初二数学上学期易错题集锦
八上数学易错题
八年级上册数学易错题可能涵盖多个知识点,以下是一些典型的易错题及其详细解析,旨在帮助学生更好地理解和避免这些错误。
1 平面直角坐标系
题目:点 A(2,−3) 关于 x 轴对称的点 B 的坐标是 _______。
易错点:混淆关于 x 轴和 y 轴对称的点的坐标变化规则。
解析:点 A(2,−3) 关于 x 轴对称时,横坐标不变,纵坐标取反。
因此,点 B 的坐标为 (2,3)。
2. 一元一次不等式
题目:解不等式 2x−1>3x+2。
易错点:移项时符号处理不当。
解析:首先将不等式两边合并同类项,得−x>3。
然后,两边同时乘以−1,注意不等号方向要反转,得到 x<−3。
3. 函数的图像与性质
题目:函数 y=2x 的图像经过哪几个象限?
易错点:未正确分析函数图像的性质。
解析:函数 y=2x 是一个正比例函数,其图像是一条经过原点的直线。
由于斜率 k=2>0,图像将从第三象限经过原点进入第一象限。
因此,它经过第一、三象限。
4. 数据的集中趋势与离散程度
题目:一组数据 3,5,5,4,2 的众数是 _______。
易错点:混淆众数与中位数、平均数的概念。
解析:众数是一组数据中出现次数最多的数。
在这组数据中,数字 5 出现了两次,而其他数字只出现了一次。
因此,众数是 5。
数学八年级上册全册全套试卷易错题(Word版含答案)
数学八年级上册全册全套试卷易错题(Word版含答案)一、八年级数学三角形填空题(难)1.如图,AB〃CD,点P为CD上一点,NEBA、NEPC的角平分线于点F,已知NF = 40。
, 则NE=度.【答案】80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知NFMA二! NCPE=NF+N1, 2ZANE=ZE+2Z1=ZCPE=2ZFMA, HPZE=2ZF=2x40o=80°.故答案为80.2.如图,已知四边形ABCD中,对角线BD平分NABC , /BAC=64° , NBCD+NDCA=180°, 那么NBDC为度.【答案】32【解析】【分析】过C点作NACE=NCBD,根据三角形内角和为180。
,以及等量关系可得NECD=/BDC,根据角平分线的定义可得NABD=NCBD,再根据三角形内角和为180。
,以及等量关系可得 ZBDC的度数.【详解】过 C 点作NACE=NCBD ,B CVZBCD+ZDCA=180° r ZBCD+ZCBD+ZBDC=180° zAZECD=ZBDC r对角线BD平分NABC ,AZABD=ZCBD ,AZABD=ZACE , AZBAC=ZCEB=64° .1AZBDC=-ZCEB=32° . 2 故答案为:32 .【点睛】此题考查了三角形内角与外角,三角形内角和为180°,三角形的一个外角等于和它不相邻的两个外角的和.3.如图,在△48C中,N8和NC的平分线交于点O,若N4=50。
,则N8OC=.【解析】【分析】根据三角形的内角和定理得出NA8C+NAC8=130。
,然后根据角平分线的概念得出NO8C+NOCB,再根据三角形的内角和定理即可得出N8OC的度数.【详解】解:V ZA = 50\:.NA8C+N4C8=180°- 50° = 130°,VZB和NC的平分线交于点O,A ZOBC= - ZABC. ZOCB=- ZACB.2 2•・.NO8C+/OCB=L X (ZABC+ZACB) =-X1300=65%2 2A ZBOC=180° - (NO8C+NOCB) =115%故答案为:115。
人教版数学八年级上册易错题难题整理含答案+易错题及答案
人教版数学八年级上册易错题难题整理含答案+易错题及答案人教版数学八年级上册易错题整理一、选择题3、正确说法的个数有(C)3个。
改写:在一组数据中,中位数只有一个;中位数可能是这组数据中的数,也可能不是;一组数据的众数可能有多个;众数是这组数据中出现次数最多的数据的次数;众数一定是这组数据中的数。
5、正确说法的个数有(D)4个。
改写:数轴上的点要么表示有理数,要么表示无理数;实数a的倒数是1/a;带根号a的数都是无理数;两个绝对值不相等的无理数,其和、差、积、商仍是无理数。
6、答案为(B)m2+1.改写:设自然数为n,则n的算术平方根为m,即m^2≤n<(m+1)^2,因此n的范围为m^2≤n≤m^2+2m,与n相邻的下一个自然数为m^2+2m+1=(m+1)^2.二、填空题11、样本容量为(240÷100)×=7500,正常视力的初中生人数为(0.16÷100)×=48.12、b(10+a)的值为(根号10-3)×(根号10+3)=10-9=1.13、-.36-1/2=-1.86.14、该图形的面积为∆ABC的面积减去∆ADC的面积,即(1/2)×12×5-(1/2)×3×4=21.15、根据勾股定理,BD=5,所以该图形的面积为(1/2)×12×5=30.16、解方程可得x=2.17、由不等式组得x>a且x>b,所以a<b。
18、甲管的注水速率为1/6,乙管的注水速率为1/x,两管同时开的注水速率为1/3,因此1/6+1/x=1/3,解方程可得x=9.三、解答题20、计算:1)因式分解题略。
2)已知$\frac{a-b}{a+b}=9$,$\frac{a-b}{a+b}=49$,求$a+b$和$ab$的值。
由$\frac{a+b}{a-b}=\frac{1}{9}$,得$a+b+2ab=9$(1)。
八年级上册数学常见易错题(内含答案解析)
八年级数学上册常见易错题1、下列图形中对称轴最少的是 ( )A 圆B 正方形C 等腰梯形D 线段【错解】D .【错解剖解】不能误认为线段只有一条对称轴,它有两条对称轴,分别是它的垂直平分线和它所在的直线。
【正确答案】C .2、如图,给出下列四组条件:①;②;③;④.其中,能使的条件共有( )A .1组B .2组C .3组D .4组【错解】选D .【错解剖析】错选D 的原因是对全等三角形的判定方法理解不透,当两个三角形有两边及一边的对角对应相等时,两个三角形不一定全等.【正确答案】选C .3、在△ABC 和△A /B /C /中,AB =A /B /,AC =A /C /,高AD =A /D /,则∠C 和∠C /的关系是( ) (A )相等. (B )互补. (C )相等或互补. (D )以上都不对.【错解】A .【错解剖析】不能够正确画出图形理解题意,并分多种情况进行讨论.【正确答案】C .4、如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC于F ,M 为AD 上任意一点,则下列结论错误的是( )(A )DE =DF . (B )ME =MF .(C )AE =AF . (D )BD =DC .AB DE BC EF AC DF ===,,AB DE B E BC EF =∠=∠=,,B E BC EF C F ∠=∠=∠=∠,,AB DE AC DF B E ==∠=∠,,ABC DEF △≌△M F E D C B A【错解】A .【错解剖析】不能正确审题,本题是选错误的选项.【正确答案】D5、如图,由4个小正方形组成的田字格中,ABC △的顶点都是小正方形的顶点.在田字格上画与ABC △成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含ABC △本身)共有( )A .1个B .2个C .3个D .4个【错解】B .【错解剖析】直接用图中已有的线为对称轴,只能找到两种,而把对角线作为对称轴的情况忽视了.【正确答案】D .6、如图把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )【错解】A .【错解剖析】操作时把剪下的位置弄错.【正确答案】C .7、在正方形ABCD 中,满足ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 均为等腰三角形的点P 有( )个.A 、6个B 、7个C 、8个D 、9个ABC【错解】A .【错解剖析】解:(1)、如图一,当AB ,BC ,CD ,DA 分别为等腰三角形ΔPAB ,ΔPBC ,ΔPCD ,ΔPAD 的底边时,P 点为正方形ABCD 对角线AC ,BD 的交点P 1 .(2)、如图二,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且A 与D 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以A 为圆心,以AB 为半径的圆弧与线段AD 的中垂线交点P 2和P 3 .(3)、如图三,当AB ,CD 分别为ΔPAB 和ΔPCD 的腰且B 与C 为等腰三角形的顶角顶点而BC 和AD 分别为ΔPBC 和ΔPAD 的底边时;P 点的位置为以B 为圆心,以BA 为半径的圆弧与线段AD 的中垂线交点P 4和P 5 .与(2)和(3)同理如图三、四、五得到以当AD ,BC 分别为ΔPAD 和ΔPBC 的腰而AB 和CD 分别为ΔPBC 和ΔPAD 的底边时;P 点的另外四个位置为P 6,P 7 ,P 8 和P 9 .【正确答案】D .8、计算()4323b a --的结果是( )A .12881b a B.7612b a C.7612b a - D.12881b a -【错解】: 选A 或B 或C .【错解剖析】: 幂的乘方运算运算错误和符号错误.【正确答案】:选D .9、下列运算结果正确的是( ).A .6332x x x =⋅B .623)(x x -=-C .33125)5(x x =D .55x x x =÷.【错解】:D【错解剖析】:本题考查整式乘除运算,其基础是幂的运算。
八年级数学上册全册全套试卷易错题(Word版 含答案)
八年级数学上册全册全套试卷易错题(Word 版 含答案)一、八年级数学三角形填空题(难)1.如图,ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D ,点,E F 分别在线段BD 、CD 上,点G 在EF 的延长线上,EFD ∆与EFH ∆关于直线EF 对称,若60,84,A BEH HFG n ︒︒︒∠=∠=∠=,则n =__________.【答案】78.【解析】【分析】利用ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D 得到∠DBC=12∠ABC ,∠ACD=12(∠A+∠ABC),根据三角形的内角和得到∠D=12∠A=30︒,利用外角定理得到∠DEH=96︒,由EFD ∆与EFH ∆关于直线EF 对称得到∠DEG=∠HEG=48︒,根据外角定理即可得到∠DFG=∠D+∠DEG=78︒.【详解】∵ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D∴∠DBC=12∠ABC ,∠ACD=12(∠A+∠ABC), ∵∠DBC+∠BCD+∠D=180︒,∠A+∠ABC+∠ACB=180︒, ∴∠D=12∠A=30︒, ∵84BEH ︒∠=,∴∠DEH=96︒,∵EFD ∆与EFH ∆关于直线EF 对称,∴∠DEG=∠HEG=48︒,∠DFG=∠HFG n ︒=,∵∠DFG=∠D+∠DEG=78︒,∴n=78.故答案为:78.【点睛】此题考查三角形的内角和定理、外角定理,角平分线性质,轴对称图形的性质,此题中求出∠D=12∠A=30︒是解题的关键.2.如图,△AEF是直角三角形,∠AEF=900,B为AE上一点,BG⊥AE于点B,GF∥BE,且AD=BD=BF,∠BFG=600,则∠AFG的度数是___________。
【答案】20°【解析】根据平行线的性质,可知∠A=∠AFG,∠EBF=∠BFG=600,然后根据等腰三角形的性质,可知∠BDF=2∠A,∠A+∠AFB=3∠A=∠EBF,因此可得∠AFG=20°.故答案为:20°.3.某多边形内角和与外角和共1080°,则这个多边形的边数是__________.【答案】6【解析】∵多边形内角和与外角和共1080°,∴多边形内角和=1080°−360°=720°,设多边形的边数是n,∴(n−2)×180°=720°,解得n=6.故答案为6.点睛:先根据多边形的外角和为360°求出其内角和,再根据多边形内角和定理即可求出多边形的边数.4.如图,△ABC中,∠BAC=70°,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=_____度.【答案】35【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,再根据角平分线的定义可得∠OBC=12∠ABC,∠OCE=12∠ACE ,然后整理可得∠BOC =12∠BAC . 【详解】解:由三角形的外角性质,∠BAC+∠ABC =∠ACE ,∠BOC+∠OBC =∠OCE ,∵∠ABC 的平分线与∠ACB 的外角平分线交于点O ,∴∠OBC =12∠ABC ,∠OCE =12∠ACE , ∴12(∠BAC+∠ABC )=∠BOC+12∠ABC , ∴∠BOC =12∠BAC , ∵∠BAC =70°,∴∠BOC =35°,故答案为:35°.【点睛】本题考查了三角形的内角和定理、三角形的外角性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质,要注意整体思想的利用.5.如图所示,请将12A ∠∠∠、、用“>”排列__________________.【答案】21A ∠∠∠>>【解析】【分析】根据三角形的外角的性质判断即可.【详解】解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A∴∠2>∠1>∠A ,故答案为:∠2>∠1>∠A .【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.6.如图,在△ABC 中,∠A=70°,点O 到AB,BC,AC 的距离相等,连接BO ,CO ,则∠BOC=________.