高数二公式大全
专升本高数二公式常用
专升本高数二公式常用在专升本的考试中,高等数学二是许多考生需要攻克的重要科目。
而熟练掌握常用公式,无疑是取得好成绩的关键之一。
首先,让我们来谈谈函数的相关公式。
函数是高等数学的基础,其中一元函数的基本公式包括导数公式。
例如,对于幂函数 y = x^n,其导数为 y' = nx^(n 1)。
这是一个非常基础且常用的公式,在求曲线的斜率、函数的单调性等问题中经常会用到。
再来说说三角函数的公式。
正弦函数 sin(x) 和余弦函数 cos(x) 的导数分别为 cos(x) 和 sin(x) 。
这两个公式在涉及三角函数的计算和应用中不可或缺。
比如,求解三角函数的极值问题、周期性问题时都要用到。
还有反三角函数的公式。
反正弦函数 arcsin(x) 的导数是 1 /√(1x^2) ,反正切函数 arctan(x) 的导数是 1 /(1 + x^2) 。
这些公式在解决一些复杂的积分问题时会发挥重要作用。
接下来是极限的相关公式。
极限是高等数学中的重要概念,常用的极限公式有:lim(x→0) sin(x) / x = 1 ,lim(x→∞)(1 + 1 / x)^x= e 。
这两个极限公式在求解一些复杂的极限问题时,可以通过变形和巧妙运用来得出答案。
在积分方面,定积分和不定积分的公式众多。
例如,∫x^n dx =(1 /(n + 1)) x^(n + 1) + C (n ≠ -1),∫sin(x) dx = cos(x) + C ,∫cos(x) dx = sin(x) + C 。
积分公式在计算图形的面积、体积、以及解决物理问题等方面都有广泛的应用。
在微分方程中,常见的一阶线性微分方程的公式:形如 y' + P(x) y= Q(x) 的方程,其通解为 y = e^(∫P(x)dx) ∫Q(x) e^(∫P(x)dx) dx + C 。
这个公式在解决实际的物理、工程等问题中的动态变化时经常被用到。
多元函数的部分,偏导数的公式也很重要。
考研数学二公式高数线代(整理)技巧归纳(精选.)
高等数学公式一、常用的等价无穷小当x →0时x x x x x (1+x ) ~-11x a(1+x )α-1 ~ αx (α为任意实数,不一定是整数)1x ~21x 2增加x x ~61x 3 对应 x –x ~ 61x 3x –x ~ 31x 3 对应 x - x ~ 31x 3二、利用泰勒公式= 1 + x + +!22x o (2x ) ) (33 o !3sin x x x x +-=x 1 – +!22x o (2x ) (1+x )=x – +22x o (2x )导数公式: 基本积分表:三角函数的有理式积分:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·和差角公式: ·和差化积公式:·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹()公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμαααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。
大学高数第二册公式整理
dy
hx
g
xdx
最后得 Hx Gx c
dy Pxy 0
(2)一阶线性齐次微分方程: dx y ce Pxdx
dy Pxy Qx
(3)一阶线性非齐次微分方程: dx
y
ce
P
x
d
x
Qxe Pxdxdx c
(4)齐次微分方程:代换法:如果 dy y ,则令 y u
dx x
x
求
z
的一阶偏导
f x x0 , f y x0 ,
y0 y0
0 0
f xx x0 , y0 A
令
z
的二阶偏导
f xy x0 ,
y0
B
f
yy
x0
,
y0
C
①当 AC B2 0 时,且 A 0 时,有极大值; A 0 时,极小值
②当 AC B2 0时,无极值
③当 AC B2 0时,无法判定
1. 方向导数与梯度
方向导数: f f cos f cos
l x
y
cos,cos 是l的方向余弦
梯
度
:
g r a d fx,
y
f x
,
f y
2.(1)曲线的切线与法平面
x xt
设曲
线方程:
y
yt
z zt
则切线方程:
x x0
x`t0
y y0
y`t0
z z0
z`t0
法平面方程: x`t0 x x0 y`t0 y y0 z`t0 z z0 0
(2)曲面的切平面与法线
设曲线方程为: Fx, y, z 0
则切线方程:
x x0
高数二公式大全
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数公式:·和差角公式: ·和差化积公式:倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==中值定理与导数应用:拉格朗日中值定理。
