摩擦学基础知识-磨损
摩擦与磨损
表面摩擦与磨损一、摩擦与磨损的定义摩擦的定义是:两个相互接触的物体在外力的作用下发生相对运动或者相对运动趋势时,在切相面见间产生切向的运动阻力,这一阻力又称为摩擦力。
磨损的定义是:任一工作表面的物质,由于表面相对运动而不断损失的现象。
据估计消耗在摩擦过程中的能量约占世界工业能耗的30%。
在机器工作过程中,磨损会造成零件的表面形状和尺寸缓慢而连续损坏,使得机器的工作性能与可靠性逐渐降低,甚至可能导致零件的突然破坏。
人类很早就开始对摩擦现象进行研究,取得了大量的成果,特别是近几十年来已在一些机器或零件的设计中考虑了磨损寿命问题。
在零件的结构设计、材料选用、加工制造、表面强化处理、润滑剂的选用、操作与维修等方面采取措施,可以有效地解决零件的摩擦磨损问题,提高机器的工作效率,减少能量损失,降低材料消耗,保证机器工作的可靠性。
二、摩擦的分类及评价方法在机器工作时,零件之间不但相互接触,而且接触的表面之间还存在着相对运动。
从摩擦学的角度看,这种存在相互运动的接触面可以看作为摩擦副。
有四种摩擦分类方式:按照摩擦副的运动状态分类、按照摩擦副的运动形式分类、按照摩擦副表面的润滑状态分类、按照摩擦副所处的工况条件分类。
这里主要以根据摩擦副之间的状态不同分类,摩擦可以分为:干摩擦、边界摩擦、流体摩擦和混合摩擦,如图2-1所示。
图2-1 摩擦状态1、干摩擦当摩擦副表面间不加任何润滑剂时,将出现固体表面直接接触的摩擦(见图2-1a),工程上称为干摩擦。
此时,两摩擦表面间的相对运动将消耗大量的能量并造成严重的表面磨损。
这种摩擦状态是失效,在机器工作时是不允许出现的。
由于任何零件的表面都会因为氧化而形成氧化膜或被润滑油所湿润,所以在工程实际中,并不存在真正的干摩擦。
2 、边界摩擦当摩擦副表面间有润滑油存在时,由于润滑油与金属表面间的物理吸附作用和化学吸附作用,润滑油会在金属表面上形成极薄的边界膜。
边界膜的厚度非常小,通常只有几个分子到十几个分子厚,不足以将微观不平的两金属表面分隔开,所以相互运动时,金属表面的微凸出部分将发生接触,这种状态称为边界摩擦(见图2-1b)。
摩擦、磨损与润滑概述
1、摩擦是引起能量损耗的主要原因。
2、摩擦是造成材料失效和材料损耗的主要原因。
3、摩擦学:
关于摩擦、磨损与润滑的学科(Tribology)
4、润滑是减小摩擦和磨损的最有效的手段。
§4-2 摩 擦
一、摩擦的概念:
正压力作用下,相互接触的两物体受切向外力的影 响而发生相对位移,或有相对滑动的趋势时,在接触 表面上就会产生抵抗滑动的阻力-摩擦。
Ff Ar B
Ar Ari A a b
干摩擦理论:
机械理论: 摩擦力是两表面凸峰的机械啮合力的总和。
分子理论: 产生摩擦的原因是表面材料分子间的吸引力作用。
分子-机械理论: 摩擦力是由两表面凸峰的机械啮合力和表
面分子相互吸引力两部分组成。
粘附理论:
阿蒙顿摩擦定律:
第一定律:摩擦力与法向载荷成正比。
R —0.4两粗糙面3.的0 综合不平混度合摩擦
3~4
流体摩擦
( 1 时,不平度凸峰为总载荷的30%)
流体摩擦:
1、定义:
当两摩擦面间的油膜厚度大到足以将两表面的不平凸峰完全 分开,这种摩擦叫液体摩擦。
2、特点:
3~4
①、油分子大都不受金属表面的吸附作用的支配,而能完全移动。
件上。润滑脂还可以用于简单的密封。
常用的润滑装置
常用润滑装置
一、间歇润滑装置
常用润滑装置
一、间歇润滑装置
常用润滑装置
二、间歇润滑装置
§4-5 流体润滑原理简介
英国的雷诺于1886年继前人观察到的流体动压现象流,体润总滑1 结出流体动压润滑理 论。20世纪50年代普遍应用电子计算机之后,线接触弹性流体动压润滑的理论开 始有所突破。
第4章 磨擦 磨损及润滑
工程中常用运动粘度,单位是:St(斯)或 cSt(厘斯);
润滑油的牌号与运动粘度有一定的对应关系,如:牌号为LAN10的油在40℃时的运动粘度大约为10 cSt。
润滑脂 :润滑油+稠化剂 润滑脂的主要质量指标是:锥入度,反映其稠度大小。 滴点,决定工作温度。
固体润滑剂 :石墨、二硫化钼、聚四氟乙烯等。
