偏心受压构件的正承载力计算
矩形截面偏心受压构件正截面的承载力计算
矩形截面偏心受压构件正截面的承载力计算一、矩形截面大偏心受压构件正截面的受压承载力计算公式 (一)大偏心受压构件正截面受压承载力计算(1)计算公式由力的平衡条件及各力对受拉钢筋合力点取矩的力矩平衡条件,可以得到下面两个基本计算公式:s y s y c A f A f bx f N -+=''1α (7-23)()'0''012a h A f x h bx f Ne s y c -+⎪⎭⎫ ⎝⎛-=α (7-24)式中: N —轴向力设计值;α1 —混凝土强度调整系数;e —轴向力作用点至受拉钢筋A S 合力点之间的距离;a he e i -+=2η (7-25) a i e e e +=0 (7-26)η—考虑二阶弯矩影响的轴向力偏心距增大系数,按式(7-22)计算;e i —初始偏心距;e 0 —轴向力对截面重心的偏心距,e 0 =M/N ;e a —附加偏心距,其值取偏心方向截面尺寸的1/30和20㎜中的较大者; x —受压区计算高度。
(2)适用条件1) 为了保证构件破坏时受拉区钢筋应力先达到屈服强度,要求b x x ≤ (7-27)式中 x b — 界限破坏时,受压区计算高度,o b b h x ξ= ,ξb 的计算见与受弯构件相同。
2) 为了保证构件破坏时,受压钢筋应力能达到屈服强度,和双筋受弯构件相同,要求满足:'2a x ≥ (7-28) 式中 a ′ — 纵向受压钢筋合力点至受压区边缘的距离。
(二)小偏心受压构件正截面受压承载力计算(1)计算公式根据力的平衡条件及力矩平衡条件可得s s s y c A A f bx f N σα-+=''1 (7-29)⎪⎭⎫ ⎝⎛'-+⎪⎭⎫ ⎝⎛-=s s y c a h A f x h bx f Ne 0''012α (7-30) ()'0''1'2s s s s c a h A a x bx f Ne -+⎪⎭⎫⎝⎛-=σα (7-31)式中 x — 受压区计算高度,当x >h ,在计算时,取x =h ;σs — 钢筋As 的应力值,可根据截面应变保持平面的假定计算,亦可近似取:y b s f 11βξβξσ--=(7-32)要求满足:y s y f f ≤≤σ'x b — 界限破坏时受压区计算高度,0h x b b ξ=;b ξξ、 — 分别为相对受压区计算高度 x/h 0和相对界限受压区计算高度x b /h 0 ;'e e 、′— 分别为轴向力作用点至受拉钢筋A s 合力点和受压钢筋A s ′合力点之间的距离 a he e i -+=2η (7-33) ''2a e he i --=η (7-34) (2)对于小偏心受压构件当bh f N c >时,除按上述式(7-30)和式(7-31)或式(7-32)计算外,还应满足下列条件:()()s s y c a a h A f h h bh f e e a h N -+⎪⎭⎫⎝⎛-≤⎥⎦⎤⎢⎣⎡---'0''00'22 (7-35 )式中 '0h — 钢筋's A 合力点至离纵向较远一侧边缘的距离,即s a h h -='0。
第7章 偏心受压构件的正截面承载力
第7章偏心受压构件的正截面承载力计算当轴向压力N的作用线偏离受压构件的轴线时[图7-1a)],称为偏心受压构件。
压力N的作用点离构件截面形心的距离e称为偏心距。
截面上同时承受轴心压力和弯矩的构件[图7-1b)],称为压弯构件。
根据力的平移法则,截面承受偏心距为e的偏心压力N相当于承受轴心压力N和弯矩M(=Ne)的共同作用,故压弯构件与偏心受压构件的基本受力特性是一致的。
β)图7-1 偏心受压构件与压弯构件a)偏心受压构件b)压弯构件钢筋混凝土偏心受压(或压弯)构件是实际工程中应用较广泛的受力构件之一,例如,拱桥的钢筋混凝土拱肋,桁架的上弦杆、刚架的立柱、柱式墩(台)的墩(台)柱等均属偏心受压构件,在荷载作用下,构件截面上同时存在轴心压力和弯矩。
钢筋混凝土偏心受压构件的截面型式如图7-2所示。
矩形截面为最常用的截面型式,截面高度h大于600mm的偏心受压构件多采用工字形或箱形截面。
圆形截面主要用于柱式墩台、桩基础中。
图7-2 偏心受压构件截面型式a)矩形截面b)工字形截面c)箱形截面d)圆形截面在钢筋混凝土偏心受压构件的截面上,布置有纵向受力钢筋和箍筋。
纵向受力钢筋在截面中最常见的配置方式是将纵向钢筋集中放置在偏心方向的两对面[图7-3a)],其数量通过正截面承载力计算确定。
对于圆形截面,则采用沿截面周边均匀配筋的方式[图7-3b)]。
箍筋的作用与轴心受压构件中普通箍筋的作用基本相同。
此外,偏心受压构件中还存在着一定的剪力,可由箍筋负担。
但因剪力的数值一般较小,故一般不予计算。
箍筋数量及间距按普通箍筋柱的构造要求确定。
图7-3 偏心受压构件截面钢筋布置形式a)纵筋集中配筋布置b)纵筋沿截面周边均匀布置7.1 偏心受压构件正截面受力特点和破坏形态钢筋混凝土偏心受压构件也有短柱和长柱之分。
本节以矩形截面的偏心受压短柱的试验结果,介绍截面集中配筋情况下偏心受压构件的受力特点和破坏形态。
