 、 b < c < a6、若0,2πθ-<<则斜率为cot θ-的直线的倾斜角为( )A 、θ-B 、2πθ+C 、πθ-D 、2πθ-7、直线Ax+By-1=0在y 轴上的截距是-1y -=的倾斜角的2倍,则( )A 、B=1B 、A= B=1-C 、 B= -1D 、A=B= 1 8、若原点在直线l 上的射影是点()2,1p -,则直线l 的方程是 ( ) A 、20x y += B 、240x y +-= C 、250x y -+= D 、230x y ++= 9、点(0,5)到直线2y x =的距离是 ( )A 、52 B C 、32 D 、 10、设12,F F 为定点,126,F F =动点M 满足126MF MF +=,则M 的轨迹是( ) A 、椭圆 B 、直线 C 、圆 D 、线段11、点A (),0a ,在椭圆22142x y +=的内部,则a 的取值范围是( )A 、aB 、a a <或C 、22a -<<D 、11a -<<12、方程221sin cos x y θθ+=表示焦点在坐标轴上的双曲线,则θ是第几象限的角( ) A 、二 B 、四 C 、二或四 D 、一或三二、填空题(每小题4分,共16分)13、函数241x y x=+的值域是 。
高二数学下期末考试综合练习
高二数学下期末考试综合练习高二数学下期末考试综合练习(1)高二班学号姓名成绩一.填空题1..2.若,,则与的位置关系为.3.设正三棱椎的底边长为,高为,则侧棱与底面所成角的大小为.4.在等比数列中,公比为且,若,,则.解:,,.因为,解得,,所以..5.已知,,,则当最大时与的夹角.解:,当时,最大.此时,代入得,.因为,所以与的夹角.6.如图为一几何体的展开图,其中是边长为的正方形,,,,点及共线,沿图中虚线将它们折叠起来,使四点重合,则需要个这样的几何体,可以拼成一个棱长为的正方体.解: 折叠后的样子三个四棱锥的拼法7. 用种不同的颜色给图中的〝笑脸〞涂色,要求〝眼睛〞(即图中所示区域)用相同颜色,则不同的涂法共有种.(用数字作答)8. 如图,直三棱柱中,,,,,上有一动点,则周长的最小值是.解:,要使最小,须将图展开,连接交于,此时.所以周长的最小值是.9. 件产品,其中件是正品,件是次品,从中任抽两件最多件是次品的概率等于.10.若在从到这个整数中任取个数 ,则所取的两数和为偶数的概率为.11.已知数列是由正整数组成的数列,,且满足,其中,,且,则.解:当时,,().所以.12.在锐角的二面角,,,,若与所成角为,则二面角为.解:如图,作,交于.过作,垂足为,连接.设,则,.因为,所以,则.二.选择题13.从单词〝〞选取个不同的字母排成一排,含有〝〞(其中〝〞相连且顺序不变)的不同排列共有个数为()解:.14.探索以下的规律:则根据规律,从到,箭头的方向依次为()解:以4为周期,故从到相当于从2到4.15.若是直三棱柱,,点.分别是.的中点,且,则与所成角的余弦值是()解:建立空间直角坐标系如图,设,,,.于是,,则.所以与所成角的余弦值是._16.图中多面体是经过正四棱柱底面顶点作截面而截得的.已知,截面与底面成的二面角,,则这个多面体的体积为()解:过作,,联结..取中点,联结..平面,所以截面与平面所成的二面角为.,为中点,.,,即,则..,同理得.于是多面体体积.三.解答题17.如图,垂直正方形所在平面,,是的中点,向量.的夹角为.(1)建立适当的坐标系,求点的坐标;(2)在上找一点,使平面.解:(1)以..所在的直线分别为轴.轴.轴建立空间直角坐标系如图,则,.设(),.于是,.由题意得,,解得或(舍).所以点的坐标为.(2)设点的坐标为,则.要使平面.所以点的坐标为,即点为的中点.18.直三棱柱中,,.(1)证明:;(2)求点到平面的距离;(3)求二面角的大小.解:(1),.(2)设点到平面的距离为,因为,,又平面,则,平面.同理得平面,所以.于是.因为,,所以.故点到平面的距离为.(3)取中点,联结,过作交于,联结. 是等腰三角形,.又平面,,所以平面.于是,又,平面,得.因此,为二面角的平面角.,,,即.所以二面角的大小为.另解:(空间向量)(1)建立空间直角坐标系如图,则,,,. 于是,.则,所以.