工程问题是小学数学应用题教学中的重点

合集下载

《工程问题应用题》 听课反思

《工程问题应用题》 听课反思

《工程问题应用题》听课反思2015年10月22日上午,我有幸到六祖镇旧郎小学参加“课题分片研讨活动”,在此次活动中,六年级的欧月嫦老师上的《工程问题》一课中有很多亮点值得我学习,其中“小老师”的培养更让我感触良多,加上课后听取了杨校长的经验介绍,把我这个学期存在心中的一个疑团得以解开。

工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。

工程问题也是教材的难点,它是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知比较困难。

欧月嫦老师在教学中,首先让学生假设公路的不同长度,然后自己试着解决问题。

学生通过计算发现,总千米数不同,而两队合修的天数都一样,从而引出单位“1”。

通过工作总量的改变,让学生猜猜、算算合修的天数,激发学生学习工程问题的兴趣,引起思考,让学生带着强烈的好奇心投入到新课的学习中。

找到单位“1”后,利用工作效率=工作总量÷工作时间公式帮助学生消化工作效率是时间分之一这样的概念。

旧郎小学这种精心培养“小老师”,放手学生,让学生大胆试讲,不足之处由教师补充说明的方法,让我觉得数学课堂也可以如此精彩,如此轻松。

除此以外,杨校长还介绍他们旧郎小学尝试把繁琐的学习任务完全交给学生处理。

诸如课前预习检查,课堂中简单的检测,课后作业的布置或批改,课后练习的评讲,单元小检测的出题、批改等统统交给学生,老师只作适当的引导和抽查。

鼓励小组与小组之间进行出题互考,互评,让学生互相形成竞争,加深对学科知识内容的理解。

学习小组落实“兵教兵,兵练兵,兵强兵”策略,小组长及优秀组员各与一个慢生结对子,帮助慢生解决学习上的问题,并分阶段向教师汇报帮扶情况,教师评价后再提出下一步工作目标。

每周的班会课让学生轮流主持,总结本班每周的纪律情况,并提出改进措施。

不管是我们学校还是旧郎小学,这一切的放手就是为了培养学生的独立和自主,把课堂归还给学生,让学生真真正正成为课堂的主人,正如会后教研室苏主任提出的十字箴言:“研读、选点、微调、深挖、坚持”,沿着课改之路走下去,做到越改越有味,越改越精彩!。

六年级下册数学素材工程问题

六年级下册数学素材工程问题

工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。

工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。

在教学中,让学生建立正确概念是解决工程应用题的关键1、工程问题的基本概念(1)定义 : 工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。

工作总量:一般抽象成单位“1”,工作效率:单位时间内完成的工作量工程问题模块一:基本工程问题知识精讲知识结构 内容分析(2)三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;【例1】 一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【难度】★【答案】28天【解析】由于本题只有天数作为条件,所以设总工作量为1,则甲每天完成1/21,甲乙合作每天完成1/12,乙每天完成:1/12-1/21=1/28,乙单独做需要:1÷1/28=28天【例2】一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天?【难度】★★ 【答案】75天,50天.【解析】设总工程量为1,则剩余工作量为:141-6=305⨯ ,则乙的工作效率为4140=550÷ ,所以甲单独完成需要50天,乙单独完成需要111753050⎛⎫÷-= ⎪⎝⎭(天)【例3】5个工人加工735个零件,2天加工了135个,已知2天中有1人因事请假1天,照这样的工作效率,如果以后几天无人请假,还要多少天才能完成任务?例题解析【难度】★★【答案】8天.【解析】每人每天加工零件的个数:135÷(2×5-1×1)=15(个),5人每天加工零件的个数:15×5=75(个),剩下的工作量:735-135=600(个),还需要的天数600÷75=8(天).【例4】某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天?【难度】★★【答案】56天.【解析】甲乙合做28天,完成任务的28÷48=712,故甲的工作效率为(1-712)÷(63-28)=184,乙的工作效率为111-=4884112,于是乙还需做111425684112⎛⎫-⨯÷=⎪⎝⎭(天)【例5】一项工作,甲、乙两人合做8天完成,乙、丙两人合做9天完成,丙、甲两人合做18天完成.那么丙一个人来做,完成这项工作需要多少天?【难度】★★【答案】48天.【解析】可以利用效率进行和差,从而求出丙一个人的工作效率,从而得到天数。

分数应用题必考点——小升初压轴题之工程问题

分数应用题必考点——小升初压轴题之工程问题

分数应用题必考点——小升初压轴题之工程问题工程问题是小学数学应用题教学中的重点,也是难点,是分数应用题中的必考知识点,通过解答工程类应用题不仅可以提高学生的抽象逻辑思维能力,而且还可以提高学生对代数的运算。

下面我们就来看看工程类应用题的题型有哪些。

在进行解题之前,我们要清楚的知道工程问题中涉及的相关公式及其所表示的意义:(1)工作效率×工作时间=工作总量 (2)一般假设工程总量为单位"1" 题型一:甲乙共同完成一项工程例:一项工程,甲队单独做20天完成,乙队单独做30天完成,现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天,从开始到完成共用了16天,问乙队休息了多少天?分析:①,由题意可知:甲的工作效率=201,乙的工作效率=301 ②,假设甲乙中途不休息,一直干活,那么这项工程完成的天数为:1÷(201+301)=12天 ③,由于甲乙中途休息导致这项工程多做了4天才完成,那么这4天甲乙所完成的工作量就是甲乙休息时所耽误的工作量,则4天工作总量为:4×(201+301)=31,已知甲休息了3天,则乙休息的天数为:(31-3×201)÷301=215(天) 题型二:甲乙分别完成两项工程例:A 、B 两项工程分别由甲、乙两个队来完成。

在晴天,甲队完成A 工程需要12天,乙队完成B 工程需要15天,在雨天,甲队的工作效率要下降40%,乙队的工作效率要下降10%,现在,两队同时完成这两项工程,那么在施工的日子里,雨天有多少天?分析:①,由题意可算出如图的相关效率:甲雨天施工效率=121×(1-40%)=201;乙雨天施工效率=151×(1-10%)=503②,设雨天共有x 天,(1-201x )÷121=(1-503x )÷151 解之得x =10 (天)题型三:甲乙共同完成两项工程的最少时间例:有A 、B 两项工作,王师傅独做A 工作要9天完成,独做B 工作要12天完成;李师傅独做A 工作要3天完成,独做B 工作要15天完成。