最完整高数公式大全赶紧了以后用
最完整高数公式大全赶紧了以后用1.极限相关公式:- 极限定义:如果对于任意一个给定的正数ε,存在正数δ,使得只要x与a的距离小于δ,则必有f(x)与L的距离小于ε,即lim(x→a)f(x)=L。
2.一元函数相关公式:- 基本求导法则:(C)'=0,(xⁿ)'=nxⁿ⁻¹,(sinx)'=cosx,(cosx)'=-sinx,(tanx)'=sec²x,(cotx)'=-csc²x,(secx)'=secxtanx,(cscx)'=-cscxcotx。
- 链式法则:设y=f(u),u=g(x),则y=f(g(x)),则y'=(dy)/(dx)=(dy)/(du)*(du)/(dx)=f'(u)*g'(x)。
-高阶导数:(fⁿ(x))'=fⁿ⁻¹(x)·f'(x),其中n为正整数。
-函数泰勒级数展开式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)²/2!+…+fⁿ(a)(x-a)ⁿ/n!+Rⁿ(x),其中Rⁿ(x)为剩余项。
- 微分方程:设y=f(x),则dy/dx=f'(x),d²y/dx²=f''(x),…3.多元函数相关公式:-偏导数:设z=f(x,y),则∂z/∂x表示在y固定的条件下对x的变化率,∂z/∂y表示在x固定的条件下对y的变化率。
-链式法则:设z=f(x,y),x=g(u,v),y=h(u,v),则∂z/∂u=∂z/∂x*∂x/∂u+∂z/∂y*∂y/∂u,…- 梯度:设z=f(x₁,x₂,…,xₙ),则gradz=(∂z/∂x₁,∂z/∂x₂,…,∂z/∂xₙ)。
- 散度:设F=(P,Q,R)为一个三维向量场,则divF=∂P/∂x+∂Q/∂y+∂R/∂z。
高数(二)公式总结
第一章P(A+B)=P(A)+P(B)- P(AB)特别地,当A 、B 互斥时,P(A+B)=P(A)+P(B)条件概率公式概率的乘法公式全概率公式:从原因计算结果Bayes 公式:从结果找原因第二章)()()|(B P AB P B A P =)|()()(B A P B P AB P =)|()(A B P A P =∑==nk k kB A P BP A P 1)|()()(∑==nk k ki i k B A P BP B A P B P A B P 1)|()()|()()|(∑≤==≤=xk k XP x X P x F )()()(1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=二项分布(Bernoulli 分布)——X~B(n,p)泊松分布——X~P(λ)概率密度函数怎样计算概率均匀分布X~U(a,b)指数分布X~Exp (θ)),...,1,0()1()(n k p p C k X P kn kkn =-==-,,...)1,0(!)(===-k e k k X P k,λλ1)(=⎰+∞∞-dx x f )(b X a P ≤≤⎰=≤≤badxx f b X a P )()()0(1)(/≥=-x ex f x θ)(1)(b x a ab x f ≤≤-=分布函数 对离散型随机变量对连续型随机变量分布函数与密度函数的重要关系:二元随机变量及其边缘分布 分布规律的描述方法联合密度函数 联合分布函数联合密度与边缘密度⎰∞-=≤=xdtt f x X P x F )()()(⎰∞-=≤=xdtt f x X P x F )()()(),(y x f ),(y x F 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f ⎰+∞∞-=dyy x f x f X ),()()()('x f x F =离散型随机变量的独立性连续型随机变量的独立性第三章 数学期望离散型随机变量,数学期望定义连续型随机变量,数学期望定义● E(a)=a ,其中a 为常数● E(a+bX)=a+bE(X),其中a 、b 为常数 ● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量随机变量g(X)的数学期望⎰+∞∞-=dxy x f y f Y ),()(}{}{},{j Y P i X P j Y i X P =====)()(),(y f x f y x f Y X =∑+∞-∞=⋅=k kkP xX E )(⎰+∞∞-⋅=dxx f x X E )()(∑=kkkp xg X g E )())((常用公式方差 定义式常用计算式∑∑=ijiji p x X E )(dxdyy x xf X E ⎰⎰=),()()()()(Y E