二、添加剂
为了提高油的品质和性能,常在润滑油或润滑脂中加入一些 分量虽小但对润滑剂性能改善其巨大作用的物质,这些物质叫添 加剂。
添加剂的作用
ቤተ መጻሕፍቲ ባይዱ
提高油性、极压性 延长使用寿命 改善物理性能
添加剂的种类
油性添加剂 极压添加剂 分散净化剂 消泡添加剂 抗氧化添加剂 降凝剂 增粘剂
三、润滑方法
润滑油润滑在工程中的应用最普遍,常用的供油方式有: 滴油润滑、浸油润滑、飞溅润滑、喷油润滑、油雾润滑等
具体说明
三、流体静压润滑 流体静压润滑是指借助外部供入的压力油形成的流体膜来承
受外载荷的润滑方式。
具体说明
采用流体静压润滑可在两个静止且平行的摩擦表面间形 成流体膜,其承载能力不依赖于流体粘度,故能用粘度极低 的润滑剂,且既可使摩擦副有较高的承载能力,又可使摩擦 力矩降低。
返回
详细说明
在设计或使用机器时,应该力求缩短磨合期,延长稳定磨损 期,推迟剧烈磨损的到来。为此就必须对形成磨损的机理有所了 解。
二、磨损的分类
关于磨损机理与分类的见解颇不一致,大体上可概括为:
磨粒磨损 也简称磨损,是外部进入摩擦表面的游离硬颗粒或 硬的轮廓峰尖所引起的磨损。
疲劳磨损
粘附磨损 运
也称点蚀,是由于摩擦表面材料微体积在交变的摩 擦力作用下,反复变形所产生的材料疲劳所引起的 磨损。 也称胶合,当摩擦表面的轮廓峰在相互作用的各点 处由于瞬时的温升和压力发生“冷焊”后,在相对
模具摩擦磨损课件
2 摩擦与磨损
❖ 摩擦三种状态(干摩擦、边界摩擦及润 滑摩擦)与磨损。
❖ 关于摩擦,在有关方面课中已作过详细 分析,本课程不再赘述。这里仅就各种 摩擦状态下的磨损情况(有磨屑的产生) 简要予以说明。
1、干摩擦与磨损
干摩擦是指没有任何污染(表层吸 附物:油膜、氧或水分薄膜及其它非固 体的第三种物质薄膜)的固体之间的摩 擦。
控制磨损方法有:
保护层原则,包括使用润滑剂,表面膜, 油漆,电镀,磷化化学处理,火焰处理等。
转化原则,通过选择金属副、硬度、表 面光洁度、接触压力等使磨损由破坏性转化到 可容性。
更换原则,采用经济的可更换磨损元件, 以便在“磨坏”时予以更换。
以上这些方法不但适用于粘磨,而且也适 用于磨粒磨损。
二、磨粒磨损
会议上的调查报告指出:国家分给机械部
钢材有一半作为配件,而配件又大部分用于 维修。如1974年汽车产值16.6亿元,耗用 钢材27万吨,配件产值为14亿元,耗用钢 材23万吨,这其中绝大部分用于维修易磨 损件,可见磨损问题在我国也相当严重。
关于磨损研究是投资少、收益大。美 国机械工程协会报告讲:1976年美花在交 通运输、发电、透平机械和工业生产四个主 要领域中关于发展摩擦磨损方面研究费用为 2400万美元,而总节约量估计为美国每年 能源消耗的11%,相当于160亿美元。
如果在任一瞬间都有几个结点存在,则真实触
面 Ar 为:
d 2
Ar n ( 4 )
(2)
将(1)和(2)联立可得:
n
4 Ar
d 2
4W
3 ypd 2
(3)
再假定,在滑过等于结点直径d的距离后, 原结点撕裂,并同时形成新结点,因此在每单 位滑动距离中重新生成结点的次数必须为1/d, 而每单位滑动距离中重新生成结点的总数为:
摩擦学第五章磨损ppt课件
实际的磨损现象大都是多种类型磨损同时存在;或磨损状态随工 况条件的变化而转化。
摩擦学第五章磨损
9
第二节 粘着磨损
一、定义及其过程
1、定义:
(1) 在摩擦副中,相对运动的摩擦表面之间,由于粘着现象产生材料转移
此外,磨损率与滑动速度无关。
摩擦学第五章磨损
22
金属的粘着磨损的磨损系数
润滑状况 相同 无润滑 15X10-4
金属/金属
相容
部分相容和 部分不相容
不相容
金属/ 非金属
5X10-4
1X10-4 0.15X10-4 1.7X10-6
润滑不良 30X10-5 10X10-5
润滑良好 润滑极好
30X10-6 10X10-7
假定磨屑半径 ,产生磨屑的概率 ,则滑动 距离磨损体积:
摩擦学第五章磨损
21
分析
粘着磨损的体积磨损率与法向载荷N (或正压力p)成正比,而与软金属材 料的屈服强度(或布氏硬度HB值)成反比。
当正压力