六年级工程问题教学设计

六年级工程问题教学设计

六年级工程问题教学设计工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。

下面店铺为你整理了六年级工程问题教学设计,希望对你有帮助。

工程问题教学设计六年级工程问题教学反思工程问题就数量关系而言学生理解起来不是很难,这节课的难点主要是学生一下子难以接受用分率进行分析解题,比较抽象,学生初次接触需要有一个适应的过程。

工程问题被许多老师研究过,也看到过各种各样有特色的设计,有的先进行分率方面的铺垫再进入研究,有的出示工作总量是具体数量的工程问题直接研究,通过变幻数量的大小,让学生发现工作时间始终不变,从而转入真正的工程问题。

但到最后总让学生感觉不到简单。

不管如何设计,有一点是相同的即让学生把具体数量和分率两种不同方法的相似点一定要揭示出来,另外,用分率解的思考的参照物应是用数量解的思路。

基于以上的情况,我设计了本堂教研课的思路:修一条()千米的路,甲队单独完成要10天完成,乙队单独完成要15天完成,两队合作,要几天完成?这样一个问题作为研究的材料,这条路的长路由学生自己补充。

我自认为这样设计有以上几方面的优点:1、让学生在决定这条路的长度的过程中,他们要进行估计和计算,因为不是随便哪个数都能除尽的,学生在选择的过程中可以培养数感。

2、这条路的长度就一个班的学生而言一定是多种多样,学生汇报出来的数量也一定很多,这样就不用老师多费口舌变幻各种数据,可以节省更多的时间来理解这节课的难点:为什么这条路的总长变了而合做的时间却不变?从而为引出把单位“1”看作路的总长作了良好的铺垫。

原本想,学生在汇报时应该是精彩纷呈的,但学生在独立尝试时却发现大部分学生用1作为这条路的总长,而且几乎找不出用具体数量计算的。

这是什么原因呢?难道我们班的学生格外聪明吗?肯定不是的,下课后通过了解才知道,因为布置家庭作业中拓展题涉及到了工程问题,老师没教过中等及中等偏上的学生进行了自学,所以出现了我没教就已经会用单位1来解了。

五年级奥数.应用题.工程问题(一)(B级).教师版

五年级奥数.应用题.工程问题(一)(B级).教师版

工程问题(一)知识框架工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。

工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。

在教学中,让学生建立正确概念是解决工程应用题的关键。

一.工程问题的基本概念定义:工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。

工作总量:一般抽象成单位“1”工作效率:单位时间内完成的工作量三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、为了学好分数、百分数应用题,必须做到以下几方面:① 具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;② 在理解、掌握分数的意义和性质的前提下灵活运用;③ 学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;④ 学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,不断地开拓解题思路.三、利用常见的数学思想方法:如代换法、比例法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.(1) 熟练掌握工程问题的基本数量关系与一般解法;(2) 工程问题中常出现单独做,几人合作或轮流做,分析时一定要学会分段处理; (3) 根据题目中的实际情况能够正确进行单位“1”的统一和转换;(4) 工程问题中的常见解题方法以及工程问题算术方法在其他类型题目中的应用.一、工程问题基本题型【例 1】 甲、乙两人共同加工一批零件,8小时可以完成任务.如果甲单独加工,便需要12小时完成.现在甲、乙两人共同生产了225小时后,甲被调出做其他工作,由乙继续生产了420个零件才完成任务.问乙一共加工零件多少个?【考点】工程问题 【难度】2星 【题型】解答【解析】 乙单独加工,每小时加工11181224-= 甲调出后,剩下工作乙需做21184(12)58245-⨯÷=时所以乙每小时加工零件84420255÷=(个),则225小时加工2252605⨯=(个),所以乙一共加工零件420+60=480(个).【答案】480【巩固】 一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天?【考点】工程问题 【难度】2星 【题型】解答【解析】 共做了6天后,原来,甲做 24天,乙做 24天, 现在,甲做0天,乙做40=(24+16)天.这说明原来甲24天做的工作,可由乙做16天来代替.因此甲的工作效率是乙的工作效率的16/24=2/3。

【小学奥数精编】工程问题(二).学生版

【小学奥数精编】工程问题(二).学生版

1. 熟练掌握工程问题的基本数量关系与一般解法;2. 工程问题中常出现单独做,几人合作或轮流做,分析时一定要学会分段处理;3. 根据题目中的实际情况能够正确进行单位“1”的统一和转换;4. 工程问题中的常见解题方法以及工程问题算术方法在其他类型题目中的应用.工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。

工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。

在教学中,让学生建立正确概念是解决工程应用题的关键。

一. 工程问题的基本概念定义 : 工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。

工作总量:一般抽象成单位“1”工作效率:单位时间内完成的工作量三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、为了学好分数、百分数应用题,必须做到以下几方面:知识精讲 教学目标工程问题(二)①具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;②在理解、掌握分数的意义和性质的前提下灵活运用;③学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;④学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,不断地开拓解题思路.三、利用常见的数学思想方法:如代换法、比例法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.例题精讲模块一、工程问题——变速问题【例1】甲打一篇文稿,打完一半后吃晚饭,晚饭后每分钟比晚饭前多打32个字.前后共打50分钟,前25分钟比后25分钟少打640个字.文稿一共()字.【例2】工厂生产一批产品,原计划15天完成,实际生产时改进了生产工艺,每天生产产品的数量比原计划每天生产产品数量的多10件,结果提前4天完成了生产任务,则这批产品有件。