7.1.1 偏心受压构件的破坏形态钢筋混凝土偏心受压构件随着偏心距的大小及纵向钢筋配筋情况不同,有以下两种主要破坏形态。
偏心受压构件正截面承载力计算—偏心受压构件正截面受力特点和破坏类型
2.大偏心受压破坏(受拉破坏)
破坏特征: 加载后首先在受拉区出现横向裂
缝,裂缝不断发展,裂缝处的拉力转 由钢筋承担,受拉钢筋首先达到屈服, 并形成一条明显的主裂缝,主裂缝延 伸,受压区高度减小,最后受压区出 现纵向裂缝,混凝土被压碎导致构件 破坏。
类似于:正截面破坏中的适筋梁 属 于:延性破坏
● CB段(N≤Nb)为受拉破坏 ● AB段(N >Nb)为受压破坏
B(Nb,Mb) C(0,M0) Mu
大偏心受压破坏
偏心受压构件的破坏形态
根据偏心距e0和纵向钢筋配筋率的不同,将偏心受压分为两类:
受拉破坏——大偏心受压 Large Eccentricity 受压破坏——小偏心受压 Small Eccentricity
● 如(N,M)在曲线外侧,则
表明正截面承载力不足
Nu A(N0,0)
B(Nb,Mb) C(0,M0) Mu
偏心受压构件的M-N相关曲线
(2)当M=0时,轴向承载
力最大,即为轴心受压承
载力N0(A点)
当N=0时,为受纯弯承载 力M0(C点)
Nu N0 A(N0,0)
(3)截面受弯承载力在B点达 (Nb,Mb)到最大,该点近似 为界限破坏。
⑴取受压边缘混凝土压应变等于cu;
⑵取受拉侧边缘应变为某个值; ⑶根据截面应变分布,以及混凝土和
cu
钢筋的应力-应变关系,确定混凝土 的应力分布以及受拉钢筋和受压钢筋的应力; ⑷由平衡条件计算截面的压力Nu和弯矩Mu; ⑸调整受拉侧边缘应变,重复⑶和⑷
Nu /N0 1.0
Nu /N0 1.0
C=50
小偏心受压破坏
小偏心受压破坏
受压破坏
第八章 偏心受压构件承载力计算公式
第8章 偏心受压构件正截面承载力知 识 点 回 顾•破坏形式及特点 •大小偏心划分 •大偏心算法第8章 偏心受压构件正截面承载力8.1.4 矩形截面偏心受压构件正截面承载力 1. 大偏心受压x £ xb 正截面破坏åN =0g 0 N £ N u = a1 f c bx + f y¢ As¢ - f y Asxö æ ¢ g 0 Ne £ N u e = a1 f c bx ç h0 - ÷ + f y¢ As¢ ( h0 - as ) 2ø èå M As = 0适用条件: x £ xb ¢ x ³ 2 as As 配筋率: r= ³ r min = max ( 0.45 ft fy, 0.2% ) bh第8章 偏心受压构件正截面承载力¢ 当 x < 2as 时,受压钢筋(此时不屈服)计算, 有两种处理方式: (1)规范算法设混凝土合力中心与 As¢ 形心重合。
åM¢ As=0¢ Ne¢ £ N u e¢ = f y As ( h0 - as )(2)平截面假定算法¢ s s¢ = Ese cu (1 - b1 as x )第8章 偏心受压构件正截面承载力2. 小偏心受压构件 (1)基本计算公式 x > xb矩形截面小偏心受压构件承载力计算简图第8章 偏心受压构件正截面承载力小偏心受压构件计算公式:åN =0åMAsg 0 N £ N u = a1 f c bx + f y¢ As¢ - s s Asxö æ ¢ g 0 Ne £ N u e = a1 f c bx ç h0 - ÷ + f y¢ As¢ ( h0 - as ) 2ø è=0依据平截面假定( b1 = 0.8 ):æ b1hoi ö s si = Ese cu ç - 1÷ è x ø公路桥规:æ b1 - x ö s si = ç ÷ fy è b1 - xb øxb < x £ 2 b1 - xb第8章 偏心受压构件正截面承载力依据平截面假定:公路桥规:第8章 偏心受压构件正截面承载力(2) “反向破坏”的计算公式 偏心距很小,且远离轴向压力一侧的钢筋配置得 不够多,偏心压力有可能位于换算截面形心轴和 截面几何中心之间。
偏心受压构件的正截面承载力计算
xhoho 22[0Ndesffcsd 'db A s'(hoas')]
➢当 2as x时bh,0
As fcdbxffs'dsdAs' 0Nd
➢当 x ,b h且0
时x , 2 a s
令 x ,2则a可s 求得
As
0 Nd es
偏压构件是同时受到轴向压力N和弯矩M的作用, 等效于对截面形心的偏心距:e。=M/N的偏心压力的 作用。
图7-1偏心受压构件与压弯构件图
偏心距: 压力N的作用点离构件截面形心的距离e0 压弯构件: 截面上同时承受轴心压力和弯矩的构件。
偏心受压: (压弯构件)
单向偏心受力构件 双向偏心受力构件
大偏心受压构件 小偏心受压构件
fsd (ho as)
2)当 e0 0时.3h0
已知:b hN d M d f c d f s d f s d l 0
求: As 、 As '
注:As不论是拉还是压,均未达屈服强度,可按一则最小配筋 率来进行设计.
