三极管的常用主要参数
三极管的主要参数
三极管的主要参数1、直流参数(1)集电极一基极反向饱和电流Icbo,发射极开路(Ie=0)时,基极和集电极之间加上规定的反向电压Vcb时的集电极反向电流,它只与温度有关,在一定温度下是个常数,所以称为集电极一基极的反向饱和电流.良好的三极管,Icbo很小,小功率锗管的Icbo约为1~10微安,大功率锗管的Icbo可达数毫安,而硅管的Icbo则非常小,是毫微安级.(2)集电极一发射极反向电流Iceo(穿透电流)基极开路(Ib=0)时,集电极和发射极之间加上规定反向电压Vce时的集电极电流.Iceo大约是Icbo的β倍即Iceo=(1+β)Icbo o Icbo和Iceo受温度影响极大,它们是衡量管子热稳定性的重要参数,其值越小,性能越稳定,小功率锗管的Iceo比硅管大.(3)发射极---基极反向电流Iebo 集电极开路时,在发射极与基极之间加上规定的反向电压时发射极的电流,它实际上是发射结的反向饱和电流.(4)直流电流放大系数β1(或hEF) 这是指共发射接法,没有交流信号输入时,集电极输出的直流电流与基极输入的直流电流的比值,即:β1=Ic/Ib2、交流参数(1)交流电流放大系数β(或hfe) 这是指共发射极接法,集电极输出电流的变化量△Ic与基极输入电流的变化量△Ib之比,即:β= △Ic/△Ib一般晶体管的β大约在10-200之间,如果β太小,电流放大作用差,如果β太大,电流放大作用虽然大,但性能往往不稳定.(2)共基极交流放大系数α(或hfb) 这是指共基接法时,集电极输出电流的变化是△Ic与发射极电流的变化量△Ie之比,即:α=△Ic/△Ie因为△Ic<△Ie,故α<1.高频三极管的α>0.90就可以使用α与β之间的关系:α= β/(1+β)β= α/(1-α)≈1/(1-α)(3)截止频率fβ、fα当β下降到低频时0.707倍的频率,就是共发射极的截止频率fβ;当α下降到低频时的0.707倍的频率,就是共基极的截止频率fαo fβ、fα是表明管子频率特性的重要参数,它们之间的关系为:fβ≈(1-α)fα(4)特征频率fT因为频率f上升时,β就下降,当β下降到1时,对应的fT是全面地反映晶体管的高频放大性能的重要参数.3、极限参数(1)集电极最大允许电流ICM 当集电极电流Ic增加到某一数值,引起β值下降到额定值的2/3或1/2,这时的Ic值称为ICM.所以当Ic超过ICM时,虽然不致使管子损坏,但β值显著下降,影响放大质量.(2)集电极----基极击穿电压BVCBO 当发射极开路时,集电结的反向击穿电压称为BVEBO.(3)发射极-----基极反向击穿电压BVEBO 当集电极开路时,发射结的反向击穿电压称为BVEBO.(4)集电极-----发射极击穿电压BVCEO 当基极开路时,加在集电极和发射极之间的最大允许电压,使用时如果Vce>BVceo,管子就会被击穿.(5)集电极最大允许耗散功率PCM 集电流过Ic,温度要升高,管子因受热而引起参数的变化不超过允许值时的最大集电极耗散功率称为PCM.管子实际的耗散功率于集电极直流电压和电流的乘积,即Pc=Uce×Ic.使用时庆使PcPCM与散热条件有关,增加散热片可提高PCM.2、Cds---漏-源电容Cdu---漏-衬底电容Cgd---栅-源电容Cgs---漏-源电容Ciss---栅短路共源输入电容Coss---栅短路共源输出电容Crss---栅短路共源反向传输电容D---占空比(占空系数,外电路参数)di/dt---电流上升率(外电路参数)dv/dt---电压上升率(外电路参数)ID---漏极电流(直流)IDM---漏极脉冲电流ID(on)---通态漏极电流IDQ---静态漏极电流(射频功率管)IDS---漏源电流IDSM---最大漏源电流IDSS---栅-源短路时,漏极电流IDS(sat)---沟道饱和电流(漏源饱和电流)IG---栅极电流(直流)IGF---正向栅电流IGR---反向栅电流3、IGDO---源极开路时,截止栅电流IGSO---漏极开路时,截止栅电流IGM---栅极脉冲电流IGP---栅极峰值电流IF---二极管正向电流IGSS---漏极短路时截止栅电流IDSS1---对管第一管漏源饱和电流IDSS2---