时,会使磨损加剧,产生胶合或咬死。
因此,在设计时应保证正压力不超过材料的布氏硬度的三分之一。
体积磨损率随着粘着磨损的磨损系数的增大而增大,而后者主要取决于摩 擦表面的润滑状况和两滑动金属相互牢固地粘着的趋向。
相溶性好的材料 材料塑性越高,粘着磨损越严重
脆性材料的抗粘着能力比塑性材料高 脆性材料:正应力引起,最大正应力在表面,损伤浅, 磨屑也易脱落,不堆积在表面。 塑性材料:剪应力引起,最大剪应力离表面某一深度, 损伤深。
摩擦学第五章磨损
25
三、防止和减轻粘着磨损的措施
磨损及磨损理论
粘着结合强度比两基体金属的抗剪强度都高,切应力高于粘着结合强度。 剪切破坏发生在摩擦副金属较深处,表面呈现宽而深的划痕。
此时表面将沿着滑动方向呈现明显的撕脱,出现严重磨损。如果滑动继 续进行,粘着范围将很快增大,摩擦产生的热量使表面温度剧增,极易出现 局部熔焊,使摩擦副之间咬死而不能相对滑动。 这种破坏性很强的磨损形式,应力求避免。
所以磨损是机器最常见、最大量的一种失效方式。据调查, 轮胎压痕(SEM 5000X) 联邦德国在1974年钢铁工业中约有30亿马克花费在维修上,其中 直接由于磨损造成的损失占47%,停机修理所造成的损失与磨损 直接造成的损失相当,如果再加上后续工序的影响,其经济损失 还需加上10%一20%。
摩擦痕迹 (350X)
1.6
磨损过程的一般规律:
1、磨损过程分为三个阶段:
表面被磨平, 实际接触面 积不断增大, 表面应变硬 化,形成氧 化膜,磨损 速率减小。
随磨损的增长,磨耗 增加,表面间隙增大, 表面质量恶 化,机件快速失效。
斜率就是磨损速率,唯一稳定值; 大多数机件在稳定磨损阶段(AB 段)服役; 磨损性能是根据机件在此阶段 的表现来评价。
(3)磨损比
冲蚀磨损过程中常用磨损比(也有称磨损率)来度 量磨损。
Hale Waihona Puke 材料的冲蚀磨损量(g或μ m 3) 磨损比= 造成该磨损量所用的磨料量(g)
它必须在稳态磨损过程中测量,在其它磨损阶段 中所测量的磨损比将有较大的差别。 不论是磨损量、耐磨性和磨损比,它们都是在一 定实验条件或工况下的相对指标,不同实验条件或 工况下的数据是不可比较的。
当材料产生塑性变形时,法向载荷W与较软材料的屈服极限σy之间的关系:
(1)
当摩擦副产生相对滑动,且滑动时每个微凸体上产生的磨屑为半球形。 其体积为(2/3)πa3,则单位滑动距离的总磨损量为:
摩擦和磨损ppt课件
当摩擦表面的不平度的尖峰相互作用的各点发生粘着后,在相对滑动时, 材料从运动副的一个表面转移到另一个表面,故而形成粘着磨损。
严重的粘着磨损会造成运动副咬死,不能正常运转 。
影响因素: ①同类摩擦副材料比异类材料容易粘着,如钢件运动副的 相对运动; ②脆性材料比塑性材料的粘着能力高; ③在一定范围内,零 件的表面粗糙度愈小,抗粘着能力愈强。
机械基础
§1-3 摩擦和磨损
摩擦和磨损
1
§1-4 摩擦与磨损
摩擦和磨损是自然界和社会生活中普遍存在的现象。 有时人们利用它们有利的一面,如车辆行驶、带传动等是利用
摩擦作用,精加工中的磨削、抛光等是利用磨损的有用方面。 由于摩擦的存在造成了机器的磨损、发热和能量损耗。 据估计目前世界上约有30%~50%的能量消耗在各种形式的摩擦 中,约80%的机器是因为零件磨损而失效。
磨损会影响机器的精度,强敌工作的可靠性,甚至促使机器提前报废。
摩擦和磨损
8
§1-4 摩擦与磨损 1. 磨损过程
磨
损 量
Q
磨 合
稳定磨损
剧烈磨损
0 t2
t1
时间t
0~t1 :磨合阶段 t1~t2:稳定磨损阶段
t2~~:剧烈磨损阶段
摩擦和磨损
9
§1-4 摩擦与磨损
1. 磨损过程
(1)磨合阶段
在运转初期,摩擦副的接触面积较小,单位面积上的实际载荷较 大,磨损速度较快。随着磨合的进行,实际接触面积不断增大,磨损
因此,零件的磨损是决定机器使用寿命的主要因素。
摩擦和磨损
2
§1-4 摩擦与磨损
一、 摩擦
1. 定义:两物体的接触表面阻碍它们相对运动的机械阻力。 相互摩擦的两个物体称为摩擦副。
摩擦磨损