解: 令 A sm 'in b h 0 .0 0 2 b h
由式(7-6)和式(7-10),可求得x方程组
由7-10可钢筋应力 s
s cuEs(xh0 1)
由7-4可求得NU
0 N d fc d b x fs dA s sA s
2.当 h时/ h,0 取 代x入7h-10得钢筋应力
承载力NU1
近偏心则破坏
再由 7s -4求得截面
由公式7-13求截面承载力NU2 远偏心则破坏
0 N d e s f c d b h ( h 0 h /2 ) f s d A s ( h 0 a s )
55 矩形截面偏心受压构件正截面承载力计算
不考虑间接钢筋影响的情况,而按普通轴心受压承载力计算:
◆对l0/d大于12的柱(易纵向弯曲,导致螺旋筋不起作用)。 ◆螺旋箍筋轴向力设计值小于普通箍筋柱的轴向力设计时。
◆当间接钢筋换算面积Ass0小于纵筋全部截面积的25%时(间接
钢筋配置少,套箍作用不明显)。
构造要求:
箍筋间距不应大于80mm及dcor/5,也不应小于40mm。
例题讲解:118页
5.2.2 轴心受压螺旋箍筋柱正截面受压承载力计算
箍筋作用:
增强机理:约束核心区砼在纵向受压时的横向变形, 从而提高了砼抗压强度和变形能力,这种受到约束的 混凝土称为约束砼。 等效增强:在柱的横向采用螺旋箍筋或焊接环筋也能 像直接配置纵向钢筋那样起到提高承载力和变形能力 的作用,相当于间接纵筋。
◆ 这种破坏具有明显预兆,变形能力较大,破坏特征与 (哪种
构件的一种破坏形式?)相似,承载力主要取决于受拉侧钢筋。
◆ 形成这种破坏的条件是:偏心距e0较大,且受拉侧纵向钢筋
配筋率合适,通常称为大偏心受压情况下的受拉破坏。
N
fyAs
f'yA's
2、受压破坏
产生受压破坏的条件有两种情况: ⑴当相对偏心距e0/h0较小,截面全部受压或大部分受压 ⑵或虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多时
纵筋宜采用HRB400、RRB400、HRB500级钢筋(物尽其用) 箍筋一般采用HRB400、HRB335级钢筋,也可采用HPB300级。
5.1 受压构件的一般构造要求
5.1.3 纵筋
直径不宜小于12mm,常用16-32mm 单侧配筋率不小于0.2%,全部纵向钢筋最小配筋率附表4-5。 全部纵筋配筋率不宜超过5%。(回顾配筋率) 纵筋均匀布置,矩形截面不少于4根,圆形截面不少于6根。 保护层对一级环境取20mm,净间距不应小于50mm。
双向偏心受压构件的正截面的承载力计算
(2) 长柱的受力分析和破坏形态(l0/b>8、l0/d>7) 1) 初始偏心距 → 产生附加 弯矩和侧向挠度 → 偏心距增加 → 附加弯矩和侧向挠度不断增加 →长柱在N和M共同作用下破坏 2)长柱的破坏特征 破坏时,首先在凹侧出现纵向 裂缝,随后混凝土被压碎,纵筋 被压屈向外凸出;凸侧混凝土出 现横向裂缝,侧向挠度不断增加, 柱子破坏。→ 表现为“材料破坏” 和“失稳破坏”。长细比l0/b很大 时,表现为失稳破坏; 图6-6 长柱的破坏
6.1.1 截面型式及尺寸
柱的吊装方式及简图
6.1.1 截面型式及尺寸
2. 截面尺寸: (1) 方形或矩形截面柱 截 面 不 宜 小 于 250mm×250mm ( 抗 震 不 宜 小 于 300mm×300mm) 。为了避免矩形截面轴心受压构件长细 比过大,承载力降低过多,常取 l0/b≤30, l0/h≤25 。此处 l0 为 柱的计算长度,b为矩形截面短边边长,h为长边边长。 为了施工支模方便,柱截面尺寸宜使用整数,截面尺寸 ≤ 800mm ,以 50mm 为模数;截面尺寸> 800mm ,以 100mm 为模数。 (2) 工字形截面柱 翼缘厚度≦120mm,腹板厚度≦100mm。
3. 箍筋一般采用HPB235级、HRB335级钢筋,也可采用
HRB400级钢筋。
6.1.3 纵 筋
1. 纵筋的配筋率 轴心受压构件、偏心受压构件全部纵筋的配筋率≦0.6 %;同时,一侧钢筋的配筋率≦ 0.2 %。(用全截面计算) 2. 轴心受压构件的纵向受力钢筋 (1) 沿截面四周均匀放置,根数不得少于 4 根, ( 圆柱根 数)图6-1(a); (2)直径不宜小于 12mm,通常为16~32mm。宜采用较 粗的钢筋; (3) 全部纵筋配筋率≧ 5%。
偏心受压构件正截面承载力计算—矩形截面偏心受压构件正截面承载力计算
即x≤ξbh0,且x<2a’s,则由基本公式3可得:
Ne f y As h0 as
As As
Ne f y(h0 as )
(4)若判定为小偏心受压破坏
则按下式重新计算x:
N 1 fcbh0b
Ne 0.431 fcbh02 (1 b )(h0 as)
1
fcbh0
e
ei N
N Nu 1 fcbx f yAs f y As
Ne
Nue
1 fcbx(h0
x) 2
f yAs (h0
as )
e ei 0.5h as
fyAs
f'yA's
(1)情况1:As和A's均未知时 两个基本方程中有三个未知数,As、A's和 x,故无唯一解。 与双筋梁类似,为使总配筋面积(As+A's)最小?