对管第二管漏源饱和电流Iu---衬底电流Ipr---电流脉冲峰值(外电路参数)gfs---正向跨导Gp---功率增益Gps---共源极中和高频功率增益GpG---共栅极中和高频功率增益GPD---共漏极中和高频功率增益ggd---栅漏电导gds---漏源电导K---失调电压温度系数Ku---传输系数L---负载电感(外电路参数)LD---漏极电感4、to(on)---开通延迟时间td(off)---关断延迟时间ti---上升时间ton---开通时间toff---关断时间tf---下降时间trr---反向恢复时间Tj---结温Tjm---最大允许结温Ta---环境温度Tc---管壳温度Tstg---贮成温度VDS---漏源电压(直流)VGS---栅源电压(直流)VGSF--正向栅源电压(直流)。
三极管的主要参数
三极管的主要参数
三极管是一种常用电子元件,它能控制电流或电压,是电子工程中最
基本的部件。
三极管的主要参数包括型号标识、集电极(C)发射极(E)
和控制极(B)的击穿电压以及正向和反向两种状态下的最大电流值等。
1.型号标识:三极管的型号标识是由字母和数字组成的,用于区分不
同型号的三极管。
由于三极管有多种型号,因此每个型号的型号标识也不
尽相同,国内的三极管一般以“TXX”开头显示,其中“T”表示三极管,“XX”表示三极管型号的编号。
2.集电极(C):三极管的集电极也叫正极,简称C,它是三极管的
主要出口,用于连接电源供电。
它不仅可以接收电流,还可以把它转化为
电压输出,给电路供电。
3.发射极(E):三极管的发射极也叫负极,简称E,它是三极管的
主要入口,可以接收外部电路的电流。
它可以把电流转化为信号,通过晶
体管调节输出电流和电压的大小,这是三极管最主要的功能。
4.控制极(B):三极管的控制极简称B,它是三极管的主要控制极,在电路中,通常是应用信号或电压来控制三极管的工作状态,从而控制晶
体管的输出电流或电压。
5.击穿电压:击穿电压是指三极管正向或反向时,由于电压的升高。
三极管参数
三极管参数三极管的主要参数有电流放大系数、耗散功率、频率特性、集电极最大电流、最大反向电压、反向电流等。
※电流放大系数电流放大系数也称电流放大倍数,用来表示三极管放大能力。
根据三极管工作状态的不同,电流放大系数又分为直流电流放大系数和交流电流放大系数。
1.直流电流放大系数直流电流放大系数也称静态电流放大系数或直流放大倍数,是指在静态无变化信号输入时,三极管集电极电流IC与基极电流IB的比值,一般用hFE或β表示。
2.交流电流放大系数交流电流放大系数也称动态电流放大系数或交流放大倍数,是指在交流状态下,三极管集电极电流变化量△IC与基极电流变化量△IB的比值,一般用hfe或β表示。
hFE或β既有区别又关系密切,两个参数值在低频时较接近,在高频时有一些差异。
※耗散功率耗散功率也称集电极最大允许耗散功率PCM,是指三极管参数变化不超过规定允许值时的最大集电极耗散功率。
耗散功率与三极管的最高允许结温和集电极最大电流有密切关系。
三极管在使用时,其实际功耗不允许超过PCM值,否则会造成三极管因过载而损坏。
通常将耗散功率PCM小于1W的三极管称为小功率三极管,PCM等于或大于1W、小于5W的三极管被称为中功率三极管,将PCM等于或大于5W的三极管称为大功率三极管。
※频率特性三极管的电流放大系数与工作频率有关。
若三极管超过了其工作频率范围,则会出现放大能力减弱甚至失去放大作用。
三极管的频率特性参数主要包括特征频率fT和最高振荡频率fM等。
1.特征频率fT三极管的工作频率超过截止频率fβ或fα时,其电流放大系数β值将随着频率的升高而下降。
特征频率是指β值降为1时三极管的工作频率。
通常将特征频率fT小于或等于3MHZ的三极管称为低频管,将fT大于或等于30MHZ的三极管称为高频管,将fT大于3MHZ、小于30MHZ的三极管称为中频管。
2.最高振荡频率fM最高振荡频率是指三极管的功率增益降为1时所对应的频率。
通常,高频三极管的最高振荡频率低于共基极截止频率fα,而特征频率fT 则高于共基极截止频率fα、低于共集电极截止频率fβ。
常用三极管数据
常用三极管数据三极管是一种常用的半导体器件,广泛应用于电子电路中。