【答案】125°【解析】【分析】根据角平分线性质推出O 为△ABC 三角平分线的交点,根据三角形内角和定理求出∠ABC+∠ACB ,根据角平分线定义求出∠OBC+∠OCB ,即可求出答案.【详解】:∵点O 到AB 、BC 、AC 的距离相等,∴OB 平分∠ABC ,OC 平分∠ACB ,∴12OBC ABC ∠=∠,12OCB ACB ∠=∠, ∵∠A=70°,∴∠ABC+∠ACB=180°-70°=110°,∴1110552OBC OCB ∠+∠=⨯︒=︒, ∴∠BOC=180°-(∠OBC+∠OCB )=125°;故答案为:125.【点睛】本题主要考查平分线的性质,三角形内角和定理的应用,能求出∠OBC+∠OCB 的度数是解此题的关键.二、八年级数学三角形选择题(难)7.如图,CD 是ABC 的一条中线,E 为BC 边上一点且2,BE CE AE CD =、相交于,F 四边形BDFE 的面积为6,则ABC 的面积是( )A.14B.14.4C.13.6D.13.2【答案】B【解析】【分析】连结BF,设S△BDF=x,则S△BEF=6-x,由CD是中线可以得到S△ADF=S△BDF,S△BDC=S△ADC,由BE=2CE可以得到S△CEF=12S△BEF,S△ABE=23S△ABC,进而可用两种方法表示△ABC的面积,由此可得方程,进而得解.【详解】解:如图,连接BF,设S△BDF=x,则S△BEF=6-x,∵CD是中线,∴S△ADF=S△BDF=x,S△BDC= S△ADC=12△ABC,∵BE=2CE,∴S△CEF=12S△BEF=12(6-x),S△ABE=23S△ABC,∵S△BDC= S△ADC=12△ABC,∴S△ABC=2S△BDC=2[x+32(6-x)]=18-x,∵S△ABE=23S△ABC,∴S△ABC=32S△ABE=32[2x+ (6-x)]=1.5x+9,∴18-x =1.5x+9,解得:x=3.6,∴S△ABC=18-x,=18-3.6=14.4,故选:B.【点睛】本题考查了三角形的中线能把三角形的面积平分,等高三角形的面积比等于底的比,熟练掌握这个结论记以及方程思想是解题的关键.8.如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点,且△ABC的面积为40cm2,则△BEF的面积是()cm2.A.5B.10C.15D.20【答案】B【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】∵点E是AD的中点,∴S△ABE=12S△ABD,S△ACE=12S△ADC,∴S△ABE+S△ACE=12S△ABC=12×40=20cm2,∴S△BCE=12S△ABC=12×40=20cm2,∵点F是CE的中点,∴S△BEF=12S△BCE=12×20=10cm2.故选B.【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.9.已知,如图,AB∥CD,则图中α、β、γ三个角之间的数量关系为()A.α-β+γ=180°B.α+β-γ=180° C.α+β+γ=360° D.α-β-γ=90°【答案】B【解析】【分析】延长CD交AE于点F,利用平行证得β=∠AFD;再利用三角形外角定理及平角定义即可得到答案.【详解】如图,延长CD交AE于点F∵AB∥CD∴β=∠AFD∵∠FDE+α=180°∴∠FDE=180°-α∵γ+∠FDE=∠ADF∴γ+180°-α=β∴α+β-γ=180°故选B【点睛】本题考查平行线的性质以及三角形外角定理的应用,熟练掌握相关性质定理是解题关键.10.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④【答案】C【解析】【分析】根据三角形内角和定理以及三角形角平分线的定义可得∠BOC=90°+12∠1,再结合三角形外角性质可得∠ECD=∠OBC+∠2,从而可得∠BOC=90°+∠2,据此即可进行判断.【详解】∵BO,CO分别平分∠ABC,∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠ABC+∠ACB+∠1=180°,∴∠ABC+∠ACB=180°-∠1,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°-∠1)=90°-12∠1,∴∠BOC=180°-∠OBC-∠OCB=180°-(90°-12∠1)=90°+12∠1,∵∠ACD=∠ABC+∠1,CE平分∠ACD,∴∠ECD=12∠ACD=12(∠ABC+∠1),∵∠ECD=∠OBC+∠2,∴∠2=12∠1,即∠1=2∠2,∴∠BOC=90°+12∠1=90°+∠2,∴①④正确,②③错误,故选C.【点睛】本题考查了三角形内角和定理、三角形外角的性质、三角形的角平分线等知识,熟练掌握相关的性质及定理、运用数形结合思想是解题的关键.11.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=()A.15°B.20°C.25°D.30°【答案】C 【解析】根据角平分线的定义和三角形的外角的性质即可得到∠D=12∠A.解:∵∠ABC的平分线与∠ACB的外角平分线相交于D点,∴∠1=12∠ACE,∠2=12∠ABC,又∠D=∠1﹣∠2,∠A=∠ACE﹣∠ABC,∴∠D=12∠A=25°.故选C.12.以下列数据为长度的三条线段,能组成三角形的是()A.2 cm、3cm、5cm B.2 cm、3 cm、4 cmC.3 cm、5 cm、9 cm D.8 cm、4 cm、4 cm【答案】B【解析】【分析】三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形,其实只要最小两边的和大于最大边就可判断前面的三边关系成立.【详解】A、2+3=5,故本选项错误.B、2+3>4,故本选项正确.C、3+5<9,故本选项错误.D、4+4=8,故本选项错误.故选B.【点睛】本题考查三角形的三边关系,根据三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形.三、八年级数学全等三角形填空题(难)13.已知在△ABC 中,两边AB、AC的中垂线,分别交BC于E、G.若BC=12,EG=2,则△AEG的周长是________.【答案】16或12.【解析】【分析】根据线段垂直平分线性质得出AE=BE,CG=AG,分两种情况讨论:①DE和FG的交点在△ABC内,②DE和FG的交点在△ABC外.【详解】∵DE,FG分别是△ABC的AB,AC边的垂直平分线,∴AE=BE,CG=AG.分两种情况讨论:①当DE和FG的交点在△ABC内时,如图1.∵BC=12,GE=2,∴AE+AG=BE+CG=12+2=14,△AGE的周长是AG+AE+EG=14+2=16.②当DE和FG的交点在△ABC外时,如图2,△AGE的周长是AG+AE+EG= BE+CG+EG=BC=12.故答案为:16或12.【点睛】本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.14.如图,△ABC中,AB=AC,∠BAC=56°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为_____度.【答案】112.【解析】【分析】连接OB、OC,根据角平分线的定义求出∠BAO=28°,利用等腰三角形两底角相等求出∠ABC,根据线段垂直平分线上的点到两端点的距离相等可得OA=OB,再根据等边对等角求出∠OBA,然后求出∠OBC,再根据等腰三角形的性质可得OB=OC,然后求出∠OCE,根据翻折变换的性质可得OE=CE,然后利用等腰三角形两底角相等列式计算即可得解.【详解】如图,连接OB、OC,∵OA平分∠BAC,∠BAC=56°,∴∠BAO=12∠BAC=12×56°=28°,∵AB=AC,∠BAC=56°,∴∠ABC=12(180°﹣∠BAC)=12×(180°﹣56°)=62°,∵OD垂直平分AB,∴OA=OB,∴∠OBA=∠BAO=28°,∴∠OBC=∠ABC﹣∠OBA=62°﹣28°=34°,由等腰三角形的性质,OB=OC,∴∠OCE=∠OBC=34°,∵∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠OEC=180°﹣2×34°=112°.故答案是:112.【点睛】考查了翻折变换,等腰三角形的性质,线段垂直平分线上的点到两端点的距离相等的性质,三角形的内角和定理,熟记各性质并准确识图是解题的关键.15.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,以下结论:①∠BAC=70°;②∠DOC=90°;③∠BDC=35°;④∠DAC=55°,其中正确的是__________.(填写序号)【答案】①③④【解析】【分析】根据三角形内角和定理、角平分线的定义、三角形外角的性质、角平分线的性质解答即可.【详解】解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣50°﹣60°=70°,①正确;∵BD是∠ABC的平分线,∴∠DBC=12∠ABC=25°,∴∠DOC=25°+60°=85°,②错误;∠BDC=60°﹣25°=35°,③正确;∵∠ABC的平分线BD与∠ACE的平分线CD相交于点D,∴AD是∠BAC的外角平分线,∴∠DAC=55°,④正确.故答案为①③④.【点睛】本题考查的是角平分线的定义和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.16.如图,在△ABC和△ADC中,下列论断:①AB=AD;②∠ABC=∠ADC=90°;③BC=DC.把其中两个论断作为条件,另一个论断作为结论,可以写出_个真命题.【答案】2【解析】根据题意,可得三种命题,由①②⇒③,根据直角三角形全等的判定HL可证明,是真命题;由①③⇒②,能证明∠ABC=∠ADC,但是不能得出一定是90°,是假命题;由②③⇒①,根据SAS可证明两三角形全等,再根据全等三角形的性质可证明,故是真命题.因此可知真命题有2个.故答案为:2.点睛:仔细审题,将其中的两个作为题设,另一个作为结论,可得到三种情况,然后根据全等三角形的判定定理和性质可判断出是否是真命题.17.已知:如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,垂足为E,BD=4cm,则DC=_______【答案】2cm【解析】试题解析:解:连接AD,∵ED是AB的垂直平分线,∴BD=AD=4c m,∴∠BAD=∠B=30°,∵∠C=90°,∴∠BAC=90°-∠B=90°-30°=60°,∴∠DAC=60°-30°=30°,在Rt△ACD中,∴DC=12AD==12× 4=2c m.故答案为2c m.点睛:本题考查了线段垂直平分线,在直角三角形中30度角所对的边等于斜边的一半,三角形内角和定理,主要考查学生运用性质进行计算的能力.18.如图,△ABC与△DEF为等边三角形,其边长分别为a,b,则△AEF的周长为___________.【答案】a+b【解析】先根据全等三角形的判定AAS 判定△AEF≌△BFD,得出AE=BF ,从而得出△AEF 的周长=AF+AE+EF=AF+BF+EF=a+b .故答案为:a+b四、八年级数学全等三角形选择题(难)19.如图,已知在正方形ABCD 中,点E F 、分别在BC CD 、上,△AEF 是等边三角形,连接AC 交EF 于G ,给出下列结论:①BE DF =; ② 15DAF ∠=;③AC 垂直平分EF ; ④BE DF EF +=.其中结论正确的共有( ).A .1个B .2个C .3个D .4个 【答案】C【解析】试题分析:四边形ABCD 是正方形,∴AB=BC=CD=AD ,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF 等边三角形,∴AE=EF=AF ,∠EAF=60°.∴∠BAE+∠DAF=30°.∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF (故①正确).∠BAE=∠DAF ,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD ,∴BC ﹣BE=CD ﹣DF ,即CE=CF ,∵AE=AF ,∴AC 垂直平分EF .(故③正确). 设EC=x ,由勾股定理,得EF=x ,CG=x ,AG=AEsin60°=EFsin60°=2×CGsin60°=x , ∴AC=, ∴AB=, ∴BE=﹣x=, ∴BE+DF=x ﹣x≠x .(故④错误).∴综上所述,正确的有3个.考点:正方形的性质;全等三角形的判定与性质;线段垂直平分线的性质;等边三角形的性质.20.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论有()A.0个B.1个C.2个D.3个【答案】D【解析】分析:由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS 得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠CBM=∠MDO,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.详解:①∵四边形ABCD和EFGC都为正方形,∴CB=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCD+∠DCE=∠ECG+∠DCE,即∠BCE=∠DCG.在△BCE和△DCG中,CB=CD,∠BCE=∠DCG,CE=CG,∴△BCE≌△DCG,∴BE=DG,故结论①正确.②如图所示,设BE交DC于点M,交DG于点O.由①可知,△BCE≌△DCG,∴∠CBE=∠CDG,即∠CBM=∠MDO.又∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,∴∠DOM=∠MCB=90°,∴BE⊥DG.故②结论正确.③如图所示,连接BD、EG,由②知,BE⊥DG,则在Rt△ODE中,DE2=OD2+OE2,在Rt△BOG中,BG2=OG2+OB2,在Rt△OBD中,BD2=OD2+OB2,在Rt△OEG中,EG2=OE2+OG2,∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.在Rt△BCD中,BD2=BC2+CD2=2a2,在Rt△CEG中,EG2=CG2+CE2=2b2,∴BG2+DE2=2a2+2b2.故③结论正确.故选:D.点睛:本题考查了旋转的性质、全等三角形的判定与性质、正方形的性质.21.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【答案】C【解析】【分析】分两种情况进行讨论,根据题意得出BP=2t=2和AP=16-2t=2即可求得.【详解】解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=16-2t=2,解得t=7.所以,当t的值为1或7秒时.△ABP和△DCE全等.故选C.【点睛】本题考查全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL.22.如图,在△ABC中,∠ABC=45°, BC=4,以AC为直角边,点A为直角顶点向△ABC 的外侧作等腰直角三角形ACD,连接BD,则△DBC的面积为( ) .A.8 B.10 C.42D.82【答案】A【解析】【分析】将△ABD绕着点A顺时针旋转90°得到△AEC,BD与EC交于点O,连接BE,根据旋转的性质得到AE=AB,∠BAE=∠DOC=90°,过D点作DF⊥BC,证△EBC≌BFD,可得DF=BC=4,再用三角形面积公式即可得出答案.【详解】解:如下图所示,将△ABD绕着点A顺时针旋转90°得到△AEC,BD与EC交于点O,连接BE,根据旋转的性质可知EC=BD,AE=AB,∠BAE=∠DOC=90°,∴△ABE是等腰直角三角形,∴∠ABE=45°,又∵∠ABC=45°,∴∠EBC=90°,∵∠BDF+∠DBF=90°,∠ECB+∠DBF=90°,∴∠BDF=∠ECB在△EBC和△BFD中EBC=BFD=90ECB=BDFEC=BD⎧∠∠⎪∠∠⎨⎪⎩∴△EBC≌△BFD(AAS)∴DF=BC=4∴△DBC的面积=11BC DF=44=822⋅⨯⨯【点睛】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定,是一道综合性较强的题,难度较大,关键是正确的作出辅助线构造全等三角形.23.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下面结论:①△ABD≌△EBC;②AC=2CD;③AD=AE=EC;④∠BCE+∠BCD=180°.其中正确的是()A.①②③B.①②④C.①③④D.②③④【答案】C【解析】已知BD为△ABC的角平分线,根据角平分线的定义可得∠ABD=∠CBD,在△AB D和△EB C 中,BD=BC,∠ABD=∠CBD,BE=BA,由SAS可判定△ABD≌△EBC,即可得①正确;根据已知条件,无法证明AC=2CD,②错误;已知BD为△ABC的角平分线,BD=BC,BE=BA,可得∠BCD=∠BDC=∠BAE=∠BEA,再由∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,可得∠DCE=∠DAE,所以AE=EC;再由△ABD≌△EBC,可得AD=EC,所以AD=AE=EC,即③正确;由△ABD≌△EBC,可得∠BCE=∠BDA,所以∠BCE+∠BCD=∠BDA+∠BDC=180°,④正确.故选C.点睛:本题考查了全等三角形的判定及性质、等腰三角形的的性质、三角形外角的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.24.如图,在△ABC和△DCB中,AB=DC,AC与BD相交于点E,若不再添加任何字母与辅助线,要使△ABC≌△DCB,则还需增加的一个条件是()A.AC=BD B.AC=BC C.BE=CE D.AE=DE【答案】A【解析】由AB=DC,BC是公共边,即可得要证△ABC≌△DCB,可利用SSS,即再增加AC=DB即可.点睛:此题主要考查了全等三角形的判定,解题时利用全等三角形的判定:SSS ,SAS ,ASA ,AAS ,HL ,确定条件即可,此题为开放题,只要答案符合判定定理即可.五、八年级数学轴对称三角形填空题(难)25.在锐角三角形ABC 中.BC=32,∠ABC=45°,BD 平分∠ABC .若M ,N 分别是边BD ,BC 上的动点,则CM +MN 的最小值是____.【答案】4【解析】【分析】过点C 作CE ⊥AB 于点E ,交BD 于点M′,过点M′作M′N′⊥BC 于N′,则CE 即为CM+MN 的最小值,再根据BC=32,∠ABC=45°,BD 平分∠ABC 可知△BCE 是等腰直角三角形,由锐角三角函数的定义即可求出CE 的长.【详解】解:过点C 作CE ⊥AB 于点E ,交BD 于点M′,过点M′作M′N′⊥BC 于N′,则CE 即为CM+MN 的最小值,∵BC=32,∠ABC=45°,BD 平分∠ABC ,∴△BCE 是等腰直角三角形,∴CE=BC•cos45°=32×22=4. ∴CM+MN 的最小值为4.【点睛】本题考查了轴对称最短路线问题,难度较大,根据题意作出辅助线,构造出等腰直角三角形,利用锐角三角函数的定义求解是解答此题的关键.26.如图,在Rt ABC △中,AC BC =,D 是线段AB 上一个动点,把ACD 沿直线CD 折叠,点A 落在同一平面内的A '处,当A D '平行于Rt ABC △的直角边时,ADC ∠的大小为________.【答案】112.5︒或67.5︒【解析】【分析】当A D '平行于Rt ABC △的直角边时,有两种情况,一是当A D BC '时,二是当A D AC '时,两种情况根据折叠的性质及等腰三角形的性质进行角度的计算即可.【详解】 如图1,当点D 在线段AB 上,且A DBC '时,45A DB B '∠=∠=︒, 45180ADC A DC '∴∠+∠-=︒︒,解得112.5A DC ADC '∠=∠=︒.图1如图2,当A D AC '时,45A DB A '∠=∠=︒,45180ADC A DC '∴∠+∠+=︒︒,解得67.5A DC ADC '∠=∠=︒.图2【点睛】本题考查了翻折变换的性质,等腰直角三角形的性质,掌握折叠的性质是解题关键.27.如图,已知每个小方格的边长为1,A 、B 两点都在小方格的格点(顶点)上,请在图中找一个格点C ,使△ABC 是等腰三角形,这样的格点C 有________个。
八年级数学上册 全册全套试卷易错题(Word版 含答案)
八年级数学上册全册全套试卷易错题(Word版含答案)一、八年级数学三角形填空题(难)1.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.【答案】160.【解析】试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.试题解析:360÷45=8,则所走的路程是:6×8=48m,则所用时间是:48÷0.3=160s.考点:多边形内角与外角.2.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______.【答案】30°【解析】【分析】设较小的锐角是x,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x,则另一个锐角是2x,由题意得,x+2x=90°,解得x=30°,即此三角形中最小的角是30°.故答案为:30°.【点睛】本题考查了直角三角形的性质,熟练掌握该知识点是本题解题的关键.3.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠BCD=_____.【答案】40°【解析】试题分析:延长DE 交BC 于F 点,根据两直线平行,内错角相等,可知∠ABC=BFD ∠=80°,由此可得100DFC ∠=︒,然后根据三角形的外角的性质,可得BCD ∠=EDC ∠-FD C ∠=40°.故答案为:40°.4.已知等腰三角形的两边长分别为3和5,则它的周长是____________【答案】11或13【解析】【分析】题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:有两种情况:①腰长为3,底边长为5,三边为:3,3,5可构成三角形,周长=3+3+5=11;②腰长为5,底边长为3,三边为:5,5,3可构成三角形,周长=5+5+3=13.故答案为:11或13.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.∠A=65º,∠B=75º,将纸片一角折叠,使点C•落在△ABC 外,若∠2=20º,则∠1的度数为 _______.【答案】100°【解析】【分析】先根据三角形的内角和定理可出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=80°,然后利用平角的定义即可求出∠1.【详解】如图,∵∠A=65°,∠B=75°,∴∠C=180°-∠A-∠B=180°-65°-75°=40°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=40°,而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=20°,∴∠3+20°+∠4+40°+40°=180°,∴∠3+∠4=80°,∴∠1=180°-80°=100°.故答案是:100°.【点睛】考查了折叠前后两图形全等,即对应角相等,对应线段相等.也考查了三角形的内角和定理以及外角性质.6.如图,已知长方形纸片的一条边经过直角三角形纸片的直角顶点,若长方形纸片的一组对边与直角三角形的两条直角边相交成∠1,∠2,则∠2-∠1=____.【答案】90°【解析】【分析】【详解】如图:∵∠2+∠3=180°,∴∠3=180°﹣∠2.∵直尺的两边互相平行,∴∠4=∠3,∴∠4=180°﹣∠2.∵∠4+∠1=90°,∴180°﹣∠2+∠1=90°,即∠2﹣∠1=90°.故答案为90°.二、八年级数学三角形选择题(难)7.如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F,∠F的度数为()A.120°B.135°C.150°D.不能确定【答案】B【解析】【分析】先根据∠1+∠2=90°得出∠EAM+∠EDN的度数,再由角平分线的定义得出∠EAF+∠EDF的度数,根据AE⊥DE可得出∠3+∠4的度数,进而可得出∠FAD+∠FDA的度数,由三角形内角和定理即可得出结论.【详解】解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°-90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=12×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°-90°=45°,∴∠F=180°-(∠FAD+∠FDA)=180-45°=135°.故选B.【点睛】本题查的是三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解答此题的关键.8.一个多边形除了一个内角外,其余各内角的和为2100°则这个多边形的对角线共有()A.104条B.90条C.77条D.65条【答案】C【解析】【分析】n边形的内角和是(2)180n-︒,即内角和一定是180度的整数倍,即可求解,据此可以求出多边形的边数,在根据多边形的对角线总条数公式()32n n-计算即可.【详解】解:22100180113÷=,则正多边形的边数是11+2+1=14.∴这个多边形的对角线共有()()314143==7722n n--条.故选:C.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理;要注意每一个内角都应当大于0︒而小于180度.同时要牢记多边形对角线总条数公式()32n n-.9.如图,ABC的面积为1.分别倍长(延长一倍)AB,BC,CA得到111A B C.再分别倍长A1B1,B1C1,C1A1得到222A B C.…… 按此规律,倍长2018次后得到的201820182018A B C的面积为()A.20176B.20186C.20187D.20188【答案】C【解析】分析:根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A1B1C1的面积是△ABC的面积的7倍,依此类推写出即可.详解:连接AB1、BC1、CA1,根据等底等高的三角形面积相等,△A1BC、△A1B1C、△AB1C、△AB1C1、△ABC1、△A1BC1、△ABC的面积都相等,所以,S△A1B1C1=7S△ABC,同理S△A2B2C2=7S△A1B1C1=72S△ABC,依此类推,S△AnBnCn=7n S△ABC.∵△ABC的面积为1,∴S△AnBnCn=7n,∴S△A2018B2018C2018=72018.故选C.点睛:本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.10.如图,把△ABC纸片沿DE折叠,当点A在四边形BCDE的外部时,记∠AEB为∠1,∠ADC为∠2,则∠A、∠1与∠2的数量关系,结论正确的是()A.∠1=∠2+∠A B.∠1=2∠A+∠2C.∠1=2∠2+2∠A D.2∠1=∠2+∠A【答案】B【解析】试题分析:如图在∆ABC中,∠A+∠B+∠C=180°,折叠之后在∆ADF中,∠A+∠2+∠3=180°,∴∠B+∠C=∠2+∠3,∠3=180°-∠A-∠2,又在四边形BCFE中∠B+∠C+∠1+∠3=360°,∴∠2+∠3+∠1+∠3=360°∴∠2+∠1+2∠3=∠2+∠1+2(180°-∠A-∠2)=360°,∴∠2+∠1-2∠A-2∠2=0,∴∠1=2∠A+∠2.故选B点睛:本题主要考查考生对三角形内角和,四边形内角和以及三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角和的理解及掌握。