• 2.截面复核
已知:截面尺寸、材料强度、e0、L0,AS,AS’
求: N 解:判断大小偏心
1.对于垂直弯矩作用方向还应按轴心受压进行验算即应满足:
N Nu 0.9 ( fcd A fsd As )
2.对于弯矩作用方向按偏心受压进行验算
偏心受压构件正截面承载力计算 基本公式
(建筑规范)
1.计算假定
计算方法及步骤
矩形截面偏心受压构件对称配筋的计算方法
对称配筋,即截面的两侧用相同数量的配筋和相同钢材规格,
As=As',fsd = fsd',as = as'
1.不对称配筋与对称配筋的比较: (1) 不对称配筋: 优点是充分利用混凝土的强度, 节省钢筋;缺点主要是施工不便,容易将钢筋的位置 对调。 (2) 对称配筋: 优点为对结构更有利(可能有相反 方向的弯矩),施工方便,构造简单,钢筋位置不易 放错;缺点是多用钢筋。
第七章偏心受压构件的正承载力计算-PPT
基本计算公式
受压区混凝土都能达到极限压应变; As’达到抗压强度设计值fsd’ ;
As受拉,也可能受压,大小ss。
es e0 h 2 as
es' e0 h 2 as'
es 、 es' —分别为偏心应力 0 Nd 至钢筋 As 合力点和钢筋 As' 合力作用点的距离;
1 2
ei
N
f
s
t
c
h0
偏心距增大系数
1 f
ei
f
1 1717
l0 2 h0
1 2
1
1 1717ei
l0 2 h0
1
2
h 1.1h0
1 1
1400 ei
l0 h
2
1
2
h0
ei
N
f
s
t
c
h0
根据偏心压杆得极限曲率理论分析,《公路桥规》规定
1 1 1400
e0
(
l0 h
)2
1
2
h0
1
0.2 2.7
as 、 as' —分别为钢筋 As 合力点和钢筋 As' 合力作用点至截面边缘的距离。
基本计算公式
纵轴方向得合力为零
0 Nd
Nu
fcdbx
f
' sd
As'
s s As
对钢筋As合力点得力矩之与等于零
0 Nd es
Mu
fcd
bx(h0
x 2
)
f
' sd
As'
(h0
as'
)
1
2
基本构件计算矩形截面偏心受压构件承载力的计算
矩形截面偏心受压构件正截面承载力的计算一、基本公式1. 计算图式2. 基本公式由0=∑x N 得:)](11[g g g gsa cb u j A A R bx R N N σγγγ-''+=≤ 由0=∑gA M 得:)](1)2(1[00g g g sa cb u j a h A R x h bx R M e N '-''+-=≤γγγ由0=∑'gA M 得:)](1)2(1[0g g g sg a c b u j a h A a x bx R M e N '-+'--=≤'σγγγ 混凝土受压区高度由下式确定:e A R e A xh e bx R g gg g a '''-=+-σ)2(0(对偏心作用力点取矩) e e '、-分别为偏心压力j N 作用点至钢筋g A 合力作用点和钢筋g A '合力作用点的距离,按下式计算:η=e g a h e -+20;η='e g a h e '+-203.公式的注意事项(1)钢筋g A 的应力g σ取值当jg h x ξξ≤=0时,构件属于大偏心受压构件,这时取g g R =σ(受拉钢筋屈服);当jg h x ξξ>=0时,构件属于小偏心受压构件,这时g σ按下式计算,但不大于g R 值:)19.0(003.0-=ξσg g E ,式中g E 为受拉钢筋的弹性模量。
(2)为保证构件破坏时,大偏心受压构件截面上的受压钢筋能达到抗压设计强度gR ',必须满足g a x '≥2,否则受压钢筋的应力可能达不到g R '。
与双筋截面受弯构件类似,这时可近似取g a x '=2,由截面受力平衡条件(0=∑'g A M )可得:)(0gg g s bu j a h A R M e N '-=≤'γγ 上式计算的正截面承载力u M 比不考虑受压钢筋gA '更小时,计算中不考虑受压钢筋g A '的影响。
偏心受压构件承载力计算