X E Y X E +=+∑∑=ijijjip yx XY E )(dxdyy x xyfXY E ⎰⎰=),()()()()(,Y E X E XY E Y X =独立时与当()⎰+∞∞-⋅-=dxx f X E x X D )()()(2[]22)()()(X E X E X D -=常用公式当X 、Y 相互独立时:方差的性质D(a)=0,其中a 为常数D(a+bX)=b2D(X),其中a 、b 为常数当X 、Y 相互独立时,D(X+Y)=D(X)+D(Y) 协方差与相关系数协方差的性质))}())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+)()()(Y D X D Y X D +=+)()()(),(Y E X E XY E Y X Cov -=)()(),(Y D X D Y X Cov XY =ρ[][]{})()()()()(Y E X E XY E Y E Y X E X E -=--())()()(),(22X D X E X E X X Cov =-=),(),(Y X abCov bY aX Cov =独立与相关 独立必定不相关 相关必定不独立 不相关不一定独立 第四章 正态分布标准正态分布的概率计算 标准正态分布的概率计算公式)()()(a a Z P a Z P Φ=<=≤)(1)()(a a Z P a Z P Φ-=>=≥)()()(a b b Z a P Φ-Φ=≤≤1)(2)()()(-Φ=-Φ-Φ=≤≤-a a a a Z a P一般正态分布的概率计算),(),(),(Z Y Cov Z X Cov Z Y X Cov +=+),(~2σμN X 222)(21)(σμσπ--=x ex f 2)(,)(σμ==X D X E )(1)(a a -Φ-=Φ)1,0(~),(~2N X Z N X σμσμ-=⇔一般正态分布的概率计算公式第五章卡方分布t 分布F 分布)()()(σμ-Φ=<=≤a a X P a X P )(1)()(σμ-Φ-=>=≥a a X P a X P )()()(σμσμ-Φ--Φ=≤≤a b b X a P )(~)1,0(~212n XN X ni iχ∑=,则若())(~1),,(~21222n Y N Y ni i χμσσμ∑=-则若),(~//),(~),(~21212212n n F n V n U n V n U 则若χχ则若),(~),1,0(~2n Y N X χ)(~/n t nY X正态总体条件下 样本均值的分布:样本方差的分布:两个正态总体的方差之比第六章点估计:参数的估计值为一个常数 矩估计 最大似然估计似然函数均值的区间估计——大样本结果),(~2nN X σμ)1,0(~/N nX σμ-)1(~)1(222--n Sn χσ)1(~/--n t ns X μ)1,1(~//2122212221--n n F S S σσ);(1θi ni x f L ∏==);(1θi ni x p L ∏==⎪⎫ ⎛z x σα2/—正态总体方差的区间估计⎪⎪⎭⎫⎝⎛-±n p p zp )1(2/α正态分布的分位点—大样本要求样本容量—样本比例—2/)50(αz n np >已知准差小样本、正态总体、标σ⎪⎭⎫ ⎝⎛±n z x σα2/未知准差小样本、正态总体、标σ⎪⎭⎫ ⎝⎛-±n s n t x )1(2/α分布的分位点的自由度为—t n n t 1)1(2/--α()22)1()1(--Sn Sn 样本方差—22S两个正态总体均值差的置信区间大样本或正态小样本且方差已知两个正态总体方差比的置信区间第七章假设检验的步骤① 根据具体问题提出原假设H0和备择假设H1 ② 根据假设选择检验统计量,并计算检验统计值 ③ 看检验统计值是否落在拒绝域,若落在拒绝域则拒绝原假设,否则就不拒绝原假设。
高数二 12.5高斯公式
vndS
divA
P
Q
R
x y z
高斯公式可写成 divAdv AndS
其中是空间闭区域的边界曲面,
An是向量A在曲面的外侧法向量上的投影.
( An
A
n0
P
cos
Q cos
R cos
)
四、小结
1、高斯公式
(P x
Q y
R z
)dv
Pdydz
Qdzdx
Rdxdy
2、高斯公式的实质
(x
x2 y2
y z)dz,
Dxy
其中Dxy {( x, y) | x2 y2 h2 }.
h
dxdy
( x y)dz 0,
x2 y2
Dxy
( x2 cos y2 cos z2 cos )dS
1
(h2 x2 y2 )dxdy 1 h4 .
Dxy
2
( x2 cos y2 cos z2 cos )dS z2dS
3、 xzdydz,其中 是上半球面 z R 2 x 2 y 2 的上侧 .
3.Σ是取闭曲面的外侧.
