毕业设计英文翻译资料(中文)
毕业设计中英文翻译【范本模板】
英文The road (highway)The road is one kind of linear construction used for travel。
It is made of the roadbed,the road surface, the bridge, the culvert and the tunnel. In addition, it also has the crossing of lines, the protective project and the traffic engineering and the route facility。
The roadbed is the base of road surface, road shoulder,side slope, side ditch foundations. It is stone material structure, which is designed according to route's plane position .The roadbed, as the base of travel, must guarantee that it has the enough intensity and the stability that can prevent the water and other natural disaster from corroding.The road surface is the surface of road. It is single or complex structure built with mixture。
The road surface require being smooth,having enough intensity,good stability and anti—slippery function. The quality of road surface directly affects the safe, comfort and the traffic。
毕业论文(设计)外文文献翻译及原文
金融体制、融资约束与投资——来自OECD的实证分析R.SemenovDepartment of Economics,University of Nijmegen,Nijmegen(荷兰内梅亨大学,经济学院)这篇论文考查了OECD的11个国家中现金流量对企业投资的影响.我们发现不同国家之间投资对企业内部可获取资金的敏感性具有显著差异,并且银企之间具有明显的紧密关系的国家的敏感性比银企之间具有公平关系的国家的低.同时,我们发现融资约束与整体金融发展指标不存在关系.我们的结论与资本市场信息和激励问题对企业投资具有重要作用这种观点一致,并且紧密的银企关系会减少这些问题从而增加企业获取外部融资的渠道。
一、引言各个国家的企业在显著不同的金融体制下运行。
金融发展水平的差别(例如,相对GDP的信用额度和相对GDP的相应股票市场的资本化程度),在所有者和管理者关系、企业和债权人的模式中,企业控制的市场活动水平可以很好地被记录.在完美资本市场,对于具有正的净现值投资机会的企业将一直获得资金。
然而,经济理论表明市场摩擦,诸如信息不对称和激励问题会使获得外部资本更加昂贵,并且具有盈利投资机会的企业不一定能够获取所需资本.这表明融资要素,例如内部产生资金数量、新债务和权益的可得性,共同决定了企业的投资决策.现今已经有大量考查外部资金可得性对投资决策的影响的实证资料(可参考,例如Fazzari(1998)、 Hoshi(1991)、 Chapman(1996)、Samuel(1998)).大多数研究结果表明金融变量例如现金流量有助于解释企业的投资水平。
这项研究结果解释表明企业投资受限于外部资金的可得性。
很多模型强调运行正常的金融中介和金融市场有助于改善信息不对称和交易成本,减缓不对称问题,从而促使储蓄资金投着长期和高回报的项目,并且提高资源的有效配置(参看Levine(1997)的评论文章)。
因而我们预期用于更加发达的金融体制的国家的企业将更容易获得外部融资.几位学者已经指出建立企业和金融中介机构可进一步缓解金融市场摩擦。
毕业设计外文翻译译文
1 工程概论1.1 工程专业1.2 工业和技术1.3 现代制造业工程专业1 工程行业是历史上最古老的行业之一。
如果没有在广阔工程领域中应用的那些技术,我们现在的文明绝不会前进。
第一位把岩石凿削成箭和矛的工具匠是现代机械工程师的鼻祖。
那些发现地球上的金属并找到冶炼和使用金属的方法的工匠们是采矿和冶金工程师的先祖。
那些发明了灌溉系统并建造了远古世纪非凡的建筑物的技师是他们那个时代的土木工程师。
2 工程一般被定义为理论科学的实际应用,例如物理和数学。
许多早期的工程设计分支不是基于科学而是经验信息,这些经验信息取决于观察和经历,而不是理论知识。
这是一个倾斜面实际应用的例子,虽然这个概念没有被确切的理解,但是它可以被量化或者数字化的表达出来。
3 从16、17世纪当代初期,量化就已经成为科学知识大爆炸的首要原因之一。
另外一个重要因素是实验法验证理论的发展。
量化包含了把来源于实验的数据和信息转变成确切的数学术语。
这更加强调了数学是现代工程学的语言。
4 从19世纪开始,它的结果的实际而科学的应用已经逐步上升。
机械工程师现在有精确的能力去计算来源于许多不同机构之间错综复杂的相互作用的机械优势。
他拥有能一起工作的既新型又强硬的材料和巨大的新能源。
工业革命开始于使用水和蒸汽一起工作。
从此使用电、汽油和其他能源作动力的机器变得如此广泛以至于它们承担了世界上很大比例的工作。
5 科学知识迅速膨胀的结果之一就是科学和工程专业的数量的增加。
到19世纪末不仅机械、土木、矿业、冶金工程被建立而且更新的化学和电气工程专业出现了。
这种膨胀现象一直持续到现在。
我们现在拥有了核能、石油、航天航空空间以及电气工程等。
每种工程领域之内都有细分。
6 例如,土木工程自身领域之内有如下细分:涉及永久性结构的建筑工程、涉及水或其他液体流动与控制系统的水利工程、涉及供水、净化、排水系统的研究的环境工程。
机械工程主要的细分是工业工程,它涉及的是错综复杂的机械系统,这些系统是工业上的,而非单独的机器。
本科毕业设计外文翻译(中文)
本科生毕业设计(论文)外文翻译外文原文题目:Real-time interactive optical micromanipulation of a mixture of high- and low-index particles中文翻译题目:高低折射率微粒混合物的实时交互式光学微操作毕业设计(论文)题目:阵列光镊软件控制系统设计姓名:任有健学院:生命学院班级:06210501指导教师:李勤高低折射率微粒混合物的实时交互式光学微操作Peter John Rodrigo Vincent Ricardo Daria Jesper Glückstad丹麦罗斯基勒DK-4000号,Risø国家实验室光学和等离子研究系jesper.gluckstad@risoe.dkhttp://www.risoe.dk/ofd/competence/ppo.htm摘要:本文论证一种对于胶体的实时交互式光学微操作的方法,胶体中包含两种折射率的微粒,与悬浮介质(0n )相比,分别低于(0L n n <)、高于(0H n n >)悬浮介质的折射率。
球形的高低折射率微粒在横平板上被一批捕获激光束生成的约束光势能捕获,捕获激光束的横剖面可以分为“礼帽形”和“圆环形”两种光强剖面。
这种应用方法在光学捕获的空间分布和个体几何学方面提供了广泛的可重构性。
我们以实验为基础证实了同时捕获又独立操作悬浮于水(0 1.33n =)中不同尺寸的球形碳酸钠微壳( 1.2L n ≈)和聚苯乙烯微珠( 1.57H n =)的独特性质。
©2004 美国光学学会光学分类与标引体系编码:(140.7010)捕获、(170.4520)光学限制与操作和(230.6120)空间光调制器。
1 引言光带有动量和角动量。
伴随于光与物质相互作用的动量转移为我们提供了在介观量级捕获和操作微粒的方法。
过去数十年中的巨大发展已经导致了在生物和物理领域常规光学捕获的各种应用以及下一代光学微操作体系的出现[1-5]。
本科毕业设计的英文资料与中文翻译
英文资料与中文翻译IEEE 802.11 MEDIUM ACCESS CONTROLThe IEEE 802.11 MAC layer covers three functional areas:reliable data delivery, medium access control, and security. This section covers the first two topics.Reliable Data DeliveryAs with any wireless network, a wireless LAN using the IEEE 802.11 physical and MAC layers is subject to considerable unreliability. Noise, interference, and other propagation effects result in the loss of a significant number of frames. Even with error-correction codes, a number of MAC frames may not successfully be received. This situation can be dealt with by reliability mechanisms at a higher layer. such as TCP. However, timers used for retransmission at higher layers are typically on the order of seconds. It is therefore more efficient to deal with errors at the MAC level. For this purpose, IEEE 802.11 includes a frame exchange protocol. When a station receives a data frame from another station. It returns an acknowledgment (ACK) frame to the source station. This exchange is treated as an atomic unit, not to be interrupted by a transmission from any other station. If the source does not receive an ACK within a short period of time, either because its data frame was damaged or because the returning ACK was damaged, the source retransmits the frame.Thus, the basic data transfer mechanism in IEEE802.11 involves an exchange of two frames. To further enhance reliability, a four-frame exchange may be used. In this scheme, a source first issues a request to send (RTS) frame to the destination. The destination then responds with a clear to send (CTS). After receiving the CTS, the source transmits the data frame, and the destination responds with an ACK. The RTS alerts all stations that are within reception range of the source that an exchange is under way; these stations refrain from transmission in order to avoid a collision between two frames transmitted at the same time. Similarly, the CTS alerts all stations that are within reception range of the destination that an exchange is under way. The RTS/CTS portion of the exchange is a required function of the MAC but may be disabled.Medium Access ControlThe 802.11 working group considered two types of proposals for a MAC algorithm: distributed access protocols, which, like Ethernet, distribute the decision to transmit over all the nodes using a carrier-sense mechanism; and centralized access protocols, which involve regulation of transmission by a centralized decision maker. A distributed access protocol makes sense for an ad hoc network of peer workstations (typically an IBSS) and may also be attractive in other wireless LAN configurations that consist primarily of burst traffic. A centralized access protocol is natural for configurations in which a umber of wireless stations are interconnected with each other and some sort of base station that attaches to a backbone wired LAN: it is especially useful if some of the data is time sensitive or high priority.The end result for 802.11 is a MAC algorithm called DFWMAC (distributed foundation wireless MAC) that provides a distributed access control mechanism with an optional centralized control built on top of that. Figure 14.5 illustrates the architecture. The lower sub-layer of the MAC layer is the distributed coordination function (DCF). DCF uses a contention algorithm to provide access to all traffic. Ordinary asynchronous traffic directly uses DCE. The point coordination function (PCF) is a centralized MAC algorithm used to provide contention-free service. PCF is built on top of DCF and exploits features of DCF to assure access for its users. Let us consider these two sub-layers in turn.MAClayerFigure 14.5 IEEE 802.11 Protocol ArchitectureDistributed Coordination FunctionThe DCF sub-layer makes use of a simple CSMA (carrier sense multiple access) algorithm, which functions as follows. If a station has a MAC frame to transmit, it listens to the medium. If the medium is idle, the station may transmit; otherwise the station must wait until the current transmission is complete before transmitting. The DCF does not include a collision detection function (i.e. CSMA/CD) because collision detection is not practical on a wireless network. The dynamic range of the signals on the medium is very large, so that a transmitting station cannot effectively distinguish incoming weak signals from noise and the effects of its own transmission.To ensure the smooth and fair functioning of this algorithm, DCF includes a set of delays that amounts to a priority scheme. Let us start by considering a single delay known as an inter-frame space (IFS). In fact, there are three different IFS values, but the algorithm is best explained by initially ignoring this detail. Using an IFS, the rules for CSMA access are as follows (Figure 14.6):Figure 14.6 IEEE 802.11 Medium Access Control Logic1. A station with a frame to transmit senses the medium. If the medium is idle. It waits to see if the medium remains idle for a time equal to IFS. If so , the station may transmit immediately.2. If the medium is busy (either because the station initially finds the medium busy or because the medium becomes busy during the IFS idle time), the station defers transmission and continues to monitor the medium until the current transmission is over.3. Once the current transmission is over, the station delays another IFS. If the medium remains idle for this period, then the station backs off a random amount of time and again senses the medium. If the medium is still idle, the station may transmit. During the back-off time, if the medium becomes busy, the back-off timer is halted and resumes when the medium becomes idle.4. If the transmission is unsuccessful, which is determined by the absence of an acknowledgement, then it is assumed that a collision has occurred.To ensure that back-off maintains stability, a technique known as binary exponential back-off is used. A station will attempt to transmit repeatedly in the face of repeated collisions, but after each collision, the mean value of the random delay is doubled up to some maximum value. The binary exponential back-off provides a means of handling a heavy load. Repeated failed attempts to transmit result in longer and longer back-off times, which helps to smooth out the load. Without such a back-off, the following situation could occur. Two or more stations attempt to transmit at the same time, causing a collision. These stations then immediately attempt to retransmit, causing a new collision.The preceding scheme is refined for DCF to provide priority-based access by the simple expedient of using three values for IFS:●SIFS (short IFS):The shortest IFS, used for all immediate responseactions,as explained in the following discussion●PIFS (point coordination function IFS):A mid-length IFS, used by thecentralized controller in the PCF scheme when issuing polls●DIFS (distributed coordination function IFS): The longest IFS, used as aminimum delay for asynchronous frames contending for access Figure 14.7a illustrates the use of these time values. Consider first the SIFS.Any station using SIFS to determine transmission opportunity has, in effect, the highest priority, because it will always gain access in preference to a stationwaiting an amount of time equal to PIFS or DIFS. The SIFS is used in the following circumstances:●Acknowledgment (ACK): When a station receives a frame addressed onlyto itself (not multicast or broadcast) it responds with an ACK frame after, waiting on1y for an SIFS gap. This has two desirable effects. First, because collision detection IS not used, the likelihood of collisions is greater than with CSMA/CD, and the MAC-level ACK provides for efficient collision recovery. Second, the SIFS can be used to provide efficient delivery of an LLC protocol data unit (PDU) that requires multiple MAC frames. In this case, the following scenario occurs. A station with a multi-frame LLC PDU to transmit sends out the MAC frames one at a time. Each frame is acknowledged after SIFS by the recipient. When the source receives an ACK, it immediately (after SIFS) sends the next frame in the sequence. The result is that once a station has contended for the channel, it will maintain control of the channel until it has sent all of the fragments of an LLC PDU.●Clear to Send (CTS):A station can ensure that its data frame will getthrough by first issuing a small. Request to Send (RTS) frame. The station to which this frame is addressed should immediately respond with a CTS frame if it is ready to receive. All other stations receive the RTS and defer using the medium.●Poll response: This is explained in the following discussion of PCF.longer than DIFS(a) Basic access methodasynchronous trafficdefers(b) PCF super-frame constructionFigure 14.7 IEEE 802.11 MAC TimingThe next longest IFS interval is the: PIFS. This is used by the centralized controller in issuing polls and takes precedence over normal contention traffic. However, those frames transmitted using SIFS have precedence over a PCF poll.Finally, the DIFS interval is used for all ordinary asynchronous traffic.Point C00rdination Function PCF is an alternative access method implemented on top of the DCE. The operation consists of polling by the centralized polling master (point coordinator). The point coordinator makes use of PIFS when issuing polls. Because PI FS is smaller than DIFS, the point coordinator call seize the medium and lock out all asynchronous traffic while it issues polls and receives responses.As an extreme, consider the following possible scenario. A wireless network is configured so that a number of stations with time, sensitive traffic are controlled by the point coordinator while remaining traffic contends for access using CSMA. The point coordinator could issue polls in a round—robin fashion to all stations configured for polling. When a poll is issued, the polled station may respond using SIFS. If the point coordinator receives a response, it issues another poll using PIFS. If no response is received during the expected turnaround time, the coordinator issues a poll.If the discipline of the preceding paragraph were implemented, the point coordinator would lock out all asynchronous traffic by repeatedly issuing polls. To prevent this, an interval known as the super-frame is defined. During the first part of this interval, the point coordinator issues polls in a round, robin fashion to all stations configured for polling. The point coordinator then idles for the remainder of the super-frame, allowing a contention period for asynchronous access.Figure l4.7 b illustrates the use of the super-frame. At the beginning of a super-frame, the point coordinator may optionally seize control and issues polls for a give period of time. This interval varies because of the variable frame size issued by responding stations. The remainder of the super-frame is available for contention based access. At the end of the super-frame interval, the point coordinator contends for access to the medium using PIFS. If the medium is idle. the point coordinator gains immediate access and a full super-frame period follows. However, the medium may be busy at the end of a super-frame. In this case, the point coordinator must wait until the medium is idle to gain access: this result in a foreshortened super-frame period for the next cycle.OctetsFC=frame control SC=sequence controlD/I=duration/connection ID FCS=frame check sequence(a ) MAC frameBitsDS=distribution systemMD=more data MF=more fragmentsW=wired equivalent privacy RT=retryO=orderPM=power management (b) Frame control filedFigure 14.8 IEEE 802.11 MAC Frame FormatMAC FrameFigure 14.8a shows the 802.11 frame format when no security features are used. This general format is used for all data and control frames, but not all fields are used in all contexts. The fields are as follows:● Frame Control: Indicates the type of frame and provides contr01information, as explained presently.● Duration/Connection ID: If used as a duration field, indicates the time(in-microseconds) the channel will be allocated for successful transmission of a MAC frame. In some control frames, this field contains an association, or connection, identifier.