轴心受压构件承载力计算一、偏心受压构件破坏特征偏心受压构件在承受轴向力N和弯矩M 的共同作用时,等效于承受一个偏心距为e0=M/N的偏心力N的作用,当弯矩M相对较小时,e0就很小,构件接近于轴心受压,相反当N相对较小时,e0就很大,构件接近于受弯,因此,随着e0 的改变,偏心受压构件的受力性能和破坏形态介于轴心受压和受弯之间。
按照轴向力的偏心距和配筋情况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。
1.受拉破坏当轴向压力偏心距e0 较大,且受拉钢筋配置不太多时,构件发生受拉破坏。
在这种情况下,构件受轴向压力N后,离N较远一侧的截面受拉,另一侧截面受压。
当N增加到一定程度,首先在受拉区出现横向裂缝,随着荷载的增加,裂缝不断发展和加宽,裂缝截面处的拉力全部由钢筋承担。
荷载继续加大,受拉钢筋首先达到屈服,并形成一条明显的主裂缝,随后主裂缝明显加宽并向受压一侧延伸,受压区高度迅速减小。
最后,受压区边缘出现纵向裂缝,受压区混凝土被压碎而导致构件破坏(图4.3.1)。
此时,受压钢筋一般也能屈服。
由于受拉破坏通常在轴向压力偏心距e0 较大发生,故习惯上也称为大偏心受压破坏。
受拉破坏有明显预兆,属于延性破坏。
2.受压破坏当构件的轴向压力的偏心距e0 较小,或偏心距e0 虽然较大但配置的受拉钢筋过多时,就发生这种类型的破坏。
加荷后整个截面全部受压或大部份受压,靠近轴向压力一侧的混凝土压应力较高,远离轴向压力一侧压应力较小甚至受拉。
随着荷载逐渐增加,靠近轴一侧混凝土出现纵向裂缝,进而混凝土达到极限应变εcu 被压碎,受压钢筋的应力也达到f y′,远离一侧的钢筋可能受压,也可能受拉,但因本身截面应力太小,或因配筋过多,都达不到屈服强度(图4.3.2)。
由于受压破坏通常在轴向压力偏心距e0 较小时发生,故习惯上也称为小偏心受压破坏。
受压破坏无明显预兆,属脆性破坏。
3.受拉破坏与受压破坏的界限综上可知,受拉破坏和受压破坏都属于材料破坏”。
大偏心受压构件承载力计算公式
大偏心受压构件承载力计算公式根据大偏心受压破坏时的截面应力图形和基本假定,简化出大偏心受压柱的承载力计算简图。
靠近轴向压力一侧的纵向钢筋截面面积为A s′(简称为近侧钢筋),远离轴向压力一侧的纵向钢筋截面面积为A s(简称为远侧钢筋)。
(a)纵剖面(b)横剖面矩形截面大偏心受压柱正截面受压承载力计算简图根据承载力计算简图及截面内力平衡条件,并满足承载能力极限状态设计表达式的要求,可建立如下基本公式:KN≤f c bx + f y′A s′–f y A sKNe≤f c bx(h0–)+f y′A s′(h0–a s′)式中e——轴向压力作用点至远侧钢筋A s合力点之间的距离(mm),e = ηe0+h/2–a s;e0——轴向压力对截面重心的偏心距(mm),e0=M/N;η——轴向压力偏心距增大系数,;a s——远侧钢筋A s合力点至截面近边缘的距离(mm);a s′——近侧钢筋A s′合力点至截面近边缘的距离(mm);h0′——纵向受压钢筋合力点至受拉边或受压较小边的距离(mm),h0′= h –a s′。
将x=ξh0代入基本公式中,并令αs=ξ(1–ξ),则可得出KN≤f c bξ h0 + f y′A s′–f y A s KNe≤αs f c bh02+f y′A s′(h0–a s′)基本公式应满足下列适用条件:(1)为了保证构件破坏时远侧受拉钢筋应力能达到屈服强度,应满足:x≤ξb h0或ξ≤ξb(2)为了保证构件破坏时,近侧受压钢筋应力能达到屈服强度,应满足:x≥2a s′当x<2a s′时,近侧受压钢筋的应力达不到f y′,截面承载力可按下式计算:KNe′≤f y A s(h0–a s′)式中e′——轴向压力作用点至近侧钢筋A s′合力点的距离(mm),e′=ηe0–h/2+a s′。
钢筋混凝土受拉构件承载力计算—偏心受拉构件正截面承载力计算
这时本题转化为已知As´求As的问题。
(3)求As
= −
+ ′ ′ ( − ′ )
得
× × = . × . × − .