八年级上册数学错题
八年级上册数学错题八年级上册数学错题集一、三角形错题 1:一个三角形的两边长分别为 3 和 6,第三边长是方程x^2 10x + 21 = 0的根,则三角形的周长为()A. 12B. 16C. 12 或 16D. 不能确定解析:解方程x^2 10x + 21 = 0,即(x 3)(x 7) = 0,解得x = 3或x = 7。
当第三边长为 3 时,因为 3 + 3 = 6,不满足三角形两边之和大于第三边,所以舍去。
当第三边长为 7 时,三角形的周长为 3 + 6 + 7 = 16。
故选 B。
错题 2:在\triangle ABC中,\angle A = 50^{\circ},\angle B = \angle C,则\angle B的度数为()A. 65°B. 50°C. 80°D. 40°解析:因为\angle A + \angle B + \angle C = 180^{\circ},且\angle B = \angle C,所以\angle B = (180^{\circ}50^{\circ})÷ 2 = 65^{\circ}故选 A。
二、全等三角形错题 3:如图,已知AB = AD,那么添加下列一个条件后,仍无法判定\triangle ABC ≌ \triangle ADC的是()A. CB = CDB. ∠BAC = ∠DACC. ∠B = ∠D = 90°D.∠BCA = ∠DCA解析:A 选项,因为AB = AD,CB = CD,AC = AC,根据 SSS 可判定\triangle ABC ≌ \triangle ADC。
B 选项,因为AB = AD,∠BAC = ∠DAC,AC = AC,根据 SAS 可判定\triangle ABC ≌ \triangle ADC。
C 选项,因为AB = AD,∠B = ∠D = 90°,AC = AC,根据 HL 可判定\triangle ABC ≌ \triangle ADC。
初中数学人教版八年级上册常考易错点汇总(共 8个常考题型65条)
八年级数学上册易错点一、数与式(8条)【易错点】1.有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆,以及绝对值的分类讨论。
(每年选择题必考)【易错点】2.实数的运算关键是把好符号关;在较复杂的运算中,不注意运算优先级或者不合理使用运算律,从而使运算出现错误。
【易错点】3.平方根、算术平方根、立方根的区别。
(每年填空题必考)【易错点】4.求分式值为零时学生易忽略分母不能为零。
【易错点】5.分式运算时要注意运算法则和符号的变化。
当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。
【易错点】6.非负数的性质.几个非负数的和为0,每个式子都为0;初中阶段就学过三个非负数.绝对值、二次根式、完全平方式。
【易错点】7.0指数幂,底数不为0。
【易错点】8.代入求值要使式子有意义。
最常考的是分式的化简求值,要注意每个分式的分母不为0,还要注意除号“÷”后面的式子也不能为0。
一定要注意计算顺序,先观察从哪里开始计算。
二、方程(组)与不等式(组)(8条)【易错点】1.二元一次方程组有可能无解,无解的条件可以用对应的两条一次函数图像平行。
【易错点】2.运用等式性质时,两边同除以一个数必须要注意不能为0的情况。
【易错点】3.解不等式时,当做到系数化为1时,两边如果是乘以或除以负数,容易忘记改变不等号方向,而导致结果出错。
(事实上考不等式几乎只考有变号的题,你细品。
)【易错点】4.关于含参一元二次方程的取值范围的题目,易忽视二次项系数不为0导致出错。
【易错点】5.关于含参一元一次不等式(组)有解无解、几个整数解的条件,易忽视相等的情况。
【易错点】6.确定不等式(组)的解集的方法画数轴,解集用“<”连接。
【易错点】7.解分式方程时,第一步去分母,分子的括号要还原(分式自带括号功能),最后一步易忘记检验根。
【易错点】8.利用函数图象求不等式的解集和方程的解,要注意图像交点,它决定了分类区间。
八年级上册数学易错题
八年级上册数学易错题一、三角形相关1. 已知等腰三角形的两边长分别为3和5,则它的周长为()错解:11或13。
正解:11或13。
解析:当腰长为3时,三边长为3,3,5,因为3 + 3>5,满足三角形三边关系,此时周长为3+3 + 5 = 11;当腰长为5时,三边长为5,5,3,因为5+3>5,也满足三角形三边关系,此时周长为5 + 5+3 = 13。
2. 在△ABC中,∠A=50°,高BE、CF所在直线相交于点O,则∠BOC的度数为()错解:130°。
正解:130°或50°。
解析:当△ABC是锐角三角形时,因为∠A = 50°,∠AEB = 90°,∠AFC = 90°,在四边形AFOE中,根据四边形内角和为360°,可得∠EOF=360° 90°-90°50° = 130°,即∠BOC = 130°;当△ABC是钝角三角形时,∠A=50°,∠ABE = 40°,在Rt△BOE中,∠BOC = 50°。
二、全等三角形相关1. 如图,已知AB = AD,∠1 = ∠2,要使△ABC≌△ADE,还需添加的条件是(只需填一个)。
错解:AC = AE。
正解:AC = AE或∠B=∠D或∠C = ∠E。
解析:已知AB = AD,∠1 = ∠2,所以∠BAC = ∠DAE。
如果添加AC = AE,根据SAS(边角边)可证△ABC≌△ADE;如果添加∠B = ∠D,根据ASA(角边角)可证全等;如果添加∠C=∠E,根据AAS(角角边)可证全等。
2. 如图,在△ABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,连接EF 交AD于G。
求证:AD垂直平分EF。
错解:只证明了DE = DF,就得出AD垂直平分EF。
正解:因为AD是∠BAC的平分线,DE⊥AB,DF⊥AC,根据角平分线的性质可知DE = DF。
数学八年级上册全册全套试卷易错题(版含答案)
数学八年级上册全册全套试卷易错题(版含答案)数学八年级上册全册全套试卷易错题(版含答案)第一部分:选择题(每小题2分,共60分)1. 题干:已知正方形ABCD的边长为4cm,如图所示,询问以下哪一个是该正方形的对角线。
A) AC B) BD C) CE D) AF题解:正方形ABCD的对角线是连结对立的顶点的线段。
所以正确答案是B) BD。
2. 题干:小明骑自行车行驶20分钟,速度为15 km/h。
求小明骑行的距离是多少?A) 5km B) 10km C) 15km D) 20km题解:速度等于距离除以时间。
距离 = 速度 ×时间。
小明行驶的距离 = 15 km/h × 20 min = 5 km。
所以正确答案是A) 5km。
3. 题干:已知下一个月的日历如图所示,若27日是星期四,则1日是星期几?A) 星期一 B) 星期二 C) 星期三 D) 星期四题解:由题意可知,27日是星期四,而一周共7天,所以下一个月的1日是27日后的第4天,即星期一。
所以正确答案是A) 星期一。
...第二部分:填空题(每小题3分,共30分)1. 题干:小明家里总共有____只红花猫和____只黑花猫。
题解:设小明家里有x只红花猫,则有x只黑花猫。
所以空格应分别填入x和x,答案是x和x。
2. 题干:在45°的角周围,补角是____°。
题解:补角定义为两角的度数相加等于180°。
所以45°的补角是180° - 45°= 135°。
所以答案是135°。
3. 题干:一年有____季,一季有____个月。
题解:一年有4季,所以第一个空格填入4。
每个季度有3个月,所以第二个空格填入3。
所以答案是4和3。
...第三部分:解答题(共10题,每题5分,共50分)1. 题干:已知正方形ABCD的边长为6cm,求它的面积。
题解:正方形的面积等于边长的平方。
人教版八年级数学上册期末易错精选30题
人教版八年级数学上学期期末易错精选30题考试范围:全册的内容,共30小题.【答案】332+(1--【分析】以M为直角顶点,@()V V,接着得到当NMB AMPSAS形的性质解答即可.【详解】解:如图,以M为直角顶点,【点睛】本题主要考查了等腰直角三角形的性质、全等三角形的判定与性质、三角形的外角性质、利用了等量代换及转化的思想等知识点,熟练掌握相关判定与性质是解本题的关键.三、解答题(共14小题)17.(2022·山东德州·八年级期中)如图,在ABC V 中,AB AC =,AD (1)若42C Ð=°,求BAD Ð(2)若点E 在边AB 上,EF 【答案】(1)48BAD Ð=а(2)AEF △为等腰三角形【分析】(1)根据直角三角形的两锐角互余即可求解;(2)根据三线合一得出BAD CAD Ð=Ð,根据平行线的性质得出F CAD Ð=Ð,等量代换可得BAD F Ð=Ð,根据等角对等边即可求解.【详解】(1)解:∵AB AC =,AD BC ^于点D ,∴BAD CAD Ð=Ð,90ADC Ð=°,又42C Ð=°,∴904248BAD CAD Ð=Ð=°-°=°.(2)证明:∵AB AC =,AD BC ^于点D ,∴BAD CAD Ð=Ð,∵EF AC ∥,∴F CAD Ð=Ð,∴BAD F Ð=Ð,∴AE FE =,∴AEF △为等腰三角形.【点睛】本题考查了直角三角形的两锐角互余,等腰三角形的性质与判定,掌握等腰三角形的性质与判定是解题的关键.18.(2022·江苏·仪征市第三中学八年级期中)如图,已知在四边形ABCD 中,点E 在AD 上,BCE ACD Ð=Ð,BAC D Ð=Ð,BC CE =.(1)求证:AC CD =;(2)若AC AE =,=90ACD а,求DEC Ð的度数.【答案】(1)见解析(2)112.5Ð=°DEC 【分析】(1)证明()AAS ABC DHC @V V ,即可得到结论;(2)由=90ACD а,AC CD =,得到45CAD D Ð=Ð=°,由AE AC =,得到67.5ACE AEC Ð=Ð=°,即可得到答案.【详解】(1)证明:∵BCE ACD Ð=Ð,∴BCE ACE ACD ACE Ð-Ð=Ð-Ð,∴ACB DCE Ð=Ð,在ABC V 和DEC V 中,BAC D ACB DCE BC CE Ð=ÐìïÐ=Ðíï=î,∴()AAS ABC DEC @V V ,∴AC CD =;(2)解:∵=90ACD а,AC CD =,∴45CAD D Ð=Ð=°,∵AE AC =,∴67.5ACE AEC Ð=Ð=°,∴180112.5DEC ADC °Ð=-Ð=°.【点睛】此题考查全等三角形的判定和性质、等腰三角形的判定和性质等知识,熟练掌握全等三角形的判定和性质是解题的关键.19.(2022·福建·莆田锦江中学八年级期中)如图,四边形ABCD ,分别延长AD 、AB(1)求证:FDC CBE A C Ð+Ð=Ð+Ð(2)如图2,FDC Ð与CBE Ð的角平分线相交于G 点,若6040A G Ð=°Ð=°,,求C Ð.【答案】(1)见解析;(2)140°【分析】(1)连接AC ,根据三角形的外角性质可得FDC FAC DCA Ð=Ð+Ð,CBE CAB BCA Ð=Ð+Ð,进而得出FDC CBE FAB DCB Ð+Ð=Ð+Ð,即FDC CBE A C Ð+Ð=Ð+Ð.(2)根据360ADC ABC A C Ð+Ð+Ð+Ð=°,得出300ADC ABC C Ð+Ð=°-Ð,进而得出2260CDG CBG C Ð+Ð=°+Ð,根据360ADG ABG A G Ð+Ð+Ð+Ð=°,得出40CDG CBG C Ð+Ð=Ð-°,联立方程即可得出答案.【详解】(1)连接AC ,∵FDC FAC DCA Ð=Ð+Ð∴FDC CBE FAC Ð+Ð=Ð∴FDC CBE FAB Ð+Ð=Ð(2)∵ADC ABC Ð+Ð∴300ADC ABC Ð+Ð=【答案】(1)115;140;(2)1()2P A B Ð=Ð+Ð;(3)1(2P A B Ð=Ð+Ð+Ð(1)若点D 是BC 的中点,则:ABD ACD S S =△△_____;(1)若=60B а,求出发几秒后,(2)若=60B а,求出发几秒后,(3)若AB AC =,点Q 与点动,当a 为何值时,BPD △【答案】(1)5秒(2)2.5秒或10秒∴=30BDP а,∵20cm AB =,点D 为线段AB 的中点,∴10cm BD =,∴210cm BP BD ==,∴5cm BP =,∵动点P 以2cm /s 的速度运动,∴25x =,解得, 2.5x =;②当=90BDP а时,∵=60B а,∴=30BPD а,∵20cm AB =,点D 为线段AB 的中点,∴10cm BD =,∴220cm BP BD ==,∵动点P 以2cm /s 的速度运动,∴220x =,解得,10x =;∴当P 出发2.5秒或10秒后,BPD △为直角三角形;(3)解:设运动时间为t 秒,∵AB AC =,∴B C Ð=Ð,∵20cm AB =,D 是AB 的中点,∴10cm BD =,①当BD QC =,BP CP =时,BDP CQP △≌△,则有,BP CP =,∵16cm BC =,∴8cm BP CP ==,∵动点P 以2cm /s 的速度运动,∴2BP t =,∴4t =,∵点Q 以cm/s a 的速度从C 点出发在线段CA 上运动,∴4CQ at a ==.∵CQ BD =,∵20cm AB =,D 是AB 的中点,(1)由已知和作图能得到ADC EDB V V ≌的理由是______.(2)求得AD 的取值范围是______.