4 粘着摩擦理论1950年的鲍登和泰伯提出:当接触表面相 互压紧时,它们只在微凸体的顶端接触,由于接触面积很 小,接触着的微凸体上压力很高,足以引起塑性变形。使 得紧密接触处发生牢固粘着,即接点产生冷焊现象。若要 接触物体产生相对滑动,必须剪断冷焊点。因此摩擦力的 粘着分量可表示为
F A r
2、磨粒尺寸的影响: 一般金属的磨损量随磨料平均尺寸的增 大而增加,到某一临界值后,磨损量便保持 不变,即磨损与磨料的尺寸无关。钢磨损量 与磨料尺寸关系如右图所示。各种材料磨料 临界尺寸是不相同的,磨料的临界尺寸还与 工作零件的结构和精度有关。
3、显微组织的影响: a.基体组织 由铁素体逐步转变为珠光体、贝氏体、马氏体时,耐磨 性提高。众所周知,铁素体硬度太低,故耐磨性很差。马氏 体与回火马氏体硬度高,所以耐磨性好。但在相同硬度时, 下贝氏体氏体的耐磨性要比回火马氏体的好得多。钢中的残 余奥氏体也影响抗磨料磨损能力。在低应力磨损下,残余奥 氏体数量较多时,将降低耐磨性;反之,在高应力磨损下, 残余奥氏体因能显著加工硬化或转变为马氏体而改善耐磨性。
4、载荷的影响:
载荷显著地影响各种材料的磨粒磨 损。 如右图所示,线磨损度与表面压力 成正比。当压力达到转折值pc 时, 线 磨损度随压力的增加变得平缓, 这是 由于磨粒磨损形式转变的结果。各种 材料的转折压力值不同。
3.5.1粘着磨损的定义与分类
定义: 当摩擦副相对滑动时, 由于粘着效应所形成的 结点发生剪切断裂,接触表面的材料从一个表面转 移到另一个表面的现象称为粘着磨损。
3.2.1 摩擦的定义和分类: 当两个相互接触的物体在外力作用下产生 相对运动或具有相对运动的趋势时,在接 触面间产生的切向运动阻力称为摩擦力, 这个阻力与运动方向相平行,这种现象称 之为摩擦。
(完整版)摩擦学原理(第4章磨损理论)
光谱分析(油样分析) 推断磨损部位 吸收光谱、发射光谱 可分析几十种元 素 只适用小磨 屑<2μm
其他间接方法 振动与噪声、温度、位移
1 磨损率
1)线磨损率Kl
KL
磨损高度 相对滑动距离
h s
dh ds
(4.1)
2)体磨损率Kv 3)重量线磨损率KG
KV
磨损体积 相对滑动距离
V s
dV ds
3VH NS
(4.8)
式中:N为法向载荷;H为材料的硬度。
4.1.2 磨损分类
将磨损分类的主要目的是为了将实际存在的各种各样的磨损现象归纳 为几个基本类型,从而更好地分析磨损规律。早期人们根据摩擦的作 用将磨损分为以下三大类:
1.机械类 由摩擦过程中表面的机械作用产生的磨损,包括磨粒磨损、表面塑性 变形、脆性剥落等,其中磨粒磨损是最普遍的机械磨损形式。
(4.2)
KG
磨损材料重量 相对滑动距离 接触表面积
G sAa
dG Aa ds
(4.3)
4)质量线磨损率Km
Km
磨损材料质量 相对滑动距离 接触表面积
m sAa
dm Aa ds
(4.4)
2.耐磨性
有时为了判断材料的耐磨性大小,也可以采用耐
磨性E来衡量。耐磨性为磨损率的倒数。
对线磨损率来说,线耐磨性表示为:
2.分子-机械类 由于分子力作用形成表面粘着结点,再经机械作用使粘着结点剪切所 产生的磨损,这类磨损的主要形式就是粘着磨损。
3.腐蚀-机械类 这类磨损是由介质的化学作用或电化学作用引起表面腐蚀,而摩擦中 的机械作用加速腐蚀过程,它包括氧化磨损和化学腐蚀磨损。
为了设计具有足够抗磨能力的机械零件和估算其磨损寿命,还必须 建立适合于工程应用的磨损计算方法。近年来通过对磨损状态和磨 屑分析以及对磨损过程的深入研究,提出了一些磨损理论,它们是 磨损计算的基础。磨损计算方法的建立必须考虑磨损现象的特征。 而这些特征与通常的强度破坏很不相同。
摩擦学原理第章磨损理论
摩擦学原理第章磨损理论本文将讨论摩擦学原理中的磨损理论。
磨损是指两个物体表面接触,因相对运动或静止而引起的表面质量减少或形状变化。
因此,磨损是一种不可避免的表面现象。
在制造过程中对磨损进行研究是极其重要的,因为磨损会导致成本增加,使得设备和部件的寿命减少。
因此,磨损理论对于工程师来说是非常重要的。
磨损机理磨损的机理可以分为三种类型:粘着磨损粘着磨损是指表面接触时,两个物体的接触点出现局部的塑性形变,导致两个物体表面产生能够在断裂时撕裂的结合力。