●Addresses: The number and meaning of the 48-bit address fields dependon context. The transmitter address and receiver address are the MAC addresses of stations joined to the BSS that are transmitting and receiving frames over the wireless LAN. The service set ID (SSID) identifies the wireless LAN over which a frame is transmitted. For an IBSS, the SSID isa random number generated at the time the network is formed. For awireless LAN that is part of a larger configuration the SSID identifies the BSS over which the frame is transmitted: specifically, the SSID is the MAC-level address of the AP for this BSS (Figure 14.4). Finally the source address and destination address are the MAC addresses of stations, wireless or otherwise, that are the ultimate source and destination of this frame. The source address may be identical to the transmitter address and the destination address may be identical to the receiver address.●Sequence Control: Contains a 4-bit fragment number subfield used forfragmentation and reassembly, and a l2-bit sequence number used to number frames sent between a given transmitter and receiver.●Frame Body: Contains an MSDU or a fragment of an MSDU. The MSDUis a LLC protocol data unit or MAC control information.●Frame Check Sequence: A 32-bit cyclic redundancy check. The framecontrol filed, shown in Figure 14.8b, consists of the following fields.●Protocol Version: 802.11 version, current version 0.●Type: Identifies the frame as control, management, or data.●Subtype: Further identifies the function of frame. Table 14.4 defines thevalid combinations of type and subtype.●To DS: The MAC coordination sets this bit to 1 in a frame destined to thedistribution system.●From DS: The MAC coordination sets this bit to 1 in a frame leaving thedistribution system.●More Fragments: Set to 1 if more fragments follow this one.●Retry: Set to 1 if this is a retransmission of a previous frame.●Power Management: Set to]if the transmitting station is in a sleep mode.●More Data: Indicates that a station has additional data to send. Each blockof data may be sent as one frame or a group of fragments in multiple frames.●WEP:Set to 1 if the optional wired equivalent protocol is implemented.WEP is used in the exchange of encryption keys for secure data exchange.This bit also is set if the newer WPA security mechanism is employed, as described in Section 14.6.●Order:Set to 1 in any data frame sent using the Strictly Ordered service,which tells the receiving station that frames must be processed in order. We now look at the various MAC frame types.Control Frames Control frames assist in the reliable delivery of data frames. There are six control frame subtypes:●Power Save-Poll (PS-Poll): This frame is sent by any station to the stationthat includes the AP (access point). Its purpose is to request that the AP transmit a frame that has been buffered for this station while the station was in power saving mode.●Request to Send (RTS):This is the first frame in the four-way frameexchange discussed under the subsection on reliable data delivery at the beginning of Section 14.3.The station sending this message is alerting a potential destination, and all other stations within reception range, that it intends to send a data frame to that destination.●Clear to Send (CTS): This is the second frame in the four-way exchange.It is sent by the destination station to the source station to grant permission to send a data frame.●Acknowledgment:Provides an acknowledgment from the destination tothe source that the immediately preceding data, management, or PS-Poll frame was received correctly.●Contention-Free (CF)-End: Announces the end of a contention-freeperiod that is part of the point coordination function.●CF-End+CF-Ack:Acknowledges the CF-End. This frame ends thecontention-free period and releases stations from the restrictions associated with that period.Data Frames There are eight data frame subtypes, organized into two groups. The first four subtypes define frames that carry upper-level data from the source station to the destination station. The four data-carrying frames are as follows: ●Data: This is the simplest data frame. It may be used in both a contentionperiod and a contention-free period.●Data+CF-Ack: May only be sent during a contention-free period. Inaddition to carrying data, this frame acknowledges previously received data.●Data+CF-Poll: Used by a point coordinator to deliver data to a mobilestation and also to request that the mobile station send a data frame that it may have buffered.●Data+CF-Ack+CF-Poll: Combines the functions of the Data+CF-Ack andData+CF-Poll into a single frame.The remaining four subtypes of data frames do not in fact carry any user data. The Null Function data frame carries no data, polls, or acknowledgments. It is used only to carry the power management bit in the frame control field to the AP, to indicate that the station is changing to a low-power operating state. The remaining three frames (CF-Ack, CF-Poll,CF-Ack+CF-Poll) have the same functionality as the corresponding data frame subtypes in the preceding list (Data+CF-Ack, Data+CF-Poll, Data+CF-Ack+CF-Poll) but withotit the data. Management FramesManagement frames are used to manage communications between stations and APs. The following subtypes are included:●Association Request:Sent by a station to an AP to request an association,with this BSS. This frame includes capability information, such as whether encryption is to be used and whether this station is pollable.●Association Response:Returned by the AP to the station to indicatewhether it is accepting this association request.●Reassociation Request: Sent by a station when it moves from one BSS toanother and needs to make an association with tire AP in the new BSS. The station uses reassociation rather than simply association so that the new AP knows to negotiate with the old AP for the forwarding of data frames.●Reassociation Response:Returned by the AP to the station to indicatewhether it is accepting this reassociation request.●Probe Request: Used by a station to obtain information from anotherstation or AP. This frame is used to locate an IEEE 802.11 BSS.●Probe Response: Response to a probe request.●Beacon: Transmitted periodically to allow mobile stations to locate andidentify a BSS.●Announcement Traffic Indication Message: Sent by a mobile station toalert other mobile stations that may have been in low power mode that this station has frames buffered and waiting to be delivered to the station addressed in this frame.●Dissociation: Used by a station to terminate an association.●Authentication:Multiple authentication frames are used in an exchange toauthenticate one station to another.●Deauthentication:Sent by a station to another station or AP to indicatethat it is terminating secure communications.IEEE802.11 媒体接入控制IEEE 802.11 MAC层覆盖了三个功能区:可靠的数据传送、接入控制以及安全。
毕业设计中英文翻译
本科生毕业设计(论文)外文翻译毕业设计(论文)题目:电力系统检测与计算外文题目:The development of the single chipmicrocomputer译文题目:单片机技术的发展与应用学生姓名: XXX专业: XXX指导教师姓名: XXX评阅日期:单片机技术的发展与应用从无线电世界到单片机世界现代计算机技术的产业革命,将世界经济从资本经济带入到知识经济时代。
在电子世界领域,从 20 世纪中的无线电时代也进入到 21 世纪以计算机技术为中心的智能化现代电子系统时代。
现代电子系统的基本核心是嵌入式计算机系统(简称嵌入式系统),而单片机是最典型、最广泛、最普及的嵌入式系统。
一、无线电世界造就了几代英才。
在 20 世纪五六十年代,最具代表的先进的电子技术就是无线电技术,包括无线电广播,收音,无线通信(电报),业余无线电台,无线电定位,导航等遥测、遥控、遥信技术。
早期就是这些电子技术带领着许多青少年步入了奇妙的电子世界,无线电技术展示了当时科技生活美妙的前景。
电子科学开始形成了一门新兴学科。
无线电电子学,无线通信开始了电子世界的历程。
无线电技术不仅成为了当时先进科学技术的代表,而且从普及到专业的科学领域,吸引了广大青少年,并使他们从中找到了无穷的乐趣。
从床头的矿石收音机到超外差收音机;从无线电发报到业余无线电台;从电话,电铃到无线电操纵模型。
无线电技术成为当时青少年科普、科技教育最普及,最广泛的内容。
至今,许多老一辈的工程师、专家、教授当年都是无线电爱好者。
无线电技术的无穷乐趣,无线电技术的全面训练,从电子学基本原理,电子元器件基础到无线电遥控、遥测、遥信电子系统制作,培养出了几代科技英才。
二、从无线电时代到电子技术普及时代。
早期的无线电技术推动了电子技术的发展,其中最主要的是真空管电子技术向半导体电子技术的发展。
半导体电子技术使有源器件实现了微小型化和低成本,使无线电技术有了更大普及和创新,并大大地开阔了许多非无线电的控制领域。
毕业设计中英文翻译
Bridge Waterway OpeningsIn a majority of cases the height and length of a bridge depend solely upon the amount of clear waterway opening that must be provided to accommodate the floodwaters of the stream. Actually, the problem goes beyond that of merely accommodating the floodwaters and requires prediction of the various magnitudes of floods for given time intervals. It would be impossible to state that some given magnitude is the maximum that will ever occur, and it is therefore impossible to design for the maximum, since it cannot be ascertained. It seems more logical to design for a predicted flood of some selected interval ---a flood magnitude that could reasonably be expected to occur once within a given number of years. For example, a bridge may be designed for a 50-year flood interval; that is, for a flood which is expected (according to the laws of probability) to occur on the average of one time in 50 years. Once this design flood frequency, or interval of expected occurrence, has been decided, the analysis to determine a magnitude is made. Whenever possible, this analysis is based upon gauged stream records. In areas and for streams where flood frequency and magnitude records are not available, an analysis can still be made. With data from gauged streams in the vicinity, regional flood frequencies can be worked out; with a correlation between the computed discharge for the ungauged stream and the regional flood frequency, a flood frequency curve can be computed for the stream in question. Highway CulvertsAny closed conduit used to conduct surface runoff from one side of a roadway to the other is referred to as a culvert. Culverts vary in size from large multiple installations used in lieu of a bridge to small circular or elliptical pipe, and their design varies in significance. Accepted practice treats conduits under the roadway as culverts. Although the unit cost of culverts is much less than that of bridges, they are far more numerous, normally averaging about eight to the mile, and represent a greater cost in highway. Statistics show that about 15 cents of the highway construction dollar goes to culverts, as compared with 10 cents for bridge. Culvert design then is equally as important as that of bridges or other phases of highway and should be treated accordingly.Municipal Storm DrainageIn urban and suburban areas, runoff waters are handled through a system of drainage structures referred to as storm sewers and their appurtenances. The drainage problem is increased in these areas primarily for two reasons: the impervious nature of the area creates a very high runoff; and there is little room for natural water courses. It is often necessary to collect the entire storm water into a system of pipes and transmit it over considerable distances before it can be loosed again as surface runoff. This collection and transmission further increase the problem, since all of the water must be collected with virtually no ponding, thus eliminating any natural storage; and though increased velocity the peak runoffs are reached more quickly. Also, the shorter times of peaks cause the system to be more sensitive to short-duration, high-intensity rainfall. Storm sewers, like culverts and bridges, are designed for storms of various intensity –return-period relationship, depending upon the economy and amount of ponding that can be tolerated.Airport DrainageThe problem of providing proper drainage facilities for airports is similar in many ways to that of highways and streets. However, because of the large and relatively flat surface involved the varying soil conditions, the absence of natural water courses and possible side ditches, and the greater concentration of discharge at the terminus of the construction area, some phases of the problem are more complex. For the average airport the overall area to be drained is relatively large and an extensive drainage system is required. The magnitude of such a system makes it even more imperative that sound engineeringprinciples based on all of the best available data be used to ensure the most economical design. Overdesign of facilities results in excessive money investment with no return, and underdesign can result in conditions hazardous to the air traffic using the airport.In other to ensure surfaces that are smooth, firm, stable, and reasonably free from flooding, it is necessary to provide a system which will do several things. It must collect and remove the surface water from the airport surface; intercept and remove surface water flowing toward the airport from adjacent areas; collect and remove any excessive subsurface water beneath the surface of the airport facilities and in many cases lower the ground-water table; and provide protection against erosion of the sloping areas. Ditches and Cut-slope DrainageA highway cross section normally includes one and often two ditches paralleling the roadway. Generally referred to as side ditches these serve to intercept the drainage from slopes and to conduct it to where it can be carried under the roadway or away from the highway section, depending upon the natural drainage. To a limited extent they also serve to conduct subsurface drainage from beneath the roadway to points where it can be carried away from the highway section.A second type of ditch, generally referred to as a crown ditch, is often used for the erosion protection of cut slopes. This ditch along the top of the cut slope serves to intercept surface runoff from the slopes above and conduct it to natural water courses on milder slopes, thus preventing the erosion that would be caused by permitting the runoff to spill down the cut faces.12 Construction techniquesThe decision of how a bridge should be built depends mainly on local conditions. These include cost of materials, available equipment, allowable construction time and environmental restriction. Since all these vary with location and time, the best construction technique for a given structure may also vary. Incremental launching or Push-out MethodIn this form of construction the deck is pushed across the span with hydraulic rams or winches. Decks of prestressed post-tensioned precast segments, steel or girders have been erected. Usually spans are limited to 50~60 m to avoid excessive deflection and cantilever stresses , although greater distances have been bridged by installing temporary support towers . Typically the method is most appropriate for long, multi-span bridges in the range 300 ~ 600 m ,but ,much shorter and longer bridges have been constructed . Unfortunately, this very economical mode of construction can only be applied when both the horizontal and vertical alignments of the deck are perfectly straight, or alternatively of constant radius. Where pushing involves a small downward grade (4% ~ 5%) then a braking system should be installed to prevent the deck slipping away uncontrolled and heavy bracing is then needed at the restraining piers.Bridge launching demands very careful surveying and setting out with continuous and precise checks made of deck deflections. A light aluminum or steel-launching nose forms the head of the deck to provide guidance over the pier. Special teflon or chrome-nickel steel plate bearings are used to reduce sliding friction to about 5% of the weight, thus slender piers would normally be supplemented with braced columns to avoid cracking and other damage. These columns would generally also support the temporary friction bearings and help steer the nose.In the case of precast construction, ideally segments should be cast on beds near the abutments and transferred by rail to the post-tensioning bed, the actual transport distance obviously being kept to the minimum. Usually a segment is cast against the face of the previously concerted unit to ensure a good fit when finally glued in place with an epoxy resin. If this procedure is not adopted , gaps of approximately 500mm shold be left between segments with the reinforcements running through andstressed together to form a complete unit , but when access or space on the embankment is at a premium it may be necessary to launch the deck intermittently to allow sections to be added progressively .The correponding prestressing arrangements , both for the temporary and permanent conditions would be more complicated and careful calculations needed at all positions .The pricipal advantage of the bridge-launching technique is the saving in falsework, especially for high decks. Segments can also be fabricated or precast in a protected environment using highly productive equipment. For concrete segment, typically two segment are laid each week (usually 10 ~ 30 m in length and perhaps 300 to 400 tonnes in weight) and after posttensioning incrementally launched at about 20 m per day depending upon the winching/jacking equipment.Balanced Cantiulever ConstructionDevelopment in box section and prestressed concrete led to short segment being assembled or cast in place on falsework to form a beam of full roadway width. Subsequently the method was refined virtually to eliminate the falsework by using a previously constructed section of the beam to provide the fixing for a subsequently cantilevered section. The principle is demonsrated step-by-step in the example shown in Fig.1.In the simple case illustrated, the bridge consists of three spans in the ratio 1:1:2. First the abutments and piers are constructed independently from the bridge superstructure. The segment immediately above each pier is then either cast in situ or placed as a precast unit .The deck is subsequently formed by adding sections symmetrically either side.Ideally sections either side should be placed simultaneously but this is usually impracticable and some inbalance will result from the extra segment weight, wind forces, construction plant and material. When the cantilever has reached both the abutment and centre span,work can begin from the other pier , and the remainder of the deck completed in a similar manner . Finally the two individual cantilevers are linked at the centre by a key segment to form a single span. The key is normally cast in situ.The procedure initially requires the first sections above the column and perhaps one or two each side to be erected conventionally either in situ concrete or precast and temporarily supported while steel tendons are threaded and post-tensioned . Subsequent pairs of section are added and held in place by post-tensioning followed by grouting of the ducts. During this phase only the cantilever tendons in the upper flange and webs are tensioned. Continuity tendons are stressed after the key section has been cast in place. The final gap left between the two half spans should be wide enough to enable the jacking equipment to be inserted. When the individual cantilevers are completed and the key section inserted the continuity tendons are anchored symmetrically about the centre of the span and serve to resist superimposed loads, live loads, redistribution of dead loads and cantilever prestressing forces.The earlier bridges were designed on the free cantilever principle with an expansion joint incorporated at the center .Unfortunately,settlements , deformations , concrete creep and prestress relaxation tended to produce deflection in each half span , disfiguring the general appearance of the bridge and causing discomfort to drivers .These effects coupled with the difficulties in designing a suitable joint led designers to choose a continuous connection, resulting in a more uniform distribution of the loads and reduced deflection. The natural movements were provided for at the bridge abutments using sliding bearings or in the case of long multi-span bridges, joints at about 500 m centres.Special Requirements in Advanced Construction TechniquesThere are three important areas that the engineering and construction team has to consider:(1) Stress analysis during construction: Because the loadings and support conditions of the bridge are different from the finished bridge, stresses in each construction stage must be calculated to ensurethe safety of the structure .For this purpose, realistic construction loads must be used and site personnel must be informed on all the loading limitations. Wind and temperature are usually significant for construction stage.(2) Camber: In order to obtain a bridge with the right elevation, the required camber of the bridge at each construction stage must be calculated. It is required that due consideration be given to creep and shrinkage of the concrete. This kind of the concrete. This kind of calculation, although cumbersome, has been simplified by the use of the compiters.(3) Quality control: This is important for any method construction, but it is more so for the complicated construction techniques. Curing of concrete, post-tensioning, joint preparation, etc. are detrimental to a successful structure. The site personnel must be made aware of the minimum concrete strengths required for post-tensioning, form removal, falsework removal, launching and other steps of operations.Generally speaking, these advanced construction techniques require more engineering work than the conventional falsework type construction, but the saving could be significant.大桥涵洞在大多数情况中桥梁的高度和跨度完全取决于河流的流量,桥梁的高度和跨度必须能够容纳最大洪水量.事实上,这不仅仅是洪水最大流量的问题,还需要在不同时间间隔预测不同程度的水灾。
毕业设计(论文)外文资料翻译(学生用)
毕业设计外文资料翻译学院:信息科学与工程学院专业:软件工程姓名: XXXXX学号: XXXXXXXXX外文出处: Think In Java (用外文写)附件: 1.外文资料翻译译文;2.外文原文。
附件1:外文资料翻译译文网络编程历史上的网络编程都倾向于困难、复杂,而且极易出错。
程序员必须掌握与网络有关的大量细节,有时甚至要对硬件有深刻的认识。
一般地,我们需要理解连网协议中不同的“层”(Layer)。
而且对于每个连网库,一般都包含了数量众多的函数,分别涉及信息块的连接、打包和拆包;这些块的来回运输;以及握手等等。
这是一项令人痛苦的工作。
但是,连网本身的概念并不是很难。
我们想获得位于其他地方某台机器上的信息,并把它们移到这儿;或者相反。
这与读写文件非常相似,只是文件存在于远程机器上,而且远程机器有权决定如何处理我们请求或者发送的数据。
Java最出色的一个地方就是它的“无痛苦连网”概念。
有关连网的基层细节已被尽可能地提取出去,并隐藏在JVM以及Java的本机安装系统里进行控制。
我们使用的编程模型是一个文件的模型;事实上,网络连接(一个“套接字”)已被封装到系统对象里,所以可象对其他数据流那样采用同样的方法调用。
除此以外,在我们处理另一个连网问题——同时控制多个网络连接——的时候,Java内建的多线程机制也是十分方便的。
本章将用一系列易懂的例子解释Java的连网支持。
15.1 机器的标识当然,为了分辨来自别处的一台机器,以及为了保证自己连接的是希望的那台机器,必须有一种机制能独一无二地标识出网络内的每台机器。
早期网络只解决了如何在本地网络环境中为机器提供唯一的名字。
但Java面向的是整个因特网,这要求用一种机制对来自世界各地的机器进行标识。
为达到这个目的,我们采用了IP(互联网地址)的概念。
IP以两种形式存在着:(1) 大家最熟悉的DNS(域名服务)形式。
我自己的域名是。
所以假定我在自己的域内有一台名为Opus的计算机,它的域名就可以是。
毕业设计英文翻译原文
英文原文1. General description of the SIEMAG disc brake unitThis brake unit is the electro-hydraulic control system of a gearless disc brake for winders. The brake unit operates on the exhaust principle, i.e. the braking force is generated by sets of disc springs and released by hydraulic pressure.The braking force generators with the brake shoes directly act axially on the brake disc. The braking force is generated by sets of disc springs and transmitted onto the brake shoes. The number of brake elements determines the respective braking force required.As soon as the brakes are being released, the brake shoes are lifted form the brake disc with the aid of pressure oil. During the braking, the oil flows back into the tank and the brake shoes are being pressed against the brake disc.The braking force generators type BSFG 408 are s series product supplied by the Swedish firm ASEA-Hagglunds. They have a maximum press-down force of2X7906 kN.For reasons of better system availability, the hydraulic pressure is generated by two regulating pumps that are each driven by an electric motor. Both pumps are started when the system is being switched on. Any failure of a pump will be signaled.The oil filtration is undertaken by a pressure filter‘6.2’provided in front of the braking force generators. Furthermore, two gear pumps that are directly coupled with the regulating pumps, maintain a permanent oil cooling and filtering circuit during system operation (filter‘6.1’and cooler ‘14’). Both filters have an electrical contamination control. The mesh size of the filters is specified by the supplier to be 10μm (see TAS No.3.9.6.4). The equipment includes a controlled electrical tank heating. The fluid level in the tank is monitored as well.The service braking is done with the aid of two electrically controlled proportional pressure relief valves‘43.1’and‘43.2’that are hydraulically connected in series.The safety braking is done with the aid of position-controlled 4/2-way electro valves‘53.1’、‘53.2’、‘39.1’、‘39.2’、‘58.1’、‘58.2’、‘66.1’,and‘66.2’which are electrically actuated in closed-circuit connection.In the event of a safety braking, the directional control valves‘39.1’and‘39.2’are switched off, separating thus the pump pressure from the remaining brake releasing system(hydraulic shunt).During the safety braking, the directional control valves‘6.1’and‘66.2’are acting as pilot valves for the 2/2-way valves‘65.1’and ‘65.2’which again release the pressure relief valves‘64.1’and‘64.2’.The electro valves‘53.1’and‘53.2’operate as outlet valves according to TAS No.3.9.5.9.The mechanically controlled pressure relief valves‘60.1’and‘60.2’are arranged in the outlet line of these valves. They determine the residual pressures in the course of safety braking. These residual pressures (pressure stages 1 and 2) are maintained by bladder-type accumulators.The gas pressure of the respective accumulator used is monitored.The march of pressure is adjusted with the aid of mechanical skids which are adapted to the braking process desired.A hand-operated pump‘48’is provided for assembly purposes, when the controlled main stop cocks‘46.1’and‘46.2’in the outlet line of the brake elements are locked.The position-controlled 4/2-way valves‘63’and the pressure relief valves ‘25.1’and‘25.2’(residual pressure accumulator) are fed by a back-up power supply in open-circuit connection. The valves get open when the solenoids are energized.With the command‘RELEASE BRAKE’,the two residual pressure accumulators are filled through the check valves‘87.1’and‘87.2’.The residual pressure accumulator‘24.1’(pressure stage 1) is connected through the 4/2-way valve‘86’. The residual pressure accumulator‘24.2’(pressure stage 2) is automatically connected by a change-over of the 4/2-way valve‘86’, when the hoisting load changes accordingly.2. Functional description of the electro-hydraulic control system corresponding to the hydraulic drawing No.0905216/12.1 Method of operation of the brake unitThe braking force is the sum of pressing forces per brake shoe, reduced by the forces being generated by the oil pressure in the cylinders of the brake element.The force required for the service braking is achieved by controlling the oil pressure. Two pressure regulating valves‘43.1’and‘43.2’, each being fitted with separate control electronics and function control, are connected in series, permitting thus a stepless adjustment of the valves between a minimum and a maximum pressure. In the case of failure of one brake is applied when the spring forces press the brake shoes against the brake disc without counterpressure. The brake is released when the pressure oil in the cylinders of the brake elements reduces the spring forces to zero and the brake shoes are lifted the brake disc.The brake releasing pressure is generated through the pressure-controlled pumps‘1.1’and‘1.2’which are driven by electric motors‘3.1’and‘3.2’. The pressure regulating valves of the pumps are adjusted in such a way that, as soon as the brake releasing pressure has been reached, the pumps reduce the flow rate from the maximum value to the quantity required for maintaining the releasing the pressure. This means in other words that the pumps only deliver the quantity of oil that is demanded to replace any oil losses from leakage and to maintain the pressure adjusted on the pressure regulating valves‘43.1’and‘43.2’.When starting the safety braking, the circuit of the electro-hydraulic brake control system (including pump motors) is cut off. The 4/2-way valves ‘53.1’,‘53.2’,‘39.1’and‘39.2’are thus de-energized and the pump circuit is separated form the brake elements and the pressure accumulators‘24’. The service brake valves‘43.1’and‘43.2’remain energized through a back-up current supply. The residual pressure is as high as to ensure the winder retardation being below the rope slip limit.The hand-operated pump‘48’is only connected for the start-up operation and stored separately.2.2 Operating states2.2.1 Starting the systemThe winder is at standstill and the brake applied. The control voltage and the voltage for the pump motors‘3.1’and‘3.2’is available. The electrical monitoring system signals the system to be trouble-free and all preconditions for starting the pumps‘1.1’and‘1.2’fulfilled (please see also item 2.3.1), which means that the safety circuit is closed as well.The 4/2-way valves‘39.1’and‘39.2’are energized by starting the pump motors‘3.1’and‘3.2’,thus opening the cross section between pumps and brake elements. The safety brake valves ‘53.1’、‘53.2’、‘58.1’、‘58.2’、‘66.1’and‘66.2’close.The pumps‘1.1’and‘1.2’are now connected through the pressure regulating valves‘43.1’and‘43.2’with the brake elements. The coils of these valves are de-energized, i.e. the valves are open, permitting the oil to return without pressure form the pumps‘1.1’and‘1.2’through the pressure regulating valves into the tank.2.2.2 Releasing the service brakeWith the command‘RELEASE BRAKE’, the coils of the pressure regulating valves‘43.1’and‘43.2’are fed with the maximum valve of regulable current, and the valves retain the maximum releasing pressure adjusted. The pumps‘1.1’and‘1.2’thus feed the oil through the valves‘39.1’and‘39.2’to the brake element. The accumulators for the residual pressure‘24.1’and‘24.2’are also filled through the operating pumps. The brake elements are released as soon as the maximum releasing pressure has been reached. The pressure-controlled pumps then reduce the flow rate to the quantity required for compensating all oil loses form leakage. The releasing pressure is maintained by the pressure regulating valves‘43.1’and‘43.2’.The pressure switches‘34.1’/‘34.2’monitor the filling of the bladder-type accumulators for residual pressure‘24.1’/‘24.2’.With this operating state, the valves‘53.1’and‘53.2’are closed and the outlets of the hydraulic safety circuit thus locked.2.2.3 Service brakingDuring the service braking, the pressure regulating valves‘43.1’and‘43.2’are steplessly controlled. This reduces the releasing pressure in conformity with the position of the brake lever. The oil displaced form the brake elements as well as the excess oil form the pumps‘1.1’and‘1.2’flows back through the pressure regulating valves‘43.1’and‘43.2’into the tank.These proportional pressure regulating valves comprise a pilot control valve and a main valve. They are operated by parallel control of the pilot control valves with the main valves connected in series.This means in other words that both proportional pressure regulating valves are always active in the pilot control circuit. However, the main pressure regulating function is always fulfilled by that valve which is nearer to the pressure source. Only in the event of a failure this function is performed by the subsequent valve.The power supply to the control electronics of each regulating valve is additionally backed up by a battery ensuring, in the event of a total power failure or wire brakeage, that at least one regulating valve remains operative.The buffered voltage supplies are monitored for a failure of the buffering in the electrical and electronical circuits of the brake control system.2.2.4 Safety brakingAs soon as the safety circuit is actuated, the pump motors‘3.1’and‘3.2’and the entire electrical control system, except the control of the service brake regulating valves, are de-energized.The oil draining pressure is released through the pressure relief valves ‘64.1’and‘64.2’by de-energizing the solenoid valves‘66.1’and‘66.2’. The releasing pressure in the brake elementsand in the conduits is thus rapidly reduced to that value at which the brake shoes touch the brake discs without pressing force.The de-energized valves‘39.1’and‘39.2’(hydraulic shunt) isolate the pumps‘1.1’and‘1.2’form the brake elements and, at the same time, connect the brake elements