(2)设是平面的法向量,由,,得,所以.令,则.又,所以到平面的距离.(3)设是平面的法向量,由,得,所以.令,则.因为,所以,二面角的平面角的大小为.19.已知数列满足(,且),其前项和.(1)求证:为等比数列;(2)记(),为数列的前项和.当时,求.证明:(1)当时,,整理得,,所以是以为首项,为公比的等比数列. 于是.(2)因为,.当时,,,两式相减得,,又,所以,.20.已知数列满足,其中为其前项的和,.(1)证明:数列的通项公式为;(2)求数列的前项和;(3)是否存在无限集合为正整数}, 总有_lt;成立;若存在,请找出一个这样的集合;若不存在,请说明理由.证明(1)当时,,整理得.于是,.(2),.(3)要使,即,只需即可.所以, .。
高二数学下期末考试综合练习
高二数学下期末考试综合练习(1)高二 班 学号 姓名 成绩一、填空题1、223lim 23n n n n →∞-=-13-。
2、若(8,1,4)a =-,(3,4,7)b =-,则a 与b 的位置关系为a b ⊥。
3、设正三棱椎V ABC -的底边长为2,则侧棱与底面所成角的大小为4π。
4、在等比数列{}n a 中,公比为q 且1<q ,若123216a a a =,26321=++a a a ,则12lim ()n n a a a →+∞++⋅⋅⋅+=27。
解:12322166a a a a =⇒=,1336a a =,26321=++a a a 1320a a ⇒+=。
因为1<q ,解得118a =,32a =,所以13q =。
11218lim ()112173n n a a a a q→+∞++⋅⋅⋅+===--。
5、已知(cos ,sin ,1)OP θθ=,(2sin ,2cos ,2)OQ θθ=+-,[)0,2∈θπ,则当PQ 最大时OP 与OQ 的夹角=α2π。
解:222(2cos sin )(2cos sin )1PQθθθθ=-++--+118cos θ=-,当cos 1θ=-时,PQ 最大。
此时sin 0θ=,代入得(1,0,1)OP =-,(2,3,2)OQ =。
因为0OP OQ ⋅=,所以OP 与OQ 的夹角=α2π。
6、如图为一几何体的展开图,其中ABCD 是边长为6的正方形,6SD PD ==,CR SC =,AQ AP =,点,,,S D A Q 及,,,P D C R 共线,沿图中虚线将它们折叠起来,使,,,P Q R S 四点重合,则需要3个这样的几何体,可以拼成一个棱长为6的A BCD SPRQ正方体。
解:折叠后的样子 三个四棱锥的拼法 ABCD PABCD P7、 用6种不同的颜色给图中的“笑脸”涂色,要求“眼睛”(即图中,A B 所示区域)用相同颜色,则不同的涂法共有36216=种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盐都县伍佑中学高二年级第一学期
高二数学期末模拟练习
一、 选择题:
1、直线l 1:2x-3y+1=0与l 2:x=3的夹角是
A 、23
arctan
2-π
B 、3
2arctan 2-π C 、3
2arctan D 、3
2
arctan
2+π
2、平行平面α.β距离为10,点A ∈α,点B ∈β,线段AB 长为20,则AB 与α所成角为
A.6π
B.4π
C.3π
D.2
π
3、已知过点A(1,2)所作圆x 2+y 2+mx+2y+m 2=0的切线有两条,则m 的取值范围是
A 、m ∈R
B 、m<3
32
C 、-3
32
<m<3
32
D 、-3
32
<m<0
4、一个长方体共一个顶点的三个面的面积分别为12,15,20,则长方体的对角线
长为
A .3
4
B .2
5
C .6
D .8
5、动圆x 2+y 2-2mx+(4m+6)y+5m 2+12m=0的圆心轨迹是
A 、2x-y-3=0
B 、2x-y+3=0
C 、2x+y+3=0
D 、2x+y-3=0
6、命题甲:动点P 到两定点A 、B 距离之差| |PA|-|PB| |=2a (a>0)
命题乙:P 点轨迹是双曲线。
则命题甲是命题乙的 A 、充要条件 B 、必要不充分条件
C 、充分不必要条件