(3)如图2,在ABC V 中,点D 是BC 的中点,点M 在AB 边上,点BM CN MN +>.【答案】(1)SAS ;(2)17AD <<;(3)证明见解析.【分析】(1)根据全等三角形的判定定理解答即可;(2)根据三角形的三边关系计算;(3)延长MD 到E ,使MD DE =,连接NE ,CE ,证明()DMN DEN SAS △≌△,得到MN EN =,证明()≌DMB DEC SAS △△,得到MB EC =,再利用EC NC NE +>即可证明BM NC MN +>.【详解】(1)解:∵AD 是BC 边上的中线,∴BD DC =,在ADC △和EDB △中,BD DC BDE ADCDE AD =ìïÐ=Ðíï=î∴()ADC EDB SAS ≌△△,故答案为:SAS(2)解:∵()ADC EDB SAS ≌△△,∴6AC EB ==,∵8AB =,∴在ABE V 中,AB BE AE AB BE -<<+,即214AE <<,∵2AE AD =,∴17AD <<,故答案为:17AD <<(3)解:延长MD 到E ,使MD DE =,连接NE ,CE ,∵MD DN ^,∴MDN EDN Ð=Ð,在DMN V 和DEN V 中,MD DE MDN EDNDN DN =ìïÐ=Ðíï=î∴()DMN EDN SAS V V ≌,∴MN EN =,在DMB V 和DEC V 中,MD DE MDB EDCBD DC =ìïÐ=Ðíï=î∴()≌DMB DEC SAS △△,∴MB EC =,∵在NCE △中,EC NC NE +>,∴BM NC MN +>.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,三角形三边关系应用等知识;熟练掌握三角形的三边关系,作出辅助线,证明三角形全等是解题的关键.26.(2022·江苏盐城·七年级期中)(1)在下列横线上用含有a b ,的代数式表示相应图形的面积._________________________________①②③④___________(2)请在图④画出拼图并通过拼图,你发现前三个图形的面积与第四个图形面积之间有什么关系?请用数学式子表达:___________.(3)利用(2)的结论计算2210.2320.469.779.77+´+的值.【答案】(1)①2a ,②2ab ,③2b ,④()2a b +;(2)2222()aab b a b ++=+;(3)400【分析】(1)根据正方形、长方形面积公式即可解答;(2)前三个图形的面积之和等于第四个正方形的面积;(3)借助于(2)中的结论解答即可.【详解】解:(1)①2a ,②2ab ,③2b ,④()2a b +;(2)画出的拼图为:观察图形可知,a (3)210.2320.46+2102321023..=+´()21023977..=+(1)求证:ADC △≌CEB V ;(2)若5AD =,13DE =,求BE 的长;(3)如图2,延长AD 至F ,连接CF ,过点C 作CG CF ^,且CG CF =,连接BG 交直线l 于点H ,若30CGH S =V ,10CD =,则AF =______.【答案】(1)见解析(2)8(3)12【分析】(1)先根据互余角性质得DAC ECB Ð=Ð,再根据AAS 得结论;(2)由(1)中全等三角形的性质求得AD CE =,再由线段和差求得结果;(3)过点G 作GM l ^于M ,先证明CDF V ≌GMC △,得10CD GM ==,再已知三角形的面积求得CH ,再证明BEH ≌GMH V 得EH MH =,最后由线段和差得结果.【详解】(1)证明:AD DE ^Q ,BE DE ^,∴90ADC CEB ACB Ð=Ð=Ð=°,∵90DAC DCA ECB DCA Ð+Ð=Ð+Ð=°,DAC ECB \Ð=Ð,在ADC △和CEB V 中,ADC CEB DAC ECB AC CB Ð=ÐìïÐ=Ðíï=î,ADC \V ≌()CEB AAS △;(2)解:ADC Q V ≌CEB V ,5AD =,∴5AD CE ==,CD BE =.∵13DE =,∴1358BE CD ==-=;(3)解:过点G 作GM l ^于M ,则另两个角分别为60°,90°,60230°=´°Q ,\有一个30°的直角三角形是“倍角三角形”,故答案为:②③;(2)①证明:AB AC =Q ,ABC ACB \Ð=Ð,Q 将ABC V 沿边AB 所在的直线翻折180°得到ABD △,ABC ABD \Ð=Ð,ACB ADB Ð=Ð,BC BD =,ADB ABD \Ð=Ð,2BAE ADB ABD ADB \Ð=Ð+Ð=Ð,BE BC =Q ,BD BE \=,E ADB \Ð=Ð,2BAE E \Ð=Ð,ABE \V 是“倍角三角形”;②解:由①可得2260BAE BDA C Ð=Ð=Ð=°,如图,若ABP V 是等腰三角形,则BPE V 是“倍角三角形”,ABP \V 是等边三角形,60APB \Ð=°,120BPE \Ð=°,60E EBP \Ð+Ð=°,BPE Q V 是“倍角三角形”,2EBP E \Ð=Ð或2E EBP Ð=Ð,于点P CE ,交BD 于点Q,连接BF ,请问BF 是否会平分CBD Ð?如果是,求出a ,如果不是,请说明理由;(3)在第(2)问的条件下,试猜想线段AF BF ,和CF 之间的数量关系,并说明理由.【答案】(1)见解析(2)不会BF 平分CBD Ð,理由见解析(3)AF CF BF +=,理由见解析【分析】(1)由边角边即可证明三角形全等,根据全等三角形的性质即可得出结论.(2)由边角边即可证明三角形全等,再由面积法即可求出60AFB EFB Ð=Ð=°,再由三角形内角和定理可求得角相等,即可得AB DB =,与题干矛盾,即可求解.(3)由边角边即可证明三角形全等,可得AM CF =,即可得结论.【详解】(1)证明:∵ABC DBE ,V V 都是等边三角形,60AB BC BD BE ABC DBE \Ðа=,=,==,ABD CBE \ÐÐ=,在ABD △和CBE △中,AB CB ABD CBEBD BE =ìïÐ=Ðíï=îABD CBE SAS \≌()V V ,AD CE \=;(2)解:不是,理由如下:如图3,过点B 作BN AD ^于N ,过点B 作BH CE ^于H ,ABC DBE ,Q V V 都是等边三角形,60AB BC BD BE ABC DBE \Ðа=,=,==,ABD CBE \ÐÐ=,在ABD △和CBE △中,ABM CBFBM BF ïÐ=Ðíï=îABM CBF SAS \≌()V V ,AM CF \=,AF AM MF +=Q ,AF CF BF \+=.【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,角平分线的性质等知识,添加恰当辅助性构造全等三角形是解题关键.。
八上数学错题摘抄
八上数学错题摘抄以下是八年级上册数学的一些常见错题:1. 若点A(2,-3)是反比例函数 y = k/x 图象上的一点,则此函数的图象必须经过点 ( )A. (2,3)B. (-2,-3)C. (-2,3)D. (2,-2)2. 下列说法中,正确的是 ( )A. 有一个角相等的两个平行四边形是相似图形B. 有一个角相等的两个等腰梯形是相似图形C. 有一个角相等的两个菱形是相似图形D. 有一个角相等的两个等腰三角形是相似图形3. 若扇形的圆心角为$45{^\circ}$,半径为$3$,则该扇形的弧长为____.4. 下列计算正确的是( )A.$7a - a = 6$B.$a^{2} \cdot a^{4} = a^{6}$C.$a^{6} \div a^{2} =a^{3}$ D.${(2a)}^{2} = 4a^{2}$5. 若$x =$ $\frac{1}{2}$是关于$x$的方程$x - 2k = 0$的解,则$k =$____.6. 已知直线$l$经过点$(1, - 1)$和$( - 1,3)$,则直线$l$的解析式为____.7. 下列说法中正确的是( )A.若点A(2,-3)是反比例函数 y = k/x 图象上的一点,则此函数的图象必须经过点 (2,-3)B.若一次函数 y = kx + b 的图象经过点 (0,1) 和 (-1,0),则此函数的解析式为 y = x + 1C.已知抛物线 y = -x^2 + 4 与 x 轴的两个交点分别为 (m,0) 和 (n,0),则当x < m 时,y > 0;当 x > n 时,y < 0D.若二次函数 y = ax^2 + bx + c 的图象与 x 轴交于点 (m,0) 和 (n,0),且m < n,那么一元二次方程 ax^2 + bx + c = 0 的解为 m < x < n8. 下列结论正确的是 ( )A. 不相交的直线互相平行B. 不相交的线段互相平行C. 不相交的射线互相平行D. 有公共端点的直线一定不平行希望这些错题能对你的数学学习有所帮助。
八年级数学上册全册全套试卷易错题(Word版 含答案)
八年级数学上册全册全套试卷易错题(Word版含答案)一、八年级数学全等三角形解答题压轴题(难)1.在四边形ABCD 中,E 为BC 边中点.(Ⅰ)已知:如图,若AE 平分∠BAD,∠AED=90°,点F 为AD 上一点,AF=AB.求证:(1)△ABE≌AFE;(2)AD=AB+CD(Ⅱ)已知:如图,若AE 平分∠BAD,DE 平分∠ADC,∠AED=120°,点F,G 均为AD上的点,AF=AB,GD=CD.求证:(1)△GEF 为等边三角形;(2)AD=AB+12BC+CD.【答案】(Ⅰ)(1)证明见解析;(2)证明见解析;(Ⅱ)(1)证明见解析;(2)证明见解析.【解析】【分析】(Ⅰ)(1)运用SAS证明△ABE≌AFE即可;(2)由(1)得出∠AEB=∠AEF,BE=EF,再证明△DEF≌△DEC(SAS),得出DF=DC,即可得出结论;(Ⅱ)(1)同(Ⅰ)(1)得△ABE≌△AFE(SAS),△DGE≌△DCE(SAS),由全等三角形的性质得出BE=FE,∠AEB=∠AEF,CE=GE,∠CED=∠GED,进而证明△EFG是等边三角形;(2)由△EFG 是等边三角形得出GF=EE=BE=12BC ,即可得出结论. 【详解】(Ⅰ)(1)∵AE 平分∠BAD ,∴∠BAE=∠FAE ,在△ABE 和△AFE 中, AB AF BAE FAE AE AE ⎪∠⎪⎩∠⎧⎨===,∴△ABE ≌△AFE (SAS ),(2)∵△ABE ≌△AFE ,∴∠AEB=∠AEF ,BE=EF ,∵E 为BC 的中点,∴BE=CE ,∴FE=CE ,∵∠AED=∠AEF+∠DEF=90°,∴∠AEB+∠DEC=90°,∴∠DEF=∠DEC ,在△DEF 和△DEC 中,FE CE DEF DEC DE DE ⎪∠⎪⎩∠⎧⎨===,∴△DEF ≌△DEC (SAS ),∴DF=DC ,∵AD=AF+DF ,∴AD=AB+CD ;(Ⅱ)(1)∵E 为BC 的中点,∴BE=CE=12BC , 同(Ⅰ)(1)得:△ABE ≌△AFE (SAS ),△DEG ≌△DEC (SAS ),∴BE=FE ,∠AEB=∠AEF ,CE=GE ,∠CED=∠GED ,∵BE=CE ,∴FE=GE ,∵∠AED=120°,∠AEB+∠CED=180°-120°=60°,∴∠AEF+∠GED=60°,∴∠GEF=60°,∴△EFG 是等边三角形,(2)∵△EFG 是等边三角形,∴GF=EF=BE=12BC , ∵AD=AF+FG+GD ,∴AD=AB+CD+12BC . 【点睛】 本题考查了全等三角形的判定与性质、等边三角形的判定与性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.2.如图①,在ABC 中,90BAC ∠=︒,AB AC =,AE 是过A 点的一条直线,且B 、C 在AE 的异侧,BD AE ⊥于D ,CE AE ⊥于E .(1)求证:BD DE CE =+.(2)若将直线AE 绕点A 旋转到图②的位置时(BD CE <),其余条件不变,问BD 与DE 、CE 的关系如何?请予以证明.【答案】(1)见解析;(2)BD=DE-CE ,理由见解析.【解析】【分析】(1)根据已知利用AAS 判定△ABD ≌△CAE 从而得到BD=AE ,AD=CE ,因为AE=AD+DE ,所以BD=DE+CE ;(2)根据已知利用AAS 判定△ABD ≌△CAE 从而得到BD=AE ,AD=CE ,因为AD+AE=BD+CE ,所以BD=DE-CE .【详解】解:(1)∵∠BAC=90°,BD ⊥AE ,CE ⊥AE ,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE ,∵AB=AC ,在△ABD 和△CAE 中,BDA AEC ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ),∴BD=AE ,AD=CE ,∵AE=AD+DE ,∴BD=DE+CE ;(2)BD 与DE 、CE 的数量关系是BD=DE-CE ,理由如下:∵∠BAC=90°,BD ⊥AE ,CE ⊥AE ,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DAB+∠CAE ,∴∠ABD=∠CAE ,∵AB=AC ,在△ABD 和△CAE 中,BDA AEC ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ),∴BD=AE ,AD=CE ,∴AD+AE=BD+CE ,∵DE=BD+CE ,∴BD=DE-CE .【点睛】此题主要考查全等三角形的判定和性质,常用的判定方法有SSS ,SAS ,AAS ,HL 等.这种类型的题目经常考到,要注意掌握.3.如图(1),在ABC 中,90A ∠=︒,AB AC =,点D 是斜边BC 的中点,点E ,F 分别在线段AB ,AC 上, 且90EDF ∠=︒.