with the residual pressure accumulator ‘24.1’and‘24.2’.The hydraulic pressure is further reduced the residual pressure lever through the directional control valves‘53.1’and‘53.2’, the throttling valves ‘56.1’and‘56.2’as well as the cam-controlled pressure relief valves‘60.1’and‘60.2’connected in parallel.The opening time of the above valves determines the threshold time, it can be adjusted through the throttling valves‘59.1’and‘59.2’in a range of 0.2 and 1.0 s. The minimum pressure valve of the open valves‘60.1’and‘60.2’is equivalent to the residual pressure valve and is limited by the final position of the mechanical cam plate.The residual pressure valve is reached after a prolon-gated threshold time of approx.0.1s.For a fine adjustment of the threshold curve and as an additional safety measure ,two throttling valves‘57’are provided for the respective residual pressure value. These components permit the pressure reduction characteristic (braking curve) to be variably adjusted (depending on requirements) and reproduced at any time.The capacity of the residual pressure accumulator is adapted to the maximum braking time of the winder, under consideration of the opening cross sections of the valves ‘57’and of the leakage rate of all valves. The time of maintaining residual pressure is abt.50% longer than the maximum braking time.When the winder comes to a standstill, a time element is started. After abt.2s, the valve‘63’is opened by a starting pulse and the residual pressure reduced to zero. At the same time, the residual pressure accumulator not needed is discharged through the pressure relief valve‘25.1’or‘25.2’(the valve is energized for a short moment).The possibility of adjusting and reproducing the braking curve between application pressure and residual pressure is of particular importance since, within this period, rope vibrations may occur which, with Koepe winders, may cause a slipping of ropes.The valves‘58’,‘65’,and‘66’as well as‘53’and‘39’are monitored for their position and, prior to the start of the winder releasing the safety brake checked for conformity.Furthermore, the starting and end positions of all curves are checked for conformity and thus also for correct functioning.During the safety braking, the pressure relief valves‘43.1’and‘43.2’remain operative.2.2.5 Releasing the safety brakeSince the control system including the pump motors is de-energized as soon as safety braking is started, the brake control system is in a resting state. The system is depressurized and the brake applied.The power required for the pump motors‘3.1’and‘3.2’and the control system is available.The system can be started when1. the electrical monitoring system does not signal any failure.2.all prerequisites for starting the pumps‘1.1’and‘1.2’are fulfilled.3.conformity of the valves‘39’、‘53’、‘58’、65‘、65’、‘66’and‘89’is given.The system is started and the brake released as described under items 2.2.1and 2.2.2.。
毕业设计中英文翻译
1 Introduction and scope1.1 Aims of the ManualThis Manual provides guidance on the design of reinforced and prestressed concrete building structures. Structures designed in accordance with this Manual will normally comply with DD ENV 1992-1-1: 19921 (hereinafter referred to as EC2).1.2 Eurocode systemThe structural Eurocodes were initiated by the European Commission but are now produced by the Comité Européen de Normalisation (CEN) which is the European standards organization, its members being the national standards bodies of the EU and EFTA countries,e.g. BSI.CEN will eventually publish these design standards as full European Standards EN (Euronorms), but initially they are being issued as Prestandards ENV. Normally an ENV has a life of about 3 years to permit familiarization and trial use of the standard by member states. After formal voting by the member bodies, ENVs are converted into ENs taking into account the national comments on the ENV document. At present the following Eurocode parts have been published as ENVs but as yet none has been converted to an EN:DD ENV 1991-1-1: Basis of design and actions on structures (EC1)DD ENV 1992-1-1: Design of concrete structures (EC2)DD ENV 1993-1-1: Design of steel structures (EC3)DD ENV 1994-1-1: Design of composite steel and concrete structures (EC4)DD ENV 1995-1-1: Design of timber structures (EC5)DD ENV 1996-1-1: Design of masonry structures (EC6)DD ENV 1997-1-1: Geotechnical design (EC7)DD ENV 1998-1-1: Earthquake resistant design of structures (EC8)DD ENV 1999-1-1: Design of aluminium alloy structures (EC9)Each Eurocode is published in a number of parts, usually with ‘General rules’ and ‘Rules for buildings’ in Part 1. The various parts of EC2 are:Part 1.1 General rules and rules for buildings;Part 1.2 Supplementary rules for structural fire design;Part 1.3 Supplementary rules for precast concrete elements and structures;Part 1.4 Supplementary rules for the use of lightweight aggregate concrete;Part 1.5 Supplementary rules for the use of unbonded and external prestressing tendons;Part 1.6 Supplementary rules for plain or lightly reinforced concrete structures;Part 2.0 Reinforced and prestressed concrete bridges;Part 3.0 Concrete foundations;Part 4.0 Liquid retaining and containment structures.All Eurocodes follow a common editorial style. The codes contain ‘Principles’ and‘Application rules’. Principles are general statements, definitions, requirements and sometimes analytical models. All designs must comply with the Principles, and no alternative is permitted. Application rules are rules commonly adopted in design. They follow the Principles and satisfy their requirements. Alternative rules may be used provided that compliance with the Principles can be demonstrated.Some parameters in Eurocodes are designated by | _ | , commonly referred to as boxed values. The boxed values in the Codes are indicative guidance values. Each member state is required to fix the boxed value applicable within its jurisdiction. Such information would be found in the National Application Document (NAD) which is published as part of each ENV.There are also other purposes for NADs. NAD is meant to provide operational information to enable the ENV to be used. For certain aspects of the design, the ENV may refer to national standards or to CEN standard in preparation or ISO standards. The NAD is meant to provide appropriate guidance including modifications required to maintain compatibility between the documents. Very occasionally the NAD might rewrite particular clauses of the code in the interest of safety or economy. This is however rare.1.3 Scope of the ManualThe range of structures and structural elements covered by the Manual is limited to building structures that do not rely on bending in columns for their resistance to horizontal forces and are also non-sway. This will be found to cover the vast majority of all reinforced and prestressed concrete building structures. In using the Manual the following should be noted:• The Manual has been drafted to comply with ENV 1992-1-1 together with the UK NAD• Although British Standards have been referenced as loading codes in Sections 3 and 6,to comply with the UK NAD, the Manual can be used in conjunction with other loading codes • The structures are braced and non-sway• The concrete is of normal weight• The structure is predominantly in situ• Prestressed concrete members have bonded or unbonded internal tendons• The Manual can be used in conjunction with all commonly used materials in construction; however the data given are limited to the following:– concrete up to characteristic cylinder strength of 50N/mm2 (cube strength 602N/mm)– high-tensile reinforcement with characteristic strength of 4602N/mm– mild-steel reinforcement with characteristic strength of 2502N/mm– prestressing tendons with 7-wire low-relaxation (Class 2) strands• High ductility (Class H) has been assumed for:– all ribbed bars and grade 250 bars, and– ribbed wire welded fabric in wire sizes of 6mm or over• Normal ductility (Class N) has been assumed for plain or indented wire welded fabric.For structures or elements outside this scope EC2 should be used.1.4 Contents of the ManualThe Manual covers the following design stages:• gene ral principles that govern the design of the layout of the structure• initial sizing of members• estimating of quantities of reinforcement and prestressing tendons• final design of members.2 General principlesThis section outlines the general principles that apply to both initial and final design of both reinforced and prestressed concrete building structures, and states the design parameters that govern all design stages.2.1 GeneralOne engineer should be responsible for the overall design, including stability, and should ensure the compatibility of the design and details of parts and components even where some or all of the design and details of those parts and components are not made by the same engineer.The structure should be so arranged that it can transmit dead, wind and imposed loads in a direct manner to the foundations. The general arrangement should ensure a robust and stable structure that will not collapse progressively under the effects of misuse or accidental damage to any one element.The engineer should consider engineer site constraints, buildability2, maintainability and decommissioning.The engineer should take account of his responsibilities as a ‘Designer’ under the Construction (Design & Management) Regulations.32.2 StabilityLateral stability in two orthogonal directions should be provided by a system of strongpoints within the structure so as to produce a braced non-sway structure, in which the columns will not be subject to significant sway moments. Strongpoints can generally be provided by the core walls enclosing the stairs, lifts and service ducts. Additional stiffness can be provided by shear walls formed from a gable end or from some other external or internal subdividing wall. The core and shear walls should preferably be distributed throughout the structure and so arranged that their combined shear centre is located approximately on the line of the resultant in plan of the applied overturning forces. Where this is not possible, the resulting twisting moments must be considered when calculating the load carried by each strongpoint. These walls should generally be of reinforced concrete not less than 180mm thick to facilitate concreting, but they may be of 215mm brickwork or 190mm solid blockwork properly tied and pinned up to the framing for low- to medium-rise buildings.Strongpoints should be effective throughout the full height of the building. If it is essential for strongpoints to be discontinuous at one level, provision must be made to transfer the forces toother vertical components.It is essential that floors be designed to act as horizontal diaphragms, particularly if precast units are used.Where a structure is divided by expansion joints each part should be structurally independent and designed to be stable and robust without relying on the stability of adjacent sections.2.3 RobustnessAll members of the structure should be effectively tied together in the longitudinal, transverse and vertical directions.A well-designed and well-detailed cast-in situ structure will normally satisfy the detailed tying requirements set out in subsection 5.11.Elements whose failure would cause collapse of more than a limited part of the structure adjacent to them should be avoided. Where this is not possible, alternative load paths should be identified or the element in question strengthened.2.4 Movement jointsMovement joints may need to be provided to minimize the effects of movements caused by, for example, shrinkage, temperature variations, creep and settlement.The effectiveness of movement joints depends on their location. Movement joints should divide the structure into a number of individual sections, and should pass through the whole structure above ground level in one plane. The structure should be framed on both sides of the joint. Some examples of positioning movement joints in plan are given in Fig. 2.1.Movement joints may also be required where there is a significant change in the type of foundation or the height of the structure. For reinforced concrete frame structures in UK conditions, movement joints at least 25mm wide should normally be provided at approximately 50m centres both longitudinally and transversely. In the top storey and for open buildings and exposed slabs additional joints should normally be provided to give approximately 25m spacing. Joint spacing in exposed parapets should be approximately 12m.Joints should be incorporated in the finishes and in the cladding at the movement joint locations.2.5 Fire resistance and durabilityFor the required period of fire resistance (prescribed in the Building Regulations), the structure should:• have adequate loadbearing capacity• limit the temperature rise on the far face by sufficient insulation, and• have sufficient integrity to prevent the formation of crack s that will allow the passage of fire and gases.Fig. 2.1 Location of movement jointsThe design should take into account the likely deterioration of the structure and its components in their environment having due regard to the anticipated level of maintenance. The following inter-related factors should be considered:• the required performance criteria• the expected environmental conditions• the composition, properties and performance of materials• the shape of members and detailing• the quality of workmanship• any protective measure• the likely maintenance during the intended life.Concrete of appropriate quality with adequate cover to the reinforcement should be specified. The above requirements for durability and fire resistance may dictate sizes for members greater than those required for structural strength alone.。
毕 业 设 计(英文翻译)
附录G:英文翻译参考(要求学生完成与论文有关的外文资料中文字数5000字左右的英译汉,旨在培养学生利用外文资料开展研究工作的能力,为所选课题提供前沿参考资料。
)毕业设计(英文翻译)题目系别:专业:班级:学生姓名:学号:指导教师:一位从事质量管理的人约瑟夫·朱兰出生于圣诞夜,1904 在罗马尼亚的喀尔巴阡山脉山中。
他青年时期的村庄中贫穷、迷信和反犹太主义甚是猖獗。
1912年朱兰家搬到了明尼阿波尼斯州,虽然充满了危险,但是它却让一个男孩充满信心和希望。
从如此多了一个在质量观念的世界最好改革者之一。
在他90年的生活中,朱兰一直是一个精力充沛的思想者倡导者,推动着传统的质量思想向前走。
因为九岁就被雇用,朱兰表示在他的生活工作上永不停止。
记者:技术方面如何讲质量?朱兰:技术有不同方面:一、当然是精密。
物的对精密的需求像电子学、化学…我们看来它们似乎需要放大来说,和重要的原子尘的有关于质量。
要做到高精密具有相当大的挑战,而且我们已经遇见非常大的挑战。
另外的一个方面是可信度-没有失败。
当我们举例来说建立一个系统,同类空中交通管制的时候,我们不想要它失败。
我们必须把可信度建入系统。
因为我们投入很大的资金并依赖这些系统,系统非常复杂,这是逐渐增加的。
除此之外,有对公司的失败费用。
如果事物在领域中意外失败,可以说,它影响民众。
但是如果他们失败在内部,然后它影响公司的费用,而且已经试着发现这些费用在哪里和该如何免除他们。
因此那些是相当大的因素:精密、可信度和费用。
还有其它的,当然,但是我认为这些是主要的一些。
记者:据说是质量有在美国变成一种产业的可能?朱兰:资讯科技当然有。
已经有大的变化。
在世纪中初期当质量的一个想法到一个检验部门的时候,这有了分开的工作,东西被做坏之后。
检验是相当易错的程序,实际上。
而且无论如何,资讯科技在那天中相当花时间,直到某事已经被认为是否资讯科技是正确的。
应该强调计划,如此它不被错误首先订定。
土木工程-毕业设计-论文-外文翻译-中英文对照
