2010到2018年浙江高职考试题汇编(三角函数)

合集下载

浙江省2010年到2017年高职考试试题汇编(三角函数)

浙江省2010年到2017年高职考试试题汇编(三角函数)

zgz 浙江省2010年到2017年高考试题汇编(三角函数)1、(2010-4-3)关于余弦函数x y cos =的图象,下列说法正确的是( ) A 、通过点)0,1( B 、关于x 轴对称 C 、关于原点对称 D 、由正弦函数x y sin =的图象沿x 轴向左平移2π个单位而得到 2、(2010-14-3)若31cos sin =-x x ,则x 2sin =( ) A 、98 B 、98- C 、32 D 、32-3、(2010-15-3)︒︒-︒+︒12tan 18tan 112tan 18tan 的值等于( )A 、33 B 、3 C 、33- D 、3- 4、(2010-16-5)329π-弧度的角是第______象限的角。

5、(2010-20-5)已知角α为第二象限的角,且终边在直线x y -=上,则角α的余弦值为______。

6、(2010-21-5)函数x x y cos sin 3-=的最大值、周期分别是______。

7、(2010-22-6)在△ABC 中,已知2=a ,2=b ,∠︒=30B ,求∠C 。

8、(2011-14-2)已知角α是第二象限角,则由23sin =α可推知αcos =( ) A 、23-B 、21-C 、21D 、239、(2011-16-2)如果角β的终边过点)12,5(-P ,则βββt a n c o s s i n ++的值为( ) A 、1347 B 、65121- C 、1347- D 、65121 10、(2011-20-3)︒-︒15cos 15sin 22的值等于______。

11、(2011-24-3)化简:︒︒+︒︒33sin 78sin 33cos 78cos =______。

12、(2011-27-6)在△ABC 中,若三边之比为3:1:1,求△ABC 最大角的度数。

13、(2011-33-8)已知函数121cos 321sin )(++=x x x f ,求: (1)函数)(x f 的最小正周期; (2)函数)(x f 的值域。

2018年浙江省高职考数学模拟试卷14

2018年浙江省高职考数学模拟试卷14

2018年浙江省高职考数学模拟试卷(十四)一、选择题1. 已知集合R U =,{}21>-=x x B ,则B C U 等于 ( ) A.φ B.)3,1(- C.),3()1,(+∞--∞ D.[]3,1-2. 已知c b a >>,且0=++c b a ,则下列不等式中正确的是 ( )A.222c b a >> B.bc ac > C.ac ab > D.b c b a >3. 若函数32)(2+-=x x x f ,[]2,2-∈x ,则)(x f 的值域为 ( ) A.[]11,2- B. []11,2 C. []3,2 D. []11,34. 命题甲“a ,G ,b 三个数成等比数列”是命题乙“ab G ±=”成立的 ( ) A.充分不必要条件 B.必要条件 C.充要条件 D.既不充分也不必要条件5. 下列函数在),0(+∞内是增函数的是 ( )A.x x f 3)(-=B.1)(2+-=x x fC.xx f ⎪⎭⎫ ⎝⎛=31)( D.x x f 3log )(= 6. 函数0)1(12)(-+-=x x f x 的定义域为 ( )A.[)+∞,0B.[)1,0C. [)()+∞,11,0D.()+∞,17. 若点P 在角32π的终边上,且4=OP ,则P 的坐标为 ( ) A.)22,2( B.)2,32(- C.)32,2(- D. )2,32(8. 已知数列{}n a 是等差数列,n S 是等差数列的前n 项和,若2432π=++a a a ,则5co s S 的值为 ( ) A.6π B.4π C.3π D.65π 9. 已知直线过两点)3,1(A ,)1,3(--B ,则该直线的倾斜角为 ( ) A.6π B.4π C.3π D.65π 10. 函数⎪⎭⎫ ⎝⎛-=32sin 3πx y 的图像只需将函数x y 2sin 3=的图像 ( ) A.向左平移3π个单位 B. 向右平移3π个单位C. 向左平移6π个单位D. 向右平移6π个单位 11. 若平面α与平面β相交,直线α//a ,β⊂b ,则 ( ) A.a 与b 异面 B. a 与b 相交 C. a 与b 平行 D.以上都有可能12. 已知ABC ∆内角A 、B 、C 的对边分别为a ,b ,c ,若︒=∠60A ,︒=∠45B ,22=b ,则a 为 ( )A.2B.62C.32D.83 13. 顶点在原点,准线方程为41=x 的抛物线方程是 ( ) A.x y =2 B. x y -=2 C. x y 212= D.y x =2 14. 已知点)3,1(-A ,)1,5(B ,则线段AB 的中点坐标是 ( )A.)2,2(B.)1,3(-C.)0,4(D.)4,0(15. 已知320220C C n =-,则n 是 ( )A.5B.15C.19D.5或1916. 若以双曲线的顶点1A 、2A 为直径两端点的圆恰好经过虚轴的两个端点,则双曲线的渐近线和离心率e 分别为 ( )A.x y ±=,2B. x y 2±=,2C. x y ±=,22 D. x y 2±=,22 17. 求值:154cos 1514cos 154sin 15sin ππππ+等于 ( ) A.21 B.23 C.21- D.23- 18. 正方形ABCD 的中心为)2,1(,AB 所在直线的方程为022=--y x ,则正方形的外接圆的标准方程为 ( )A.5)2()1(22=-+-y xB. 5)2()1(22=+++y xC. 10)2()1(22=-+-y xD. 10)2()1(22=+++y x二、填空题19. 若1>x ,则11-+x x 的最小值为 ; 20. 已知)4,2(-a ,),1(m b ,若b a //,则b 的模为 ;21. 已知数列{}n a 是等比数列,它的前n 项和a S n n +=2,则=a ;22. 已知31cos sin =+αα,则=α2sin ; 23. 对于函数)(x f ,若存在R x ∈0,使成立00)(x x f =,则称0x 为)(x f 的不动点,则函数42)(2--=x x x f 的不动点是 ;24. 小明和小红玩飞行棋,轮流抛掷一枚骰子,规定骰子只有投到6点,玩家的棋子才能起飞,并且投到6点后,还可以再投一次,小明的一枚棋子刚好走到小红的基地附近,此时小红没有可飞的棋子,接下去如果小红能抛出可以起飞的棋子,那么只要抛出不小于4点就可以把小明的棋子逐回他自己的基地,小红能驱逐成功的概率是 ;25. 已知点)0,4(-M ,)0,4(N ,则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是 ;26. 若正方体的棱长为1,则其外接球的表面积为 ;三、解答题27. 平面内,求过点)3,2(-A ,且垂直于直线012=-+y x 的直线方程;28. 在ABC ∆中,设内角A ,B ,C 对应的边分别是a ,b ,c ,若有bc c b a 3222++=,(1)求角A 的大小;(2)若3=b ,4=c ,求ABC ∆的面积;29. 某学校组织三个班级学生参加一项活动,其中一班5人,二班6人,三班7人,(1)选出其中1人为负责人,有多少种选法?(2)每班选一名组长,有多少种选法?(3)推选二人作中心发言,这二人必须来自不同的班级,有多少种选法? 30. 已知函数⎩⎨⎧-≥+--<+=1,31,2)(2x mx x x x x f ,求:(1))3(-f 的值;(2)[])2(-f f 的值;(3)若)(x f 在[]+∞,1上是增函数,求m 的取值范围;31. 已知三角函数m x m x x x f +-=2cos 2cos sin 2)(的最大值是2,(1)求m 的值;(2)将三角函数化为()ϕω+=x A x f sin )(的形式,其中⎪⎭⎫ ⎝⎛<>2,0πϕω,并求出其最小正周期;32. 已知等差数列{}n a 中82=a ,前8项和1248=S ,(1)求数列{}n a 的通项公式;(2)将数列{}n a 中的第2项,第4项,…,第n 2项按原来的顺序排成一个新数列{}n b ,求数列{}n a 的前n 项和n T ;33. 如图所示的平面图形由4个腰长为4的等腰三角形和一个边长为2的正方形组成,(1)请画出沿虚线折起拼接后的多面体图形,并写出它的名称;(2)求该多面体中侧面与底面所成的二面角的余弦值;(3)求该多面体的体积;34. 点M 到椭圆1316422=+y x 右焦点2F 的距离和它到经过左焦点1F 且与x 轴垂直的直线距离相等,(1)求点M 的轨迹方程;(2)若正方形ABCD 的顶点A 、B 在点M 的轨迹上,顶点C ,D 在直线4+=x y 上,求正方形的边长;。