最新工程问题是小学数学应用题教学中的重点

最新工程问题是小学数学应用题教学中的重点

工程问题工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。

它是函数一一对应思想在应用题中的有力渗透。

工程问题也是教材的难点。

工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。

因此,在教学中,如何让学生建立正确概念是数学应用题的关键。

本节课从始至终都以工程问题的概念来贯穿,目的在于使学生理解并熟练掌握概念。

联系实际谈话引入。

引入设悬,渗透概念。

目的在于让学生复习理解工作总量、工作时间、工作效率之间的概念及它们之间的数量关系。

初步的复习再次强化工程问题的概念。

通过比较,建立概念。

在教学中充分发挥学生的主体地位,运用学生已有的知识“包含除”来解决合作问题。

合理运用强化概念。

学生在感知的基础上,于头脑中初步形成了概念的表象,具备概念的原型。

一部分学生只是接受了概念,还没有完全消化概念。

所以我编拟了练习题,目的在于通过学生运用,来帮助学生认识、理解、消化概念,使学生更加熟练的找到了工程问题的解题方法。

在学生大量练习后,引出含有数量的工作问题,让学生自己找到问题的答案。

从而又一次突出工程问题概念的核心。

在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是——工作量=工作效率×时间.在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”.举一个简单例子.:一件工作,甲做10天可完成,乙做15天可完成.问两人合作几天可以完成?一件工作看成1个整体,因此可以把工作量算作1.所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1天就是一个单位,再根据基本数量关系式,得到所需时间=工作量÷工作效率=6(天)•两人合作需要6天.这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的.为了计算整数化(尽可能用整数进行计算),如第三讲例3和例8所用方法,把工作量多设份额.还是上题,10与15的最小公倍数是30.设全部工作量为30份.那么甲每天完成3份,乙每天完成2份.两人合作所需天数是30÷(3+ 2)= 6(天)数计算,就方便些.∶2.或者说“工作量固定,工作效率与时间成反比例”.甲、乙工作效率的比是15∶10=3∶2.当知道了两者工作效率之比,从比例角度考虑问题,也需时间是因此,在下面例题的讲述中,不完全采用通常教科书中“把工作量设为整体1”的做法,而偏重于“整数化”或“从比例角度出发”,也许会使我们的解题思路更灵活一些.一、两个人的问题标题上说的“两个人”,也可以是两个组、两个队等等的两个集体.例1 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?答:乙需要做4天可完成全部工作.解二:9与6的最小公倍数是18.设全部工作量是18份.甲每天完成2份,乙每天完成3份.乙完成余下工作所需时间是(18- 2 × 3)÷ 3= 4(天).解三:甲与乙的工作效率之比是6∶9= 2∶3.甲做了3天,相当于乙做了2天.乙完成余下工作所需时间是6-2=4(天).例2 一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天?解:共做了6天后,原来,甲做24天,乙做24天,现在,甲做0天,乙做40=(24+16)天.这说明原来甲24天做的工作,可由乙做16天来代替.因此甲的工作效率如果乙独做,所需时间是如果甲独做,所需时间是答:甲或乙独做所需时间分别是75天和50天.例3 某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天?解:先对比如下:甲做63天,乙做28天;甲做48天,乙做48天.就知道甲少做63-48=15(天),乙要多做48-28=20(天),由此得出甲的甲先单独做42天,比63天少做了63-42=21(天),相当于乙要做因此,乙还要做28+28= 56 (天).答:乙还需要做56天.例4 一件工程,甲队单独做10天完成,乙队单独做30天完成.现在两队合作,其间甲队休息了2天,乙队休息了8天(不存在两队同一天休息).问开始到完工共用了多少天时间?解一:甲队单独做8天,乙队单独做2天,共完成工作量余下的工作量是两队共同合作的,需要的天数是2+8+ 1= 11(天).答:从开始到完工共用了11天.解二:设全部工作量为30份.甲每天完成3份,乙每天完成1份.在甲队单独做8天,乙队单独做2天之后,还需两队合作(30- 3 × 8- 1× 2)÷(3+1)= 1(天).解三:甲队做1天相当于乙队做3天.在甲队单独做8天后,还余下(甲队)10-8= 2(天)工作量.相当于乙队要做2×3=6(天).乙队单独做2天后,还余下(乙队)6-2=4(天)工作量.4=3+1,其中3天可由甲队1天完成,因此两队只需再合作1天.例5 一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天.从开始到完成共用了16天.问乙队休息了多少天?解一:如果16天两队都不休息,可以完成的工作量是由于两队休息期间未做的工作量是乙队休息期间未做的工作量是乙队休息的天数是答:乙队休息了5天半.解二:设全部工作量为60份.甲每天完成3份,乙每天完成2份.两队休息期间未做的工作量是(3+2)×16- 60= 20(份).因此乙休息天数是(20- 3 × 3)÷ 2= 5.5(天).解三:甲队做2天,相当于乙队做3天.甲队休息3天,相当于乙队休息4.5天.如果甲队16天都不休息,只余下甲队4天工作量,相当于乙队6天工作量,乙休息天数是16-6-4.5=5.5(天).例6 有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?解:很明显,李做甲工作的工作效率高,张做乙工作的工作效率高.因此让李先做甲,张先做乙.设乙的工作量为60份(15与20的最小公倍数),张每天完成4份,李每天完成3份.8天,李就能完成甲工作.此时张还余下乙工作(60-4×8)份.由张、李合作需要(60-4×8)÷(4+3)=4(天).8+4=12(天).答:这两项工作都完成最少需要12天.例7 一项工程,甲独做需10天,乙独做需15天,如果两人合作,他要8天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天?解:设这项工程的工作量为30份,甲每天完成3份,乙每天完成2份.两人合作,共完成3× 0.8 + 2 × 0.9= 4.2(份).因为两人合作天数要尽可能少,独做的应是工作效率较高的甲.因为要在8天内完成,所以两人合作的天数是(30-3×8)÷(4.2-3)=5(天).很明显,最后转化成“鸡兔同笼”型问题.例8 甲、乙合作一件工作,由于配合得好,甲的工作效率比单独做时快如果这件工作始终由甲一人单独来做,需要多少小时?解:乙6小时单独工作完成的工作量是乙每小时完成的工作量是两人合作6小时,甲完成的工作量是甲单独做时每小时完成的工作量甲单独做这件工作需要的时间是答:甲单独完成这件工作需要33小时.这一节的多数例题都进行了“整数化”的处理.但是,“整数化”并不能使所有工程问题的计算简便.例8就是如此.例8也可以整数化,当求出乙每有一点方便,但好处不大.不必多此一举.二、多人的工程问题我们说的多人,至少有3个人,当然多人问题要比2人问题复杂一些,但是解题的基本思路还是差不多.例9 一件工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成.问甲一人独做需要多少天完成?解:设这件工作的工作量是1.甲、乙、丙三人合作每天完成减去乙、丙两人每天完成的工作量,甲每天完成答:甲一人独做需要90天完成.例9也可以整数化,设全部工作量为180份,甲、乙合作每天完成5份,乙、丙合作每天完成4份,甲、丙合作每天完成3份.请试一试,计算是否会方便些?例10 一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天?解:甲做1天,乙就做3天,丙就做3×2=6(天).说明甲做了2天,乙做了2×3=6(天),丙做2×6=12(天),三人一共做了2+6+12=20(天).答:完成这项工作用了20天.本题整数化会带来计算上的方便.12,18,24这三数有一个易求出的最小公倍数72.可设全部工作量为72.甲每天完成6,乙每天完成4,丙每天完成3.总共用了例11 一项工程,甲、乙、丙三人合作需要13天完成.如果丙休息2天,乙就要多做4天,或者由甲、乙两人合作1天.问这项工程由甲独做需要多少天?解:丙2天的工作量,相当乙4天的工作量.丙的工作效率是乙的工作效率的4÷2=2(倍),甲、乙合作1天,与乙做4天一样.也就是甲做1天,相当于乙做3天,甲的工作效率是乙的工作效率的3倍.他们共同做13天的工作量,由甲单独完成,甲需要答:甲独做需要26天.事实上,当我们算出甲、乙、丙三人工作效率之比是3∶2∶1,就知甲做1天,相当于乙、丙合作1天.三人合作需13天,其中乙、丙两人完成的工作量,可转化为甲再做13天来完成.例12 某项工作,甲组3人8天能完成工作,乙组4人7天也能完成工作.问甲组2人和乙组7人合作多少时间能完成这项工作?解一:设这项工作的工作量是1.甲组每人每天能完成乙组每人每天能完成甲组2人和乙组7人每天能完成答:合作3天能完成这项工作.解二:甲组3人8天能完成,因此2人12天能完成;乙组4人7天能完成,因此7人4天能完成.现在已不需顾及人数,问题转化为:甲组独做12天,乙组独做4天,问合作几天完成?小学算术要充分利用给出数据的特殊性.解二是比例灵活运用的典型,如果你心算较好,很快就能得出答数.例13 制作一批零件,甲车间要10天完成,如果甲车间与乙车间一起做只要6天就能完成.乙车间与丙车间一起做,需要8天才能完成.现在三个车间一起做,完成后发现甲车间比乙车间多制作零件2400个.问丙车间制作了多少个零件?解一:仍设总工作量为1.甲每天比乙多完成因此这批零件的总数是丙车间制作的零件数目是答:丙车间制作了4200个零件.解二:10与6最小公倍数是30.设制作零件全部工作量为30份.甲每天完成3份,甲、乙一起每天完成5份,由此得出乙每天完成2份.乙、丙一起,8天完成.乙完成8×2=16(份),丙完成30-16=14(份),就知乙、丙工作效率之比是16∶14=8∶7.已知甲、乙工作效率之比是3∶2= 12∶8.综合一起,甲、乙、丙三人工作效率之比是12∶8∶7.当三个车间一起做时,丙制作的零件个数是2400÷(12- 8)× 7= 4200(个).例14 搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是答:丙帮助甲搬运3小时,帮助乙搬运5小时.解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为60.甲每小时搬运6,乙每小时搬运5,丙每小时搬运4.三人共同搬完,需要60 × 2÷(6+ 5+ 4)= 8(小时).甲需丙帮助搬运(60- 6× 8)÷ 4= 3(小时).乙需丙帮助搬运(60- 5× 8)÷4= 5(小时).三、水管问题从数学的内容来看,水管问题与工程问题是一样的.水池的注水或排水相当于一项工程,注水量或排水量就是工作量.单位时间里的注水量或排水量就是工作效率.至于又有注入又有排出的问题,不过是工作量有加有减罢了.因此,水管问题与工程问题的解题思路基本相同.例15 甲、乙两管同时打开,9分钟能注满水池.现在,先打开甲管,10分钟后打开乙管,经过3分钟就注满了水池.已知甲管比乙管每分钟多注入0.6立方米水,这个水池的容积是多少立方米?解:甲每分钟注入水量是:(1-1/9× 3)÷10=1/15乙每分钟注入水量是:1/9-1/15=2/45因此水池容积是:0.6÷(1/15-2/45)=27(立方米)答:水池容积是27立方米.例16 有一些水管,它们每分钟注水量都相等.现在打开其中若干根水管,经过预定的时间的1/3,再把打开的水管增加一倍,就能按预定时间注满水池,如果开始时就打开10根水管,中途不增开水管,也能按预定时间注满水池.问开始时打开了几根水管?分析:增开水管后,有原来2倍的水管,注水时间是预定时间的1-1/3=2/3,2/3是1/3的2倍,因此增开水管后的这段时间的注水量,是前一段时间注水量的4倍。