(1)求证:DEF 为等腰直角三角形;(2)若ABC 的面积为7,求四边形AEDF 的面积;(3)如图(2),如果点E 运动到AB 的延长线上时,点F 在射线CA 上且保持90EDF ∠=︒,DEF 还是等腰直角三角形吗.请说明理由.【答案】(1)证明见解析;(2)3.5;(3)是,理由见解析.【解析】【分析】(1)由题意连接AD ,并利用全等三角形的判定判定△BDE ≌△ADF(ASA),进而分析证得DEF 为等腰直角三角形;(2)由题意分析可得S四边形AEDF=S∆ADF+S∆ADE=S∆BDE+S∆CDF,以此进行分析计算求出四边形AEDF的面积即可;(3)根据题意连接AD,运用全等三角形的判定判定△BDE≌△ADF(ASA),进而分析证得DEF为等腰直角三角形.【详解】解:(1)证明:如图①,连接AD.∵∠BAC=90˚,AB=AC,点D是斜边BC的中点,∴AD⊥BC,AD=BD,∴∠1=∠B=45°,∵∠EDF=90°,∠2+∠3=90°,又∵∠3+∠4=90°,∴∠2=∠4,在△BDE 和△ADF中,∠1=∠B,AD=BD,∠2=∠4,∴△BDE≌△ADF(ASA),∴DE=DF,又∵∠EDF=90°,∴ΔDEF为等腰直角三角形.(2)由(1)可知DE=DF,∠C=∠6=45°,又∵∠2+∠3=90°,∠2+∠5=90°,∴∠3=∠5,∴△ADE≌△CDF,∴S四边形AEDF=S∆ADF+S∆ADE=S∆BDE+S∆CDF,∴ S∆ABC=2 S四边形AEDF,∴S四边形AEDF=3.5 .(3)是.如图②,连接AD.∵∠BAC=90°,AB=AC,D是斜边BC的中点,∴AD⊥BC,AD=BD ,∴∠1=45°,∵∠DAF=180°-∠1=180°—45°=135°,∠DBE=180°-∠ABC=180°-45°=135°,∴∠DAF=∠DBE ,∵∠EDF=90°,∴∠3+∠4=90°,又∵∠2+∠3=90°,∴∠2=∠4,在△BDE 和△ADF 中,∠DAF=∠DBE ,AD=BD,∠2=∠4,∴△BDE ≌△ADF(ASA),∴DE=DF,又∵∠EDF=90°,∴△DEF 为等腰直角三角形.【点睛】本题考查等腰直角三角形的性质以及全等三角形的判定与性质,根据题意作辅助线构造出全等三角形是解题的关键.4.在ABC 中,AB AC =,点D 在BC 边上,且60,ADB E ∠=︒是射线DA 上一动点(不与点D 重合,且DA DB ≠),在射线DB 上截取DF DE =,连接EF .()1当点E 在线段AD 上时,①若点E 与点A 重合时,请说明线段BF DC =;②如图2,若点E 不与点A 重合,请说明BF DC AE =+;()2当点E 在线段DA 的延长线上()DE DB >时,用等式表示线段,,AE BF CD 之间的数量关系(直接写出结果,不需要证明).【答案】(1)①证明见解析;②证明见解析;(2)BF =AE-CD【解析】【分析】(1)①根据等边对等角,求到B C ∠=∠,再由含有60°角的等腰三角形是等边三角形得到ADF ∆是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到120AFB ADC ∠=∠=︒,推出ABF ACD ∆∆≌,根据全等三角形的性质即可得出结论;②过点A 做AG ∥EF 交BC 于点G ,由△DEF 为等边三角形得到DA =DG ,再推出AE =GF ,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG,由(1)可知,AE=GF,DC=BG,再由线段的和差和等量代换即可得到结论.【详解】(1)①证明:AB AC=B C∴∠=∠,60DF DE ADB=∠=︒,且E与A重合,ADF∴∆是等边三角形60ADF AFD∴∠=∠=︒120AFB ADC∴∠=∠=︒在ABF∆和ACD∆中AFB ADCB CAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩ABF ACD∴∆∆≌BF DC∴=②如图2,过点A做AG∥EF交BC于点G,∵∠ADB=60°DE=DF∴△DEF为等边三角形∵AG∥EF∴∠DAG=∠DEF=60°,∠AGD=∠EFD=60°∴∠DAG=∠AGD∴DA=DG∴DA-DE=DG-DF,即AE=GF由①易证△AGB≌△ADC∴BG=CD∴BF=BG+GF=CD+AE(2)如图3,和(1)中②相同,过点A做AG∥EF交BC于点G,由(1)可知,AE=GF ,DC=BG ,BF CD BF BG GF AE ∴+=+==故BF AE CD =-.【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.5.如图1,在ABC ∆中,90ACB ∠=,AC BC =,直线MN 经过点C ,且AD MN ⊥于点D ,BE MN ⊥于点E .易得DE AD BE =+(不需要证明).(1)当直线MN 绕点C 旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时DE AD BE 、、之间的数量关系,并说明理由;(2)当直线MN 绕点C 旋转到图3的位置时,其余条件不变,请直接写出此时DE AD BE 、、之间的数量关系(不需要证明).【答案】(1) 不成立,DE=AD-BE ,理由见解析;(2) DE=BE-AD【解析】【分析】(1)DE 、AD 、BE 之间的数量关系是DE=AD-BE .由垂直的性质可得到∠CAD=∠BCE ,证得△ACD ≌△CBE ,得到AD=CE ,CD=BE ,即有DE=AD-BE ;(2)DE 、AD 、BE 之间的关系是DE=BE-AD .证明的方法与(1)一样.【详解】(1)不成立.DE 、AD 、BE 之间的数量关系是DE=AD-BE ,理由如下:如图,∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEB CAD BCE AC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE(AAS),∴AD=CE ,CD=BE ,∴DE=CE-CD=AD-BE ;(2)结论:DE=BE-AD .∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEB CAD BCE AC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB(AAS),∴AD=CE ,DC=BE ,∴DE=CD-CE=BE-AD .【点睛】本题考查了旋转的性质、直角三角形全等的判定与性质,旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.二、八年级数学 轴对称解答题压轴题(难)6.已知:AD 是ABC ∆的高,且BD CD =.(1)如图1,求证:BAD CAD ∠=∠;(2)如图2,点E 在AD 上,连接BE ,将ABE ∆沿BE 折叠得到'A BE ∆,'A B 与AC 相交于点F ,若BE=BC ,求BFC ∠的大小;(3)如图3,在(2)的条件下,连接EF ,过点C 作CG EF ⊥,交EF 的延长线于点G ,若10BF =,6EG =,求线段CF 的长.图1. 图2. 图3.【答案】(1)见解析,(2)BFC ∠=60(3)8=CF .【解析】【分析】(1)根据等腰三角形三线合一,易得AB=AC ,BAD CAD ∠=∠;(2)在图2中,连接CE ,可证得BCE ∆是等边三角形,60BEC ∠= ,30BED ∠=且由折叠性质可知1'2ABE A BE ABF ∠=∠=∠,可得BFC FAB ABF ∠=∠+∠ ()2BAD ABE =∠+∠ 260BED =∠=;(3)连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N ,可证得Rt BEM Rt CEN ∆≅∆,BM CN =,BF FM CF CN -=+,可得线段CF 的长.【详解】解:(1)证明:如图1,AD BC ⊥,BD CD =AB AC ∴=BAD CAD ∴∠=∠;图1(2)解:在图2中,连接CEED BC ⊥,BD CD = BE CE ∴= 又BE BC = BE CE BC ∴== BCE ∴∆是等边三角形60BEC ∴∠= 30BED ∴∠=由折叠性质可知1'2ABE A BE ABF ∠=∠=∠ 2ABF ABE ∴∠=∠ 由(1)可知2FAB BAE ∠=∠BFC FAB ABF ∴∠=∠+∠ ()2BAD ABE =∠+∠ 223060BED =∠=⨯=图2(3)解:连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N'ABE A BE ∠=∠,BAD CAD ∠=∠ EM EH EN ∴==AFE BFE ∴∠=∠ 又60BFC ∠= 60AFE BFE ∴∠=∠=在Rt EFM ∆中,906030FEM ∠=-= 2EF FM ∴=令FM m =,则2EF m = 62FG EG EF m ∴=-=-同理12FN EF m ==,2124CF FG m ==- 在Rt BEM ∆和Rt CEN ∆中,EM EN =,BE CE = Rt BEM Rt CEN ∴∆≅∆ BM CN ∴=BF FM CF FN ∴-=+ 10124m m m ∴-=-+解得1m = 8CF ∴=图3故答案为(1)见解析,(2)BFC ∠= 60(3)8CF =.【点睛】本题考查翻折的性质,涉及角平分线的性质、等腰三角形的性质和判定、等边三角形的判定和性质、含30度角的直角三角形、全等三角形的判定和性质等知识点,属于较难的题型.7.定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC 中,AB =AC ,点D 在AC 边上,且AD =BD =BC ,求∠A 的大小; (2)在图1中过点C 作一条线段CE ,使BD ,CE 是△ABC 的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.【答案】(1)∠A=36°;(2)如图所示:见解析;(3)如图所示:见解析;∠C为20°或40°的角.【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.(2)根据(1)的解题过程作出△ABC的三等分线;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C 在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;【详解】(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=180?-x2,可得2x=180?-x2,解得:x=36°,则∠A=36°;(2)根据(1)的解题过程作出△ABC的三等分线,如图1;由45°自然想到等腰直角三角形,有两种情况,①如图2,过底角一顶点作对边的高,形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;②如图3,以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)如图4所示:①当AD=AE时,∵2x+x=30°+30°,∴x=20°;②当AD=DE时,∵30°+30°+2x+x=180°,∴x=40°;综上所述,∠C为20°或40°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.8.如图1,在△ABC中,∠ACB=90°,AC=12BC,点D为BC的中点,AB =DE,BE∥AC.(1)求证:△ABC≌△DEB;(2)连结AD、AE、CE,如图2.①求证:CE是∠ACB的角平分线;②请判断△ABE是什么特殊形状的三角形,并说明理由.【答案】(1)详见解析;(2)①详见解析;②△ABE是等腰三角形,理由详见解析.【解析】【分析】(1)由AC//BE,∠ACB=90°可得∠DBE=90°,由AC=12BC,D是BC中点可得AC=BD,利用HL即可证明△ABC≌△DEB;(2)①由(1)得BE=BC,由等腰直角三角形的性质可得∠BCE=45°,进而可得∠ACE=45°,即可得答案;②根据SAS可证明△ACE≌△DCE,可得AE=DE,由AB=DE可得AE=AB即可证明△ABE是等腰三角形.【详解】(1)∵∠ACB=90°,BE∥AC∴∠CBE=90°∴△ABC和△DEB都是直角三角形∵AC=12BC,点D为BC的中点∴AC=BD又∵AB=DE∴△ABC≌△DEB(H.L.)(2)①由(1)得:△ABC≌△DEB∴BC=EB又∵∠CBE=90°∴∠BCE=45°∴∠ACE=90°-45°=45°∴∠BCE=∠ACE∴CE是∠ACB的角平分线②△ABE是等腰三角形,理由如下:在△ACE和△DCE中AC DCACE BCECE CE=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△DCE(SAS).∴AE=DE又∵AB=DE∴AE=AB∴△ABE是等腰三角形【点睛】本题考查全等三角形的判定与性质及等腰三角形的判断与性质,熟练掌握判定定理是解题关键.9.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线.我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA=PB.定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线m、n分别是边BC、AC的垂直平分线,直线m、n的交点为O.过点O作OH⊥AB于点H.求证:AH=BH.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线l交AC于点D,边BC的垂直平分线k交AC于点E.若∠ABC=120°,AC=15,则DE的长为.