2018年浙江省高职考数学模拟试卷3

2018年浙江省高职考数学模拟试卷3

2018年浙江省高职考数学模拟试卷(三) 一、选择题 1. 已知{}c b a M ,,⊆,则满足该条件的集合M 有 ( )A. 5个B.6个C.7个D.8个2. “92=x ”是“3=x ”的 ( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件3. 函数)34(log 5.0-=x y 的定义域是 ( ) A.⎥⎦⎤ ⎝⎛1,43 B.]1,(-∞ C.)1,(-∞ D.⎪⎭⎫ ⎝⎛1,43 4. 下列函数在定义域内为单调递增函数的是 ( )A.121)(-⎪⎭⎫ ⎝⎛=xx f B.x x f lg )(= C.x x y 32+= D.x y cos = 5. 设0<a ,01<<-b ,那么下列各式中正确的是 ( )A.2ab ab a >>B.a ab ab >>2C.2ab a ab >>D.a ab ab >>2 6. 已知32)2(2-=x x f ,则)2(f 等于 ( ) A.0 B.1- C.21- D.3 7. 双曲线8422=-x y 的两条渐近线方程为 ( )A.x y 2±=B. x y 2±=C.y x 2±=D. y x 2±=8. 下列四个命题中,正确的一个命题是 ( )A.若a 、b 是异面直线,b 、c 是相交直线,则a 、c 是异面直线B.若两条直线与同一平面所成的角相等,则该两条直线平行C.若两个平行平面与第三个平面相交,则交线平行D.三个平面两两相交,有三条交线,则这三条交线互相平行9. 运用空间想象力判定下列四个图中不能折成正方体的是 ( )10. 已知直线的方程为)1(33+-=-x y ,则此直线的倾斜角α和必定经过的点的坐标分别是 ( )A.32πα=,)1,3(-PB. 32πα=,)3,1(-PC. 3πα-=,)1,3(-PD. 3πα-=,)3,1(-P 11. 在ABC ∆中,若B A B A sin sin cos cos >,则此三角形形状为 ( )A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形12. 已知α为第二象限角,则)cos(απ-等于 ( )A.αsinB.αsin -C.αcosD.αcos -13. 在三角形ABC 中,点D 为BC 的中点,若a AB =,b BC =,则AD 等于 ( )A.)(21b a +B. )(21b a -C. b a 21+D. b a 21- 14. 直线01=++y x 与圆2)1()1(22=++-y x 的位置关系是 ( )A.相切B.相离C. 相交但不过圆D.相交且过圆心15. 不等式132>-x 的解集为 ( )A. (]),2(1,+∞∞-YB. )2,1(C. ),2()1,(+∞-∞YD.),2[]1,(+∞-∞Y16. 等比数列的前四项依次为a ,x 2,b ,x 3,则a 与b 的比是 ( ) A. 2:3 B. 3:2 C. 3:5 D.5:317. 若0<x ,要使xx 94+取得最大值,则x 必须等于 ( ) A.23 B.23- C.12 D.12- 18. 如图所示,函数)sin(ϕω+=x A y 的一部分图像,A 、B 是图像上的一个最高点和最低点,O 为坐标原点,则OB 为 ( )A.⎪⎭⎫ ⎝⎛1,2π B. ⎪⎭⎫ ⎝⎛-1,2π C. ⎪⎭⎫ ⎝⎛1,23π D. ⎪⎭⎫ ⎝⎛-1,23π二、填空题 19. 不等式01242≥--x x 的解集为 ;20. 如右图所示,用火柴摆成正方形图形,则第50个图形需用火柴棒 根; 21. 若函数⎪⎪⎩⎪⎪⎨⎧<+-=>-=0,430,20,43)(22x x x x x x f ,则[]=)1(f f ;22. 若椭圆1422=+m y x 的焦点在x 轴上,离心率为21,则=m ; 23. 已知3tan -=α,则=+-+ααααcos sin 3cos 2sin ; 24. 两直线03134=+-y x ,0768=+-y x 之间的距离为 ;25. 若nx x ⎪⎪⎭⎫ ⎝⎛-2的展开式中,第4项为常数项,则=n ; 26. 函数4)(2++=bx x x f 在[)+∞,1上递增,则b 的取值范围是 ; 三、解答题27. 计算:()314cos 231log 064.0412273121π+-+⎪⎭⎫ ⎝⎛; 28. 在ABC ∆中,︒=∠60A ,6=AC ,3220=∆ABC S ,求边BC 的长;29. 在等差数列{}n a 中,公差0≠d ,是1a ,7a 的等比中项,且28731=++a a a ,求此数列前10项的和;30. 求与直线0443=+-y x 垂直,且与圆03222=--+x y x 相切的直线方程;31. 已知函数x x x x f 2sin 2cos sin 32)(-=,求函数)(x f 的最值和最小正周期; 32. 如图所示,底面边长为a 的正四棱锥ABCD S -的各侧面均为正三角形,SO 是正四棱锥的高,求:(1)异面直线SA 与BD 的夹角;(2)侧面SBC 与底面ABCD 所成角的正切值;33. 蒙牛公司为促销,推出免费抽奖活动,每位顾客凭超市购物小票,抽奖次,抽奖箱内有十个黄球(每个10分)和十个白球(每个5分),随机抽出十个球计算总分,(1)共有多少种不同的结果?(2)摸到100分有多少种可能?(3)摸到75分的概率是多少?34. 已知抛物线的顶点在原点,对称轴是x 轴,抛物线上点),3(m M 到焦点的距离等于4,(1)求抛物线的方程;(2)设直线b x y +=2与抛物线相交于A 、B 两点,弦AB 的长为53,求ABO ∆的面积;。

(完整版)近五年浙江三角函数高考真题

(完整版)近五年浙江三角函数高考真题

近五年浙江三角函数高考真题一、(2013理)4.已知函数()cos()(0,0,R)f x A x A ωφωφ=+>>∈,则“()f x 是奇函数”是“2πφ=”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.已知R,sin 2cos ααα∈+=tan2α= A .43B .34 C .34-D .43-16.在△ABC 中,90C ∠=,M 是BC 的中点.若1sin 3BAM ∠=,则sin BAC ∠= .(2013文)3.(与理4姐妹题)若R α∈,则“0α=”是“sin cos αα<”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件6.函数()sin cos f x x x x =+的最小正周期和振幅分别是 A .π,1 B .π,2 C .2π,1 D .2π,218.在锐角△ABC 中,内角,,A B C 的对边分别为,,a b c ,且2sin a B =. (Ⅰ)求角A 的大小;(Ⅱ) 若6,8a b c =+=,求△ABC 的面积.二、(2012理)4.把函数cos21y x =+的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是18.(14分)在△ABC 中,内角,,A B C 的对边分别为,,a b c .已知C B A cos 5sin ,32cos ==. (1)求tan C 的值;(2)若2a =ABC 的面积.(2012文) 6.(同理4)18.( 14分)在△ABC 中,内角,,A B C 的对边分别为,,a b c ,且sin 3cos b A a B =. (Ⅰ)求角B 的大小;(Ⅱ)若3,sin 2sin b C A ==,求,a c 的值.三、(2011理) 6.若0,022ππαβ<<-<<,1cos()43πα+=,3cos()42πβ-=,则cos()2βα+= A 3B .3C 53D .618.(14分)在△ABC 中,角,,A B C 所对的边分别为,,a b c .已知sin sin sin (R)A C pB p +=∈,且214ac b =.(Ⅰ)当5,14p b ==时,求,a c 的值;(Ⅱ)若角B 为锐角,求p 的取值范围.(2011文)5.在ABC ∆中,角C B A ,,所对的边分别是c b a ,,,若B b A a sin cos =,则=+B A A 2cos cos sin(A )21-(B )21 (C )1- (D )118.(14分)已知函数()sin ()3f x A x πϕ=+,x R ∈,0A >,02πϕ<<.()y f x =的部分图像如图所示,P 、Q 分别为该图像的最高点和最低点,点P 的坐标为(1,)A .(Ⅰ)求()f x 的最小正周期及ϕ的值; (Ⅱ)若点R 的坐标为(1,0),23PRQ π∠=,求A 的值.三、(2010理) 4.设02x π<<,则“2sin 1x x <”是“sin 1x x <”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件9.设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是 (A )[]4,2-- (B )[]2,0- (C )[]0,2 (D )[]2,4 11.函数2()sin(2)224f x x x π=--的最小正周期是__________________ .18. (l4分)在△ABC 中,角,,A B C 所对的边分别为,,a b c ,已知1cos24C =-.(I)求sin C 的值;(Ⅱ)当2,2sin sin a A C ==时,求b 及c 的长. (2010文) 6.(同理4)12.(与理11姐妹题)函数2()sin (2)4f x x π=-的最小正周期是18.(本题满分)在△ABC ,角,,A B C 所对的边分别为,,a b c ,设S 为△ABC 的面积,满足2223()4S a b c =+-. (Ⅰ)求角C 的大小; (Ⅱ)求sin sin A B +的最大值.三、(2009理)8.已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是D 【命题意图】此题是一个考查三角函数图象的问题,但考查的知识点因含有参数而丰富,结合图形考查使得所考查的问题形象而富有深度.18.(14分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足25cos25A =,3=⋅AC AB .(I )求ABC ∆的面积; (II )若6b c +=,求a 的值. (2009文) 10.(同理8) 18.(同理18)。

专题16 三角函数与三角恒等变换-2018年高考数学母题题源系列(浙江专版)

专题16 三角函数与三角恒等变换-2018年高考数学母题题源系列(浙江专版)