五年级应用题工程问题1教师版

五年级应用题工程问题1教师版

基本工程问题知识要点工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。

工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。

在教学中,让学生建立正确概念是解决工程应用题的关键。

一、工程问题:定义:工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。

工作总量:一般抽象成单位“1”工作效率:单位时间内完成的工作量(1÷工作时间)三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、解题的思考方法:解答工程问题时一定要认真审题,弄明白是完成全部工程,还是该工程的部分(即它的几分之几)?有几个人或单位参加工作?他们完成这项工程各自需要多少时间?推得各自的工效是几分之一?他们是同时开始、同时结束工作的,还是有先有后的?具体要求什么等等。

因为工程问题的条件可用多种形式提出,有的不以“工程”命题,有的与其他类型的题目结合,这样,工程问题的题目就复杂起来。

但复杂是可以向简单转化的,通过一定的手段,使其变为若干个基本题,解题的基本思路与方法是不变的。

因此,只要抓住工作总量、工作效率、工作时间三者的关系,细心分析,就能找到解题的途径、步骤和方法。

三、利用常用常用的数学思想方法:如代换法、比例法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.简单工程(工作效率一定)1.一项工程,甲单独做需要28天时间,乙单独做需要21天时间,如果甲、乙合作需要多少时间?【解析】将整个工程的工作量看作“1”个单位,那么甲每天完成总量的128,乙每天完成总量的121,两人合作每天能完成总量的111282112+=,所以两人合作的话,需要111212÷=天能够完成.2.一项工程,甲单独做需要30天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【解析】将整个工程的工作量看作“1”个单位,那么甲每天完成总量的130,甲、乙合作每天完成总量的112,乙单独做每天能完成总量的111123020-=,所以乙单独做112020÷=天能完成.3.(第五届走美杯初赛)甲乙两名打字员,打字速度一样快,甲30分钟打了A材料的14,乙40分钟打了B材料的27。