这种磨损主要出现在金属材料中。
它的形成是由于两个表面间的粘着摩擦力超过了物体表面的材料强度而引起的。
磨粒磨损磨粒磨损是指在表面接触过程中,其中一个物体表面的硬颗粒形成的极高应力,在另一物体表面的损耗机制下形成切削或剥落的表面损伤。
这种磨损主要出现在有磨料的环境中。
疲劳磨损疲劳磨损是指在表面接触中受到重复载荷作用的物体表面,由于载荷的作用,表面形成微小的裂纹,这些裂纹随着时间的推移逐渐扩大,最终导致断裂。
这种磨损主要出现在金属材料中。
磨损测试了解磨损机理对于测试磨损有很大的帮助。
使用标准试验程序,可以评估不同材料之间的磨损率和耐磨性能。
在磨损测试过程中,机器将不同材料的样本表面接触,并测量它们之间的摩擦力和磨损量。
这些测试可以通过摩擦器、磨损测试机等设备来完成。
磨损控制由于磨损对机械设备和部件的寿命和成本都有很大的影响,控制磨损已成为一个非常重要的问题。
磨损控制采取各种方法,包括材料的使用、表面涂层、润滑剂、设计和运行条件的优化等。
下面我们将简单介绍这些方法的一些方面。
材料的选择材料的选择对于磨损控制至关重要。
选择适合特定应用的材料,可以延长生命周期,增加效率,降低维护成本。
通常使用高硬度、高耐磨损的金属、陶瓷和聚合物等材料来提高材料的耐磨性能。
表面涂层涂层是一种能够提高材料表面耐磨性能和摩擦系数的方法。
涂层可以使材料表面粗糙度减小,并降低摩擦力。
常用的涂层材料有核化镀层、磷化处理和高分子膜等。
摩擦学原理(第4章磨损理论)
(4.6)
对重量磨损率来说,体耐磨性可表示为: E
Aa ds dG
(4.7)
3. 磨损常数
在有些情况下,为了对比不同硬度材料的磨损量, 可采用磨损常数来判定磨损大小,磨损常数K的定 义:
磨损量 硬度 3VH K 法向载荷 滑行距离 NS
式中:N为法向载荷;H为材料的硬度。
(4.8)
4.1.2 磨损分类
磁塞法(magnetic plug)
在润滑系统上装有磁塞装置捕集发动机和齿轮传动单元的磨屑,监测其 “健康”状况。所得的磨屑尺寸从约100 μm到3-4 mm。 一般从润滑剂中捕集到的磨屑尺寸在1-100 μm。
铁谱分析
磨粒磨损或犁沟作用-----磨屑具有螺旋状 或卷曲状 棒状磨屑来自加工刀纹上掉下来丝状磨屑 灾难破坏 混入了较硬的磨粒、切屑异常磨损磨粒切割
由于ER是磨损单位体积所需要的能量,而Ee是摩擦一次材料单位体积所吸 收的能量,需经过n次才形成磨屑,于是
ER nEe
考虑到接触峰点处产生变形的体积即储存能量的体积Vd比被磨 掉的体积Vw大,若令 Vw ,因而可得
Vd
ER
将式(4.10)代入式(4.12),则得
ER
nEe
(4.12)
1 磨损率
1)线磨损率Kl 2)体磨损率Kv 3)重量线磨损率KG 4)质量线磨损率Km
KL 磨损高度 h dh 相对滑动距离 s ds
(4.1) (4.2) (4.3)
KV
KG
磨损体积 V dV 相对滑动距离 s ds
磨损材料重量 G dG 相对滑动距离 接触表面积 sAa Aa ds
4.1.3 能量磨损理论
摩擦学基础知识磨损PPT课件
(3)擦伤:
粘着结合强度比两基本金属的抗剪强度都高。 剪切发生在较软金属的亚表层内或硬金属的亚表 层内,转移到硬金属上的粘着物使软表面出现细 而浅划痕,硬金属表面也偶有划伤。
(4)划伤:
粘着结合强度比两基体金属的抗剪强度都高, 切应力高于粘着结合强度。剪切破坏发生在摩擦 副金属较深处,表面呈现宽而深的划痕。
e: 表面粗糙度:一般情况下, 降低摩擦副的表面粗糙度能 提高抗粘着能力。
24
c: 材料的组织结构和表面处理:
--多相金属比单相金属的抗粘着磨损能力 高。通过表面处理技术在金属表面生成硫 化物、磷化物或氯化物等薄膜可以减少粘 着效应,同时表面膜限制了破坏深度,提 高抗粘着磨损的能力。
25
d:材料的硬度: 硬度高的金属比硬度低的 金属抗粘着能力强,表面 接触应力大于较软金属硬 度的1/3时,很多金属将由 轻微磨损转变为严重的粘 着磨损。
19
(5) 咬死:
粘着结合强度比两基体金属的抗剪强 度都高,粘着区域大,切应力低于粘着 结合强度。摩擦副之间发生严重粘着而 不能相对运动。
20
4 简单粘着磨损计算(Archard模型):
21
三条粘着磨损规律:
1.磨损量与滑动距离成正比:适用于多种条件。 2.磨损量与载荷成正比:适用于有限载荷范围。 3.磨损量与较软材料的硬度或屈服极限成正比:
咬死
点蚀 研磨 划伤 凿削
黏着坑密集,材料转移严重,摩擦副大量焊合,磨损急剧增加, 摩擦副相对运动受到阻碍或停止。 材料以极细粒状脱落,出现许多“豆斑”状凹坑。
宏观上光滑,高倍才能观察到细小的磨粒滑痕。
低倍可观察到条条划痕,由磨粒切削或犁沟造成。
存在压坑,间或有粗短划痕,由磨粒冲击表面造成
摩擦学原理磨损规律
5.2 影响磨损因素
5.2.1 材料的减摩耐磨机理
• 1.软基体中硬相承载机理 • 通常认为减摩耐磨材料的组织应当是在软的塑性基体上分布着许多硬颗
粒的异质结构。例如,锡基巴氏合金的组织是以含锑与锡固溶体为塑性 基体,在该软基体上面分布着许多硬的Sn-Sb立方晶体和Cu-Sn针状晶 体。在正常载荷作用下,主要由突出在摩擦表面的硬相直接承受载荷, 而软相起着支持硬相的作用。由于是硬相发生接触和相对滑动,所以摩 擦系数和磨损都很小。又由于硬相被支持在软基体之上,易于变形而不 致于擦伤相互摩擦的表面。同时,软基体还可以使硬相上压力分布均匀。 当载荷增加时,承受压力增大的硬相颗粒陷入软基体中,将使更多的硬 颗粒承载而达到载荷均匀分布。
,良好的磨合还能够有效地改善 摩擦副其它性能。如图5.8所示, 滑动轴承经磨合后可以改善表面 形貌,使轴承临界特性数降低, 更利于建立流体动压润滑膜。又 如发动机的合理磨合提高了缸套 活塞环的表面品质,减少擦伤痕 迹,提高密合性,可使发动机的 耗油量较一般情况下降达50%。
3.提高磨合性能的措施
• 良好的磨合性能表现为磨合时间短,磨合磨损量小,以及磨合后的表面 耐磨性高。为提高磨合性能一般可采取以下措施:
5.1.2 磨合磨损
1.表面形貌与性能的变化
• 生产实践中,主要有四种磨合方式,即干摩擦条件下的磨合、普通润滑 油中的磨合、添有磨料润滑油中的磨合和电火花磨合。在有润滑油的磨 合磨损中,除粘着磨损和磨粒磨损主要机理外,同时还存在化学磨损、 疲劳磨损、冲蚀磨损、气蚀磨损和电化磨损等多种复杂机理。在添有磨 料润滑油中的磨合中,采用的磨料有微米固体颗粒和纳米固体颗粒,研 究人员将微米和纳米固体粉末混合在一起作为磨料,取得了较好的磨合 效果。电火花磨合是利用放电原理使运转的摩擦副达到磨合的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3
研究内容:
(1) 磨损类型及发生条件、特征和变化规律。 (2) 影响磨损各种因素,包括材料、表面形
态、 环境、滑动速度、载荷、温度等。
(3) 磨损的物理模型、计算及改善措施。 (4) 磨损的测试技术与实验分析方法。
1.4
磨损过程的一般规律:
1.磨损过程曲线:典型磨损曲线通常由三种不同 的磨损变化阶段组成。
** 实际上,只有相同的金属材料组成摩擦副时,才
能按硬度估计粘着磨损,合金或不同材料的摩擦副,
硬度不能反映粘着系数、粘着磨损或粘着引起的咬
死等情况。
5 粘着磨损的影响因素
(1)摩擦副材料:
a:材料性能:脆性材料比塑性材料的抗粘着能力高。
**塑性材料粘着结点的破坏以塑性流动为主,发生 在表层深处,磨损颗粒大。 **脆性材料粘着结点的破坏主要剥落,损伤深度较 浅,磨损颗粒较小,容易脱落,不堆积于表面。 **根据强度理论:脆性材料的破坏由正应力引起, 塑性材料的破坏决定于切应力。表面接触中的最 大正应力作用在表面,最大切应力离表面有一定 深度,所以材料塑性越高,粘着磨损越严重。
1.2 磨损的危害: (1) 影响机器的质量,减低设备的使用寿命。 如齿轮齿面的磨损,破坏了渐开线齿形,传 动中导致冲击振动。机床主轴轴承磨损,影 响零件的加工精度。 (2) 降低机器的效率,消耗能量。如柴油机 缸套的磨损,导致功率不能充分发挥。 (3) 减少机器的可靠性,造成不安全的因素。 如断齿、钢轨磨损。