专题十六 三角函数与三角恒等变换【母题原题1】【2018浙江,18】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ().(Ⅰ)求sin (α+π)的值;(Ⅱ)若角β满足sin (α+β)=,求cos β的值.【答案】(Ⅰ) , (Ⅱ)或(Ⅱ)由角的终边过点得,由得.由得,所以或.点睛:三角函数求值的两种类型:(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异. ①一般可以适当变换已知式,求得另外函数式的值,以备应用; ②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.【母题原题2】【2017浙江,18】已知函数()()22f x sin x cos x x R =--∈(I )求2f 3π⎛⎫⎪⎝⎭的值 (II )求()f x 的最小正周期及单调递增区间.【答案】(I )2;(II )()f x 的最小正周期是π, 2+k +k k 63Z ππππ⎡⎤∈⎢⎥⎣⎦,.【解析】试题分析:本题主要考查三角函数的性质及其变换等基础知识,同时考查运算求解能力.满分14分.(Ⅰ)由函数概念2222222sin cos cos 33333f πππππ⎛⎫=--⎪⎝⎭,计算可得;(Ⅱ)化简函数关系式得()sin y A x ωφ=+,结合2T πω=可得周期,利用正弦函数的性质求函数的单调递增区间.(Ⅱ)由22cos2cos sin x x x =-与sin22sin cos x x x =得()cos2f x x x =-.2sin 26x π⎛⎫=-+ ⎪⎝⎭.所以()f x 的最小正周期是π. 由正弦函数的性质得3222,262k x k k Z πππππ+≤+≤+∈, 解得2,63k x k k Z ππππ+≤≤+∈, 所以, ()f x 的单调递增区间是2,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,.【母题原题3】【2016浙江,文11理10】已知2cos 2x+sin 2x=Asin(ωx+φ)+b(A >0),则A=______,b=________.,1【解析】22cos sin 2)14x x x π+=++,所以 1.A b == 【考点】降幂公式,辅助角公式.【思路点睛】解答本题时先用降幂公式化简2cos x ,再用辅助角公式化简cos2sin 21x x ++,进而对照()sin Αx b ωϕ++可得Α和b 的值.【命题意图】考查三角函数的概念、三角公式、三角恒等变换、三角函数的图象和性质,考查数学式子变形能力、运算求解能力、数形结合思想及分析问题与解决问题的能力.【命题规律】近几年高考在对三角恒等变换考查的同时,对三角函数图象与性质的考查力度有所加强,往往将三角恒等变换与图象和性质结合考查,往往先利用三角公式进行化简,然后进一步研究三角函数的性质.其中三角函数的定义域值域、单调性、奇偶性、周期性、对称性以及图象变换是主要考查对象,难度仍然以中低档为主,重在对基础知识的考查,淡化特殊技巧,强调通解通法. 【答题模板】求解2017年一类问题,一般考虑: 第一步:化简三角函数式成为()sin y A x ωϕ=+的形式. 第二步:代入计算函数值.第三步:将x ωϕ+视为一个整体,利用正弦函数的性质,按要求运算求解. 【方法总结】1. 三角函数恒等变换要注意:(1)观察式子:主要看三点① 整体观察:整个表达式是以正余弦为主,还是正切(大多数情况是正余弦),确定后进行项的统一(有句老话:切割化弦)② 确定研究对象:是以x 作为角来变换,还是以x 的表达式(例如2x )看做一个角来进行变换.③ 式子是否齐次:看每一项(除了常数项)的系数是否一样(合角公式第二条:齐一次),若是同一个角(之前不是确定了研究对象了么)的齐二次式或是齐一次式,那么很有可能要使用合角公式,其结果成为()()sin f x A x ωϕ=+的形式.例如:齐二次式:2sin 2cos sin 2y x x x =-+,齐一次式:sin cos 6y x x π⎛⎫=++⎪⎝⎭(2)向“同角齐次正余全”靠拢,能拆就拆,能降幂就降幂:常用到前面的公式221cos21cos2cos ,sin 22αααα+-==,2sin cos sin2ααα=(还有句老话:平方降幂) 2.三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式; (2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”; (3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.3.变换技巧:(1)拆角、拼角技巧:2α=(α+β)+(α-β);β=α+β2-α-β2;α-β2=)2()2(βαβα+-+.(3)化简技巧:切化弦、“1”的代换等 4.,,A ωϕ的常规求法: (1)A :① 对于()sin y A x ωϕ=+可通过观察在一个周期中所达到的波峰波谷(或值域)得到 ② 对于()sin y A x b ωϕ=++可通过一个周期中最大,最小值进行求解:max min2y y A -= (2)ω:由2Tπω=可得:只要确定了()sin y A x ωϕ=+的周期,即可立刻求出ω,而T 的值可根据对称轴(最值点)和对称中心(零点)的距离进行求解① 如果()sin y A x ωϕ=+相邻的两条对称轴为(),x a x b a b ==<,则()2T b a =- ② 如果()sin y A x ωϕ=+相邻的两个对称中心为()()(),0,,0a b a b <,则()2T b a =- ③ 如果()sin y A x ωϕ=+相邻的对称轴与对称中心分别为(),,0x a b =,则4T b a =- 注:在()sin y A x ωϕ=+中,对称轴与最值点等价,对称中心与零点等价.(3)ϕ:在图像或条件中不易直接看出ϕ的取值,通常可通过代入曲线上的点进行求解,要注意题目中对ϕ的限制范围1.【浙江省金华十校2018年4月高考模拟】在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终边过点,则__________,__________.【答案】 02.【浙江省金华十校2018年4月高考模拟】已知函数,则函数的最小正周期__________,在区间上的值域为__________.【答案】【解析】函数的解析式:∴函数f(x)的最小正周期∴当时,,当时,,但取不到.所以值域为.3.【2018届浙江省绍兴市5月调测】已知函数,则____,该函数的最小正周期为_____. 【答案】 0【解析】分析:由题意首先化简函数的解析式,然后结合函数的解析式整理计算即可求得最终结果. 详解:由题意可得:.则,函数的最小正周期为:.4.【2017届四川省成都嘉祥外国语学校4月月考】在平面直角坐标系xOy 中,若角α的始边为x 轴的非负半轴,其终边经过点()2,4P . (1)求tan α的值;(2)求()22sin 2124cos απαπα-+-⎛⎫+ ⎪⎝⎭的值.【答案】(1)2;(2)53. 【解析】试题分析:(1)直接根据任意角三角函数的定义求解即可.(2)利用诱导公式化解,“弦化切”的思想即可解决.试题解析:(1)由任意三角函数的定义可得: 4tan 22α==. (2)()22sin 2cos 124απαπα-+-⎛⎫+ ⎪⎝⎭原式2sin cos 2tan 1415sin cos tan 1213αααααα+++====+++5.【2017届江苏省南京师范大学附属中学模拟二】已知角α的终边上有一点()1,2p , (1)求tan 4πα⎛⎫+⎪⎝⎭的值;(2)求5sin 26πα⎛⎫+ ⎪⎝⎭的值. 【答案】(1)3; (2) 【解析】【试题分析】(1)先依据正切函数的定义求出1tan tan1142tan ,tan 31241tan tan 142παπααπα++⎛⎫=+=== ⎪⎝⎭--进而求得;(2)依据1tan 2α=求得sin αα==555sin 2sin2cos cos2sin 2sin cos 666πππααααα⎛⎛⎫+=+= ⎪ ⎝⎭⎝⎭()21112cos 1?221252α⎛⎛⎫+-=+⋅-⋅ ⎪⎝⎭⎭=解:根据题意1tan ,sin 2ααα===, (1)1tan tan142tan 3141tan tan 142παπαπα++⎛⎫+=== ⎪⎝⎭--; (2)555sin 2sin2cos cos2sin 666πππααα⎛⎫++ ⎪⎝⎭2sin cos 2αα⎛⎫=- ⎪ ⎪⎝⎭()212cos 1?2α+-11221252⎛⎫⎛⎫=-+⋅-⋅⎪ ⎪⎪⎝⎭⎭310+=-. 6.【2018届江苏省盐城中学全仿真模拟】在平面直角坐标系中,以轴为始边作角,角的终边经过点.(I)求的值;(Ⅱ)求的值.【答案】(1);(2).【解析】分析:(1)由于角其终边经过点,故,,再利用两角和与差的正余弦公式即可;(2).则 ,.7.【浙江省杭州市2016-2017学年高二下学期期末】设A 是单位圆O 和x 轴正半轴的交点,P ,Q 是圆O 上两点,O 为坐标原点,∠AOP=π6,∠AOQ=α,α∈[0, π2]. (1)若Q 34,55⎛⎫ ⎪⎝⎭,求cos (α﹣π6)的值; (2)设函数f (α)=sin α•(OP OQ ⋅ ),求f (α)的值域.【答案】(1 (2)30,4⎡⎤⎢⎥⎣⎦【解析】试题分析:(1)由三角函数定义得34cos ,sin 55αα==,再根据两角差余弦公式得cos (α﹣π6)的值;(2)先根据向量数量积得31sin 2OP OQ αα⋅=+,再利用二倍角公式、配角公式得()1π1sin 2264f αα⎛⎫=-+ ⎪⎝⎭,最后根据正弦函数性质求值域试题解析:(1)由已知得34πππcos ,sin cos cos cos sin sin 55666ααααα⎛⎫==∴-=⋅+= ⎪⎝⎭(2)()11π1sin sin sin 22264f ααααα⎫⎛⎫=+=-+⎪ ⎪⎪⎝⎭⎝⎭()πππ5π30,2,0,26664f ααα⎡⎤⎡⎤⎤⎡∈∴-∈-∴∈⎦⎣⎢⎥⎢⎥⎣⎦⎣⎦8.【2018届浙江省绍兴市3月模拟】已知函数.(Ⅰ)求的最小正周期;(Ⅱ)若,且,求的值.【答案】(1) (2)【解析】试题分析:(1)第(Ⅰ)问,直接化简函数,再利用三角函数的周期公式求解. (2)第(Ⅱ)问,先解方程得到的值,再求的值.试题解析:(Ⅰ).即.所以的最小正周期.(Ⅱ)由,得,又因为,所以,即.所以.9.【2018届浙江省杭州市第二次检测】已知函数(Ⅰ)求的最小正周期和最大值;(Ⅱ)求函数的单调减区间【答案】(Ⅰ)最小正周期是,最大值是2.(Ⅱ)【解析】试题分析:利用两角和与差的余弦公式,二倍角的三角函数公式和辅助角公式化简,即可得到的最小正周期和最大值先求出,再求单调区间解析:(Ⅰ)因为,所以.所以函的最小正周期是,最大值是2.(Ⅱ)因为,所以单调递减区间为10.【2018届浙江省温州市9月一模】已知函数.(1)求的值;(2)求的最小正周期及单调递增区间.【答案】(1);(2),().【解析】试题分析:(1)将代入,由两角和的余弦公式结合特殊角的三角函数可得结果;(2)将展开与相乘后利用余弦的二倍角公式以及辅助角公式可得,根据周期公式可得的最小正周期,根据利用正弦函数的单调性,解不等式即可得到单调递增区间.试题解析:(1).(2).所以,的最小正周期为,当()时,单调递增,即的单调递增区间为().11.【腾远2018年(浙江卷)红卷】已知函数.(1)求的值;(2)当时,求函数的取值范围.【答案】(1)1;(2).【解析】分析:(1)由三角恒等变换的公式化简得,即可求解的值;(2)由(1)得,当时,得,即可求解的取值范围. 详解:(1),则.(2)由(1)得,当时,, 则, 即的取值范围为.12.【2018届浙江省宁波市高三上期末】已知函数()22sin cos 12sin f x x x x =+-.(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值.【答案】(Ⅰ) π,最小值为12-.(Ⅱ)因为34x ππ-≤≤,所以5321244x πππ-≤+≤.当242x ππ+=,即8x π=时, ()f x 当52412x ππ+=-,即3x π=-时,()221sin cos 3332f x f πππ⎛⎫⎛⎫⎛⎫=-=-+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.即()f x 的最小值为12-.。