五年级奥数.应用题.工程问题(二)(A级).学生版

五年级奥数.应用题.工程问题(二)(A级).学生版

工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。

工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。

在教学中,让学生建立正确概念是解决工程应用题的关键。

一. 工程问题的基本概念定义 : 工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。

工作总量:一般抽象成单位“1” 工作效率:单位时间内完成的工作量三个基本公式:工作总量=工作效率×工作时间, 工作效率=工作总量÷工作时间, 工作时间=工作总量÷工作效率;二、为了学好分数、百分数应用题,必须做到以下几方面:① 具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;② 在理解、掌握分数的意义和性质的前提下灵活运用;③ 学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;④ 学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,不断地开拓解题思路.三、利用常见的数学思想方法:如代换法、比例法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.知识框架工程问题(二)(1) 熟练掌握工程问题的基本数量关系与一般解法;(2) 工程问题中常出现单独做,几人合作或轮流做,分析时一定要学会分段处理; (3) 根据题目中的实际情况能够正确进行单位“1”的统一和转换;(4) 工程问题中的常见解题方法以及工程问题算术方法在其他类型题目中的应用.一、 周期性工程问题【例 1】 一项工程,甲单独完成需l2小时,乙单独完成需15小时。

小学六年级奥数工程问题

小学六年级奥数工程问题

【导语】⼯程问题是中⼩学数学应⽤题教学中的重点,是分数应⽤题的引申与补充,是培养学⽣逻辑思维能⼒的重要⼯具。

它是函数⼀⼀对应思想在应⽤题中的有⼒渗透。

以下是⽆忧考整理的《⼩学六年级奥数⼯程问题》相关资料,希望帮助到您。

1.⼩学六年级奥数⼯程问题 1、⼀件⼯作,单独⼀个⼈做,张师傅有8⼩时完成,李师傅要12⼩时完成。

现在两个⼈合做,多少⼩时完成? 2、修⼀条的路,甲队单独修要20天,⼄队单独修要30天。

两队同时修,要多少天完成? 3、运⼀批货物,⼤卡车单独运20次运完,⼩卡车单独运要40次运完。

两辆卡车同时运,多少次可以运? 4、⼀项⼯程,A队要40天完成,B队要60天完成,两队合做20天,完成了全⼯程的⼏分之⼏?还剩⼏分之⼏? 5、从A地到B地,客车8⼩时⾏完全程,货车要10⼩时⾏完全程。

现在两车同时从两地相向出发,多少⼩时两车相遇? 6、⼀件⼯作,张师傅要8天完成,李师傅3天完成了,两位师傅合做,多少天可以完成? 7、加⼯⼀批零件,黄师傅完成,洪师傅天完成。

两⼈合作多少天完成? 8、挖⼀条⽔渠,甲组要12天挖完,⼄组要15天挖完。

现在甲组先挖4天,然后两组合挖,还有多少天完成? 9、⼀项⼯程,甲队单独做要20天完成,⼄队单独做要25天完成。

现在两队先合做2天,如果由甲对单独做,还要多少天完成? 10、甲、⼄两个⼯程队修⼀条铁路,两队合修12天完成,甲队单独修要20天完成。

⼄队单独修要多少天完成? 11、加⼯⼀批服装,甲车间要20天完成,⼄车间要30天完成,两个车间同时做多少天可以完成⼀半? 12、⼀件⼯作,甲、⼄合做12天完成,已知甲、⼄⼯作效率的⽐是1:3。

两⼈单独做各要多少天? 13、⼀件⼯程,甲⼄两⼈合作8天可以完成;⼄丙两⼈合作6天可以完成;丙丁两⼈合作12天可以完成。

那么甲丁合作⼏天可以完成? 14、有⼀批机器零件,甲单独制作需要⼋⼜⼆分之⼀天,⽐⼄单独制作多⽤了1/2天,两⼈合作4天后,剩下210个零件,由甲单独去做,⾃始⾄终甲共制作了多少个零件? 15、甲、⼄⼆⼈骑⾃⾏车从环形公路上同⼀地点同时出发,背向⽽⾏。

小学六年级奥数--工程问题

小学六年级奥数--工程问题

工程问题学生姓名 授课日期 教师姓名授课时长知识定位工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。

工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。

在教学中,让学生建立正确概念是工程应用题的关键。

本节课从始至终都以工程问题的概念来贯穿,目的在于使学生理解并熟练掌握概念。

知识梳理1.工程问题在主要概念定义 : 工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间的相互关系的问题。

在工程问题中,一般要出现三个量:工作总量、工作时间(完成工作总量所需的时间)和工作效率(单位时间内完成的工作量)。

工程问题是小升初的常见考题,题型复杂多变,但是核心不变, 即:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间, 工作时间=工作总量÷工作效率;在分数应用题中,经常将工作总量抽象成单位“1”;例如:一项工程,甲5天完成,则甲每天完成全部的几分之几?分析:这道题中,我们将一项工程抽象成单位“1”,5为工作时间,所以每天完成整个工程的1÷5=51,即为所求,同时51也是甲完成这项工作的速度,所以51就是这道题中甲的工作效率。

在解决工程问题时,对于题中已知条件给出的每一个数字或字母表示的具体含义必须在读完题后,清晰明了,然后通过所求与已知的逻辑关系,再进一步求解。

常用方法:列表法,条件转换法,整体法;每一种方法的使用要在具体题目中用心体会。

2.解决工程问题的基本思路(1)工作量看作“1”,用完成工作总量所需的时间的倒数作为工作效率,用工作总量除以工作效率和,就可以求出完成这项工程所需的时间。

工程问题一般采用这种方法求解。

(2)先求出独做的队或个人的工作效率,然后用工作总量“1”除以一个队或个人的工作效率,就可以求出一个队或个人独做的工作时间。

(3)求剩余部分的工作量完成的时间。

05第五讲 工程问题

05第五讲 工程问题

第五讲工程问题(一)知识点拨工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。

工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。

在教学中,让学生建立正确概念是解决工程应用题的关键。

一、工程问题的基本概念定义:工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。

工作总量:一般抽象成单位“1”工作效率:单位时间内完成的工作量三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、为了学好分数、百分数应用题,必须做到以下几方面:①具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;②在理解、掌握分数的意义和性质的前提下灵活运用;③学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;④学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,不断地开拓解题思路.三、利用常见的数学思想方法:如代换法、比例法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.典例精析★典例1★修一条公路,甲队每天修8小时,15天完成;乙队每天修10小时,4天完成。

两队合作,每天工作6小时,几天可以完成?☆变式1☆一个游泳池装有甲、乙两个大小不同的水龙头,单开甲1小时30分钟可以注满空池。

小学奥数全国推荐最新六年级奥数通用学案附带练习题解析答案15工程问题(一)

小学奥数全国推荐最新六年级奥数通用学案附带练习题解析答案15工程问题(一)