英文原文:Concrete structure reinforcement designSheyanb oⅠWangchenji aⅡⅠFoundation Engineering Co., Ltd. Heilongjiang DongyuⅡHeilongjiang Province, East Building Foundation Engineering Co., Ltd. CoalAbstract:structure in the long-term natural environment and under the use environment's function, its function is weaken inevitably gradually, our structural engineering's duty not just must finish the building earlier period the project work, but must be able the science appraisal structure damage objective law and the degree, and adopts the effective method guarantee structure the security use, that the structure reinforcement will become an important work. What may foresee will be the 21st century, the human building also by the concrete structure, the steel structure, the bricking-up structure and so on primarily, the present stage I will think us in the structure reinforcement this aspect research should also take this as the main breakthrough direction.Key word:Concrete structure reinforcement bricking-up structure reinforcement steel structure reinforcement1 Concrete structure reinforcementConcrete structure's reinforcement divides into the direct reinforcement and reinforces two kinds indirectly, when the design may act according to the actual condition and the operation requirements choice being suitable method and the necessary technology.1.1the direct reinforcement's general method1)Enlarges the section reinforcement lawAdds the concretes cast-in-place level in the reinforced concrete member in bending compression zone, may increase the section effective height, the expansion cross sectional area, thus enhances the component right section anti-curved, the oblique section anti-cuts ability and the section rigidity, plays the reinforcement reinforcement the role.In the suitable muscle scope, the concretes change curved the component right section supporting capacity increase along with the area of reinforcement and the intensity enhance. In the original component right section ratio of reinforcement not too high situation, increases the main reinforcement area to be possible to propose the plateau component right section anti-curved supporting capacity effectively. Is pulled in the section the area to add the cast-in-place concrete jacket to increase the component section, through new Canada partial and original component joint work, but enhances the component supporting capacity effectively, improvement normal operational performance.Enlarges the section reinforcement law construction craft simply, compatible, and has the mature design and the construction experience; Is suitable in Liang, the board, the column, the wall and the general structure concretes reinforcement; But scene construction's wet operating time is long, to produces has certain influence with the life, and after reinforcing the building clearance has certain reduction.2) Replacement concretes reinforcement lawThis law's merit with enlarges the method of sections to be close, and after reinforcing, does not affect building's clearance, but similar existence construction wet operating time long shortcoming; Is suitable somewhat low or has concretes carrier's and so on serious defect Liang, column in the compression zone concretes intensity reinforcement.3) the caking outsourcing section reinforcement lawOutside the Baotou Steel Factory reinforcement is wraps in the section or the steel plate is reinforced component's outside, outside the Baotou Steel Factory reinforces reinforced concrete Liang to use the wet outsourcing law generally, namely uses the epoxy resinification to be in the milk and so on methods with to reinforce the section the construction commission to cake a whole, after the reinforcement component, because is pulled with the compressed steel cross sectional area large scale enhancement, therefore right section supporting capacity and section rigidity large scale enhancement.This law also said that the wet outside Baotou Steel Factory reinforcement law, the stress is reliable, the construction is simple, the scene work load is small, but is big with the steel quantity, and uses in above not suitably 600C in the non-protection's situation the high temperature place; Is suitable does not allow in the use obviously to increase the original component section size, but requests to sharpen its bearing capacity large scale the concrete structure reinforcement.4) Sticks the steel reinforcement lawOutside the reinforced concrete member in bending sticks the steel reinforcement is (right section is pulled in the component supporting capacity insufficient sector area, right section compression zone or oblique section) the superficial glue steel plate, like this may enhance is reinforced component's supporting capacity, and constructs conveniently.This law construction is fast, the scene not wet work or only has the plastering and so on few wet works, to produces is small with the life influence, and after reinforcing, is not remarkable to the original structure outward appearance and the original clearance affects, but the reinforcement effect is decided to a great extent by the gummy craft and the operational level; Is suitable in the withstanding static function, and is in the normal humidity environment to bend or the tension member reinforcement.5) Glue fibre reinforcement plastic reinforcement lawOutside pastes the textile fiber reinforcement is pastes with the cementing material the fibre reinforcement compound materials in is reinforced the component to pull the region, causes it with to reinforce the section joint work, achieves sharpens the component bearing capacity the goal. Besides has glues the steel plate similar merit, but also has anticorrosive muddy, bears moistly, does not increase the self-weight of structure nearly, durably, the maintenance cost low status merit, but needs special fire protection processing, is suitable in each kind of stress nature concrete structure component and the general construction.This law's good and bad points with enlarge the method of sections to be close; Is suitable reinforcement which is insufficient in the concrete structure component oblique section supporting capacity, or must exert the crosswise binding force to the compressional member the situation.6) Reeling lawThis law's good and bad points with enlarge the method of sections to be close; Is suitable reinforcement which is insufficient in the concrete structure component oblique section supporting capacity, or must exert the crosswise binding force to the compressional member the situation.7) Fang bolt anchor lawThis law is suitable in the concretes intensity rank is the C20~C60 concretes load-bearing member transformation, the reinforcement; It is not suitable for already the above structure which and the light quality structure makes decent seriously. 1.2The indirect reinforcement's general method1)Pre-stressed reinforcement law(1)Thepre-stressed horizontal tension bar reinforces concretes member in bending,because the pre-stressed and increases the exterior load the combined action, in the tension bar has the axial tension, this strength eccentric transmits on the component through the pole end anchor (, when tension bar and Liang board bottom surface close fitting, tension bar can look for tune together with component, this fashion has partial pressures to transmit directly for component bottom surface), has the eccentric compression function in the component, this function has overcome the bending moment which outside the part the load produces, reduced outside the load effect, thus sharpened component's anti-curved ability. At the same time, because the tension bar passes to component's pressure function, the component crack development can alleviate, the control, the oblique section anti-to cut the supporting capacity also along with it enhancement.As a result of the horizontal lifting stem's function, the original component's section stress characteristic by received bends turned the eccentric compression, therefore, after the reinforcement, component's supporting capacity was mainly decided in bends under the condition the original component's supporting capacity 。
毕业设计英文翻译中英文对照版
Feasibility assessment of a leading-edge-flutter wind power generator前缘颤振风力发电机的可行性评估Luca Caracoglia卢卡卡拉克格里亚Department of Civil and Environmental Engineering, Northeastern University, 400 Snell Engineering Center, 360 Huntington A venue, Boston, MA 02115, USA美国东北大学土木与环境工程斯内尔工程中心400,亨廷顿大道360,波士顿02115This study addresses the preliminary technical feasibility assessment of a mechanical apparatus for conversion of wind energy. 这项研究涉及的是风能转换的机械设备的初步技术可行性评估。
The proposed device, designated as ‘‘leading-edge-fl utter wind power generator’’, employs aeroelastic dynamic instability of a blade airfoil, torsionally rotating about its leading edge. 这种被推荐的定义为“前缘颤振风力发电机”的设备,采用的气动弹性动态不稳定叶片翼型,通过尖端旋转产生扭矩。
Although the exploitation of aeroelastic phenomena has been proposed by the research community for energy harvesting, this apparatus is compact, simple and marginally susceptible to turbulence and wake effects.虽然气动弹性现象的开发已经有研究界提出可以通过能量采集。
毕业设计中英文翻译
Key to the development of four-rotors micro air vehicletechnologyTo date, micro d experimental study on the basic theory of rotary wing aircraft and have made more progress, but to really mature and practical, also faces a number of key technical challenges.1. Optimal designOverall design of rotary-wing aircraft when small, need to be guided by the following principles: light weight, small size, high speed, low power consumption and costs. But these principles there are constraints and conflicting with each other, such as: vehicle weights are the same, is inversely proportional to its size and speed, low energy consumption. Therefore, when the overall design of miniature four-rotor aircraft, first select the appropriate body material based on performance and price, as much as possible to reduce the weight of aircraft; second, the need to take into account factors such as weight, size, speed and energy consumption, ensuring the realization of design optimization.2. The power and energyPower unit includes: rotor, micro DC motor, gear reducer, photoelectric encoder and motor drive module, the energy provided by onboard batteries. Four-rotors micro air vehicle's weight is a major factor affecting their size and weight of the power and energy devices accounted for a large share of the weight of the entire body. For the OS4 II, the proportion is as high as 75%. Therefore, development of lighter, more efficient power and energy devices is further miniaturized four key to rotary wing aircraft.The other hand, the lifting occurs with a power unit, most airborne energy consumption. For example, OS4 II power 91% power consumption. To increase the efficiency of aircraft, the key is to improve the efficiency of the power plant. In addition to maximize transmission efficiency, you must alsoselect the motor and reduction ratios, taking into account the maximum efficiency and maximum power output under the premise of two indicators, electric operating point within the recommended run area.3. The establishment of mathematical modelIn order to achieve effective control of four-rotors micro air vehicles, must be established accurately under various flight model. But during the flight, it not only accompanied by a variety of physical effects (aerodynamic, gravity, gyroscopic effect and rotor moment of inertia, also is vulnerable to disturbances in the external environment, such as air. Therefore, it is difficult to establish an effective, reliable dynamic model. In addition, the use of rotary wing, small size, light weight, easy to shape, it is difficult to obtain accurate aerodynamic performance parameters, and also directly affects the accuracy of the model.Establishment of mathematical model of four-rotor MAV, must also be studied and resolved problems rotor under low Reynolds number aerodynamics. Aerodynamics of micro air vehicle with conventional aircraft is very different, many aerodynamic theory and analysis tools are not currently applied, requires the development of new theories and research techniques.4. Flight controlFour-rotors micro air vehicle is a six degrees of freedom (location and attitude) and 4 control input (rotor speed) of underactuated system (Underactuated System), have more than one variable, linear, strongly coupled and interfere with sensitive features, makes it very difficult to design of flight control system. In addition, the controller model accuracy and precision of the sensor performance will also be affected.Attitude control is the key to the entire flight control, because four-rotors micro air vehicle's attitude and position a direct coupling (roll pitch p directly causes the body to move around before and after p), if you can precisely control the spacecraft attitude, then the control law is sufficient to achieve itsposition and velocity PID control. International study to focus on with attitude control design and validation, results show that although the simulation for nonlinear control law to obtain good results, but has a strong dependence on model accuracy, its actual effect rather than PID control. Therefore, developed to control the spacecraft attitude, also has strong anti-jamming and environment-Adaptive attitude control of a tiny four-rotary wing aircraft flight control system of priorities.5. Positioning, navigation and communicationMiniature four-rotor aircraft is primarily intended for near-surface environments, such as urban areas, forests, and interior of the tunnel. However, there are also aspects of positioning, navigation and communication. One hand, in near-surface environments, GPS does not work often requires integrated inertial navigation, optics, acoustics, radar and terrain-matching technology, development of a reliable and accurate positioning and navigation technology, on the other, near-surface environment, terrain, sources of interference and current communication technology reliability, security and robustness of application still cannot meet the actual demand. Therefore, development of small volume, light weight, low power consumption, reliability and anti-jamming communication chain in four-rotors micro air vehicle technology (in particular the multi-aircraft coordination control technology) development, are crucial.微小型四旋翼飞行器发展的关键技术迄今为止,微小型四旋翼飞行器基础理论与实验研究已取得较大进展,但要真正走向成熟与实用,还面临着诸多关键技术的挑战。
本科毕业设计(论文)外文翻译译文
本科毕业设计(论文)外文翻译译文学生姓名:院(系):油气资源学院专业班级:物探0502指导教师:完成日期:年月日地震驱动评价与发展:以玻利维亚冲积盆地的研究为例起止页码:1099——1108出版日期:NOVEMBER 2005THE LEADING EDGE出版单位:PanYAmericanYEnergyvBuenosYAiresvYArgentinaJPYBLANGYvYBPYExplorationvYHoustonvYUSAJ.C.YCORDOVAandYE.YMARTINEZvYChacoYS.A.vYSantaYCruzvYBolivia 通过整合多种地球物理地质技术,在玻利维亚冲积盆地,我们可以减少许多与白垩纪储集层勘探有关的地质技术风险。
通过对这些远景区进行成功钻探我们可以验证我们的解释。
这些方法包括盆地模拟,联井及地震叠前同时反演,岩石性质及地震属性解释,A VO/A V A,水平地震同相轴,光谱分解。
联合解释能够得到构造和沉积模式的微笑校正。
迄今为止,在新区有七口井已经进行了成功钻探。
基质和区域地质。
Tarija/Chaco盆地的subandean 褶皱和冲断带山麓的中部和南部,部分扩展到玻利维亚的Boomerange地区经历了集中的成功的开采。
许多深大的泥盆纪气田已经被发现,目前正在生产。
另外在山麓发现的规模较小较浅的天然气和凝析气田和大的油田进行价格竞争,如果他们能产出较快的油流而且成本低。
最近发现气田就是这种情况。
接下来,我们赋予Aguja的虚假名字就是为了讲述这些油田的成功例子。
图1 Aguja油田位于玻利维亚中部Chaco盆地的西北角。
基底构造图显示了Isarzama背斜的相对位置。
地层柱状图显示了主要的储集层和源岩。
该油田在Trija和冲积盆地附近的益背斜基底上,该背斜将油田和Ben i盆地分开(图1),圈闭类型是上盘背斜,它存在于连续冲断层上,Aguja有两个主要结构:Aguja中部和Aguja Norte,通过重要的转换压缩断层将较早开发的“Sur”油田分开Yantata Centro结构是一个三路闭合对低角度逆冲断层并伴随有小的摆幅。
建筑设计毕业论文中英文资料外文翻译文献