接 触 表 面 力 的 作 用 特 点
两体 磨损 三体 磨损 划伤 磨损 碾压 磨损 凿削 磨损
硬磨料或硬表面微凸体与一 犁铧、水 个摩擦表面对磨的磨损 轮机轮叶
磨粒介于两摩擦表面之间, 齿轮、滑 并在两表面间滑动 动轴承间
磨料的作用应力低于其压溃 犁铧、输 强度,材料表面被轻微划伤 送机溜槽 磨料与表面接触最大压应力 破碎滚筒 大于磨料的压溃强度 球蘑机球 磨料对表面有高应力冲击运 颚式破碎 动,材料表面被凿削 机齿板
添加剂;选用热导性高的摩擦副材料或加强冷却降
低表面温度;改善表面形貌以减少接触 压力等都
可以提高抗粘着磨损的能力。
b:相对滑动速度:载荷一定的情况下,粘着磨损量 随滑动速度的增加而增大。随着相对滑动速度的增 加,表面温度升高,表面生成的氧化膜阻止了金属 间的直接接触,减少了粘着磨损。
c:载荷的影响:
b:材料的互溶性:
?相同金属或互溶性大的材料摩擦副易发生 粘着磨损。 ?异种金属或互溶性小的材料摩擦副抗粘着 磨损能力较高。 ?金属与非金属摩擦副抗粘着磨损能力高于 异体金属摩擦副 。
c: 材料的组织结构和表面处理:
--多相金属比单相金属的抗粘着磨损能力
高。通过表面处理技术在金属表面生成硫 化物、磷化物或氯化物等薄膜可以减少粘 着效应,同时表面膜限制了破坏深度,提 高抗粘着磨损的能力。
循环不断进行,构成粘着磨损过程。
3五类典型粘着磨损
(1)轻微磨损:
粘着结合强度比摩擦副基体金属抗剪切强度都低, 剪切破坏发生在粘着结合面上,表面转移的材料较 轻微。
(2)涂抹:
粘着结合强度大于较软金属抗剪切强度,小于较 硬金属抗剪切强度。剪切破坏发生在离粘着结合面 不远的较软金属浅层内,软金属涂抹在硬金属表面。
d:材料的硬度: 硬度高的金属比硬度低的 金属抗粘着能力强,表面 接触应力大于较软金属硬 度的1/3时,很多金属将由 轻微磨损转变为严重的粘 着磨损。 e: 表面粗糙度:一般情况下, 降低摩擦副的表面粗糙度能 提高抗粘着能力。
硬度的影响
(2) 外部环境条件: a:润滑条件:在润滑油或润滑脂中加入油性或极压
4 磨粒磨损简化模型计算:
简单的计算方法根据微观切削机理得出,即拉宾诺 维奇 (Rabinowicz)模型: 假定单颗磨粒形状为圆 锥体,半角为θ ,载荷为W,压入深度h,滑动距 离为S,屈服极限σs 。
5 影响磨粒磨损的因素:
(1)硬度因素: 磨料硬度H0与试件硬度H比 值: 当磨料硬度低于试件硬 度, 即H0 < (0.7~1)H不产生 磨料磨损或产生轻微磨损。 当磨料硬度超过试件硬度后, 磨损量随磨料硬度而增加。 若磨料硬度很高将产生严重 磨损,此时磨损量不再随磨料硬度而变化。为了避免磨料 磨损,材料硬度应高于磨料硬度,一般当 H >1.3 H0 时 只发生轻微的 磨料磨损。
n 速度指数,一般为2~3,塑性材料波动小,
取2.3~2.4,脆性材料波动较大,取2.2~6.5。
(3)冲击角:
主要与靶材料有关。 塑性材料的磨损开始随冲击角的增加而 增加,当冲击角为20~30度时,磨损量最 大,然后随冲击角继续增大而减小。 脆性材料随冲击角的增大,磨损量不断 增大,当冲击角为90度时,磨损率最大。
第三章 磨损及磨损理论
概述:
1.1定义:摩擦副相对运动时,表面物质不断损失或
产生残余变形的现象。表面物质运动主要包括机械 运动、化学作用和热作用。
(1) 机械作用使摩擦表面发生物质损失及摩擦表 面的物理变形。 (2) 化学作用使摩擦表面发生性状的改变。
(3) 热作用使摩擦的表面发生形状的改变。
(4) 其他作用造成各种作用的产生。
(2)磨粒尺寸:一般金属的磨损率随磨粒平均
尺寸的增大而增大,当磨粒尺寸达到一定临 界尺寸后,磨损率不再增大,临界尺寸大约 为80μm。
磨粒尺寸影 响
(3)载荷的影响:磨损率与压力成正比,
但有一转折点,当压力达到或超过临界 压力时,磨损率随压力的增加变的平缓。
载荷
冲蚀磨损
1. 定义:流体或固体颗粒以一定的速度和角
量急剧增大。精度降低、间隙增大,温 度升高,产生冲击、振动和噪声,最终 导致零部件完全失效。
非典型磨 损曲线
2. 磨损特性曲线----浴盆曲线
典型浴 盆曲线