2018版高考数学浙江专用专题复习 专题4 三角函数、解三角形 第21练 含解析 精品

2018版高考数学浙江专用专题复习 专题4 三角函数、解三角形 第21练 含解析 精品

一、选择题1.(2016·鹤岗期末)已知角α的终边上有一点P (1,3),则sin (π-α)-sin ⎝⎛⎭⎫π2+αcos ⎝⎛⎭⎫3π2-α+2cos (-π+α)的值为( )A .-25B .-45C .-47D .-42.(2016·黑龙江哈三十二中期中)已知α是第二象限角,tan α=-815,则sin α等于( )A.18B .-18C.817D .-8173.(2016·铜川模拟)1+2sin (π-3)cos (π+3)化简的结果是( ) A .sin 3-cos 3B .cos 3-sin 3C .±(sin 3-cos 3)D .以上都不对4.(2016·安徽太和中学月考)已知sin ⎝⎛⎭⎫π4+α=32,则sin ⎝⎛⎭⎫3π4-α的值为( ) A.12B .-12C.32D .-325.设a =sin 33°,b =cos 55°,c =tan 35°,则( ) A .a >b >c B .b >c >a C .c >b >aD .c >a >b6.(2016·浙江富阳二中质检)若sin x ·cos x =18且π4<x <π2,则cos x -sin x 的值是( )A .±32B.32C .-32D .±127.(2016·宜昌测试)已知A =sin (k π+α)sin α+cos (k π+α)cos α(k ∈Z ),则A 构成的集合是( )A .{-1,1,-2,2}B .{1,-1}C .{2,-2}D .{-2,-1,0,1,2}8.(2016·诸暨市高中毕业班教学质量检测)已知θ为钝角,且sin θ+cos θ=15,则tan 2θ等于( ) A .-247B.247C .-724D.724二、填空题9.(2016·安庆期中)已知角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直线3x -y =0上,则sin θ+cos (π-θ)sin ⎝⎛⎭⎫π2-θ-sin (π+θ)=________.10.(2016·杭州市学军中学高考模拟考试)若2sin α-cos α=5,则sin α=________,tan(α-π4)=________. 11.若cos ⎝⎛⎭⎫π6-θ=33,则cos ⎝⎛⎭⎫5π6+θ-sin 2⎝⎛⎭⎫θ-π6 =____________.12.化简:sin ⎝⎛⎭⎫2kπ+2π3·cos ⎝⎛⎭⎫kπ+4π3(k ∈Z)=________________.答案解析1.A 2.C 3.A4.C [由3π4-α=π-⎝⎛⎭⎫π4+α, 知sin ⎝⎛⎭⎫3π4-α=sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π4+α =sin ⎝⎛⎭⎫π4+α=32.] 5.C [∵a =sin 33°,b =cos 55°=sin 35°,c =tan 35°=sin 35°cos 35°,又0<cos 35°<1,∴c >b >a .]6.C [∵π4<x <π2,∴cos x -sin x <0,∴(cos x -sin x )2=1-2sin x ·cos x =1-2×18=34,∴cos x -sin x =-32.故选C.] 7.C [当k 为偶数时,sin(k π+α)=sin α,cos(k π+α)=cos α,原式的值为2;当k 为奇数时,sin(k π+α)=-sin α,cos(k π+α)=-cos α,原式的值为-2.故选C.]8.B [由sin θ+cos θ=15,得(sin θ+cos θ)2=125,即2sin θcos θ=-2425,亦即sin 2θ=-2425.因为θ为钝角,且sin θ+cos θ=15>0,所以θ∈(π2,34π),所以2θ∈(π,32π),即cos 2θ<0,所以cos 2θ=-725,所以tan 2θ=247,故选B.]9.12解析 ∵角θ的顶点坐标为原点,始边与x 轴正半轴重合,终边在直线3x -y =0上,可得tan θ=3. ∴sin θ+cos (π-θ)sin ⎝⎛⎭⎫π2-θ-sin (π+θ)=sin θ-cos θcos θ+sin θ=tan θ-11+tan θ=3-11+3=12.10.253 解析 由题意得2sin α-5=cos α,即(2sin α-5)2=cos 2α,所以(2sin α-5)2=1-sin 2α,解得sin α=25,所以cos α=-15,所以tan α=-2, 所以tan(α-π4)=tan α-tanπ41+tan αtanπ4=-2-11-2=3. 11.-2+33解析 因为cos ⎝⎛⎭⎫5π6+θ=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-θ =-cos ⎝⎛⎭⎫π6-θ=-33, sin 2⎝⎛⎭⎫θ-π6=⎣⎡⎦⎤-sin ⎝⎛⎭⎫π6-θ2 =1-cos 2⎝⎛⎭⎫π6-θ =1-⎝⎛⎭⎫332=23, 所以cos ⎝⎛⎭⎫5π6+θ-sin 2⎝⎛⎭⎫θ-π6=-33-23=-2+33. 12.⎩⎨⎧34,k 为奇数,-34,k 为偶数解析 当k 为奇数时,原式=sin 2π3·⎝⎛⎭⎫-cos 4π3 =sin(π-π3)·⎣⎡⎦⎤-cos ⎝⎛⎭⎫π+π3 =sin π3·cos π3=32×12=34.当k 为偶数时, 原式=sin2π3·cos 4π3=sin ⎝⎛⎭⎫π-π3·cos ⎝⎛⎭⎫π+π3 =sin π3·⎝⎛⎭⎫-cos π3 =32×⎝⎛⎭⎫-12=-34.。

2010到2018年浙江高职考试题汇编(三角函数)

2010到2018年浙江高职考试题汇编(三角函数)
52、(2017-16-3)函数y=sin2x的图像如何平移得到函数 的图像
A.向左平移 个单位B.向右平移 个单位
C.向左平移 个单位D.向右平移 个单位
52、(2017-18-3)已知函数
A. B. C. D.
__________.
54、(2017-31-8)如图平行四边形ABCD中,AB=3,AD=2,AC=4。
A、1:2:3 B、 C、1:4:9 D、
25、(2013-21-3)求值: =______.。
26、(2013-26-3)给出 ,在所给的直角坐标系中画出角 的图象______。
27、(2013-30-8)若角 的终边是一次函数 ( )所表示的曲线,求 。
28、(2013-31-8)在直角坐标系中,若 , , ,求△ 的面积 。
48、(2016-28-6)已知 是第二象限角, ,
(1)求 ;(3分)
(2)锐角 满足 ,求 。(3分)
49、(2016-31-7)在△ 中, , ,∠ =30°,求∠ 的大小。
50、(2017-4-2)角 是
A,第一象限角B,第二象限角C,第三象限角D,第四象限角
51、(2017-7-2)
A. B. C. D.
29、(2014-6-2)若 是第二象限角,则 是()
A、第一象限角B、第二象限角C、第三象限角D、第四象限角
30、(2014-10-2)已知角 终边上一点 ,则 =()
A、 B、 C、 D、
31、(2014-11-2)计算: =()
A、 B、 C、 D、
32、(2014-14-2)函数 的最小值和最小正周期分别为()
21、(2013-8-2)若 , 为第四象限角,则 =()

浙江高职考数学试卷精选文档

浙江高职考数学试卷精选文档

浙江高职考数学试卷精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-2018年浙江省单独考试招生文化考试数学试题卷本试题卷共三大题,共4页.满分150分,考试时间120分钟.考生事项:1.答题前,考试务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本题卷上的作答一律无效.一、单项选择题(本大题共20小题,1-10小题每小题2分,11-20小题每小题3分,共50分) (在每小题列出的四个备选答案中,只有一个是符合题目要求的,错涂,多涂或未涂均不得分)1. 已知集合{}4,2,1=A ,{}7,5,3,1=B ,则=⋃B A A. {1} B. {1,3,5,7} C. {1,2,3,4,5,7} D.{1,2,4} 2. 函数()x x x f lg 1+-=的定义域为A. ]1,(-∞B. ]1,0(C. ]1,0[D.)1,0(3. 下列函数在区间()∞+,0上单调递减的是 A. x e y = B. 2x y = C. xy 1=D.x y ln = 4. 在等差数列{}n a 中,5321=++a a a ,11432=++a a a ,则公差d 为 A. 6 B. 3 C. 1 D. 25. 过原点且与直线012=--y x 垂直的直线方程为 A. 2x+y=0 B. 2x-y=0 C. x+2y=0 D. x-2y=06. 双曲线191622=-y x 的焦点坐标为 A. ()07,± B. ()70±, C. ()05,± D. ()50±, 7. 函数⎪⎭⎫ ⎝⎛-=3sin 2πx y 的图像是8. 点()1,1-P 关于原点的对称点的坐标为 A. (-1,-1) B. (1,-1) C. (-1,1) D. (1,1)9. 抛物线y x 212=的焦点到其准线的距离是A. 81B. 41C. 21D. 110. 方程()()10332222=+-+++y x y x 所表示的曲线为A. 圆B. 椭圆C. 双曲线D. 抛物线 11. 不等式231≥-x 的解集是A. ]31,(--∞B. ),1[]31,(+∞--∞C. ]1,31[- D. ),1[+∞12. 命题0:=αp 是命题0sin :=αq 的A. 充分不必要条件B. 必要不充分条件C. 充要条件D.既不充分也不必要条件 ++OEOC OA 13. 如图所示,点O 是正六边形ABCDEF 的中心,则A. B. C. D. 014. 用0,1,2,3四个数字可组成没有重复数字的三位数共有 A. 64个 B. 48个 C. 24个 D. 18个 15. 若m =︒2018cos ,则()=︒-38cosA. 21m -B. 21m --C. mD. -m 16. 函数x x x y 2cos 23cos sin +=的最小值和最小正周期分别为 A. 1,π B. -1,π C. 1,2π D. -1,2π 17. 下列命题正确的是A.垂直于同一平面的两个平面垂直B.垂直于同一平面的两条直线垂直C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行 18. 若()()0tan sin <+⋅-θππθ,则θ所在象限为A. 第二或第三象限B. 第一或第四象限C.第三或第四象限D.第一或第二象限 19. 二项式()()*,21N n n x n∈≥-展开式中含2x 项的系数为A. 2n CB. 2n C -C. 1n CD. 1n C -20. 袋中装有5个红球,3个白球,一次摸出两个球,恰好都是白球的概率是A. 143B. 32C. 283D. 563二、填空题(本大题共7小题,每小题4分,共28分) 21. 过点)2,3(-A 和)2,1(-B 的直线的斜率为22. 设函数()⎪⎩⎪⎨⎧≤+>=0,120,sin x x x x xx f ,则()[]=πf f23. 双曲线18222=-y a x 的离心率3=e ,则实半轴长=a 24. 已知2572cos =α,⎪⎭⎫⎝⎛∈20πα,,则=αtan 25. 在等比数列{}n a 中,0>n a ,431=⋅a a ,则=22log a26. 如图所示,相传这个图形表达了古希腊数学家阿基米德最引为自豪的发现:圆柱内切一个球,球的直径与圆柱的高相等,则圆柱的体积与球的体积之比等于圆柱的全面积与球的表面积之比,这个比值为27. 函数()x x x f --+⨯=31229的最小值为三、解答题(本大题共9小题,共74分)(解答题应写出文字说明及演算步骤)28. 计算:()2213122365sin 1log 3tan 821-+⎪⎭⎫ ⎝⎛+-+⨯⎪⎭⎫ ⎝⎛-ππ29. 在ABC ∆中,︒=∠45A ,22=b ,6=c ,求: (1)三角形的面积ABC S ∆;(2)判断ABC ∆是锐角、直角还是钝角三角形。