D 、既不充分也不必要条件
7、一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面
A .必定都不是直角三角形
B .可能都是直角三角形
C .至多有一个直角三角形
D .至多有两个直角三角形
8、在双曲线13
12
2-=---k y k x 中,k
的取值范围是
A 、(-∞,-3)
B 、(1,3)
C 、(-∞,-3) (1,3)
D 、(-1,-3) (3,+∞)
9.如图,正三棱柱ABC 一A 1B 1C 1中,AB =AA 1, 则AC 1与平面BB 1C 1C 所成角的正弦值为
3
64
65
152
2)()
()
()
(D C B A
10、以y=2
1x 为渐近线,焦点在y 轴上,且与圆x 2+y 2=1
相切的双曲线方程是 A 、1422=-y x B 、12
22
=-y x C 、
1422
=-x y D 、12
22=-x y
11、过抛物线y 2=2x 的焦点F 作一直线交抛物线于P(x 1,y 1),Q(x 2,y 2),若x 1+x 2=3,
则PQ 的中点M 到抛物线的距离为 A 、5 B 、4 C 、3 D 、2
12、若椭圆
122=+b y a x (o b a >>)和双曲线12
2=-n
y m x (o n o m >>,)有相同的焦点F 1和
F 2,P 为两曲线的交点,则|PF 1|•|PF 2|为 A 、2(m a -) B 、4(m a -) C 、m
a - D 、m a -
13、椭圆
19
2522=+y x 上一点M 到焦点F 1的距离为2,N 是MF 1的中点,则|ON|=
A 、2
B 、4
C 、6
D 、8
14、F 1、F 2是椭圆
12
22
=+y x 的两个焦点,过F 2作倾斜角为4
π的弦AB ,则∆F 1AB 的
面积为 A 、3
32
B 、3
24
C 、3
24
-1 D 、3
4
15、右图是正方体的平面展开图.在这个正方体...中, ①ED BM 与平行; ②CN 与BE 是异面直线; ③CN 与BM 成︒60角; ④DM 与BN 垂直 以上四个命题中,正确命题的序号是 A. ① ②③ B. ② ④
C. ③④
D. ②③ ④
B
盐都县伍佑中学高二年级第一学期
高二数学期末模拟练习
班级 学号 姓名
16、一个长方体共一个顶点的三个面的面积分别为12,15,20,则长方体的对角
线长为
17、点P(a ,3)到直线4x-3y+1=0的距离等于4,且不在不等式2x+y<3表示的平
面区域内,则P 点的坐标是 18、双曲线
12
2
22=-b y a x 的一条准线被它的两条渐近线所截得线段长度恰好等于它的一个焦点到一条渐近线的距离,则该双曲线的离心率为 19、已知m 、n 是直线, α、β、γ是平面,给出下列命题:
① 若m n m ⊥=⋂⊥,,βαβα,则βα⊥⊥n n 或; ②若α∥β,n m =γ⋂β=γ⋂α,,则m ∥n ;
③若m 不垂直于α,则m 不可能垂直于α内的无数条直线; ④若m =⋂βα,n ∥m ,且βα⊄⊄n n ,,则n ∥n 且α∥β. 其中正确的命题的序号是_______________(注:把你认为正确的命题 的序号都.填上) 三、解答题
20、椭圆的中心在原点,焦点在x 轴上,直线x+y+1=0与椭圆交于A 、B 两点,
定点P(3
4,1)与A 、B 构成以AB 为斜边的等腰直角三角形,求这个椭圆方程
.
21.如图,在长方体1111D C B A ABCD -中,
3==BC AB ,41=BB ,连结C B 1,过B 作C B BE 1⊥交
C C 1于E ,交C B 1于F . (1)求证:⊥C A 1平面BDE ;
(2)求B A 1与平面BDE 所成角的余弦值;
22.某钢材厂要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时
每张钢板的面积,第一种为1m 2,第二种为2m 2,今需A 、B 、C 三种规格的成品各12、15、27块,请你为该厂计划一下,应该分别截这两种钢板多少张,可得所需三种规格的成品,而且使所用钢板的面积最小?只用第一种或第二种钢板行吗?。