例 2 计算曲面积分
( x2 cos y2 cos z2 cos )ds,其中Σ为
z
锥面 x2 y2 z2介于平面
z 0及z h(h 0)
h
之间的部分的下侧,
cos ,cos ,cos
是Σ在( x, y, z)处
o
y
的法向量的方向余弦.
x
解 空间曲面在 xoy 面上的投影域为 Dxy
z
曲面不是封闭曲面, 为利用 高斯公式
补充 1 : z h ( x2 y2 h2 ) 1 h
成人高考高数二公式大全
成人高考高数二公式大全1.代数1.1二次方程的解:一元二次方程的通解:若ax^2+bx+c=0(a≠0),则其根的求解公式为 x = (-b±√(b^2-4ac))/(2a)。
1.2一次方程组的解:设要解的方程为:a₁₁x₁+a₁₂x₂+…+a₁ₙxₙ=b₁a₂₁x₁+a₂₂x₂+…+a₂ₙxₙ=b₂aₙ₁x₁+aₙ₂x₂+…+aₙₙxₙ=bₙ用初等行变换将系数矩阵化为行简化阶梯形矩阵,得出方程的解。
1.3逻辑与命题包括逻辑运算(与、或、非、异或等)、命题的充分条件和必要条件、充要条件等。
2.几何2.1直线的方程点斜式方程:设直线上一点为P(x₁,y₁),直线的斜率为k,则该直线的点斜式方程为y-y₁=k(x-x₁)。
斜截式方程:设直线与y轴交于点A(0,b),直线的斜率为k,则该直线的斜截式方程为y = kx + b。
截距式方程:设直线与x轴交于点B(a,0),直线与y轴交于点A(0,b),则该直线的截距式方程为x/a+y/b=12.2圆的方程圆的标准方程:(x-h)²+(y-k)²=r²,其中(h,k)为圆心坐标,r为半径。
2.3三角函数相关公式正弦定理:a/sinA = b/sinB = c/sinC,其中a、b、c为三角形的边长,A、B、C为对应的角。
余弦定理:c² = a² + b² - 2abcosC,其中c为三角形的边长,A、B、C为对应的角。
正切定理:tanA = a/b,tanB = b/a,tanC = c/a。
2.4平面向量向量叉积:若A(a₁,a₂)和B(b₁,b₂)是两个向量,其向量叉积AB=a₁b₂-a₂b₁。
向量模的计算:向量AB的模(长度)为,AB,=√(a²+b²)。
3.概率与统计3.1概率事件A的概率P(A)=事件A发生的次数/总的可能性次数。
事件的互斥:事件A和事件B互斥的概率P(A∪B)=P(A)+P(B)。
高数二公式
高等数学公式导数公式: 基本积分表:ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: 〃诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxxxx x〃和差角公式: 〃和差化积公式: 〃倍角公式:〃半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg〃正弦定理:R CcB b A a 2sin sin sin === 〃余弦定理:C ab b a c cos 2222-+=2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==〃反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
考研数学二公式高数线代(费了好大的劲)技巧归纳
高等数学公式一、常用的等价无穷小当x →0时x ~sin x ~tan x ~arcsin x ~arctan x ~ln (1+x ) ~ e x -1a x -1~x ln a(1+x )α-1 ~ αx (α为任意实数,不一定是整数)1-cos x ~21x 2增加x -sin x ~61x 3 对应 arcsin x –x ~ 61x 3 tan x –x ~ 31x 3 对应 x - arctan x ~ 31x 3二、利用泰勒公式e x = 1 + x + +!22x o (2x ) ) (33 o !3sin x x x x +-=cos x = 1 – +!22x o (2x ) ln (1+x )=x – +22x o (2x ) 导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x xctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:·倍角公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R Cc B b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学公式导数公式: 基本积分表:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:函数 角A sincostgctg-α -sinα cosα -tgα -ctgα 90°-αcosα sinα ctgα tgαxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxxxx x90°+α cosα -sinα -ctgα -tgα 180°-α sinα -cosα -tg α -ctgα 180°+α -sinα -cosα tgα ctgα 270°-α -cosα -sinα ctgα tgα 270°+α -cosα sinα -ctgα -tgα 360°-α -sinαcosα -tgα -ctgα 360°+αsinα cosαtgα ctgα·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。
:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααα 定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=bab a dt t f a b dxx f a b y k rmm k F Ap F sF W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。
代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。
与是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u AB AB AB j z z y y x x M Md zyx z y xzy xzyxz y xzy x z y x zz y y x x z z y y x x u u⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+⋅=-+-+-== (马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c z b y a x q p z q y p x c z b y a x ptz z nty y mtx x p n m s t p z z n y y m x x C B A DCz By Ax d czb y a x D Cz By Ax z y x M C B A n z z C y y B x x A多元函数微分法及应用z y z x y x y x y x y x F F y z F F xzz y x F dx dy F F y F F x dx y d F F dx dyy x F dy y v dx x v dv dy y u dx x udu y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz z u dy y u dx x u du dy y z dx xzdz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuFv u G F J v u y x G v u y x F vu v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。