2018浙江高职考数学卷

2018浙江高职考数学卷

绝密★启用前2017年浙江省单独考试招生文化考试数学试题卷姓名: 准考证号:本试题卷共三大题,共4页。

满分150分,考试时间120分钟考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

一、 单项选择题:(本大题共20小题,1-12小题每小题2分,13-20小题每小题3分,共48分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的。

错涂、多涂或未涂均无分)。

1. 已知集合{}{}-1,0,1,3,A B x x x N AB ==<∈=,则,则A B =A.{}1012-,,,B.{}1123-,,,C.{}012,,D.{}01,2.23456已知数列:,-,,-,,...按此规律第7项为34567A.78B.89 C.7-8D.89-3.∈若xR,下列不等式一定成立的是A.>52xxB.->-52x xC.>20xD.+>++22(1)1x x x4、角︒2017是A,第一象限角 B,第二象限角 C,第三象限角 D,第四象限角5.=+1直线的倾斜角为2y 若函数,则A.30︒B.60︒C.120︒D.150︒6.++=+=12直线L 210与直线L :30的位置关系是yA.平行B.垂直C.重合D.非垂直相交7.在圆:22+y -6x-7=0x 的内部的点是A.(0B.(7,0)C.(-2,0)D.(2,1)8.函数=+f()1x x 的定义域为A.-+∞[2,)B.-+∞(2,)C.---+∞[2,1)(1,)D.--∞(2,1)(-1,+)9.命题p:a=1,命题q:-=2(a 1)0,p 是q 的A.充分且必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件10.在∆中,向量表达式正确的是ABC 是 A.+=AB BC CAB.AB CA BC -=C.-=AB AC CBD.0AB BC CA ++=11.如图,在数轴上表示的区间是下列那个不等式的解集A.260x x --> B.260x x --≥C.1522x -≥ D.302x x -≥+ 12. 22已知椭圆方程:4x +3y =12,下列说法错误的是A .焦点为(0,-1),(0,1)B. =1离心率2eC.长轴在x 轴上D.短轴长为13.121212下列函数中,满足“在其定义域上任取,,若,则()()?的函数为x x x x f x f x <>A.3y x=B.32xy =-C.1()2xy -= D.ln y x =14.掷两枚骰子(六面分别标有1至6的点数)一次,掷出点数小于5的概率为A.16B.18 C.19D.51815.已知圆锥底面半径为4,侧面积为60,则母线长为A.152B.15C.152πD.15π16.函数y=sin2x 的图像如何平移得到函数sin(2)3y x π=+的图像A.向左平移6π个单位 B.向右平移6π个单位C.向左平移3π个单位 D.向右平移3π个单位17.设动点M 到1(F 的距离减去它到2F 的距离等于4,则动点M 的轨迹方程为A.221(2)49-=≤-x y x B.221(2)49-=≥x y x C.221(2)49-=≥y x x D.221(3)94-=≥x y x18.已知函数()3sin cos ,则f()=12f x x x π=+B. C. D. 19.某商场准备了5份不同礼品全部放入4个不同彩蛋中,每个彩蛋至少有一份礼品的放法有 A. 480种 B. 240种 C. 180种 D.144种 20.如图,在正方体ABCD-A ’B ’C ’D ’中,下列结论错误的是 A.'平面'A C BDC ⊥B. 平面AB ’D ’//平面BDC ’C.''BC AB ⊥D.平面''平面'AB D A AC ⊥二、填空题(本大题共8小题,每小题3分,共24分)21.点(2,-1)关于点(1,3)为中心的对称点坐标是A B ___________. 22.3 x 0设(),求[(1)]3 2 x>0x f x f f x ⎧≤=-⎨-⎩___________. 23.已知A(1,1)、B (3,2)、C(5,3),若=,则为AB CA λλ___________.24.等比数列{}n a 满足1234,a a a ++=45612a a a ++=,则其前9项的和9S = ___________. 25. 1已知sin(),则cos 23παα-==__________. 26.若11,则函数()21x f x x x <-=--+的最小值为___________. 27.设数列{}n a 的前n 项和为114,若1,2(),则n n n s a a s n N s +==∈=___________. 三、解答题(本大题共9小题,共74分) (解答题应写出文字说明及演算步骤)28.(本题满分6分)计算:132cos 3)27lg 0.013π++++29.(本题满分7分)等差数列{}n a 中,2413,9a a == (1)求1及公差a d ;(4分)(2)当n 为多少时,前n 项和n s 开始为负?(3分)30.(本题满分8分)如下是杨辉三角图,由于印刷不清在“”处的数字很难识别。

专题16三角函数与三角恒等变换-2018年高考数学母题题源系列(浙江专版)

专题16三角函数与三角恒等变换-2018年高考数学母题题源系列(浙江专版)

专题十六三角函数与三角恒等变换
【母题原题1】【2018浙江,18】已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P().
(Ⅰ)求sin(α+π)的值;
(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.
【答案】(Ⅰ),(Ⅱ)或
(Ⅱ)由角的终边过点得,
由得.
由得,
所以或.
点睛:三角函数求值的两种类型:
(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.
(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.
①一般可以适当变换已知式,求得另外函数式的值,以备应用;
②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.
【母题原题2】【2017浙江,18】已知函数
(I)求的值
(II)求的最小正周期及单调递增区间.
【答案】(I)2;(II)的最小正周期是,.
【解析】试题分析:本题主要考查三角函数的性质及其变换等基础知识,同时考查运算求解能力.满分14分. (Ⅰ)由函数概念,计算可得;(Ⅱ)化简函数关系式得,结合可得周期,利用正弦函数的性质求函数的单调递增区间.
(Ⅱ)由与得


所以的最小正周期是.
由正弦函数的性质得

解得,
所以,的单调递增区间是.
【母题原题3】【2016浙江,文11理10】已知2cos2x+sin 2x=Asin(ωx+φ)+b(A>0),则A=______,b=________.【答案】,
【解析】,所以
【考点】降幂公式,辅助角公式.
【思路点睛】解答本题时先用降幂公式化简,再用辅助角公式化简,进而对照。

2018年各地高考真题分类汇编(文)-三角函数---教师版(可编辑修改word版)

2018年各地高考真题分类汇编(文)-三角函数---教师版(可编辑修改word版)