三极管的性能参数对电路的工作性能起着至关重要的作用。
本文将介绍常用的三极管数据,匡助读者更好地了解和应用三极管。
一、三极管的基本参数1.1 饱和电流(Icmax):三极管在饱和状态下的最大电流。
通常情况下,饱和电流越大,三极管的工作性能越好。
1.2 最大功耗(Pmax):三极管能够承受的最大功率。
超过最大功耗可能导致三极管损坏。
1.3 最大耗散功率(Pdmax):三极管在正常工作状态下能够承受的最大耗散功率。
二、三极管的频率参数2.1 最大工作频率(fT):三极管能够正常工作的最高频率。
频率越高,三极管的响应速度越快。
2.2 输入电容(Cib):三极管输入端的电容。
输入电容越小,三极管对输入信号的响应越灵敏。
2.3 输出电容(Cob):三极管输出端的电容。
输出电容越小,三极管对输出信号的响应越灵敏。
三、三极管的放大特性参数3.1 峰值电流增益(hFE):三极管的放大倍数。
峰值电流增益越大,三极管的放大效果越好。
3.2 输入电阻(Rin):三极管输入端的电阻。
输入电阻越大,三极管对输入信号的影响越小。
3.3 输出电阻(Rout):三极管输出端的电阻。
输出电阻越小,三极管对输出信号的影响越小。
四、三极管的温度特性参数4.1 温度系数(α):三极管的基极电流随温度变化的系数。
温度系数越小,三极管的温度稳定性越好。
4.2 温度上升系数(β):三极管的饱和电流随温度升高的系数。
温度上升系数越小,三极管的工作稳定性越好。
4.3 温度范围(Tj):三极管能够正常工作的温度范围。
超出温度范围可能导致三极管性能下降。
五、三极管的封装参数5.1 封装类型:三极管的封装形式,如TO-92、SOT-23等。
不同封装类型适合于不同的应用场景。
5.2 封装材料:三极管封装的材料,如塑料、金属等。
封装材料的选择影响三极管的散热性能。
5.3 封装尺寸:三极管封装的尺寸,包括封装的长、宽、高等参数。
三极管参数代换大全
三极管参数代换大全三极管是一种电子器件,常用于放大电路和开关电路中。
在进行电路设计和实际应用中,需要根据具体的使用要求选择合适的三极管参数。
本文将介绍三极管的常用参数以及它们的代换方法,供读者参考。
1.三极管的主要参数三极管的主要参数包括:最大集电极电流(ICmax)、最大集电极电压(VCEmax)、最大功耗(Pmax)、最大封装温度(Tjmax)、增益(hFE)、截止频率(ft)等。
- 最大集电极电流(ICmax):表示三极管可承受的最大电流,超过此值可能会损坏。
一般可以通过电路实际所需的工作电流来选择合适的三极管。
- 最大集电极电压(VCEmax):表示三极管可承受的最大集电极与发射极之间的电压,超过此值可能会损坏。
在实际应用中,需要保证电路工作点的集电极电压在此范围内。
- 最大功耗(Pmax):表示三极管可承受的最大功耗,超过此值可能会导致过热损坏。
在实际应用中,需要根据电路工作条件和环境温度选择合适的三极管。
- 最大封装温度(Tjmax):表示三极管可承受的最高结温,超过此值可能会损坏。
在实际应用中,需要根据电路工作条件和散热措施选择合适的三极管。
-增益(hFE):表示三极管的电流放大倍数,即集电极电流与基极电流的比值。
增益越大,放大器的放大效果越好。
在实际应用中,需要根据放大电路的要求选择合适的增益。
- 截止频率(ft):表示三极管的高频特性,即对高频信号的放大能力。
一般情况下,截止频率越高,三极管的高频性能越好。
在设计高频电路时,需要选择具有较高截止频率的三极管。
2.三极管的参数代换方法在实际应用中,有时我们需要替换款三极管,但是找不到完全相同的型号。
这时就需要进行参数代换。
下面是一些常用的参数代换方法。
- 最大集电极电流(ICmax):一般情况下,可以选择具有更大ICmax的三极管替代。
注意,ICmax不能太小,否则可能无法满足电路要求。
- 最大集电极电压(VCEmax):一般情况下,可以选择具有更大VCEmax的三极管替代。
三极管的主要参数包括直流参数交流参数极限参数
三极管的主要参数包括直流参数交流参数极限参数
三极管的主要参数包括直流参数、交流参数和极限参数。