毕业论文中英文资料外文翻译文献Architecture StructureWe have and the architects must deal with the spatial aspect of activity, physical, and symbolic needs in such a way that overall performance integrity is assured. Hence, he or she well wants to think of evolving a building environment as a total system of interacting and space forming subsystems. Is represents a complex challenge, and to meet it the architect will need a hierarchic design process that provides at least three levels of feedback thinking: schematic, preliminary, and final.Such a hierarchy is necessary if he or she is to avoid being confused , at conceptual stages of design thinking ,by the myriad detail issues that can distract attention from more basic consideration s .In fact , we can say that an architect’s ability to distinguish the more basic form the more detailed issues is essential to his success as a designer .The object of the schematic feed back level is to generate and evaluate overall site-plan, activity-interaction, and building-configuration options .To do so the architect must be able to focus on the interaction of the basic attributes of the site context, the spatial organization, and the symbolism as determinants of physical form. This means that ,in schematic terms ,the architect may first conceive and model a building design as an organizational abstraction of essential performance-space in teractions.Then he or she may explore the overall space-form implications of the abstraction. As an actual building configuration option begins to emerge, it will be modified to include consideration for basic site conditions.At the schematic stage, it would also be helpful if the designer could visualize his or her options for achieving overall structural integrity and consider the constructive feasibility and economic of his or her scheme .But this will require that the architect and/or a consultant be able to conceptualize total-system structural options in terms of elemental detail .Such overall thinking can be easily fed back to improve the space-form scheme.At the preliminary level, the architect’s emphasis will shift to the elaboration of his or her more promising schematic design options .Here the architect’s structural needs will shift toapproximate design of specific subsystem options. At this stage the total structural scheme is developed to a middle level of specificity by focusing on identification and design of major subsystems to the extent that their key geometric, component, and interactive properties are established .Basic subsystem interaction and design conflicts can thus be identified and resolved in the context of total-system objectives. Consultants can play a significant part in this effort; these preliminary-level decisions may also result in feedback that calls for refinement or even major change in schematic concepts.When the designer and the client are satisfied with the feasibility of a design proposal at the preliminary level, it means that the basic problems of overall design are solved and details are not likely to produce major change .The focus shifts again ,and the design process moves into the final level .At this stage the emphasis will be on the detailed development of all subsystem specifics . Here the role of specialists from various fields, including structural engineering, is much larger, since all detail of the preliminary design must be worked out. Decisions made at this level may produce feedback into Level II that will result in changes. However, if Levels I and II are handled with insight, the relationship between the overall decisions, made at the schematic and preliminary levels, and the specifics of the final level should be such that gross redesign is not in question, Rather, the entire process should be one of moving in an evolutionary fashion from creation and refinement (or modification) of the more general properties of a total-system design concept, to the fleshing out of requisite elements and details.To summarize: At Level I, the architect must first establish, in conceptual terms, the overall space-form feasibility of basic schematic options. At this stage, collaboration with specialists can be helpful, but only if in the form of overall thinking. At Level II, the architect must be able to identify the major subsystem requirements implied by the scheme and substantial their interactive feasibility by approximating key component properties .That is, the properties of major subsystems need be worked out only in sufficient depth to very the inherent compatibility of their basic form-related and behavioral interaction . This will mean a somewhat more specific form of collaboration with specialists then that in level I .At level III ,the architect and the specific form of collaboration with specialists then that providing for all of the elemental design specifics required to produce biddable construction documents .Of course this success comes from the development of the Structural Material.1.Reinforced ConcretePlain concrete is formed from a hardened mixture of cement ,water ,fine aggregate, coarse aggregate (crushed stone or gravel),air, and often other admixtures. The plastic mix is placed and consolidated in the formwork, then cured to facilitate the acceleration of the chemical hydration reaction lf the cement/water mix, resulting in hardened concrete. The finished product has high compressive strength, and low resistance to tension, such that its tensile strength is approximately one tenth lf its compressive strength. Consequently, tensile and shear reinforcement in the tensile regions of sections has to be provided to compensate for the weak tension regions in the reinforced concrete element.It is this deviation in the composition of a reinforces concrete section from the homogeneity of standard wood or steel sections that requires a modified approach to the basic principles of structural design. The two components of the heterogeneous reinforced concrete section are to be so arranged and proportioned that optimal use is made of the materials involved. This is possible because concrete can easily be given any desired shape by placing and compacting the wet mixture of the constituent ingredients are properly proportioned, the finished product becomes strong, durable, and, in combination with the reinforcing bars, adaptable for use as main members of any structural system.The techniques necessary for placing concrete depend on the type of member to be cast: that is, whether it is a column, a bean, a wall, a slab, a foundation. a mass columns, or an extension of previously placed and hardened concrete. For beams, columns, and walls, the forms should be well oiled after cleaning them, and the reinforcement should be cleared of rust and other harmful materials. In foundations, the earth should be compacted and thoroughly moistened to about 6 in. in depth to avoid absorption of the moisture present in the wet concrete. Concrete should always be placed in horizontal layers which are compacted by means of high frequency power-driven vibrators of either the immersion or external type, as the case requires, unless it is placed by pumping. It must be kept in mind, however, that over vibration can be harmful since it could cause segregation of the aggregate and bleeding of the concrete.Hydration of the cement takes place in the presence of moisture at temperatures above 50°F. It is necessary to maintain such a condition in order that the chemical hydration reaction can take place. If drying is too rapid, surface cracking takes place. This would result in reduction of concrete strength due to cracking as well as the failure to attain full chemical hydration.It is clear that a large number of parameters have to be dealt with in proportioning a reinforced concrete element, such as geometrical width, depth, area of reinforcement, steel strain, concrete strain, steel stress, and so on. Consequently, trial and adjustment is necessary in the choice ofconcrete sections, with assumptions based on conditions at site, availability of the constituent materials, particular demands of the owners, architectural and headroom requirements, the applicable codes, and environmental reinforced concrete is often a site-constructed composite, in contrast to the standard mill-fabricated beam and column sections in steel structures.A trial section has to be chosen for each critical location in a structural system. The trial section has to be analyzed to determine if its nominal resisting strength is adequate to carry the applied factored load. Since more than one trial is often necessary to arrive at the required section, the first design input step generates into a series of trial-and-adjustment analyses.The trial-and –adjustment procedures for the choice of a concrete section lead to the convergence of analysis and design. Hence every design is an analysis once a trial section is chosen. The availability of handbooks, charts, and personal computers and programs supports this approach as a more efficient, compact, and speedy instructional method compared with the traditional approach of treating the analysis of reinforced concrete separately from pure design.2. EarthworkBecause earthmoving methods and costs change more quickly than those in any other branch of civil engineering, this is a field where there are real opportunities for the enthusiast. In 1935 most of the methods now in use for carrying and excavating earth with rubber-tyred equipment did not exist. Most earth was moved by narrow rail track, now relatively rare, and the main methods of excavation, with face shovel, backacter, or dragline or grab, though they are still widely used are only a few of the many current methods. To keep his knowledge of earthmoving equipment up to date an engineer must therefore spend tine studying modern machines. Generally the only reliable up-to-date information on excavators, loaders and transport is obtainable from the makers.Earthworks or earthmoving means cutting into ground where its surface is too high ( cuts ), and dumping the earth in other places where the surface is too low ( fills). Toreduce earthwork costs, the volume of the fills should be equal to the volume of the cuts and wherever possible the cuts should be placednear to fills of equal volume so as to reduce transport and double handlingof the fill. This work of earthwork design falls on the engineer who lays out the road since it is the layout of the earthwork more than anything else which decides its cheapness. From the available maps ahd levels, the engineering must try to reach as many decisions as possible in the drawing office by drawing cross sections of the earthwork. On the site when further information becomes available he can make changes in jis sections and layout,but the drawing lffice work will not have been lost. It will have helped him to reach the best solution in the shortest time.The cheapest way of moving earth is to take it directly out of the cut and drop it as fill with the same machine. This is not always possible, but when it canbe done it is ideal, being both quick and cheap. Draglines, bulldozers and face shovels an do this. The largest radius is obtained with thedragline,and the largest tonnage of earth is moved by the bulldozer, though only over short distances.The disadvantages of the dragline are that it must dig below itself, it cannot dig with force into compacted material, it cannot dig on steep slopws, and its dumping and digging are not accurate.Face shovels are between bulldozers and draglines, having a larger radius of action than bulldozers but less than draglines. They are anle to dig into a vertical cliff face in a way which would be dangerous tor a bulldozer operator and impossible for a dragline. Each piece of equipment should be level of their tracks and for deep digs in compact material a backacter is most useful, but its dumping radius is considerably less than that of the same escavator fitted with a face shovel.Rubber-tyred bowl scrapers are indispensable for fairly level digging where the distance of transport is too much tor a dragline or face shovel. They can dig the material deeply ( but only below themselves ) to a fairly flat surface, carry it hundreds of meters if need be, then drop it and level it roughly during the dumping. For hard digging it is often found economical to keep a pusher tractor ( wheeled or tracked ) on the digging site, to push each scraper as it returns to dig. As soon as the scraper is full,the pusher tractor returns to the beginning of the dig to heop to help the nest scraper.Bowl scrapers are often extremely powerful machines;many makers build scrapers of 8 cubic meters struck capacity, which carry 10 m ³ heaped. The largest self-propelled scrapers are of 19 m ³struck capacity ( 25 m ³ heaped )and they are driven by a tractor engine of 430 horse-powers.Dumpers are probably the commonest rubber-tyred transport since they can also conveniently be used for carrying concrete or other building materials. Dumpers have the earth container over the front axle on large rubber-tyred wheels, and the container tips forwards on most types, though in articulated dumpers the direction of tip can be widely varied. The smallest dumpers have a capacity of about 0.5 m ³, and the largest standard types are of about 4.5 m ³. Special types include the self-loading dumper of up to 4 m ³ and the articulated type of about 0.5 m ³. The distinction between dumpers and dump trucks must be remembered .dumpers tip forwards and the driver sits behind the load. Dump trucks are heavy, strengthened tipping lorries, the driver travels in front lf the load and the load is dumped behind him, so they are sometimes called rear-dump trucks.3.Safety of StructuresThe principal scope of specifications is to provide general principles and computational methods in order to verify safety of structures. The “ safety factor ”, which according to modern trends is independent of the nature and combination of the materials used, can usually be defined as the ratio between the conditions. This ratio is also proportional to the inverse of the probability ( risk ) of failure of the structure.Failure has to be considered not only as overall collapse of the structure but also asunserviceability or, according to a more precise. Common definition. As the reaching of a “ limit state ” which causes the construction not to accomplish the task it was designed for. Ther e are two categories of limit state :(1)Ultimate limit sate, which corresponds to the highest value of the load-bearing capacity. Examples include local buckling or global instability of the structure; failure of some sections and subsequent transformation of the structure into a mechanism; failure by fatigue; elastic or plastic deformation or creep that cause a substantial change of the geometry of the structure; and sensitivity of the structure to alternating loads, to fire and to explosions.(2)Service limit states, which are functions of the use and durability of the structure. Examples include excessive deformations and displacements without instability; early or excessive cracks; large vibrations; and corrosion.Computational methods used to verify structures with respect to the different safety conditions can be separated into:(1)Deterministic methods, in which the main parameters are considered as nonrandom parameters.(2)Probabilistic methods, in which the main parameters are considered as random parameters.Alternatively, with respect to the different use of factors of safety, computational methods can be separated into:(1)Allowable stress method, in which the stresses computed under maximum loads are compared with the strength of the material reduced by given safety factors.(2)Limit states method, in which the structure may be proportioned on the basis of its maximum strength. This strength, as determined by rational analysis, shall not be less than that required to support a factored load equal to the sum of the factored live load and dead load ( ultimate state ).The stresses corresponding to working ( service ) conditions with unfactored live and dead loads are compared with prescribed values ( service limit state ) . From the four possible combinations of the first two and second two methods, we can obtain some useful computational methods. Generally, two combinations prevail:(1)deterministic methods, which make use of allowable stresses.(2)Probabilistic methods, which make use of limit states.The main advantage of probabilistic approaches is that, at least in theory, it is possible to scientifically take into account all random factors of safety, which are then combined to define the safety factor. probabilistic approaches depend upon :(1) Random distribution of strength of materials with respect to the conditions of fabrication and erection ( scatter of the values of mechanical properties through out the structure );(2) Uncertainty of the geometry of the cross-section sand of the structure ( faults andimperfections due to fabrication and erection of the structure );(3) Uncertainty of the predicted live loads and dead loads acting on the structure;(4)Uncertainty related to the approximation of the computational method used ( deviation of the actual stresses from computed stresses ).Furthermore, probabilistic theories mean that the allowable risk can be based on several factors, such as :(1) Importance of the construction and gravity of the damage by its failure;(2)Number of human lives which can be threatened by this failure;(3)Possibility and/or likelihood of repairing the structure;(4) Predicted life of the structure.All these factors are related to economic and social considerations such as:(1) Initial cost of the construction;(2) Amortization funds for the duration of the construction;(3) Cost of physical and material damage due to the failure of the construction;(4) Adverse impact on society;(5) Moral and psychological views.The definition of all these parameters, for a given safety factor, allows construction at the optimum cost. However, the difficulty of carrying out a complete probabilistic analysis has to be taken into account. For such an analysis the laws of the distribution of the live load and its induced stresses, of the scatter of mechanical properties of materials, and of the geometry of the cross-sections and the structure have to be known. Furthermore, it is difficult to interpret the interaction between the law of distribution of strength and that of stresses because both depend upon the nature of the material, on the cross-sections and upon the load acting on the structure. These practical difficulties can be overcome in two ways. The first is to apply different safety factors to the material and to the loads, without necessarily adopting the probabilistic criterion. The second is an approximate probabilistic method which introduces some simplifying assumptions ( semi-probabilistic methods ) .文献翻译建筑师必须从一种全局的角度出发去处理建筑设计中应该考虑到的实用活动,物质及象征性的需求。