2 3 330 三角函数和解三角形1.(2018 年全国 1 文科·8)已知函数 f ( x ) = 2 cos 2 x - sin 2x + 2 ,则 BA. f ( x ) 的最小正周期为 π,最大值为 3B. f ( x ) 的最小正周期为 π,最大值为 4C. f (x ) 的最小正周期为2π ,最大值为 3D. f (x ) 的最小正周期为2π ,最大值为 42.(2018 年全国 1 文科·11)已知角的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两点 A (1,a ) , B (2 ,b ) ,且cos 2= 2,则 a - b = B 3A.15 B. 5C. 25 5D .13.( 2018 年全国 1 文科· 16) △ ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c , 已知b s in C +c sin B = 4a sin B sin C , b 2 + c 2 - a 2 = 8 ,则△ABC 的面积为 .4. (2018 年全国 2 文科·7).在△ABC 中, cos C = 5 , BC = 1 , AC = 5 ,则 AB = AA. 4 2 5B. C . D .25.(2018 年全国 2 文科·10)若 f (x ) = cos x - sin x 在[0, a ] 是减函数,则 a 的最大值是 CA.π4B.π 2C. 3π4D. π6.(2018 年全国 2 文科·15)已知 tan(α -5π) = 1,则tan α = 3.4 527.(2018 年全国 3 文科·4)若sin= 1,则cos 2= B3A.89B.79C. - 79 D. - 89229 58.(2018 年全国 3 文科·6)函数 f (x) =tan x1+ tan2x的最小正周期为CA.πB.πC.πD.2π 4 29.(2018 年全国3 文科·11)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a2 +b2 -c2△ABC 的面积为4,则C =CππA.B.2 3ππ C.D.4 610.(2018 年北京文科·7)在平面直角坐标系中, AB, C D, E F , G H 是圆x2+y2= 1上的四段弧(如图),点P 在其中一段上,角以O为始边,OP 为终边,若tan< cos< sin,则P 所在的圆弧是C(A) AB (B)C D(C)E F (D)G H11.(2018 年北京文科·14)若△ABC 的面积为cB=60°;的取值范围是(2,+∞).a3(a2 +c2 -b2 ) ,且∠C 为钝角,则412.(2018 年天津文科·6)将函数y = sin(2x +图象对应的函数A ππ) 的图象向右平移个单位长度,所得5 107 (A )在区间[- π π, ] 上单调递增(B )在区间[- 4 4 π , 0] 上单调递减4π ππ(C )在区间[ , ] 上单调递增(D )在区间[ , π] 上单调递减4 2213.(2018 年江苏·7).已知函数 y = sin(2x +)(- π << π) 的图象关于直线 x = π对称,则的值是.2 2 314. (2018 年江苏·13)在△ABC 中,角 A , B , C 所对的边分别为 a , b , c , ∠ABC = 120︒ ,∠ABC 的平分线交 AC 于点 D ,且 BD = 1,则4a + c 的最小值为 9 .15.(2018 年浙江·13)在△ABC 中,角 A ,B ,C 所对的边分别为 a ,b ,c .若 a = ,b =2,A =60°,则 sin B =217 ,c = 3 .16.(2018 年北京文科·16)(本小题 13 分)已知函数 f (x ) = sin 2 x + 3 sin x cos x .(Ⅰ)求 f (x ) 的最小正周期;(Ⅱ)若 f (x ) 在区间[- π , m ] 上的最大值为 3,求m 的最小值.3216.(共 13 分)解:(Ⅰ)f (x ) = 1- cos 2x +3 sin 2x = 3 sin 2x - 1 cos 2x + 1 = sin(2x - π) + 1 ,2 2 2 2 2 6 2所以 f (x ) 的最小正周期为T =2π = π .2(Ⅱ)由(Ⅰ)知 f (x ) = sin(2x - π) + 1.6 2π π 5π π因为 x ∈[- , m ],所以2x - ∈[- , 2m - ] .3 6 6 67 π π 要使得 f (x ) 在[- π , m ] 上的最大值为 3 ,即sin(2x - π) 在[- π, m ] 上的最大值为 1.所以2m - ≥ 6 2 3 ,即 m ≥π 2 6 3π .学科&网 3所以m 的最小值为 .317.(2018 年天津文科·16)(本小题满分 13 分)在△ABC 中,内角 A ,B ,C 所对的边分别为 a ,b ,c .已知 b sin A =a cos(B – π).6(Ⅰ)求角 B 的大小;(Ⅱ)设 a =2,c =3,求 b 和 sin(2A –B )的值.(16)本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力.满分 13 分.( Ⅰ ) 解: 在△ ABC 中, 由正弦定理 a = sin A bsin B, 可得 b sin A = a sin B , 又由 b sin A = a cos(B - π) ,得 a sin B = a cos(B - π) ,即sin B = cos(B - π) ,可得tan B = 6 6 6.又因为 B ∈(0 ,π) ,可得 B = π.3(Ⅱ)解:在△ABC 中,由余弦定理及 a =2,c =3,B = π,有b 2 = a 2 + c 2 - 2ac cos B = 7 ,3故 b = .由 b s in A = a cos(B - π) , 可 得 6sin A =. 因 为 a <c , 故cos A =. 因 此sin 2 A = 2sin A cos A =4 3 , cos 2 A = 2 cos 2 A - 1 = 177所以, sin(2 A - B ) = sin 2 A cos B - cos 2 A sin B =4 3 ⨯ 1 - 1⨯ 3 = 3 3 7 2 7 2 1418.(2018 年江苏·16)(本小题满分 14 分)33 727已知,为锐角,tan=4,cos(+) =-5.3 5(1)求cos 2的值;(2)求tan(-)的值.16.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.满分14 分.解:(1)因为tan=4 ,tan=sin,所以sin=4 cos.3 cos 3因为sin2+c os2=1,所以cos2=9,25因此,cos 2= 2 cos2- 1 =-7 .25(2)因为,为锐角,所以+∈(0,π).又因为cos(+)=-5,所以sin(+)=5=2 5,5因此tan(+)=-2.因为tan=4,所以tan 2=32 tan1 -tan2=-24,7因此,tan(-) = tan[2- (+)] =tan 2- tan(+)=-2.1+ t an 2tan(+) 1119.(2018 年浙江·18)(本题满分14 分)已知角α 的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(-3,-4).5 5(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β 满足sin(α+β)= 5,求cosβ 的值.1318.本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力。

2014至2018浙江省《三角》高考真题汇编之二

2014至2018浙江省《三角》高考真题汇编之二

2014---2018浙江省《三角》高考真题汇编之二2016文 11. 已知,则______,b =______. 2016理 10.(6分)(2016•浙江)已知2cos 2x +sin2x=Asin (ωx +φ)+b (A >0),则A=______,b=______.2016文 16.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B . (Ⅰ)证明:A =2B ;(Ⅱ)若cos B =,求cos C 的值.2016理 16.(14分)(2016•浙江)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c=2acosB .(Ⅰ)证明:A=2B (Ⅱ)若△ABC 的面积S=,求角A 的大小.22cos sin 2sin()(0)x x A x b A ωϕ+=++>A =232017年浙江 11.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年.“割圆术”的第一步是计算单位圆内接正六边形的面积,.2017年浙江14.已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是______,cos ∠BDC =_______.2017年浙江 18.(本题满分14分)已知函数f (x )=sin 2x –cos 2x – sin x cos x (x R ).(Ⅰ)求的值.(Ⅱ)求的最小正周期及单调递增区间.2018年浙江省 13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a,b =2,A =60°,则sin B =___________,c =___________.2018年浙江省 18.(本题满分14分)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ().(Ⅰ)求sin (α+π)的值;(Ⅱ)若角β满足sin (α+β)=,求cos β的值.6S 6S =∈2()3f π()f x 3455-,-513。

(完整word)2018年浙江高职考数学试卷

(完整word)2018年浙江高职考数学试卷

2018年浙江省单独考试招生文化考试数学试题卷本试题卷共三大题,共4页.满分150分,考试时间120分钟.考生事项:1.答题前,考试务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本题卷上的作答一律无效.一、单项选择题(本大题共20小题,1-10小题每小题2分,11-20小题每小题3分,共50分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的,错涂,多涂或未涂均不得分)1. 已知集合{}4,2,1=A ,{}7,5,3,1=B ,则=⋃B A A. {1} B. {1,3,5,7} C. {1,2,3,4,5,7} D.{1,2,4} 2. 函数()x x x f lg 1+-=的定义域为A. ]1,(-∞B. ]1,0(C. ]1,0[D.)1,0(3. 下列函数在区间()∞+,0上单调递减的是 A. x e y = B. 2x y = C. xy 1=D.x y ln = 4. 在等差数列{}n a 中,5321=++a a a ,11432=++a a a ,则公差d 为 A. 6 B. 3 C. 1 D. 2 5. 过原点且与直线012=--y x 垂直的直线方程为A. 2x+y=0B. 2x -y=0C. x+2y=0D. x -2y=06. 双曲线191622=-y x 的焦点坐标为 A. ()07,± B. ()70±, C. ()05,± D. ()50±, 7. 函数⎪⎭⎫ ⎝⎛-=3sin 2πx y 的图像是8. 点()1,1-P 关于原点的对称点的坐标为A. (-1,-1)B. (1,-1)C. (-1,1)D. (1,1)9. 抛物线y x 212=的焦点到其准线的距离是 A. 81 B. 41 C. 21D. 110. 方程()()10332222=+-+++y x y x 所表示的曲线为A. 圆B. 椭圆C. 双曲线D. 抛物线 11. 不等式231≥-x 的解集是A. ]31,(--∞B. ),1[]31,(+∞--∞C. ]1,31[- D. ),1[+∞12. 命题0:=αp 是命题0sin :=αq 的A. 充分不必要条件B. 必要不充分条件C. 充要条件D.既不充分也不必要条件 13. 如图所示,点O 是正六边形ABCDEF 的中心,则=++OE OC OA A. AE B. EA C. 0 D. 0 14. 用0,1,2,3四个数字可组成没有重复数字的三位数共有 A. 64个 B. 48个 C. 24个 D. 18个 15. 若m =︒2018cos ,则()=︒-38cosA. 21m -B. 21m --C. mD. -m 16. 函数x x x y 2cos 23cos sin +=的最小值和最小正周期分别为 A. 1,π B. -1,π C. 1,2π D. -1,2π 17. 下列命题正确的是A.垂直于同一平面的两个平面垂直B.垂直于同一平面的两条直线垂直C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行 18. 若()()0tan sin <+⋅-θππθ,则θ所在象限为A. 第二或第三象限B. 第一或第四象限C.第三或第四象限D.第一或第二象限 19. 二项式()()*,21N n n x n∈≥-展开式中含2x 项的系数为A. 2n CB. 2n C -C. 1n CD. 1n C -20. 袋中装有5个红球,3个白球,一次摸出两个球,恰好都是白球的概率是A. 143B. 32C. 283D. 563二、填空题(本大题共7小题,每小题4分,共28分)21. 过点)2,3(-A 和)2,1(-B 的直线的斜率为22. 设函数()⎪⎩⎪⎨⎧≤+>=0,120,sin x x x x x x f ,则()[]=πf f23. 双曲线18222=-y a x 的离心率3=e ,则实半轴长=a 24. 已知2572cos =α,⎪⎭⎫⎝⎛∈20πα,,则=αtan 25. 在等比数列{}n a 中,0>n a ,431=⋅a a ,则=22log a26. 如图所示,相传这个图形表达了古希腊数学家阿基米德最引为自豪的发现:圆柱内切一个球,球的直径与圆柱的高相等,则圆柱的体积与球的体积之比等于圆柱的全面积与球的表面积之比,这个比值为27. 函数()x x x f --+⨯=31229的最小值为三、解答题(本大题共9小题,共74分)(解答题应写出文字说明及演算步骤)28. 计算:()2213122365sin 1log 3tan 821-+⎪⎭⎫ ⎝⎛+-+⨯⎪⎭⎫ ⎝⎛-ππ29. 在ABC ∆中,︒=∠45A ,22=b ,6=c ,求: (1)三角形的面积ABC S ∆;(2)判断ABC ∆是锐角、直角还是钝角三角形。