【答案】(1)见解析;(2)5【解析】【分析】定理证明:先证明△PAC≌△PBC,然后再运用三角形全等的性质进行解答即可;(1)连结AO、BO、CO利用线段的垂直平分线的判定和性质即可解答;(2)连接BD,BE,证明△BDE是等边三角形即可解答.【详解】解:定理证明:∵MN⊥AB,∴∠PCA=∠PCB=90°.又∵AC=BC,PC=PC,∴△PAC≌△PBC(SAS),∴PA=PB.定理应用:(1)如图2,连结OA、OB、OC.∵直线m是边BC的垂直平分线,∴OB=OC,∵直线n是边AC的垂直平分线,∴OA=OC,∴OA=OB∵OH⊥AB,∴AH=BH;(2)如图③中,连接BD,BE.∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴DA=DB,EB=EC,∴∠A=∠DBA=30°,∠C=∠EBC=30°,∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,∴△BDE是等边三角形,∴AD=BD=DE=BE=EC,∵AC=15=AD+DE+EC=3DE,∴DE =5,故答案为:5.【点睛】本题考查了线段的垂直平分线的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,掌握并灵活运用数学基本知识是解答本题的关键.10.如图,在 ABC 中,已知 AB AC =,AD 是 BC 边上的中线,点 E 是 AB 边上一动点,点 P 是 AD 上的一个动点.(1)若 37BAD ∠=,求 ACB ∠ 的度数;(2)若 6BC =,4AD =,5AB =,且 CE AB ⊥ 时,求 CE 的长;(3)在(2)的条件下,请直接写出 BP EP + 的最小值.【答案】(1)53ACB ∠=.(2)245CE =.(3) 245. 【解析】【分析】(1)由已知得出三角形ABC 是等腰三角形,ACB ABC ∠∠=,AD 是BC 边的中线,有AD BC ⊥,求出ABC ∠的度数,即可得出ACB ∠的度数.(2)根据三角形ABC 的面积可得出CE 的长(3)连接CP ,有BP=CP ,BP+EP=EP+CP ,当点E ,P ,C 在同一条直线上时BP+EP 有最小值,即CE 的长度.【详解】解:(1) AB AC =,ACB ABC ∴∠=∠,AD 是 BC 边上的中线, 90ADB ∴∠=, 37BAD ∠=,903753ABC ∴∠=-=,53ACB ∴∠=.(2)CE AB ⊥,1122ABC S BC AD AB CE ∴=⋅=⋅, 6BC =,4=AD ,5AB =,245CE ∴=. (3) 245【点睛】本题考查的知识点主要有等腰三角形的“三线合一”,三角形的面积公式等,充分利用等腰三角形的“三线合一”是解题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.因式分解是多项式理论的中心内容之一,是代数中一种重要的恒等变形,它是学习数学和科学技术不可缺少的基础知识.在初中阶段,它是分式中研究约分、通分、分式的化简和计算的基础;利用因式分解的知识,有时可使某些数值计算简便.因式分解的方法很多,请根据提示完成下面的因式分解并利用这个因式分解解决提出的问题.(1)填空: ①()242221144x x x x ⎡⎤+=++-=⎢⎥⎣⎦( )22x -=( )( ) ②()()242116=644⎡⎤+++-⎢⎥⎣⎦=( )( )=( )⨯ ( ) (2)解决问题,计算:4444116844115744⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭ 【答案】(1)①212x +,221122x x x x ⎛⎫⎛⎫++-+ ⎪ ⎪⎝⎭⎝⎭,,②26,26,2211666622⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭,,42.530.5,;(2)14541 【解析】【分析】(1)根据完全平方公式和平方差公式计算可得;(2)利用前面所得规律变形即可.【详解】(1)()242221144x x x x ⎡⎤+=++-⎢⎥⎣⎦ 22212x x ⎛⎫=+- ⎪⎝⎭ 221122x x x x ⎛⎫⎛⎫=++-+ ⎪⎪⎝⎭⎝⎭()2422211666624⎡⎤+=++-⎢⎥⎣⎦ 2211666622⎛⎫⎛⎫=+++- ⎪⎪⎝⎭⎝⎭42.530.5=⨯ 故答案为:①212x +,221122x x x x ⎛⎫⎛⎫++-+ ⎪ ⎪⎝⎭⎝⎭,,②26,26,2211666622⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭,,42.530.5,; (2)4444116844115744⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭=⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭ 2222222211116666888822221111555577772222⎛⎫⎛⎫⎛⎫⎛⎫++-+++-+ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫++-+++-+ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ 42.530.372.556.530.520.556.542.5⨯⨯⨯=⨯⨯⨯ 14541= 【点睛】本题考查了因式分解的应用;熟练掌握完全平方公式和平方差公式是解题的关键.12.观察下列各式:()()2111,x x x -+=-()()23 111,x x x x -++=-()()324 111,x x x x x -+++=-()()4325 1 11,x x x x x x -++++=-······()1根据规律()()122 1 ...1n n x x x x x ---+++++=(其中n 为正整数) ;()()3029282(51)5555251-+++++()3计算:201920182017321(2)(2)(2)(2)(2)(2)1-+-+-++-+--++【答案】(1)1n x -;(2)311-5;(3)2020213-- 【解析】【分析】 (1)归纳总结得到一般性规律,即可得到结果;(2)根据一般性结果,将n=31,x=5代入(1)中即可;(3)将代数式适当变形为(1)的形式,根据前面总结的规律即可计算出结果.【详解】(1)根据上述规律可得()()122 1 ...1n n x x x x x ---+++++=1n x -,故填:1n x -;(2)由(1)可知()3029282(51)555551-+++++=311-5()3 201920182017321(2)(2)(2)(2)(2)(2)1-+-+-+⋅+-+-+-+ =201920182011732[(2)1](2)(2)(2)(2)(2)(2)13⎡⎤---+-+-+⋯+-+--+⎣⎦-+ =2020(2)13--- =2020213-- 【点睛】本题考查整式的乘法,能根据题例归纳总结出一般性规律是解题关键,(3)中能对整式适当变形是解题关键,但需注意变形时要为等量变形.13.观察以下等式:(x+1)(x 2-x+1)=x 3+1(x+3)(x 2-3x+9)=x 3+27(x+6)(x 2-6x+36)=x 3+216...... ......(1)按以上等式的规律,填空:(a+b )(___________________)=a 3+b 3(2)利用多项式的乘法法则,证明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y )(x 2-xy+y 2)-(x-y )(x 2+xy+y 2)【答案】(1)a 2-ab+b 2;(2)详见解析;(3)2y 3.【解析】【分析】(1)根据所给等式可直接得到答案(a+b )(a 2-ab+b 2)=a 3+b 3;(2)利用多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加进行计算即可得到答案;(3)结合题目本身的特征,利用(1)中的公式直接运用即可.【详解】(1)(a+b )(a 2-ab+b 2)=a 3+b 3;(2)(a+b )(a 2-ab+b 2)=a 3-a 2b+ab 2+a 2b-ab 2+b 3=a 3+b 3;(3)(x+y )(x 2-xy+y 2)-(x-y )(x 2+xy+y 2)=x 3+y 3-(x 3-y 3)=2y 3.【点睛】本题考查了多项式乘以多项式,关键是掌握多项式乘法法则,注意观察所给例题,找出其中的规律是解决本题的基本思路.14.任何一个正整数n 都可以进行这样的分解:n =p ×q (p 、q 是正整数,且p ≤q ).如果p ×q 在n 的所有这种分解中两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并且规定F (n )=p q .例如18=1×18=2×9=3×6,这时就有F (18)=3162=.请解答下列问题:(1)计算:F (24);(2)当n 为正整数时,求证:F (n 3+2n 2+n )=1n . 【答案】(1)23;(2) 1n . 【解析】分析:(1)根据最佳分解的意义,把24分解成两数的积,找出差的绝对值最小的两数,求比值即可;(2)根据(1)的求法,确定差的绝对值最小的两数的特点,然后根据要求变形即可. 详解:(1)∵24=1×24=2×12=3×8=4×6,其中4与6的差的绝对值最小,∴F(24)=46=23. (2)∵n 3+2n 2+n =n(n +1)2,其中n(n +1)与(n +1)的差的绝对值最小,且(n +1)≤n(n +1),∴F(n 3+2n 2+n)=()n 1n n 1++=1n . 点睛: 本题主要考查实数的运算,理解最佳分解的定义,并将其转化为实数的运算是解题的关键.15.仔细阅读下面例题,解答问题:例题:已知二次三项式2x 4x m -+有一个因式是()x 3+,求另一个因式以及m 的值.解:设另一个因式为()x n +,得()()2x 4x m x 3x n -+=++则()22x 4x m x n 3x 3n -+=+++ {n 34m 3n +=-∴=.解得:n 7=-,m 21=- ∴另一个因式为()x 7-,m 的值为21-问题:仿照以上方法解答下面问题:已知二次三项式22x 3x k +-有一个因式是()2x 5-,求另一个因式以及k 的值.【答案】()4,x + 20.【解析】【分析】根据例题中的已知的两个式子的关系,二次三项式2x 4x m -+的二次项系数是1,因式是()x 3+的一次项系数也是1,利用待定系数法求出另一个因式.所求的式子22x 3x k +-的二次项系数是2,因式是()2x 5-的一次项系数是2,则另一个因式的一次项系数一定是1,利用待定系数法,就可以求出另一个因式.【详解】解:设另一个因式为()x a +,得()()22x 3x k 2x 5x a +-=-+则()222x 3x k 2x 2a 5x 5a +-=+-- {2a 535a k -=∴-=-解得:a 4=,k 20=故另一个因式为()x 4+,k 的值为20【点睛】正确读懂例题,理解如何利用待定系数法求解是解本题的关键.四、八年级数学分式解答题压轴题(难)16.某小麦改良品种后平均每公顷增加产量a 吨,原来产m 吨小麦的一块土地,现在小麦的总产量增加了20吨.(1)当a =0.8,m =100时,原来和现在小麦的平均每公顷产量各是多少?(2)请直接接写出原来小麦的平均每公顷产量是 吨,现在小麦的平均每公顷产量是 吨;(用含a 、m 的式于表示)(3)在这块土地上,小麦的改良品种成熟后,甲组收割完需n 小时,乙组比甲组少用0.5小时就能收割完,求两组一起收割完这块麦田需要多少小时?【答案】(1)原来和现在小麦的平均每公顷产量各是4吨,4.8吨;(2)20ma ,+2020ma a ;(3)两组一起收割完这块麦田需要2241n n n --小时. 【解析】【分析】(1)设原来小麦平均每公顷产量是x 吨,根据题意列出分式方程求解并验根即可;(2)设原来小麦平均每公顷产量是y 吨,根据题意列出分式方程求解并验根即可;(3)由题意得知,工作总量为m+20,甲的工作效率为:20m n +,乙的工作效率为:200.5m n +-,再由工作总量除以甲乙的工作效率和即可得出工作时间. 【详解】解:(1)设原来平均每公顷产量是x 吨,则现在平均每公顷产量是(x +0.8)吨, 根据题意可得:100100200.8x x +=+ 解得:x =4,检验:当x =4时,x (x +0.8)≠0,∴原分式方程的解为x =4,∴现在平均每公顷产量是4.8吨,答:原来和现在小麦的平均每公顷产量各是4吨,4.8吨.(2)设原来小麦平均每公顷产量是y 吨,则现在玉米平均每公顷产量是(y +a )吨, 根据题意得:20m m y y a +=+ 解得;y =20ma , 经检验:y =20ma 是原方程的解, 则现在小麦的平均每公顷产量是:202020ma ma a a ++= 故答案为:20ma ,2020ma a +; (3)根据题意得:()20.5202202020.5410.5n n m n n m m n n n n -+-==++--+- 答:两组一起收割完这块麦田需要2241n n n --小时. 【点睛】本题考查的知识点主要是根据题意列分式方程并求解,找出题目中的等量关系式是解题的关键.17.有甲、乙两名采购员去同一家公司分别购买两次饲料,两次购买的饲料价格分别为m 元/千克和n 元/千克,且m≠n ,两名采购员的采购方式也不同,其中甲每次购买800千克,乙每次用去800元,而不管购买多少千克的饲料。
初二上册数学错题集
初二上册数学错题集
一、错题类型
1. 代数运算错误
哎呀,好多时候我在进行代数运算的时候,不是符号搞错,就是乘法分配律用错。
比如计算 (2x + 3)(x 1) ,我居然忘记把每一项都乘一遍,结果算错啦!