毕业设计英文 翻译(原文)
编号:毕业设计(论文)外文翻译(原文)院(系):桂林电子科技大学专业:电子信息工程学生姓名: xx学号: xxxxxxxxxxxxx 指导教师单位:桂林电子科技大学姓名: xxxx职称: xx2014年x月xx日Timing on and off power supplyusesThe switching power supply products are widely used in industrial automation and control, military equipment, scientific equipment, LED lighting, industrial equipment,communications equipment,electrical equipment,instrumentation, medical equipment, semiconductor cooling and heating, air purifiers, electronic refrigerator, LCD monitor, LED lighting, communications equipment, audio-visual products, security, computer chassis, digital products and equipment and other fields.IntroductionWith the rapid development of power electronics technology, power electronics equipment and people's work, the relationship of life become increasingly close, and electronic equipment without reliable power, into the 1980s, computer power and the full realization of the switching power supply, the first to complete the computer Power new generation to enter the switching power supply in the 1990s have entered into a variety of electronic, electrical devices, program-controlled switchboards, communications, electronic testing equipment power control equipment, power supply, etc. have been widely used in switching power supply, but also to promote the rapid development of the switching power supply technology .Switching power supply is the use of modern power electronics technology to control the ratio of the switching transistor to turn on and off to maintain a stable output voltage power supply, switching power supply is generally controlled by pulse width modulation (PWM) ICs and switching devices (MOSFET, BJT) composition. Switching power supply and linear power compared to both the cost and growth with the increase of output power, but the two different growth rates. A power point, linear power supply costs, but higher than the switching power supply. With the development of power electronics technology and innovation, making the switching power supply technology to continue to innovate, the turning points of this cost is increasingly move to the low output power side, the switching power supply provides a broad space for development.The direction of its development is the high-frequency switching power supply, high frequency switching power supply miniaturization, and switching power supply into a wider range of application areas, especially in high-tech fields, and promote the miniaturization of high-tech products, light of. In addition, the development and application of the switching power supply in terms of energy conservation, resource conservation and environmental protection are of great significance.classificationModern switching power supply, there are two: one is the DC switching power supply; the other is the AC switching power supply. Introduces only DC switching power supply and its function is poor power quality of the original eco-power (coarse) - such as mains power or battery power, converted to meet the equipment requirements of high-quality DC voltage (Varitronix) . The core of the DC switching power supply DC / DC converter. DC switching power supply classification is dependent on the classification of DC / DC converter. In other words, the classification of the classification of the DC switching power supply and DC/DC converter is the classification of essentially the same, the DC / DC converter is basically a classification of the DC switching power supply.DC /DC converter between the input and output electrical isolation can be divided into two categories: one is isolated called isolated DC/DC converter; the other is not isolated as non-isolated DC / DC converter.Isolated DC / DC converter can also be classified by the number of active power devices. The single tube of DC / DC converter Forward (Forward), Feedback (Feedback) two. The double-barreled double-barreled DC/ DC converter Forward (Double Transistor Forward Converter), twin-tube feedback (Double Transistor Feedback Converter), Push-Pull (Push the Pull Converter) and half-bridge (Half-Bridge Converter) four. Four DC / DC converter is the full-bridge DC / DC converter (Full-Bridge Converter).Non-isolated DC / DC converter, according to the number of active power devices can be divided into single-tube, double pipe, and four three categories. Single tube to a total of six of the DC / DC converter, step-down (Buck) DC / DC converter, step-up (Boost) DC / DC converters, DC / DC converter, boost buck (Buck Boost) device of Cuk the DC / DC converter, the Zeta DC / DC converter and SEPIC, the DC / DC converter. DC / DC converters, the Buck and Boost type DC / DC converter is the basic buck-boost of Cuk, Zeta, SEPIC, type DC / DC converter is derived from a single tube in this six. The twin-tube cascaded double-barreled boost (buck-boost) DC / DC converter DC / DC converter. Four DC / DC converter is used, the full-bridge DC / DC converter (Full-Bridge Converter).Isolated DC / DC converter input and output electrical isolation is usually transformer to achieve the function of the transformer has a transformer, so conducive to the expansion of the converter output range of applications, but also easy to achieve different voltage output , or a variety of the same voltage output.Power switch voltage and current rating, the converter's output power is usually proportional to the number of switch. The more the number of switch, the greater the output power of the DC / DC converter, four type than the two output power is twice as large,single-tube output power of only four 1/4.A combination of non-isolated converters and isolated converters can be a single converter does not have their own characteristics. Energy transmission points, one-way transmission and two-way transmission of two DC / DC converter. DC / DC converter with bi-directional transmission function, either side of the transmission power from the power of lateral load power from the load-lateral side of the transmission power.DC / DC converter can be divided into self-excited and separately controlled. With the positive feedback signal converter to switch to self-sustaining periodic switching converter, called self-excited converter, such as the the Luo Yeer (Royer,) converter is a typical push-pull self-oscillating converter. Controlled DC / DC converter switching device control signal is generated by specialized external control circuit.the switching power supply.People in the field of switching power supply technology side of the development of power electronic devices, while the development of the switching inverter technology, the two promote each other to promote the switching power supply annual growth rate of more than two digits toward the light, small, thin, low-noise, high reliability, the direction of development of anti-jamming. Switching power supply can be divided into AC / DC and DC / DC two categories, AC / AC DC / AC, such as inverters, DC / DC converter is now modular design technology and production processes at home and abroad have already matured and standardization, and has been recognized by the user, but AC / DC modular, its own characteristics make the modular process, encounter more complex technology and manufacturing process. Hereinafter to illustrate the structure and characteristics of the two types of switching power supply.Self-excited: no external signal source can be self-oscillation, completely self-excited to see it as feedback oscillation circuit of a transformer.Separate excitation: entirely dependent on external sustain oscillations, excited used widely in practical applications. According to the excitation signal structure classification; can be divided into pulse-width-modulated and pulse amplitude modulated two pulse width modulated control the width of the signal is frequency, pulse amplitude modulation control signal amplitude between the same effect are the oscillation frequency to maintain within a certain range to achieve the effect of voltage stability. The winding of the transformer can generally be divided into three types, one group is involved in the oscillation of the primary winding, a group of sustained oscillations in the feedback winding, there is a group of load winding. Such as Shanghai is used in household appliances art technological production of switching power supply, 220V AC bridge rectifier, changing to about 300V DC filter added tothe collector of the switch into the transformer for high frequency oscillation, the feedback winding feedback to the base to maintain the circuit oscillating load winding induction signal, the DC voltage by the rectifier, filter, regulator to provide power to the load. Load winding to provide power at the same time, take up the ability to voltage stability, the principle is the voltage output circuit connected to a voltage sampling device to monitor the output voltage changes, and timely feedback to the oscillator circuit to adjust the oscillation frequency, so as to achieve stable voltage purposes, in order to avoid the interference of the circuit, the feedback voltage back to the oscillator circuit with optocoupler isolation.technology developmentsThe high-frequency switching power supply is the direction of its development, high-frequency switching power supply miniaturization, and switching power supply into the broader field of application, especially in high-tech fields, and promote the development and advancement of the switching power supply, an annual more than two-digit growth rate toward the light, small, thin, low noise, high reliability, the direction of the anti-jamming. Switching power supply can be divided into AC / DC and DC / DC two categories, the DC / DC converter is now modular design technology and production processes at home and abroad have already matured and standardized, and has been recognized by the user, but modular AC / DC, because of its own characteristics makes the modular process, encounter more complex technology and manufacturing process. In addition, the development and application of the switching power supply in terms of energy conservation, resource conservation and environmental protection are of great significance.The switching power supply applications in power electronic devices as diodes, IGBT and MOSFET.SCR switching power supply input rectifier circuit and soft start circuit, a small amount of applications, the GTR drive difficult, low switching frequency, gradually replace the IGBT and MOSFET.Direction of development of the switching power supply is a high-frequency, high reliability, low power, low noise, jamming and modular. Small, thin, and the key technology is the high frequency switching power supply light, so foreign major switching power supply manufacturers have committed to synchronize the development of new intelligent components, in particular, is to improve the secondary rectifier loss, and the power of iron Oxygen materials to increase scientific and technological innovation in order to improve the magnetic properties of high frequency and large magnetic flux density (Bs), and capacitor miniaturization is a key technology. SMT technology allows the switching power supply has made considerable progress, the arrangement of the components in the circuit board on bothsides, to ensure that the light of the switching power supply, a small, thin. High-frequency switching power supply is bound to the traditional PWM switching technology innovation, realization of ZVS, ZCS soft-switching technology has become the mainstream technology of the switching power supply, and a substantial increase in the efficiency of the switching power supply. Indicators for high reliability, switching power supply manufacturers in the United States by reducing the operating current, reducing the junction temperature and other measures to reduce the stress of the device, greatly improve the reliability of products.Modularity is the overall trend of switching power supply, distributed power systems can be composed of modular power supply, can be designed to N +1 redundant power system, and the parallel capacity expansion. For this shortcoming of the switching power supply running noise, separate the pursuit of high frequency noise will also increase, while the use of part of the resonant converter circuit technology to achieve high frequency, in theory, but also reduce noise, but some The practical application of the resonant converter technology, there are still technical problems, it is still a lot of work in this field, so that the technology to be practical.Power electronics technology innovation, switching power supply industry has broad prospects for development. To accelerate the pace of development of the switching power supply industry in China, it must take the road of technological innovation, out of joint production and research development path with Chinese characteristics and contribute to the rapid development of China's national economy.Developments and trends of the switching power supply1955 U.S. Royer (Roger) invented the self-oscillating push-pull transistor single-transformer DC-DC converter is the beginning of the high-frequency conversion control circuit 1957 check race Jen, Sen, invented a self-oscillating push-pull dual transformers, 1964, U.S. scientists canceled frequency transformer in series the idea of switching power supply, the power supply to the size and weight of the decline in a fundamental way. 1969 increased due to the pressure of the high-power silicon transistor, diode reverse recovery time shortened and other components to improve, and finally made a 25-kHz switching power supply.At present, the switching power supply to the small, lightweight and high efficiency characteristics are widely used in a variety of computer-oriented terminal equipment, communications equipment, etc. Almost all electronic equipment is indispensable for a rapid development of today's electronic information industry power mode. Bipolar transistor made of 100kHz, 500kHz power MOS-FET made, though already the practical switching power supply is currently available on the market, but its frequency to be further improved. Toimprove the switching frequency, it is necessary to reduce the switching losses, and to reduce the switching losses, the need for high-speed switch components. However, the switching speed will be affected