+ × × ( − )
偏心受拉构件正截面受拉承载力计算
− =
×
属于大偏心受拉构件。
(2) 计算As´
= − + = −
+ =
由式(5-6)可得
′
− ² ( − . )
=
′ ( − ′ )
As=1963mm2
,
(1-1)、(1-2)式可得
′
=
=
− ( −. ) ²
′ ( −′ )
+′ ′ +
(5-6)
(5-7)
当采用对称配筋时,求得x为负值,取 = 2′ ,并对As´合力点取矩,计算As 。
偏心受拉构件正截面受拉承载力计算
315×103 ×125−1.0×14.3×1000×1752 ×0.55×(1−0.5×0.55)
=
<0
300×(175−25)
偏心受拉构件正截面受拉承载力计算
取
′ = ′ = . × × = ²
取2
16,
选2
16,A's=402mm2
偏心受拉构件的正截面受力原理及承载能力计算
判别条件:
M h
e
as
N 2
M h
e
as
N 2
偏心受压构件承载力计算
承载力主要取决于压区混凝土和受压侧钢筋, 这种破坏突然,属于脆性破坏。
偏心受压构件承载力计算
两类偏心受压破坏的界限
共同点:破坏时受压钢筋均可以屈服。 根本区别:破坏时受拉纵筋 As是否屈服。 界限状态:受拉纵筋 As屈服,同时受压区混凝土达到极限压 应变 cu 。 界限破坏特征与适筋梁、与超筋梁的界限破坏特征完全 相同,因此, b 的表达式与受弯构件的完全一样。
系数考虑。
N ei
N ( ei+ f )
1 1
140e0i
lh0 212
h0
1 考虑小偏心受压构件截面的曲率修正系数
2 偏心受压构件长细比对截面曲率的影响系数
10.5 N fcA1.0
21.1 50.0lh 0 11.0
偏心受压构件承载力计算
偏心受压构件N-M相关曲线
N-M相关曲线反映了在压力和弯矩共同作用下偏心受压构件承载力的规律
b 1
N b b 1 e 1 f c b 0 2 ( 1 h 0 . 5 ) b b 1 ( N 1 f c b h 0 ) h 0 ( a s ')
这是一个 的三次方程,设计中计算很麻烦。为简化计算,取
(10.5) b0.4 b1
3 b b1
N (1 e0 .N b 4) h (3 0 1f 1cfb a cb s0 )2 h0 h b 1fcb0hb
工程结构(1)
偏心受压构件承载力计算
偏心受压构件承载力计算
学习目标
掌握偏心受压构件的破坏形态 掌握大小偏心受压判别 掌握对称配筋矩形截面偏心受压构件承载力计算 熟悉偏心受压构件构造要求
(新)第7章:钢筋混凝土偏心受力构件承载力计算
b的取值与受弯构件相同 。
近似判别方法 :
ei 0.3h0 ei 0.3h0
2.偏心受压构件正承载力计算
2.2 偏心受压构件正截面承载力计算
矩形截面非对称配筋
大偏压:
X 0,N 1 fcbx f y' As' f y As
由式(7-19)得:
…7-33
2.偏心受压构件正承载力计算
2.1 偏心受压构件的破坏特征
小偏心受压
无法避免,可增加横 向钢筋约束砼,提高 变形能力。 要避免
产生条件: (1)偏心距很小。
(2)偏心距 (e0 / h) 较大,但离力较远一侧的钢筋过多。 破坏特征:靠近纵向力一侧的混凝土首先达到极限压应变而压碎 ,该侧的钢筋达到屈服强度,远离纵向力一侧的钢筋 不论受拉还是受压,一般达不到屈服强度。构件的承 载力取决于受压区混凝土强度和受压钢筋强度。 破坏性质: 脆性破坏。
2.偏心受压构件正承载力计算
2.1 偏心受压构件的破坏特征
大偏心受压
产生条件: 相对偏心距 (e0 / h ) 较大, 且离力较远一侧的钢筋适当。 破坏特征: 部分受拉、部分受压,受拉钢筋应力先达到屈 服强度,随后,混凝土被压碎,受压钢筋达屈 服强度。 构件的承载力取决于受拉钢筋的强度和数量。 破坏性质: 塑性破坏。
c
0.5 f c A 1.0 N
2.偏心受压构件正承载力计算
小偏心受压时的应力可按下式近似计算:
1 s fy b 1
s 0时,As受拉; s 0时,As受压; f y f y ; s f y时,取 s f y。
(完整版)矩形截面偏心受压构件正截面的承载力计算
矩形截面偏心受压构件正截面的承载力计算一、矩形截面大偏心受压构件正截面的受压承载力计算公式 (一)大偏心受压构件正截面受压承载力计算(1)计算公式由力的平衡条件及各力对受拉钢筋合力点取矩的力矩平衡条件,可以得到下面两个基本计算公式:s y s y c A f A f bx f N -+=''1α (7-23)()'0''012a h A f x h bx f Ne s y c -+⎪⎭⎫ ⎝⎛-=α (7-24)式中: N —轴向力设计值;α1 —混凝土强度调整系数;e —轴向力作用点至受拉钢筋A S 合力点之间的距离;a he e i -+=2η (7-25) a i e e e +=0 (7-26)η—考虑二阶弯矩影响的轴向力偏心距增大系数,按式(7-22)计算;e i —初始偏心距;e 0 —轴向力对截面重心的偏心距,e 0 =M/N ;e a —附加偏心距,其值取偏心方向截面尺寸的1/30和20㎜中的较大者; x —受压区计算高度。