2018年浙江省高职考数学模拟试卷1

2018年浙江省高职考数学模拟试卷1

2018年浙江省高职考数学模拟试卷(一)一、选择题1. 若{}101≤≤=x x A ,{}10<=x x B ,则B A 等于 ( ) A.{}1≥x x B. {}10≤x x C.{}10,9,8,7,6,5,4,3,2,1 D. {}101<≤=x x A 2. 若2:=x p ,06:2=--x x q ,则p 是q 的 ( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3. 函数44)(22---=x x x f 的定义域是 ( )A.]2,2[-B.)2,2(-C.),2()2,(+∞--∞D.{}2,2-4. 在区间),0(+∞上是减函数的是 ( )A.12+=x yB. 132+=x yC.x y 2=D.122++=x x y 5. 若53sin +-=m m θ,524cos +-=m m θ,其中θ为第二象限角,则m 的值是 ( ) A.8=m B.0=m C.0=m 或8=m D. 4=m 或8=m6. 直线0=+-m y x 与圆01222=--+x y x 有两个不同交点的充要条件是 ( )A.13<<-mB.24<<-mC.10<<mD.1<m 7. 方程112222=++n y n x 所表示的曲线是 ( ) A.圆 B.椭圆 C.双曲线 D.点8. 若l 是平面α的斜线,直线⊂m 平面α,在平面α上的射影与直线m 平行,则 ( )A.l m //B.l m ⊥C.m 与l 是相交直线D. m 与l 是异面直线9. 若21cos sin cos sin =-+αααα,则αt a n 等于 ( ) A.31 B. 31- C.3 D.3- 10. 设等比数列{}n a 的公比2=q ,且842=⋅a a ,则71a a ⋅等于 ( )A.8B.16C.32D.6411. 已知64251606)21(a x a x a x a x ++++=+ ,则0a 等于 ( )A.1B.64C.32D.012. 已知一条直线经过点)2,3(-与点)2,1(--,则这条直线的倾斜角为 ( )A.︒0B.︒45C.︒60D.︒9013. 已知二次函数c bx ax y ++=2(0≠a ),其中a ,b ,c 满足039=+-c b a ,则该二次函数图像恒过定点 ( )A.)0,3(B.)0,3(-C.)3,9(D.)3,9(-14. ︒+︒15cos log 15sin log 22的值是 ( )A.1B.1-C.2D.2-15. 在ABC ∆中,已知8=a ,︒=∠60B ,︒=∠75C ,则b 等于 ( ) A.24 B. 34 C. 64 D.323 16. 若b a >,d c >,则下列关系一定成立的是 ( )A.bd ac >B.bc ac >C.d b c a +>+D.d b c a ->-17. 已知抛物线的顶点在原点,对称轴为坐标轴,且以直线01553=-+y x 与y 轴的交点为焦点,则抛物线的准线方程是 ( )A.y x 122-=B. y x 122=C.3-=xD.3-=y18. 点),(y x P 在直线04=--y x 上,O 为原点,则OP 的最小值是 ( ) A.10 B.22 C.2 D.2二、填空题19. 不等式138≥-x 的解集是 ;20. 已知点⎪⎭⎫ ⎝⎛43cos ,43sin ππP 落在角θ的终边上,且[)πθ2,0∈,则θ的值为 ;21. 5=,且),4(n =,则n 的值是 ;22. 若)2,1(-A ,)1,4(-B ,)2,(m C 三点共线,则m 的值为 ;23. 从数字1,2,3,4,5中任取2个数字组成没有重复数字的两位数,则这个两位数大于40的概率为 ;24. 已知1F 、2F 是椭圆192522=+y x 的焦点,过1F 的直线与椭圆交于M ,N 两点,则2MNF ∆的周长为 ;25. 若圆柱的母线长为a ,轴截面是正方形,则圆柱的体积为 ;26. 已知0>x ,则函数x xx f 312)(+=图像中最低点的坐标为 ; 三、解答题27. 函数1)(2+-=ax x x f ,且3)2(<f ,求实数a 的取值范围;28. 现从男、女共9名学生干部中选出1名男同学和1名女同学参加夏令营活动,已知共有20种不同的方案,若男生多于女生,求:(1)男女同学的人数各是多少?(2)共3选人且男生女生都要有的选法有多少种?29. 已知直线032:=--y x l 与圆9)3()2(22=++-y x 相交于P 、Q 两点,求(1)弦PQ 的长;(2)三角形POQ 的面积(O 为坐标原点); 30. 设三个数a ,b ,c 成等差数列,其和为6,且a ,b ,c +1成等比数列,求成等比数列的三个数; 31. 已知点)0,1(A 是双曲线122=-ny m x 上的点,且双曲线的焦点在x 轴上,(1)若*N n ∈,双曲线的离心率3<e ,求双曲线的方程;(2)过(1)中双曲线的右焦点作直线l ,该直线与双曲线交于A 、B 两点,直线l 与x 轴上的夹角为α,若弦长4=AB ,求角α的值;32. 在ABC ∆中,A ∠,B ∠都为锐角,6=a ,5=b ,21sin =B ,(1)求A si n 和C cos 的值;(2)设)2sin()(A x x f +=,求)(πf 的值;33. 如图所示,正三棱柱111C B A ABC -的底面边长为cm 4,截面ABD 与底面ABC 所成的角为︒30,求:(1)CD 的长;(2)三棱锥ABC D -的体积;34. 如图所示,在一张矩形纸的边上找一点,过这点剪下两个正方形,它的边长分别是AE ,DE ,已知12=AB ,8=AD ,问:(1)设x DE =,两正方形面积和为y ,列出y 与x 之间的函数关系式;(2)要使剪下的两个正方形的面积和最小,两正方形边长应各为多少?(3)两正方形面积和的最小值为多少?。

浙江三角函数十年真题,含答案

浙江三角函数十年真题,含答案

2
25
故 sin B sin( A C)
2015 浙江 16.(14 分)(2015•浙江)在△ABC 中,内角 A,B,C 所对的边分别为 a,b,c, 已知 A= ,b2﹣a2= c2.
(1)求 tanC 的值; (2)若△ABC 的面积为 3,求 b 的值. 解:(1)∵A= ,∴由余弦定理可得:
当 b≠0 时,f(x)=﹣ cos2x+bsinx+ +c,
∵y=cos2x 的最小正周期为π,y=bsinx 的最小正周期为 2π, ∴f(x)的最小正周期为 2π, 故 f(x)的最小正周期与 b 有关, 故选:B
4 所以 sin C 10 .
4
(Ⅱ)解:当 a 2, 2sin A sin C 时,
由正弦定理 a c ,得 c 4. sin A sin C
由 cos 2C 2 cos2 C 1 1 , 及 0 C 得 cos C 6 .
4
4
由余弦定理 c2 a2 b2 2ab cosC ,得 b2 6b 12 0
由 a 2 及正弦定理 a c ,得 sin A sin C
c 3.
设 ABC 的面积为 S ,则
S 1 ac sin B 5 .
2
2
2013•浙江
16.(4 分)(2013•浙江)△ABC 中,∠C=90°,M 是 BC 的中点,若

则 sin∠BAC=

解 解:如图 答: 设 AC=b,AB=c,CM=MB= ,∠MAC=β,
2010 年浙江 (18)(本题满分 l4 分)在△ABC 中,角 A、B、C 所对的边分别为 a,b,c,已知 cos 2C 1
4 (I)求 sinC 的值; (Ⅱ)当 a=2, 2sinA=sinC 时,求 b 及 c 的长. (Ⅰ)解:因为 cos 2C 1 2sin 2 C 1 ,及 0 C