年 级六年级 学 科 奥数 版 本 通用版 课程标题 工程问题(一)工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,也是函数一一对应思想在应用题中的有力渗透。

工程问题是研究工作效率、工作时间和工作总量之间相互关系的一种应用题。

一般情况下是把工作总量看作单位“1”,因此工作效率就是工作时间的倒数。

工程问题是小学分数应用题中的一个重点,也是一个难点。

工程问题指的是与工程建造有关的数学问题。

其实,这类题目的内容已不仅仅是工程方面的问题,也包括注水与周期等许多内容。

工程问题是研究工作总量、工作时间和工作效率三个量之间的关系的一种应用题,它们有如下关系:工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率。

那么我们应该怎样分析工程问题呢?1. 深刻理解、正确分析相关概念。

对于工程问题,要深刻理解工作总量、工作时间、工作效率,简称工总、工时、工效。

通常工作总量的具体数值是无关紧要的,一般利用它不变的特点,把它看作单位“1”;工作时间是指完成工作总量所需的时间;工作效率是指单位时间内完成的工作量,即用单位时间内完成工作总量的几分之一或几分之几来表示工作效率。

2. 以工作效率为突破口。

工作效率是解答工程问题的要点,解题时往往要求出一个人一天(或一个小时)的工作量,即工作效率(如修路的长度、加工的零件数等)。

如果能直接求出工作效率,再解答其他问题就较容易,如果不能直接求出工作效率,就要仔细分析单独做或合作的情况,想方设法求出单独做的工作效率或合作的工作效率。

工程问题中常出现单独做、几人合作或轮流做的情况,分析时要梳理、理顺工作过程,抓住完成工作的几个过程或几种变化,通过对应工作的每一阶段的工作量、工作时间来确定单独做或合作的工作效率。

也常将问题转化为由甲(或乙)完成全部工程(工作)的情况,使问题得到解决。

要抓住题目中总的工作时间比、工作效率比、工作量比,及隐蔽的条件来确定工作效率,或确定工作效率之间的关系。

小升初专题:工程问题

小升初专题:工程问题

小升初专题:工程问题工程问题是小学数学应用题教学中的重点。

它是分数应用题的引申与补充,也是培养学生抽象逻辑思维能力的重要工具。

工程问题是把工作总量看成单位“1”的应用题,因此具有抽象性,学生认知起来比较困难。

在教学中,让学生建立正确概念是解决工程应用题的关键。

工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。

其中,工作总量一般抽象成单位“1”,工作效率指单位时间内完成的工作量。

解决工程问题有三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率。

基础的工程问题包括例1、例2和例3.这些问题都是关于完成一项工程所需时间的计算。

例如,例1中,甲单独做需要12天,乙单独做需要15天,那么两人合作需要多少天完成?这类问题可以用工作总量公式解决。

休息请假型的工程问题包括例4和例5.这些问题需要考虑到中途休息和请假的情况。

例如,例4中,甲单独做了40天完成,乙单独做了60天完成。

现在两人合作,中间甲因病休息若干天,所以经过了27天才完成。

问甲休息了几天?这类问题需要用到工作时间公式。

为了更好地解决工程问题,学生需要掌握正确的概念和基本公式,同时多做练,熟练掌握不同类型的问题解决方法。

题目中的数值有明显错误,请勿使用。

题型三:多人工程问题例7:一件工程,甲乙两人合作8天可以完成,乙丙两人合作6天可以完成,丙丁两人合作12天可以完成。

那么,甲丁两人合作多少天可以完成?改写:一项工程,甲乙两人合作8天可完成,乙丙两人合作6天可完成,丙丁两人合作12天可完成。

问甲丁两人合作需要多少天才能完成?练:完成一项工作,已知甲和乙一起需要2小时,乙和丙一起需要5小时,丙和甲一起需要4小时,甲乙丙一起需要多少小时?改写:完成一项工作,已知甲乙合作2小时,乙丙合作5小时,丙甲合作4小时,甲乙丙一起需要多少小时才能完成?例8:修筑一条高速公路,若甲乙丙合作,90天可以完成;若甲乙丁合作,120天可以完成;若丙丁合作,180天可以完成;若甲乙合作36天后,剩下的工程由甲乙丙丁合作,还需要多少天可以完工?改写:修建一条高速公路,甲乙丙合作需要90天,甲乙丁合作需要120天,丙丁合作需要180天。

小学奥数五六年级-工程问题(培优讲义)

小学奥数五六年级-工程问题(培优讲义)

工程问题 学生姓名 授课日期 教师姓名授课时长知识定位工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。

工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。

在教学中,让学生建立正确概念是工程应用题的关键。

本节课从始至终都以工程问题的概念来贯穿,目的在于使学生理解并熟练掌握概念。

知识梳理1.工程问题在主要概念定义 : 工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间的相互关系的问题。

在工程问题中,一般要出现三个量:工作总量、工作时间(完成工作总量所需的时间)和工作效率(单位时间内完成的工作量)。

工程问题是小升初的常见考题,题型复杂多变,但是核心不变,即:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;在分数应用题中,经常将工作总量抽象成单位“1”;例如:一项工程,甲5天完成,则甲每天完成全部的几分之几?分析:这道题中,我们将一项工程抽象成单位“1”,5为工作时间,所以每天完成整个工程的1÷5=51,即为所求,同时51也是甲完成这项工作的速度,所以51就是这道题中甲的工作效率。

在解决工程问题时,对于题中已知条件给出的每一个数字或字母表示的具体含义必须在读完题后,清晰明了,然后通过所求与已知的逻辑关系,再进一步求解。

常用方法:列表法,条件转换法,整体法;每一种方法的使用要在具体题目中用心体会。

2.解决工程问题的基本思路(1)工作量看作“1”,用完成工作总量所需的时间的倒数作为工作效率,用工作总量除以工作效率和,就可以求出完成这项工程所需的时间。

工程问题一般采用这种方法求解。

(2)先求出独做的队或个人的工作效率,然后用工作总量“1”除以一个队或个人的工作效率,就可以求出一个队或个人独做的工作时间。

(3)求剩余部分的工作量完成的时间。

小学数学工程问题

小学数学工程问题

工程问题知识精讲工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。

工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,建立正确概念是解决工程应用题的关键。

一.工程问题的基本概念定义:工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。

工作总量:一般抽象成单位“1”工作效率:单位时间内完成的工作量三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、工程题型:①基础题型:单独、合作题型,已知工作效率,求工作时间。