by the distribution of the charge stored in the inductance and capacitance, or diode circuit to produce a surge or noise. This will not only affect the surrounding electronic equipment, but also greatly reduce the reliability of the power supply itself. Which, in order to prevent the switching Kai - closed the voltage surge, RC or LC buffers can be used, and the current surge can be caused by the diode stored charge of amorphous and other core made of magnetic buffer . However, the high frequency more than 1MHz, the resonant circuit to make the switch on the voltage or current through the switch was a sine wave, which can reduce switching losses, but also to control the occurrence of surges. This switch is called the resonant switch. Of this switching power supply is active, you can, in theory, because in this way do not need to greatly improve the switching speed of the switching losses reduced to zero, and the noise is expected to become one of the high-frequency switching power supply The main ways. At present, many countries in the world are committed to several trillion Hz converter utility.the principle of IntroductionThe switching power supply of the process is quite easy to understand, linear power supplies, power transistors operating in the linear mode and linear power, the PWM switching power supply to the power transistor turns on and off state, in both states, on the power transistor V - security product is very small (conduction, low voltage, large current; shutdown, voltage, current) V oltammetric product / power device is power semiconductor devices on the loss.Compared with the linear power supply, the PWM switching power supply more efficient process is achieved by "chopping", that is cut into the amplitude of the input DC voltage equal to the input voltage amplitude of the pulse voltage. The pulse duty cycle is adjusted by the switching power supply controller. Once the input voltage is cut into the AC square wave, its amplitude through the transformer to raise or lower. Number of groups of output voltage can be increased by increasing the number of primary and secondary windings of the transformer. After the last AC waveform after the rectifier filter the DC output voltage.The main purpose of the controller is to maintain the stability of the output voltage, the course of their work is very similar to the linear form of the controller. That is the function blocks of the controller, the voltage reference and error amplifier can be designed the same as the linear regulator. Their difference lies in the error amplifier output (error voltage) in the drive before the power tube to go through a voltage / pulse-width conversion unit.Switching power supply There are two main ways of working: Forward transformand boost transformation. Although they are all part of the layout difference is small, but the course of their work vary greatly, have advantages in specific applications.the circuit schematicThe so-called switching power supply, as the name implies, is a door, a door power through a closed power to stop by, then what is the door, the switching power supply using SCR, some switch, these two component performance is similar, are relying on the base switch control pole (SCR), coupled with the pulse signal to complete the on and off, the pulse signal is half attentive to control the pole voltage increases, the switch or transistor conduction, the filter output voltage of 300V, 220V rectifier conduction, transmitted through the switching transformer secondary through the transformer to the voltage increase or decrease for each circuit work. Oscillation pulse of negative semi-attentive to the power regulator, base, or SCR control voltage lower than the original set voltage power regulator cut-off, 300V power is off, switch the transformer secondary no voltage, then each circuit The required operating voltage, depends on this secondary road rectifier filter capacitor discharge to maintain. Repeat the process until the next pulse cycle is a half weeks when the signal arrival. This switch transformer is called the high-frequency transformer, because the operating frequency is higher than the 50HZ low frequency. Then promote the pulse of the switch or SCR, which requires the oscillator circuit, we know, the transistor has a characteristic, is the base-emitter voltage is 0.65-0.7V is the zoom state, 0.7V These are the saturated hydraulic conductivity state-0.1V-0.3V in the oscillatory state, then the operating point after a good tune, to rely on the deep negative feedback to generate a negative pressure, so that the oscillating tube onset, the frequency of the oscillating tube capacitor charging and discharging of the length of time from the base to determine the oscillation frequency of the output pulse amplitude, and vice versa on the small, which determines the size of the output voltage of the power regulator. Transformer secondary output voltage regulator, usually switching transformer, single around a set of coils, the voltage at its upper end, as the reference voltage after the rectifier filter, then through the optocoupler, this benchmark voltage return to the base of the oscillating tube pole to adjust the level of the oscillation frequency, if the transformer secondary voltage is increased, the sampling coil output voltage increases, the positive feedback voltage obtained through the optocoupler is also increased, this voltage is applied oscillating tube base, so that oscillation frequency is reduced, played a stable secondary output voltage stability, too small do not have to go into detail, nor it is necessary to understand the fine, such a high-power voltage transformer by switching transmission, separated and after the class returned by sampling the voltage from the opto-coupler pass separated after class, so before the mains voltage, and after the classseparation, which is called cold plate, it is safe, transformers before power is independent, which is called switching power supply.the DC / DC conversionDC / DC converter is a fixed DC voltage transformation into a variable DC voltage, also known as the DC chopper. There are two ways of working chopper, one Ts constant pulse width modulation mode, change the ton (General), the second is the frequency modulation, the same ton to change the Ts, (easy to produce interference). Circuit by the following categories:Buck circuit - the step-down chopper, the average output voltage U0 is less than the input voltage Ui, the same polarity.Boost Circuit - step-up chopper, the average output voltage switching power supply schematic U0 is greater than the input voltage Ui, the same polarity.Buck-Boost circuit - buck or boost chopper, the output average voltage U0 is greater than or less than the input voltage Ui, the opposite polarity, the inductance transmission.Cuk circuit - a buck or boost chopper, the output average voltage U0 is greater than or less than the input voltage Ui, the opposite polarity, capacitance transmission.The above-mentioned non-isolated circuit, the isolation circuit forward circuits, feedback circuit, the half-bridge circuit, the full bridge circuit, push-pull circuit. Today's soft-switching technology makes a qualitative leap in the DC / DC the U.S. VICOR company design and manufacture a variety of ECI soft-switching DC / DC converter, the maximum output power 300W, 600W, 800W, etc., the corresponding power density (6.2 , 10,17) W/cm3 efficiency (80-90)%. A the Japanese Nemic Lambda latest using soft-switching technology, high frequency switching power supply module RM Series, its switching frequency (200 to 300) kHz, power density has reached 27W/cm3 with synchronous rectifier (MOSFETs instead of Schottky diodes ), so that the whole circuit efficiency by up to 90%.AC / DC conversionAC / DC conversion will transform AC to DC, the power flow can be bi-directional power flow by the power flow to load known as the "rectification", referred to as "active inverter power flow returned by the load power. AC / DC converter input 50/60Hz AC due must be rectified, filtered, so the volume is relatively large filter capacitor is essential, while experiencing safety standards (such as UL, CCEE, etc.) and EMC Directive restrictions (such as IEC, FCC, CSA) in the AC input side must be added to the EMC filter and use meets the safety standards of the components, thus limiting the miniaturization of the volume of AC / DC power, In addition, due to internal frequency, high voltage, current switching, making the problem difficult to solve EMC also high demands on the internal high-density mountingcircuit design, for the same reason, the high voltage, high current switch makes power supply loss increases, limiting the AC / DC converter modular process, and therefore must be used to power system optimal design method to make it work efficiency to reach a certain level of satisfaction.AC / DC conversion circuit wiring can be divided into half-wave circuit, full-wave circuit. Press the power phase can be divided into single-phase three-phase, multiphase. Can be divided into a quadrant, two quadrant, three quadrants, four-quadrant circuit work quadrant.he selection of the switching power supplySwitching power supply input on the anti-jamming performance, compared to its circuit structure characteristics (multi-level series), the input disturbances, such as surge voltage is difficult to pass on the stability of the output voltage of the technical indicators and linear power have greater advantages, the output voltage stability up to (0.5)%. Switching power supply module as an integrated power electronic devices should be selected。
本科毕业设计(论文)英文翻译模板
本科毕业设计(论文)英文翻译论文标题(中文)学院******姓名***专业*******班级**********大气探测2班学号*************** 大气探测、信处、两个专业填写电子信息工程。
生物医学工程、电子信息科学与技术、雷电防护科学与技术As its name implies, region growing is a procedure that groups pixels or subregions into larger regions based on predefined criteria. The basic approach is to start with a set of “seed ” points and from these grow regions by appending to each seed those gray level or color).be used to assignpixels to regions during the centroid of these clusters can be used as seeds.… … …左右手共面波导的建模与带通滤波器设计速发展之势,而它的出现却是源于上世纪本研究提出了一种新型混合左右手(CPW )的独特功能。
目前这种有效电长度为0°的新型混合左右手共面波导(CRLH CPW )谐振器正在兴起,这种谐振器工作在5GHz 时的体积比常规结构的谐振器缩减小49.1%。
有关图、表等表格和图片必须有说明,宋体五号公式:公式的编号用括号起写在右边行末,其间不加虚线。
图、表、公式等与正文之间要有6磅的行间距。
文中的图、表、附注、公式一律采用阿拉伯数字分章连续编号。
如:图2-5,表3-2,公式(5-1)等。
若图或表中有附注,采用英文小写字母顺序编号,附注写在图或表的下方。
毕业设计英文翻译资料(中文)
故障概率模型的数控车床摘要:领域的失效分析被计算机数字化控制(CNC)车床描述。
现场收集了为期两年的约80台数控车床的故障数据。
编码系统代码失效数据是制定和失效分析数据库成立的数控车床。
失败的位置和子系统,失效模式及原因进行了分析,以显示薄弱子系统的数控车床。
另外,故障的概率模型,分析了数控车床的模糊多准则综合评价。
作者关键词:数控车床;场失败;概率模型;模糊信息文章概述1.介绍2. CNC车床的概述3.收集和整理数据3.1. 收集数据3.2. 领域失效数据的有效性3.3. 数据核对和数据库4. 失效分析4.1. 对失败位置和子系统的频率分析4.2. 对失败形式的频率分析5.失败机率模型5.1. 方法学5.2. 分布倍之间连续的失败5.3. 修理时间的发行6.结论1.介绍在过去十年中,计算机数字化控制(CNC)车床已经越来越多地被引入到机械加工过程中。
由于其固有的灵活性很大,稳定的加工精度和高生产率,数控车床是能给用户巨大的利益。
然而,作为一个单一的数控车床故障也许会导致整个生产车间被停止,而且维修更加困难和昂贵,当故障发生时[1],数控车床能够给用户带来很多的麻烦。
与此同时,制造商还需要持续改进数控车床的可靠性来提高市场的竞争力。
因此,数控车床的可靠性能使生产商和用户增加显著性和至关重要的意义。
需要改进数控车床的可靠性,使用户和制造商收集和分析领域的故障数据和采取措施减少停机时间。
本文论述了研究失效模式及原因,失效的位置和薄弱的子系统,故障概率模型的数控车床。
C车床的概述数控车床是一个复杂的系统,以高层次的自动化和复杂的结构,采用机械,电子,液压等。
它主要由机械系统,数控系统,液压和/或供气系统[2,3,4]。
图1是系统方框图的一个典型的数控车床。
图1 系统框图的数控车床机械系统包括主轴及其传动链(固定在主轴箱),两根滑动轴(命名X、Z或者U,W在轮),车床拖板箱,转动架或刀架,尾座,床身等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故障概率模型的数控车床摘要:领域的失效分析被计算机数字化控制(CNC)车床描述。
现场收集了为期两年的约80台数控车床的故障数据。
编码系统代码失效数据是制定和失效分析数据库成立的数控车床。
失败的位置和子系统,失效模式及原因进行了分析,以显示薄弱子系统的数控车床。
另外,故障的概率模型,分析了数控车床的模糊多准则综合评价。
作者关键词:数控车床;场失败;概率模型;模糊信息文章概述1.介绍2. CNC车床的概述3.收集和整理数据3.1. 收集数据3.2. 领域失效数据的有效性3.3. 数据核对和数据库4. 失效分析4.1. 对失败位置和子系统的频率分析4.2. 对失败形式的频率分析5.失败机率模型5.1. 方法学5.2. 分布倍之间连续的失败5.3. 修理时间的发行6.结论1.介绍在过去十年中,计算机数字化控制(CNC)车床已经越来越多地被引入到机械加工过程中。
由于其固有的灵活性很大,稳定的加工精度和高生产率,数控车床是能给用户巨大的利益。
然而,作为一个单一的数控车床故障也许会导致整个生产车间被停止,而且维修更加困难和昂贵,当故障发生时[1],数控车床能够给用户带来很多的麻烦。
与此同时,制造商还需要持续改进数控车床的可靠性来提高市场的竞争力。
因此,数控车床的可靠性能使生产商和用户增加显著性和至关重要的意义。
需要改进数控车床的可靠性,使用户和制造商收集和分析领域的故障数据和采取措施减少停机时间。
本文论述了研究失效模式及原因,失效的位置和薄弱的子系统,故障概率模型的数控车床。
图1 系统框图的数控车床机械系统包括主轴及其传动链(固定在主轴箱),两根滑动轴(命名X、Z或者U,W在轮),车床拖板箱,转动架或刀架,尾座,床身等。
主轴持续或加强连续变速,驱动交流或直流主轴电机直接或通过主传动,并有一个光电编码器的主轴车削螺纹。
X和Z 两根轴的驱动交流或直流伺服车削螺纹和控制同时进行。
该转动架或刀架可自动交换工具。
所有这些都是控制的数控系统。
数控系统的核心车床[4],通常是包括电源,主要电路板(PCB)(通常是微型计算机),可编程控制器(PLC)的I/O电路板(连接控制面板,限位开关,按钮,磁铁,刀架等),主轴电路板(控制滑块轴与主轴通过半封闭或闭环电子控制电机驱动器和光电编码器),存电路板(连接额外编码器,显示器/键盘(手动数据输入),手动脉冲发生器(MPG),备用电池和RS-232串行通信设备)。
数控系统和一些电子元件,如接触器开关,继电器,稳压器,按钮等,都固定在一个柜子里。
其他电子元件,如限位开关,接近开关,编码器等,都安装在机器上。
数控系统的基本和可选功能有直线和圆弧插补,间隙补偿,自动协调系统设置,刀具偏移,刀具补偿,编辑后处理,自我诊断,固定循环等,不同于经济全功能模型机床。
3.收集和整理数据3.1收集数据数年前,数控车床很难收集到可靠的领域失效数据,因为用户很少在保修期保持充分和完整的维修记录[1,5, 6,7]。
幸运的是,一个国家行政机构在这个国家对使用数控机床的用户制定了强制性规则,所有数控机床用户必须追踪数控机床的性能和保养和反馈完整的维修报告给在保修期间的制造商和相关研究机构。
维修报告应存放在一台计算机上,或者记录在一个统一的格式里[8],并应包含以下信息:1、产品名称,型号和大小。
2、产品代码。
3、故障的日期和时间。
4、在失效之前累积的工作时间。
5、失效现象。
6、原因分析。
7、修复过程。
8、修理时间。
9、停机。
10、失效元件的型号,尺寸和数量。
11、故障判断(据说或没有失败)。
12、如何防止重复出现的故障。
13、管理工程师或修理工程师的数据。
14、机器的场地。
数据分析是从一些典型代表的军械和汽车厂所提取的维修报告,如一汽(第一汽车制造厂),齿轮厂,汽车齿轮厂,第8号车辆厂,电冰箱厂,中国人民解放军7407厂等。
该调查显示上述工厂所使用的数控车床来自于大陆(66台数控车床),(9台数控车床)和匈牙利(5台数控车床)。
3.2领域失效数据的有效性虽然有一个领域故障判定标准[8],但维修报告随不同的用户而不同。
为了尽量减少差异,我们把领域故障分为两组:故障失效和准确性失效,都受数控车床的在可靠性的影响。
此外,前者通常是受操作条件,如灰尘,湿度,操作者的技能等,后者是受运作要求的主要影响,如表面光洁度,公差等。
3.3整理数据和数据库即使领域失效数据记录在第3.1节和验证在第3.2节,用计算机分析数据也很难的。
因此,编码系统的编码数据,设计失效和故障数据库成立的数控车床,以及数据库的结构如表1所示。
失效模式和失效位置编撰的建议标准[8]和产品代码是被编撰在图2。
图2 例如产品代码 失效数据库可以根据任何专用机器,批量机器,制造商,用户,故障模式,故障状况等被加工和回收,以适应不同的分析目的。
主要任务的可靠性分析下可以根据数据库执行如下:1、可靠性特征的计算,如MTBF (平均故障间隔时间),MTTR (平均修理时间),利用率等,特定机器或批量机器。
2、图形分析技术,如频率失效,分层图,因果系统图解等频率直方图3、失效模式及效应分析(FMEA ),如失效分析子系统,故障模式,故障原因,找出薄弱的子系统。
车间代号车间用户 制造商4、失效的分布格局和维修。
5、故障树分析(FTA )。
4、失效分析4.1故障位置和子系统的频率分析为了找到最薄弱的子系统,我们计数失效数量的每个子系统的检索子系统代码在表2中定义的数据库,然后计算每个子系统的失败频率。
表2失效的频率和失效位置与子系统的代码表2是失效位置和子系统代码和每个子系统的失败频率的数控车床。
图3是失效位置和子系统的直方图。
可以看出主要的故障子系统的电气和电子系统、刀架、数控系统、夹头和夹具,电源,伺服单元等。
电气和电子系统包括接触开关,继电器,磁铁,按钮,限位开关等,都位于机器或在箱子里。
也可以看出机械系统的主要故障子系统是刀架和卡盘。
电气和电子系统夹头或夹具主传动图.3 直方图的失效位置4.2对失效模式的频率分析为了分析失效模式及起因,我们根据数据库计数失效的数量的每种失效模式通过检索被定义的失效模式代码在表3,然后计算每种失效模式的失效频率。
代码 故障模型 失效频率(%) 代码 故障模型 失效频率(%) 53 部件的损坏 33.3 63 保险丝烧毁/大功率 9 61 电路断开或开启 8.8 64 传感器故障 7.6 33 错误输出 7.13 58 电机损坏 6.5 25 疏松的 5.5 69 其他 4.6 28 刀架不动 4.6 49 存储器异常 3.6 68 数控系统参数错误 2.8 35 错误回车 2.1 7 密封或粘冲 1.17 42 油路阻断 0.936 54 浮动 0.7 57 超载 0.7 62 短路 0.58 39 过热 0.234表3是每个失效模型的故障模型代码和失效的频率的数控车床。
图4是故障模型的直方图。
可以看出,主要的失效模型是部件的损坏。
该组件包括电气,电子元件,如继电器,按钮,限位开关等(69%的所有损坏部件),机械部件(26%),液压和气动元件(5%)。
并且大部分是标准组件和购买的部件。
这证据表明,当数控车床被设计和制造时,是缺乏可靠性分配和可靠性筛选。
频 率保险丝烧毁/大功率电源断开或开启刀架数控系统电源主轴装置 伺服驱动器润滑油系统其他 切屑输送冷却系统 Z 进给系统液压系统 不清楚X 进给系统 可编程控制器保护装置图4故障模型的直方图5.失败的概率模型早期工作[1],认为这模型的失效可能是最好的说明使用威布尔[9]或对数分布[10]。
这些参数的分布估计通常用最大似然法(MLM )或最小二乘法(LSM ),和哥洛夫—斯米尔诺夫检验统计Dmax [11]或χ2检验统计[12]通常是用来测试的吻合度。
有一些模糊信息被确定分配来描述观测数据。
通常,当一个分配选为假设分布来描述观测数据时,不仅考虑到错误的累积分布函数,还应考虑到错误的概率密度函数与属性和功能的分配。
因此分配的测定是一个多准则综合评价问题的模糊信息。
在模糊集方法上有大量的出版文献[13-14]。
本文确定了分配的模糊多准则综合评价。
我们可以选择威布尔,对数正态分布,指数分布和伽马等作为选择修建一套方案A =(A 1A 2A 3A 4…)=(威布尔对数伽玛指数...)。
为了隔开一套更可取的解决方案,决策者必须首先对替代率的因素或标准,来反映这主要目标的研究。
对于概率模型,其主要目标是:1、尽量减少哥洛夫一斯米尔诺夫检验统计Dmax ;2、尽量减少错误的累积分布函数;3、尽量减少错误的概率密度函数;4、分配的性质最适合故障数据;5、功能分布最适合故障数据。
这些目标是组建成一组因素F =(F 1F 2F 3F 4F 5)。
5.1方法学评价矩阵:当某一决策小组评估了一套替代方案(A 1A 2…A N )作为对之前一系列因素(F 1F 2…F M )界定之前,评价矩阵可以构造与沿一根轴的另一边选择和因素,如表4所示,频 率部件的损坏电机损坏疏松的错误输出刀架不动 其他的 存储器异常 数控系统参数错误超载 油路阻断 过热短路浮动 密封/粘冲 错误回车传感器故障其中M是若干因素和N是被考虑选择的数量,rij是一个典型的项目评价矩阵。
表4评价矩阵定量因素,导入的评价矩阵,rij可以按照下列相应计算公式。
例如,哥洛夫一斯米尔诺夫检验统计Dmax计算时被使用[11](1)其中,F n(x)是经验累积分布函数,F o(x)是在假设累积分布函数,x i是随着样本,n是样品的数量。
误差的累积分布函数的计算:(2)其中,F(x)是假设累积分布函数,G(x)是采样累积分布函数,[a,b]是间隔变量x,错误概率密度函数的计算:(3)其中,f(x)是假设概率密度函数,g(x)是抽样概率密度函数。
为了计算rij,我们引入降半柯西分布隶属函数:μ(v ij)=1/(1+c i·v ij2) (c>1)(4)其中Ci 是系数并且由余量误差确定,Vij是变量相应误差jth给予分配的ith因素,这是每个给予分配Dmax,δF ,δf。
最后,我们规化隶属度构成前三行的评价矩阵。
(5)定量因素,如F4,F5,点评价的方法可被应用。
一个专家小组是要求每个填写一份他们以前经验调查表,这将使最后两排的评价矩阵发展到每个人。
对于因素F4,专家们都要求根据自身的性质给予评价载体N,如偏度和峰度,每一个替代直方图的采样数据由之前的经验。
例如,评价值最合适的是1.0,更好的是0.75,中等的是0.5等。
以类似的方式,对于因素F5,评级载体可根据功能,如简洁的公式,计算速度快,事先使用每一个替代方案的类似域,。
我们知道,钾专家能给为每个因素的K 评价载体。
我们可以结合各自的评价向量到一个单一的整体评价载体(6) 其中r ′ij 是一个项目的评价载体所给予lth 专家。