1. 直流参数:直流参数描述了三极管在直流电路中的电流和电压特性。
- 最大集电极电流(Icmax):三极管集电极能够承受的最大
电流值。
- 最大基极-发射极电压(Vbeo):基极和发射极之间能够承
受的最大电压值。
- 最大集电极-发射极电压(Vceo):集电极和发射极之间能
够承受的最大电压值。
- 饱和压降(Vcesat):三极管处于饱和状态时,集电极和发
射极之间的电压降。
2. 交流参数:交流参数描述了三极管在交流信号下的放大能力和频率特性。
- 增益(β或hfe):三极管的电流放大倍数。
- 输入电阻(Rin):输入端的电阻,影响输入信号的放大效果。
- 输出电阻(Rout):输出端的电阻,影响输出信号的传输效果。
- 频率响应:描述了三极管在不同频率下放大能力的变化情况,常用的参数包括截止频率和增益带宽积。
3. 极限参数:极限参数描述了三极管在工作过程中的极限条件。
- 最大功耗(Pdmax):三极管能够承受的最大功率。
- 集电极-发射极击穿电压(BVceo):集电极和发射极之间的
最大击穿电压。
- 集电极-基极击穿电压(BVceo):集电极和基极之间的最大击穿电压。
- 储能时间(Ton、Toff):三极管进行开关动作的能力。
这些参数是设计和使用三极管时需要考虑的重要指标,不同的应用场合可能需要不同的参数要求。
三极管的主要参数
三极管的主要参数直流参数1、直流参数 (1)集电极⼀基极反向饱和电流Icbo,发射极开路(Ie=0)时,基极和集电极之间加上规定的反向电压Vcb时的集电极反向电流,它只与温度有关,在⼀定温度下是个常数,所以称为集电极⼀基极的反向饱和电流。
良好的三极管,Icbo很⼩,⼩功率锗管的Icbo约为1~10微安,⼤功率锗管的Icbo可达数毫安,⽽硅管的Icbo则⾮常⼩,是毫微安级。
(2)集电极⼀发射极反向电流Iceo(穿透电流)基极开路(Ib=0)时,集电极和发射极之间加上规定反向电压Vce时的集电极电流。
Iceo⼤约是Icbo的β倍即Iceo=(1+β)Icbo o Icbo和Iceo受温度影响极⼤,它们是衡量管⼦热稳定性的重要参数,其值越⼩,性能越稳定,⼩功率锗管的Iceo⽐硅管⼤。
(3)发射极---基极反向电流Iebo 集电极开路时,在发射极与基极之间加上规定的反向电压时发射极的电流,它实际上是发射结的反向饱和电流。
(4)直流电流放⼤系数β1(或hEF)这是指共发射接法,没有交流信号输⼊时,集电极输出的直流电流与基极输⼊的直流电流的⽐值,即:β1=Ic/Ib交流参数 2、交流参数 (1)交流电流放⼤系数β(或hfe)这是指共发射极接法,集电极输出电流的变化量△Ic与基极输⼊电流的变化量△Ib之⽐,即: β= △Ic/△Ib ⼀般晶体管的β⼤约在10-200之间,如果β太⼩,电流放⼤作⽤差,如果β太⼤,电流放⼤作⽤虽然⼤,但性能往往不稳定。
(2)共基极交流放⼤系数α(或hfb)这是指共基接法时,集电极输出电流的变化是△Ic与发射极电流的变化量△Ie 之⽐,即: α=△Ic/△Ie 因为△Ic<△Ie,故α<1。
⾼频三极管的α>0.90就可以使⽤ α与β之间的关系: α= β/(1+β) β= α/(1-α)≈1/(1-α) (3)截⽌频率fβ、fα当β下降到低频时0.707倍的频率,就是共发射极的截⽌频率fβ;当α下降到低频时的0.707倍的频率,就是共基极的截⽌频率fαo fβ、fα是表明管⼦频率特性的重要参数,它们之间的关系为:fβ≈(1-α)fα (4)特征频率fT因为频率f上升时,β就下降,当β下降到1时,对应的fT是全⾯地反映晶体管的⾼频放⼤性能的重要参数。
常用三极管参数大全
常用三极管参数大全三极管是一种常见的半导体器件,主要用于放大电流和控制电流的流动。
下面是一些常用的三极管参数的详细介绍。
1. 最大电流 (Ic max):这是三极管能够承受的最大电流。
当超过这个电流时,三极管可能会被烧毁。
2. 最大电压 (Vce max):这是三极管的最大耐压能力,也就是能够承受的最大电压。
当超过这个电压时,三极管可能会发生击穿。
3.放大倍数(β):也叫直流电流放大因子,表示输入电流和输出电流之间的比例关系。
β值越大,放大效果越好。
一般来说,普通的低功率三极管的β值在20到100之间。