(2)适用条件1) 为了保证构件破坏时受拉区钢筋应力先达到屈服强度,要求b x x ≤ (7-27)式中 x b — 界限破坏时,受压区计算高度,o b b h x ξ= ,ξb 的计算见与受弯构件相同。
2) 为了保证构件破坏时,受压钢筋应力能达到屈服强度,和双筋受弯构件相同,要求满足:'2a x ≥ (7-28) 式中 a ′ — 纵向受压钢筋合力点至受压区边缘的距离。
(二)小偏心受压构件正截面受压承载力计算(1)计算公式根据力的平衡条件及力矩平衡条件可得s s s y c A A f bx f N σα-+=''1 (7-29)⎪⎭⎫ ⎝⎛'-+⎪⎭⎫ ⎝⎛-=s s y c a h A f x h bx f Ne 0''012α (7-30) ()'0''1'2s s s s c a h A a x bx f Ne -+⎪⎭⎫⎝⎛-=σα (7-31)式中 x — 受压区计算高度,当x >h ,在计算时,取x =h ;σs — 钢筋As 的应力值,可根据截面应变保持平面的假定计算,亦可近似取:y b s f 11βξβξσ--=(7-32)要求满足:y s y f f ≤≤σ'x b — 界限破坏时受压区计算高度,0h x b b ξ=;b ξξ、 — 分别为相对受压区计算高度 x/h 0和相对界限受压区计算高度x b /h 0 ;'e e 、′— 分别为轴向力作用点至受拉钢筋A s 合力点和受压钢筋A s ′合力点之间的距离 a he e i -+=2η (7-33) ''2a e he i --=η (7-34) (2)对于小偏心受压构件当bh f N c >时,除按上述式(7-30)和式(7-31)或式(7-32)计算外,还应满足下列条件:()()s s y c a a h A f h h bh f e e a h N -+⎪⎭⎫⎝⎛-≤⎥⎦⎤⎢⎣⎡---'0''00'22 (7-35 )式中 '0h — 钢筋's A 合力点至离纵向较远一侧边缘的距离,即s a h h -='0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 试验研究结果
影响正截面破坏的主要因素:偏心距的大小和配筋情况。
e0
M N
偏压构件破坏特征
受压破坏 compressive failure:小偏心受压破坏 受拉破坏 tensile failure:大偏心受压破坏
受拉破坏(大偏心受压破坏)
N
N M
fyAs
f'yA's
偏心距e0较大
fyAs
f'yA's
偏心荷载作用下 产生纵向弯曲 承受的弯矩不再是Ne0,变成N( e0+y) y为构件任意点的水平侧向位移
Ne0 :初始弯矩或一阶弯矩; Ny:附加弯矩或二阶弯矩。
长细比影响
由于附加弯矩的影响,对不同长细比偏心受压构件,破坏类型 也各不相同。
偏心受压构件的破坏类型
N
N0
Nus Num
Nusei Numei
截面尺寸为b(短边)×h(长边)
弯距作用平面:长边方向
纵向配筋集中在弯矩作用方向的截面两对边位置上
离压应力较远一侧 A s
离压应力较近一侧
A
' s
As As' 对称布筋 As As' 非对称布筋
矩形截面偏心受压构件正截面承载力计算的基本公式
基本假定
截面应变符合平截面假定; 不考虑混凝土抗拉强度;
As
b
c
εs>εy
d ef εy
g
h εc= 0.002
ab,ac: 大偏心 部分受拉,部分受压
ad: 界限状态
ae: 小偏心
af: a‘g: a’’h:均匀受压
全截面受压
b 受 拉 破 坏 , 等 号 为 界 限 破 坏 b 受 压 破 坏
b
1
fy
cu E s
“受拉破坏”(大偏心)和“受压破坏”(小偏心)比较: (1)大、小偏心破坏的共同点是受压钢筋均可以屈服 (2)两者的根本区别在于:远侧的钢筋是否受拉且屈服; (3)前者远侧钢筋受拉屈服,破坏前有预兆,属“延性破坏”; (4)后者远侧钢筋不能受拉屈服,破坏时取决于混凝土的抗压强 度且无预兆,属“脆性破坏”; (5)存在界限破坏(类似受弯构件正截面):远侧钢筋屈服的同 时,近侧混凝土压碎。
压弯构件:截面上同时承受轴心压力和弯矩的构件。
偏心受压构件:轴向压力N的作用线偏离受压构件的轴线
e0
偏心距e0:压力N的作用点离构件截面形心的距离
偏心受压: (压弯构件)
单向偏心受力构件 双向偏心受力构件
大偏心受压构件 小偏心受压构件
工程应用
拱桥的钢筋砼拱肋,桁架的上弦杆,刚架的立柱,柱式墩(台)的墩(台)柱等
1 f ei
f
17117
l02 h0
12
11711e7i lh002 12
h1.1h0
1 1
1400ei
l0 h
212
h0
ei
N
f
s
t
c
h0
根据偏心压杆的极限曲率理论分析,《公路桥规》规定
1 1
1400 e0
(l0 h
)21
2
h0
1
0.22.7e0 h0
1.0
2
1.150.01l0 1.0 h
M较大,N较小
大偏心受压破坏特点
发生条件:偏心距较大,且受拉钢筋配置不太多时 发生过程:受拉区出现裂缝,受拉钢筋先屈服,然后受 压混凝土被压坏,受压钢筋屈服。 破坏性质:延性破坏,破坏特征与配有受压钢筋的适筋梁
相似。
承载力:取决于受拉钢筋的强度和数量。
相对偏心距 e0 较大,称为“大偏心受压”; 远侧钢筋自始至终受拉且先屈服,又称为“受拉破坏”
e0