1.5 磨损、摩擦和润滑的关系
油膜 膜厚 比
磨损类型
2.1磨损
类型
2.2 表面破坏方式及特征
破坏方式
微动磨损 剥 层
基
本
特
征
磨损表面有粘着痕迹,铁金属磨屑被氧化成红棕色氧化物,通 常作为磨料加剧磨损。 破坏首先发生在次表层,位错塞积,裂纹成核,并向表面扩展, 最后材料以薄片状剥落,形成片状磨屑。
相 对 硬 度 磨 料 特 性 工 作 环 境
硬料磨损 软料磨损 干磨损 湿料磨损 流体磨损 一般磨损 腐蚀磨损 热料磨损
磨料硬度大于材料硬度 磨料硬度低于材料硬度 磨料是干燥的 磨料含水分,加速磨损 气或液体带磨料冲刷表面 正常条件下的磨料磨损 腐蚀介质中的磨料磨损 高温工作下的磨料磨损
石英-钢材 矿石-钢 球磨机干磨 球磨机湿磨 泥浆泵等 各类机械 化工机械等 沸腾炉等
(1)
磨合阶段:磨损量随时间的增加而增加。 出现在初始运动阶段,由于表面存在粗糙 度,微凸体接触面积小,接触应力大,磨 损速度快。
(2)稳定磨损阶段:摩擦表面磨合后达到稳
定状态,磨损率保持不变。标志磨损条 件保持相对稳定,是零件整个寿命范围 内的工作过程。
(3) 剧烈磨损阶段:工作条件恶化,磨损
当载荷增大到某一临界 值后,粘着磨损量会急 剧增加。右图是四球机
磨痕直径的变化,当载
荷达到一定值时,磨痕
直径迅速增大,此载荷
称为胶合载荷。
d:表面温度:
温度主要导致摩擦表面: (1)表面性质发生变化:如硬化、相变或软化。 (2)表面膜变化:破坏表面膜,导致氧化膜或 其它形式化合物膜形成。 (3)润滑剂的性质发生变化:油膜氧化或热降 解,油膜离析,分子链位向消失。一般情况 下,温度升高,材料硬度下降,在不考虑其 它因素的作用时,摩擦表面容易产生粘着磨 损。
胶
咬 点 研 划 凿
合
死 蚀 磨 伤 削
表面存在明显粘着痕迹和材料转移,有较大粘着坑块,在高速 重载下,大量摩擦热使表面焊合,撕脱后留下片片粘着坑。
黏着坑密集,材料转移严重,摩擦副大量焊合,磨损急剧增加, 摩擦副相对运动受到阻碍或停止。 材料以极细粒状脱落,出现许多“豆斑”状凹坑。 宏观上光滑,高倍才能观察到细小的磨粒滑痕。 低倍可观察到条条划痕,由磨粒切削或犁沟造成。 存在压坑,间或有粗短划痕,由磨粒冲击表面造成
(3)擦伤:
粘着结合强度比两基本金属的抗剪强度都高。 剪切发生在较软金属的亚表层内或硬金属的亚表 层内,转移到硬金属上的粘着物使软表面出现细 而浅划痕,硬金属表面也偶有划伤。
(4)划伤:
粘着结合强度比两基体金属的抗剪强度都高, 切应力高于粘着结合强度。剪切破坏发生在摩擦 副金属较深处,表面呈现宽而深的划痕。
磨粒磨损
1 定义: 摩擦过程中,硬的颗粒或硬的凸出物冲刷 摩擦表面引起材料脱落的现象。磨粒是摩擦表面 互相摩擦产生或由介质带入摩擦表面。 2 磨料磨损分类及其磨损特征: 分类 类型 特 征 实例
磨料 固定 形态 自由 磨损 固定 磨损 磨粒自由松散,可以在表面 刮板、输 滑动或滚动,磨粒之间也有 送机溜槽 相对运动。 磨料固定,在磨损表面作相 采煤机截 对滑动,磨料可以是小颗粒,齿、挖掘 也可以是很大的整体颗粒。 机斗齿
(3)变形磨损理论:
比特1963年提出:该理论把冲蚀磨损分为变
形磨损和切削磨损。认为90度冲角下的冲蚀 磨损与粒子冲击靶材的变形有关,1972年, 谢尔登和凯希尔利用单颗粒冲蚀磨损实验证 实。
(4)薄片剥落理论: 莱维等人提出:认为冲蚀磨损时,形成薄 片的大应变出现在很薄的表面层中,该表 面由于绝热剪切变形而被加热到金属的退 火温度,于是形成了一个软的表面层,其 下面有一个由于材料塑性变形而产生的加 工硬化区,该区的形成对表面层薄片的形 成有促进作用,在反复的冲击和挤压变形 作用下,材料表面形成薄片而剥落。
3 磨粒磨损机理
(1) 微观切削:法向载荷将磨料压入摩擦表面, 而滑动时的摩擦力通过磨料的犁沟作用使表面 剪切、犁皱和切削,产生槽状磨痕。 (2) 挤压剥落:磨料在载荷作用下压入摩擦表面 而产生压痕,将塑性材料的表面挤压出层状或 鳞片状剥落碎屑。 (3) 疲劳破坏:摩擦表面在磨料产生的循环接触 力作用下,使表面材料因疲劳而剥落。