②虚拟合作题型:已知合作效率,则虚拟合作过程!③中途离开、加入题型:区分单独和合作做的时间、工作量!例题精讲模块一、工程问题基本题型【例1】(难度等级※)一项工程,乙队单独做要8 天完成,甲队单独做要10 天,现在两队合做,多少天能完成这项工程的3/4?(2016东华)【练习1】一项工程,甲单独做需要30天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【例2】(难度等级※※)一项工程,甲、乙合作需要20天完成,乙、丙合作需要15天完成,由乙单独做需要30天完成,那么如果甲、乙、丙合作,完成这项工程需要多少天?【练习2】一件工作,甲、乙两人合作36 天完成,乙、丙两人合作45 天完成,甲、丙两人合作要60 天完成.问甲一人独做需要多少天完成?模块二、虚拟合作题型【例3】(难度等级※※※)甲、乙两队合作挖一条水渠要30天完成,若甲队先挖4天后,再.如果这条水渠由甲、乙两队单独挖,各需由乙队单独挖16天,共挖了这条水渠的25要多少天?【练习3】(难度等级※※※)甲、乙两队合作挖一条水渠要20天完成,若甲队先挖16天后,再由乙队单独挖10天,共挖了这条水渠的7/10,如果这条水渠由甲、乙两队单独挖,各需要多少天?模块三、中途离开、加入题型【例4】(难度等级※※※)某项工程,甲单独做需36天完成,乙单独做需45天完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程问题工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。