['i:tə / 'eitə]
短柱:=1
偏心距增大系数
设
y f sin x
l0
则x=l0/2处的曲率为
xl0 2
d2y d2x f
2
l02
f 10l02
根据平截面假定
c s
h0
e0i
N
f
s
t
c
h0
偏心距增大系数
ei
N
若fcu50Mpa,则发生界限破坏时截面的曲率
长期荷载下的徐变使
混凝土的应变增大
应 考 虑 构 件 在 弯 矩 作 用 的 变 形 对 轴 向 力 偏 心 距 的 影 响 , 将 初 始 偏 心 距 e0乘 以 增 大 系 数 。
目录
1 概述 2 偏心受压构件正截面受力特点和破坏形态 3 偏心受压构件的纵向弯曲 4 矩形截面偏心受压构件 5 工字形和T形截面偏心受压构件
钢筋混凝土矩形截面偏心受压构件
大偏压破坏
Mu
a 弯曲破坏
偏心受压构件的M-N曲线图
Nu 轴压 N0 A(N0,0)
界限状态
B(Nb,Mb)
e0
纯弯 C(0,M0) Mu
如截面尺寸和材料强度保持不 变,N-M相关曲线随配筋率
的 改变而形成一族曲线;
N-M相关曲线反映了在压力和弯矩 共同作用下正截面承载力的规律
目录
1 概述 2 偏心受压构件正截面受力特点和破坏形态 3 偏心受压构件的纵向弯曲 4 矩形截面偏心受压构件 5 工字形和T形截面偏心受压构件
长细比l0/h >30的长柱(失稳破坏) 侧向挠度 u 的影响已很大,在未达到截面 承载力之前,侧向挠度u已不稳定,最终 发展为失稳破坏。
偏心距增大系数
柱子控制截面上的实际弯矩
M
N(e0
u)
N(1
u e0
)e0
N•e0
e0—初始偏心距; u —由纵向弯曲所产生的侧向最大挠度值; 1 —u 轴向力偏心距增大系数。
不对称配筋
大偏心受压不对称配筋 小偏心受压不对称配筋
实际工程中,受压构件常承受变号弯矩作用,所以采用对称配筋 对称配筋不会在施工中产生差错,为方便施工通常采用对称配筋
对称配筋
材料的本构关系为已知,其中,受压混凝土极限压应变 cu0.0033 ;0.003
混凝土受压简化为等效矩形应力图形,应力集度fcd,高度x与受压区高度
xc的关系为x x。c
基本计算公式
受压区混凝土都能达到极限压应变; As’达到抗压强度设计值fsd’ ;
As受拉,也可能受压,大小ss。
ese0h2as
l0—构件的计算长度,按表6.1取用P130; e0—轴向力对重心轴的偏心距; h0—截面有效高度;
1—荷载偏心率对截面曲率的影响系数; 2—构件长细比对截面曲率的影响系数。
《 公 路 桥 规 》 规 定 , 对 长 细 比
l0r17.5(r为 构 件 截 面 回 转 半 径 ) l0h(矩 形 截 面 )5 l0d1(圆 形 截 面 )4.4
如AB上如..破N图上较坏(图a小时)ABCD近ABC所(..b..时,N远近.破实..远近侧破示)N所较,远侧侧坏际侧侧混坏:较示小远侧混受时中受混凝时相小:时侧钢凝压,心压凝土,对时相,受筋土程近轴程土压远偏,对全拉受压度侧移度压碎侧心全偏截,拉碎小钢动小碎;钢距截心面近但;于筋至于;筋稍面距受侧不远受轴近受大受较压受能侧压向侧压且压小(压屈受但力受但远(;远;服压不作压不侧远侧,程能用程能钢侧和近度屈线度屈筋和近侧;服右;服较近侧钢,边,多侧钢筋远;近;钢筋受侧侧筋均压钢钢均受屈筋筋受压服受受压),压压);屈屈;服服,,
界限破坏
受压混 凝土
sc
轴压构件 fc
c o 0=0.002
sc fc
偏压构件若 统一选用
o
0
sc
受弯构件 fc
o
0
c u
对小偏压构件 不合适,过高 地估计了混凝 土的受压能力
c u
界限破坏
定义:当受拉钢筋刚好屈服时,受压区混凝土边缘达到极限压应变的状态。
As’
xb h0
f
b1.2 50.h 00 0 3y317 1 .7h 10
s
y fy/Es 0.0017t
c h0
偏心距增大系数
ei
N
实际情况并一定发生界限破坏。另
外,柱的长细比对又有影响
引入二 1、 系 2进 数行修正
f
b12171.71h012
10
f l0 2
2
f 17117hl00 12
s
t
c
h0
偏心距增大系数
Nul Nul ei
Num fm Nul fl
M0
M
Nus>Num>Nul
长细比l0/h≤8的短柱(材料破坏) 侧向挠度u 与初始偏心距e0相比很小,柱 跨中弯矩随轴力N基本呈线性增长,直至 达到截面破坏,对短柱可忽略挠度影响。
长细比l0/h =8~30的中长柱(材料破坏) u 与e0相比已不能忽略,即M随N 的增加呈 明显的非线性增长。对于中长柱,在设计 中应考虑附加挠度 u 对弯矩增大的影响。
截面形式
矩形截面为最常用的截面形式, 截面高度h大于600mm的偏心受压构件多采用工字型或箱形截面。 圆形截面主要用于柱式墩台、桩基础中。
配筋形式
箍筋:侧向约束纵筋、抗剪
h
b 纵筋
内折角处!!!
纵筋:配置在偏心方向的两对面,按承载力要求确定 箍筋:按普通箍筋柱的构造要求配置
目录
1 概述 2 偏心受压构件正截面受力特点和破坏形态 3 偏心受压构件的纵向弯曲 4 矩形截面偏心受压构件 5 工字形和T形截面偏心受压构件
x0
s
s cu
h0 x0 x0
h0
cu
b, ss fsd
, ss 0
ss
Escu
(
1)
ss