专题04 三角函数与三角形 2018届高三数学考卷分项(浙江版)Word版含答案

专题04 三角函数与三角形 2018届高三数学考卷分项(浙江版)Word版含答案

第四章 三角函数与三角形一.基础题组1.【浙江省杭州市2018届高三上学期期末】在ABC ∆中,角,,A B C 所对的边分别为,,a b c , a =3b =, sin 2sin C A =,则sin A =__________ ;设D 为AB 边上一点,且2BD DA =,则BCD ∆的面积为 __________.【答案】522. 【浙江省嘉兴市2018届高三上学期期末】已知实数,x y 满足491x y +=,则1123x y +++的取值范围是_______.【答案】(【解析】设222,31,0,0cos ,sin ,0,2x y u v u v u v u v πθθθ⎛⎫==∴+=>>∴==∈ ⎪⎝⎭因此1123x y +++ ()2232cos 3sin ,tan ,0,34u v πθθθϕϕϕ⎛⎫⎛⎫=+=+=+=∈ ⎪ ⎪⎝⎭⎝⎭因为(]++sin +,1,2sin sin πϕθϕϕϕθϕϕ⎛⎫∈∴∈= ⎪⎝⎭,() ,所以223u v <+≤(点睛:利用三角函数的性质求范围,先通过变换把函数化为()sin y A x B ωϕ=++的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.3. 【浙江省嘉兴市2018届高三上学期期末】在锐角ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,若2C B =,则cb的取值范围是________.【答案】4.【浙江省宁波市2018届高三上学期期末】在锐角ABC ∆中,已知2A B =,则角B 的取值范围是__________,又若,a b 分别为角,A B 的对边,则ab的取值范围是__________. 【答案】 ,64ππ⎛⎫⎪⎝⎭【解析】 锐角ABC ∆中, 2A B =, ()3C A B B ππ∴=-+=-,由022{0 2032B B B ππππ<<<<<-<,可得cos 64B B ππ<<<<,2sin sin sin22cos 2sin sin sin a R A A B B b R B B B ====∈,故答案为(1),64ππ⎛⎫⎪⎝⎭;(2).5. 【浙江省台州市2018届高三上学期期末】已知α为锐角,且3tan 4α=,则sin2α= A.35 B. 45 C. 1225 D. 2425【答案】D 【解析】222322cos 2tan 42==9sin +cos tan 1116sin sin ααααααα⨯==++ 2425,故选D. 6. 【浙江省台州中学2018届高三上学期第三次统练】函数()()sin 2,02f x A x A πϕϕ⎛⎫=+≤> ⎪⎝⎭部分图象如图所示,且()()0f a f b ==,对不同的[]12,,x x a b ∈,若()()12f x f x =,有()12f x x +=( )A .()f x 在5,1212ππ⎛⎫-⎪⎝⎭上是减函数 B .()f x 在5,1212ππ⎛⎫-⎪⎝⎭上是增函数 C .()f x 在5,36ππ⎛⎫⎪⎝⎭上是减函数 D .()f x 在5,36ππ⎛⎫⎪⎝⎭上增减函数 【答案】B 【解析】考点:三角函数的图象与性质.【名师点睛】本题主要考查三角函数的图象与性质,属中档题;三角函数的图象与性质是高考的必考内容,根据函数图象确定解析式首先是由最大值与最小值确定A ,再根据周期确定ω,由最高点的值或最低点的值确定ϕ,求出解析式后再研究函数相关性质.7. 【2017年12月浙江省高三上学期期末热身】在ABC ∆中,角,,A B C 所对的边分别为,,a b c , S 为ABC ∆的面积,若2cos c a B =, 221124S a c =-,则ABC ∆的形状为__________, C 的大小为__________. 【答案】 等腰三角形 4C π=【解析】∵2cos c a B =∴根据正弦定理可得sin 2sin cos C A B =,即()sin 2sin cos A B A B += ∴()sin 0A B -= ∴A B =∴ABC ∆的形状为等腰三角形∵221124S a c =- ∴2222221111111sin 2444444ab C a a c a b c =+-=+- ∴222sin 2a b c C ab+-=由余弦定理可得222cos 2a b c C ab+-=∴sin cos C C =,即tan 1C = ∵()0,C π∈ ∴4C π=故答案为:等腰三角形,4π 8. 【浙江省部分市学校(新昌一中、台州中学等)2018届高三上学期9+1联考】设sin2sin αα=,()0,απ∈,则cos α=__________; tan2α=__________.【答案】129. 【浙江省嘉兴第一中学2018届高三9)A. 向右平移C. 向右平移【答案】B10. 【浙江省名校协作体2018届高三上学期测试】已知712sin cos 2225ππαα⎛⎫⎛⎫---+=⎪ ⎪⎝⎭⎝⎭,且04πα<<,则sin α=_____,cos α=_____.【答案】35 45【解析】()712sin cos cos sin sin cos 2225ππαααααα⎛⎫⎛⎫---+=-⋅-=== ⎪ ⎪⎝⎭⎝⎭又04πα<< ,则2212{ 25sin cos 1sin cos αααα=+= ,且0sin cos αα<<,可得34sin ,cos 55αα==11. 【浙江省镇海中学2018届高三上学期期中】设实数x 、y 满足22428x xy y -+=,则2x y +的最大值为__________, 224x y +的最小值________. 【答案】163【解析】由22428x xy y -+=得: ()2238x x y +-=.令 x y θθ=-=,解得:{x y θ==.26x y πθθθθ⎛⎫+=-=-=+ ⎪⎝⎭,当cos 16πθ⎛⎫+= ⎪⎝⎭时, 2x y +的最大值为()2222216814)8122833x y cos sin cos cos θθθθθθ+=+=+=++=.当cos 213πθ⎛⎫+=- ⎪⎝⎭时, 224x y +的最小值为163. 12. 【浙江省镇海中学2018届高三上学期期中】函数()2sin sin cos 1f x x x x =++的最小正周期是__________,单调递增区间是__________. 【答案】 π 3,88k k ππππ⎛⎫-+⎪⎝⎭, ()k Z ∈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13、(2011-33-8)已知函数 ,求:
(1)函数 的最小正周期;
(2)函数 的值域。
14、(2012-6-2)在0°~360°范围内,与 °终边相同的角是()
A、30°B、60°C、210°D、330°
15、(2012-11-2)已知 ,且 ,则 =()
A、 B、 C、 D、
16、(2012-21-3)化简: =______。
C、钝角三角形D、等腰直角三角形
45、(2016-17-2)已知 ,则 的解集为()
A、 B、 C、 D、
46、(2016-18-2)若我们把三边长为 、 、 的三角形记为△ ,则四个三角形△ ,△ ,△ ,△ 中,面积-24-3) 的最小值为______。
17、(2012-24-3)函数 ( )的最大值为______。
18、(2012-28-7)在△ 中,已知 , , °,求 和 。
19、(2012-30-7)已知函数 ,求:
(1) ;(2)函数 的最小正周期及最大值。
20、(2013-6-2)在0°~360°范围内,与1050°终边相同的角是()
A、330°B、60°C、210°D、300°
浙江省2010年到2018年高考试题汇编(三角函数)
1、(2010-4-3)关于余弦函数 的图象,下列说法正确的是()
A、通过点 B、关于 轴对称C、关于原点对称
D、由正弦函数 的图象沿 轴向左平移 个单位而得到
2、(2010-14-3)若 ,则 =()
A、 B、 C、 D、
3、(2010-15-3) 的值等于()
8、(2011-14-2)已知角 是第二象限角,则由 可推知 =()
A、 B、 C、 D、
9、(2011-16-2)如果角 的终边过点 ,则 的值为()
A、 B、 C、 D、
10、(2011-20-3) 的值等于______。
11、(2011-24-3)化简: =______。
12、(2011-27-6)在△ 中,若三边之比为 ,求△ 最大角的度数。
41、(2015-31-6)已知 ( )的最小正周期为 ,(1)求 的值;(2) 的值域。
42、(2015-32-7)在△ 中,若 ,∠ , ,求角 。
43、(2016-10-2)下列各角中,与 终边相同的是()
A、 B、 C、 D、
44、(2016-12-2)在△ 中,若 ,则△ 的形状是()
A、锐角三角形B、直角三角形
A、 B、 C、 D、
4、(2010-16-5) 弧度的角是第______象限的角。
5、(2010-20-5)已知角 为第二象限的角,且终边在直线 上,则角 的余弦值为______。
6、(2010-21-5)函数 的最大值、周期分别是______。
7、(2010-22-6)在△ 中,已知 , ,∠ ,求∠ 。
A、 B、 C、 D、
37、(2015-9-2)若 ,则 =()
A、 B、 C、 D、
38、(2015-14-2)已知 ,且 ,则 =()
A、 B、7 C、 D、
39、(2015-15-2)在△ 中,若三角之比 ,则 =()
A、1:1:4 B、1:1: C、1:1:2 D、1:1:3
40、(2015-20-3)若 ( ),则 =______。
(2)判断△ 是锐角、直角还是钝角三角形。(5分)
62、(2018-31-9)如图所示,点 是角 终边上一点,令点 与原点的距离保持不变,并绕原点顺时针旋转45°到 的位置,求:
(1) , ;(4分)
A、1:2:3 B、 C、1:4:9 D、
25、(2013-21-3)求值: =______.。
26、(2013-26-3)给出 ,在所给的直角坐标系中画出角 的图象______。
27、(2013-30-8)若角 的终边是一次函数 ( )所表示的曲线,求 。
28、(2013-31-8)在直角坐标系中,若 , , ,求△ 的面积 。
29、(2014-6-2)若 是第二象限角,则 是()
A、第一象限角B、第二象限角C、第三象限角D、第四象限角
30、(2014-10-2)已知角 终边上一点 ,则 =()
A、 B、 C、 D、
31、(2014-11-2)计算: =()
A、 B、 C、 D、
32、(2014-14-2)函数 的最小值和最小正周期分别为()
A、1, B、 , C、1, D、 ,
59、(2018-18-3)若 ,则 所在象限为()
A、第二或第三象限B、第一或第四象限C、第三或第四象限
A、第一或第二象限
60、(2018-24-4)已知 , ,则 =______。
61、(2018-29-8)在△ 中,∠ =45°, , ,求:
(1)三角形的面积 ;(3分)
52、(2017-16-3)函数y=sin2x的图像如何平移得到函数 的图像
A.向左平移 个单位B.向右平移 个单位
C.向左平移 个单位D.向右平移 个单位
52、(2017-18-3)已知函数
A. B. C. D.
__________.
54、(2017-31-8)如图平行四边形ABCD中,AB=3,AD=2,AC=4。
A、1和 B、0和 C、1和 D、0和
33、(2014-26-3)在闭区间 上,满足等式 ,则 =______。
34、(2014-27-6)在△ 中,已知 , , 为钝角,且 ,求 。
35、(2014-30-8)已知 , ,且 、 为锐角,求 。
36、(2015-5-2)已知角 ,将其终边按顺时针方向旋转2周得角 ,则 =()
48、(2016-28-6)已知 是第二象限角, ,
(1)求 ;(3分)
(2)锐角 满足 ,求 。(3分)
49、(2016-31-7)在△ 中, , ,∠ =30°,求∠ 的大小。
50、(2017-4-2)角 是
A,第一象限角B,第二象限角C,第三象限角D,第四象限角
51、(2017-7-2)
A. B. C. D.
(1)求 ;(4分)
(2)求平行四边形ABCD的面积。(4分)
55、(2017-32-9)在
(1)求sinB,并判断A是锐角还是钝角;(5分)
(2)求cosC(4分)
56、(2018-7-2)函数 的图象是()
57、(2018-15-3)若 ,则 =()
A、 B、 C、 D、
58、(2018-16-3)函数 的最小值和最小正周期分别为()
21、(2013-8-2)若 , 为第四象限角,则 =()
A、 B、 C、 D、
22、(2013-13-2) 的最后结果为()
A、正数B、负数C、正数或负数D、零
23、(2013-14-2)函数 的最大值和最小正周期分别为()
A、2, B、 , C、2, D、 ,
24、(2013-16-2)在△ 中,若 ,则三边之比 =()
相关文档
最新文档