它是函数一一对应思想在应用题中的有力渗透。

工程问题也是教材的难点。

工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。

因此,在教学中,如何让学生建立正确概念是数学应用题的关键。

本节课从始至终都以工程问题的概念来贯穿,目的在于使学生理解并熟练掌握概念。

联系实际谈话引入。

引入设悬,渗透概念。

目的在于让学生复习理解工作总量、工作时间、工作效率之间的概念及它们之间的数量关系。

初步的复习再次强化工程问题的概念。

通过比较,建立概念。

在教学中充分发挥学生的主体地位,运用学生已有的知识“包含除”来解决合作问题。

合理运用强化概念。

学生在感知的基础上,于头脑中初步形成了概念的表象,具备概念的原型。

一部分学生只是接受了概念,还没有完全消化概念。

所以我编拟了练习题,目的在于通过学生运用,来帮助学生认识、理解、消化概念,使学生更加熟练的找到了工程问题的解题方法。

在学生大量练习后,引出含有数量的工作问题,让学生自己找到问题的答案。

从而又一次突出工程问题概念的核心。

在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是——工作量=工作效率×时间.在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”.举一个简单例子.:一件工作,甲做10天可完成,乙做15天可完成.问两人合作几天可以完成?一件工作看成1个整体,因此可以把工作量算作1.所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1天就是一个单位,再根据基本数量关系式,得到所需时间=工作量÷工作效率=6(天)•两人合作需要6天.这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的.为了计算整数化(尽可能用整数进行计算),如第三讲例3和例8所用方法,把工作量多设份额.还是上题,10与15的最小公倍数是30.设全部工作量为30份.那么甲每天完成3份,乙每天完成2份.两人合作所需天数是30÷(3+ 2)= 6(天)数计算,就方便些.∶2.或者说“工作量固定,工作效率与时间成反比例”.甲、乙工作效率的比是15∶10=3∶2.当知道了两者工作效率之比,从比例角度考虑问题,也需时间是因此,在下面例题的讲述中,不完全采用通常教科书中“把工作量设为整体1”的做法,而偏重于“整数化”或“从比例角度出发”,也许会使我们的解题思路更灵活一些.一、两个人的问题标题上说的“两个人”,也可以是两个组、两个队等等的两个集体.例1 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?答:乙需要做4天可完成全部工作.解二:9与6的最小公倍数是18.设全部工作量是18份.甲每天完成2份,乙每天完成3份.乙完成余下工作所需时间是(18- 2 × 3)÷ 3= 4(天).解三:甲与乙的工作效率之比是6∶9= 2∶3.甲做了3天,相当于乙做了2天.乙完成余下工作所需时间是6-2=4(天).例2 一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天?解:共做了6天后,原来,甲做24天,乙做24天,现在,甲做0天,乙做40=(24+16)天.这说明原来甲24天做的工作,可由乙做16天来代替.因此甲的工作效率如果乙独做,所需时间是如果甲独做,所需时间是答:甲或乙独做所需时间分别是75天和50天.例3 某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天?解:先对比如下:甲做63天,乙做28天;甲做48天,乙做48天.就知道甲少做63-48=15(天),乙要多做48-28=20(天),由此得出甲的甲先单独做42天,比63天少做了63-42=21(天),相当于乙要做因此,乙还要做28+28= 56 (天).答:乙还需要做56天.例4 一件工程,甲队单独做10天完成,乙队单独做30天完成.现在两队合作,其间甲队休息了2天,乙队休息了8天(不存在两队同一天休息).问开始到完工共用了多少天时间?解一:甲队单独做8天,乙队单独做2天,共完成工作量余下的工作量是两队共同合作的,需要的天数是2+8+ 1= 11(天).答:从开始到完工共用了11天.解二:设全部工作量为30份.甲每天完成3份,乙每天完成1份.在甲队单独做8天,乙队单独做2天之后,还需两队合作(30- 3 × 8- 1× 2)÷(3+1)= 1(天).解三:甲队做1天相当于乙队做3天.在甲队单独做8天后,还余下(甲队)10-8= 2(天)工作量.相当于乙队要做2×3=6(天).乙队单独做2天后,还余下(乙队)6-2=4(天)工作量.4=3+1,其中3天可由甲队1天完成,因此两队只需再合作1天.例5 一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天.从开始到完成共用了16天.问乙队休息了多少天?解一:如果16天两队都不休息,可以完成的工作量是由于两队休息期间未做的工作量是乙队休息期间未做的工作量是乙队休息的天数是答:乙队休息了5天半.解二:设全部工作量为60份.甲每天完成3份,乙每天完成2份.两队休息期间未做的工作量是(3+2)×16- 60= 20(份).因此乙休息天数是(20- 3 × 3)÷ 2= 5.5(天).解三:甲队做2天,相当于乙队做3天.甲队休息3天,相当于乙队休息4.5天.如果甲队16天都不休息,只余下甲队4天工作量,相当于乙队6天工作量,乙休息天数是16-6-4.5=5.5(天).例6 有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?解:很明显,李做甲工作的工作效率高,张做乙工作的工作效率高.因此让李先做甲,张先做乙.设乙的工作量为60份(15与20的最小公倍数),张每天完成4份,李每天完成3份.8天,李就能完成甲工作.此时张还余下乙工作(60-4×8)份.由张、李合作需要(60-4×8)÷(4+3)=4(天).8+4=12(天).答:这两项工作都完成最少需要12天.例7 一项工程,甲独做需10天,乙独做需15天,如果两人合作,他要8天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天?解:设这项工程的工作量为30份,甲每天完成3份,乙每天完成2份.两人合作,共完成3× 0.8 + 2 × 0.9= 4.2(份).因为两人合作天数要尽可能少,独做的应是工作效率较高的甲.因为要在8天内完成,所以两人合作的天数是(30-3×8)÷(4.2-3)=5(天).很明显,最后转化成“鸡兔同笼”型问题.例8 甲、乙合作一件工作,由于配合得好,甲的工作效率比单独做时快如果这件工作始终由甲一人单独来做,需要多少小时?解:乙6小时单独工作完成的工作量是乙每小时完成的工作量是两人合作6小时,甲完成的工作量是甲单独做时每小时完成的工作量甲单独做这件工作需要的时间是答:甲单独完成这件工作需要33小时.这一节的多数例题都进行了“整数化”的处理.但是,“整数化”并不能使所有工程问题的计算简便.例8就是如此.例8也可以整数化,当求出乙每有一点方便,但好处不大.不必多此一举.二、多人的工程问题我们说的多人,至少有3个人,当然多人问题要比2人问题复杂一些,但是解题的基本思路还是差不多.例9 一件工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成.问甲一人独做需要多少天完成?解:设这件工作的工作量是1.甲、乙、丙三人合作每天完成减去乙、丙两人每天完成的工作量,甲每天完成答:甲一人独做需要90天完成.例9也可以整数化,设全部工作量为180份,甲、乙合作每天完成5份,乙、丙合作每天完成4份,甲、丙合作每天完成3份.请试一试,计算是否会方便些?例10 一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天?解:甲做1天,乙就做3天,丙就做3×2=6(天).说明甲做了2天,乙做了2×3=6(天),丙做2×6=12(天),三人一共做了2+6+12=20(天).答:完成这项工作用了20天.本题整数化会带来计算上的方便.12,18,24这三数有一个易求出的最小公倍数72.可设全部工作量为72.甲每天完成6,乙每天完成4,丙每天完成3.总共用了例11 一项工程,甲、乙、丙三人合作需要13天完成.如果丙休息2天,乙就要多做4天,或者由甲、乙两人合作1天.问这项工程由甲独做需要多少天?解:丙2天的工作量,相当乙4天的工作量.丙的工作效率是乙的工作效率的4÷2=2(倍),甲、乙合作1天,与乙做4天一样.也就是甲做1天,相当于乙做3天,甲的工作效率是乙的工作效率的3倍.他们共同做13天的工作量,由甲单独完成,甲需要答:甲独做需要26天.事实上,当我们算出甲、乙、丙三人工作效率之比是3∶2∶1,就知甲做1天,相当于乙、丙合作1天.三人合作需13天,其中乙、丙两人完成的工作量,可转化为甲再做13天来完成.例12 某项工作,甲组3人8天能完成工作,乙组4人7天也能完成工作.问甲组2人和乙组7人合作多少时间能完成这项工作?解一:设这项工作的工作量是1.甲组每人每天能完成乙组每人每天能完成甲组2人和乙组7人每天能完成答:合作3天能完成这项工作.解二:甲组3人8天能完成,因此2人12天能完成;乙组4人7天能完成,因此7人4天能完成.现在已不需顾及人数,问题转化为:甲组独做12天,乙组独做4天,问合作几天完成?小学算术要充分利用给出数据的特殊性.解二是比例灵活运用的典型,如果你心算较好,很快就能得出答数.例13 制作一批零件,甲车间要10天完成,如果甲车间与乙车间一起做只要6天就能完成.乙车间与丙车间一起做,需要8天才能完成.现在三个车间一起做,完成后发现甲车间比乙车间多制作零件2400个.问丙车间制作了多少个零件?解一:仍设总工作量为1.甲每天比乙多完成因此这批零件的总数是丙车间制作的零件数目是答:丙车间制作了4200个零件.解二:10与6最小公倍数是30.设制作零件全部工作量为30份.甲每天完成3份,甲、乙一起每天完成5份,由此得出乙每天完成2份.乙、丙一起,8天完成.乙完成8×2=16(份),丙完成30-16=14(份),就知乙、丙工作效率之比是16∶14=8∶7.已知甲、乙工作效率之比是3∶2= 12∶8.综合一起,甲、乙、丙三人工作效率之比是12∶8∶7.当三个车间一起做时,丙制作的零件个数是2400÷(12- 8)× 7= 4200(个).例14 搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是答:丙帮助甲搬运3小时,帮助乙搬运5小时.解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为60.甲每小时搬运6,乙每小时搬运5,丙每小时搬运4.三人共同搬完,需要60 × 2÷(6+ 5+ 4)= 8(小时).甲需丙帮助搬运(60- 6× 8)÷ 4= 3(小时).乙需丙帮助搬运(60- 5× 8)÷4= 5(小时).三、水管问题从数学的内容来看,水管问题与工程问题是一样的.水池的注水或排水相当于一项工程,注水量或排水量就是工作量.单位时间里的注水量或排水量就是工作效率.至于又有注入又有排出的问题,不过是工作量有加有减罢了.因此,水管问题与工程问题的解题思路基本相同.例15 甲、乙两管同时打开,9分钟能注满水池.现在,先打开甲管,10分钟后打开乙管,经过3分钟就注满了水池.已知甲管比乙管每分钟多注入0.6立方米水,这个水池的容积是多少立方米?解:甲每分钟注入水量是:(1-1/9× 3)÷10=1/15乙每分钟注入水量是:1/9-1/15=2/45因此水池容积是:0.6÷(1/15-2/45)=27(立方米)答:水池容积是27立方米.例16 有一些水管,它们每分钟注水量都相等.现在打开其中若干根水管,经过预定的时间的1/3,再把打开的水管增加一倍,就能按预定时间注满水池,如果开始时就打开10根水管,中途不增开水管,也能按预定时间注满水池.问开始时打开了几根水管?分析:增开水管后,有原来2倍的水管,注水时间是预定时间的1-1/3=2/3,2/3是1/3的2倍,因此增开水管后的这段时间的注水量,是前一段时间注水量的4倍。

相关文档
最新文档