2. 几何证明逻辑混乱
几何证明题可把我难住啦!经常出现条件没用全,或者推理过程不严谨的情况。
就像证明三角形全等,我总是漏掉一些关键的相等条件。
3. 函数图像理解偏差
函数的图像对我来说就像个谜,总是不能准确理解横坐标、纵坐标的含义,导致做题出错。
二、错题分析
1. 基础知识不扎实
好多错误其实都是因为我对基本的概念、公式、定理没有掌握好。
比如完全平方公式,我总是记错中间项的系数。
2. 粗心大意
有时候做题太着急,数字看错、符号写错,真是不该啊!
3. 缺乏解题思路
遇到稍微复杂一点的题目,就不知道从哪里下手,没有形成系统的解题思路。
三、改进措施
1. 加强基础知识的学习
多看书、多做基础练习题,把那些容易混淆的概念和公式彻底搞清楚。
2. 养成认真仔细的习惯
做题的时候放慢速度,做完多检查几遍,不能再因为粗心丢分啦。
3. 多做难题,总结解题思路
找一些有难度的题目来做,做完后认真总结解题方法和思路,下次遇到类似的题目就不会再懵啦。
希望通过这本错题集,我的数学成绩能越来越好!加油!。
八年级数学易错题20例(含解析)
八年级数学易错题20例1. 理解错误的题目:一些学生可能会误解题目的意思,从而得出错误的答案。
例如,题目要求求解一个方程,但是学生可能会误解为需要求解一个不同的方程。
2. 忘记变号:在进行等式运算时,有时会忘记在移项或者合并同类项时变号。
3. 计算错误:在进行复杂计算时,可能会出现计算错误,例如算错乘法、加法等。
4. 错误的应用公式:例如在使用勾股定理时,将直角三角形的边长错误地代入公式。
5. 忽视条件:在解决问题时,可能会忽视题目给出的某些条件,导致答案错误。
6. 图形理解错误:在几何问题中,可能会误解或错误地画出图形。
7. 错误的角度计算:在几何问题中,尤其是涉及角度的计算,容易出错。
8. 比例理解错误:在涉及比例的问题中,可能会对比例的概念理解错误。
9. 单位换算错误:在涉及单位换算的问题中,可能会换算错误。
10. 错误的概率计算:在概率问题中,可能会出现计算错误或者理解错误。
11. 忽视坐标系的方向:在平面直角坐标系中,有时会忽视坐标轴的方向,导致点的位置判断错误。
12. 函数理解不足:对于函数的理解不足,可能导致在解决与函数相关的问题时出错。
13. 三角形性质理解错误:例如,误将等边三角形的性质应用于等腰三角形等。
14. 分式运算错误:在进行分式的加减乘除运算时,可能会出现运算错误。
15. 错误的不等式解法:在解不等式时,可能会因为变号、计算等问题导致解答错误。
16. 数列求和公式使用不当:例如,等差数列和等比数列的求和公式混淆使用。
17. 根与系数的关系理解不清:对于二次方程的根与系数的关系理解不足,导致相关题目解答错误。
18. 圆的性质理解不足:例如,对圆心角、圆周角、弧长等性质理解不清,导致解题出错。
19. 忽视特殊情况:在一些数学问题中,可能存在特殊情况需要额外考虑,如果忽视这些特殊情况,可能会导致答案不完整或错误。
20. 不严谨的推理:在数学证明题中,推理过程不严谨,跳跃步骤或者逻辑不清晰,导致证明错误。
数学八年级上册易错题及答案
八年级上册易错题集三角形1. 一个三角形的三个内角中()A. 至少有一个等于90°B. 至少有一个大于90°C. 不可能有两个大于89°D. 不可能都小于60°2. 如图,△ABC中,高CD、BE、AF相交于点O,则△BOC•的三条高分别为.3、三角形的一个外角大于相邻的一个内角,则它的形状;三角形的一个外角小于于相邻的一个内角,则它的形状;三角形的一个外角等于相邻的一个内角,则它的形状。
4、三角形内角中锐角至少有个,钝角最多有个,直角最多有个,外角中锐角最多有个,钝角至少有个,直角最多有个。
一个多边形中的内角最多可以有个锐角。
5.已知一个三角形的三边长3、a+2、8,则a的取值范围是。
6.如图②,△ABC中,∠C=70°,若沿虚线截去∠C,则∠1+∠2= 。
7.如图③,一张△ABC纸片,点D、E分别在边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=70°,则∠1+∠2= 。
8.△ABC中,∠A=80°,则∠B、∠C的内角平分线相交所形成的钝角为;∠B、∠C的外角平分线相交所形成的锐角为;∠B的内角平分线与∠C的外角平分线相交所形成的锐角为;高BD与高CE相交所形成的钝角为;若AB、AC边上的垂直平分线交于点O,则∠BOC为。
9.一个多边形除去一个内角外,其余各角之和为2 750°,则这个多边形的边数为,去掉的角的度数为.10.一个多边形多加了一个外角总和是1150°,这个多边形是边形,这个外角是度.11.如图,在△ABC中,画出AC边上的高和BC边上的中线。
全等三角形1.有以下条件:①一锐角与一边对应相等;②两边对应相等;③两锐角对应相等;④斜边和一锐角对应相等;⑤两条直角边对应相等;⑥斜边和一条直角边对应相等。
其中能判断两直角三角形全等的是BAC2.已知△ABC与△A′B′C′中,AB=A′B′,BC=B′C′,下面五个条件:①AC=A′C′;②∠B=∠B′;③∠A=∠A′;④中线AD=A′D′;⑤高AH=A′H′,能使△ABC≌△A′B′C′的条件有。
八上数学错题摘抄
八上数学错题摘抄摘抄错题如下:1. 题目:求解方程 2x + 5 = 3x - 4。
分析:要求解方程,需要将未知数 x 单独放在一边,将常数项放在另一边。
解答:将同类项合并,得到:2x - 3x = -4 - 5化简得: -x = -9两边同时乘以-1,得:x = 92. 题目:计算下列含有一对括号的式子的值:5 × (8 - 2) + 3 × 2 - 1。
分析:根据运算法则,先计算括号中的式子,再进行乘法和加减运算。
解答:计算括号中的式子:8 - 2 = 6将计算结果代入原式,得到:5 × 6 + 3 × 2 - 1进行乘法运算,得到:30 + 6 - 1最后进行加减运算:30 + 6 - 1 = 353. 题目:已知正方形的边长为 x cm,求其周长。
分析:一个正方形的周长等于四条边的长度之和。
解答:正方形的周长 = 4 ×边长代入已知条件,得:周长 = 4 × x cm = 4x cm4. 题目:已知一个长方形的长是2a cm,宽是3a cm,求其面积。
分析:长方形的面积等于长乘以宽。
解答:长方形的面积 = 长 ×宽代入已知条件,得:面积 = (2a cm) × (3a cm) = 6a^2 cm^25. 题目:已知一个三角形的底边长是8 cm,高是6 cm,求其面积。
分析:三角形的面积等于底边长乘以高再除以2。
解答:三角形的面积 = (底边长 ×高) / 2代入已知条件,得:面积 = (8 cm × 6 cm) / 2 = 24 cm^26. 题目:已知一个圆的半径是5 cm,求其面积。
分析:圆的面积等于半径的平方再乘以π。
解答:圆的面积 = 半径^2 × π代入已知条件,得:面积= (5 cm)^2 × π =25π cm^27. 题目:已知一个长方体的长是4 cm,宽是3 cm,高是5 cm,求其体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学上学期易错题集锦
1、当x= 时,分式14
-x 的值为整数.2、化简a a 3-为___________.
3、若分式4
422+--a a a 的值为正整数,则整数a 的值是____________. 4、若代数式
11-+x x 有意义,则x 的取值范围是____________. 5、若关于x 的方程
2
-32-1x x a x +=+的解为正数,则a 的取值范围是____________. 6、若=+=+>>a
b a b ab b a b a -,06-,022则____________. 7、已知122
432+--=--+x B x A x x x ,其中A,B 为常数,则4A-B 的值为____________. 8、若b a b a +=-111,则3--b
a a
b 的值是____________. 9、如果x>y>0,那么x
y x y -++11的值是___________.(填“正数或负数”) 10、若分式方程2
321-+=+-x x a x 有增根,则a 的值是____________. 11、若关于x 的分式方程11+=+x m x x 无解,则m 的值为___________. 12、关于x 的方程223242
ax x x x +=--+无解,则a 的值为___________. 13、若221=42y +3y+7,则214y +6y-1
的值为___________. 14、若的值等于那么y
x y x y xy x +-=+-,04422___________. 15、若分式x
x x 24122-+-的值为正数,则x 的取值范围是 . 16、若x
x x x x 1-6110,求,且=+
<<的值是 .
17、已知实数211,,a-b 0,24c a b c c c ab
-+=满足则的算术平方根是 . 18、若分式212x x m -+不论m 取何实数总有意义,则m 的取值范围是 . 19、已知x x 2
320--=,那么代数式()x x x --+-11132的值是 . 20、当a <0,b <0时,-a +2ab -b 可在实数范围内因式分解为 .
21、若x <y <0,则222y xy x +-+222y xy x ++= .
22、若0<x <1,则4)1(2+-x x -4)1(2-+x x 等于 .
23、方程2(x -1)=x +1的解是 .
24、计算:
(1)⎪⎭⎫ ⎝⎛---÷--225262x x x x (2)32222)2.()22(444m m m m m m m --+÷-++
(3)22222))((2)(b a b a ab b a b a b
a b a +-÷+---+ (4)()()x x x x x x ---=-+-12123122
(5)x x x x x x ---+-=-+41341216852 (6)32)3)(2(122
-=-----x x x x x x x
(7)
x x x x x 5022322123-+ (8
25、已知m
26、已知22(4)0,()y x y xz -++=求的平方根。
27a 2,小数部分为b ,求-16ab-8b 的立方根。
28、已知5+11的小数部分为a ,5-11的小数部分为b ,求:(1)a +b 的值;(2)a -b 的值.
29、已知:
x =
y =.
30、已知:2323-+=
a ,2323+-=
b ,求代数式223b ab a +-的值。
31、已知.0)255(|13|2=-+-+b a b a 求2232332).6().()3(a b b a ab b a -÷--的值.
32、化简求值:,)]3(232[
x y x y x x y x y x x -÷--++-其中5x +3y =0.
33、设14m n -=,m+n=2,求2222221112m n m mn n mn m n m n ⎡⎤⎛⎫-÷+⎢⎥ ⎪++-⎝⎭⎢⎥⎣⎦
的值.
34、已知x =2323-+,y =232
3+-,求
32234232y x y x y x xy x ++-的值.
35、已知1a 222214164821442a a a a a a a a a --++÷-+-+-,再求值。