4. 饱和电流 (Icsat):当三极管被正确偏置并处于饱和状态时,电流的最大值。
一般来说,这个值应该小于最大电流的一半。
5.收集极电阻(Rc):也叫输出电阻,表示三极管作为放大器时,输出端所呈现的电阻值。
一般来说,Rc越大,输出电阻越大。
6.音频频带宽度(fT):这是三极管的最高工作频率。
对于放大高频信号,fT应该足够高,以保持信号的完整性。
7.噪声系数(NF):表示三极管产生的噪音的大小。
通常用分贝(dB)为单位表示,值越小表示噪音越小。
8. 输入电阻 (Rin):表示对输入信号的阻力。
一般来说,输入电阻应该足够大,以避免对信号源的影响。
9. 输出电阻 (Rout):表示三极管的输出端对外部电路的负载能力。
一般来说,输出电阻应该足够小,以避免对外部电路的影响。
10.温度系数(TC):表示三极管参数对温度变化的敏感程度。
一般来说,温度系数越小,三极管的性能越稳定。
除了上述常用的参数外,三极管还有很多其他参数,如频率响应、输入/输出电容、功率耗散、失真等等。
这些参数在不同的应用场合中具有不同的重要性。
总的来说,了解三极管的参数对于选择合适的器件、设计电路以及优化电路性能至关重要。
不同的应用需要关注的参数也有所不同,需要根据具体情况进行选择和权衡。
常用三极管参数
常用三极管参数
三极管是一种重要的电子器件,具有很多参数需要理解和掌握,以下是常用的三极管参数(按字母顺序排序):
1. β(放大倍数):β是指集电极电流与基极电流之比,也称放大倍数。
它表示三极管输入信号(基极电流)与输出信号(集电极电流)之间的比例关系,通常在几十至几百之间。
2. BVCEO(集电极-发射极正向最大电压):BVCEO是指在基极开路时,允许集电极与发射极之间的正向最大电压。
超过这个电压,三极管可能会损坏。
4. hFE(直流放大倍数):hFE是指当三极管工作于直流工作点时,集电极电流与基极电流之比。
它表示三极管的放大倍数,通常在几十至几百之间。
hFE还可以分为直流增益和交流增益两种。
5. ICBO(集电极漏电流):ICBO是指当三极管的基极开路时,集电极与发射极之间的漏电流。
ICBO的大小通常很小,一般在几十到几百纳安范围内。
6. ICER(集电极饱和区内的反向击穿电压):ICER是指在集电极-发射极之间施加反向电压时,当三极管处于饱和区时,可以承受的最大反向电压。
8. VBE(基极-发射极电压):VBE是指当三极管正常工作时,基极与发射极之间的电压。
通常在0.6V至0.8V之间,但具体取决于三极管的型号和工作温度。
三极管参数需要根据具体的应用情况选择,合理使用参数能够提高电路的性能和可靠性。
常用三极管参数大全
常用三极管参数大全1.最大耐压(VCEO):指三极管的集电极与发射极之间的最大耐压,也是三极管工作的最高电压。
2.最大漏极电流(ICMAX):指三极管的最大工作电流,超过该电流可能会导致器件损坏。
3. 最大功率(Pmax):指三极管能够承受的最大功率,超过该功率可能会导致器件损坏。
4. 最大集电极-基极电压(VCEMax):指三极管的集电极与基极之间的最大电压,通常用于确定三极管在开关工作状态下的最大电压。
5. 最大基极电流(IBmax):指三极管的最大基极电流,超过该电流可能会导致器件损坏。
6. 饱和区电压下降(VCEsat):指三极管在饱和区时,集电极与发射极之间的电压降。
7. 基极-发射极饱和电压(VBEsat):指三极管在饱和区时,基极与发射极之间的电压降。
8. 输入电阻(hie):指三极管的输入电阻,它与基极电流成正比。
9. 输出电阻(hoe):指三极管的输出电阻,它与输出电流成正比。
10. 增大时间(tf):指三极管从关断状态到导通状态所需的时间。
11. 减小时间(tr):指三极管从导通状态到关断状态所需的时间。
12. 反向转换时间(tfr):指三极管由关断状态转换为导通状态时,极化电容反向充电所需的时间。
13. 正向转换时间(tff):指三极管由导通状态转换为关断状态时,极化电容正向放电所需的时间。
14.最大效率:指在特定工作条件下,三极管从输入功率到输出功率的转换效率。
15.电流放大倍数(β):指三极管中电流放大的倍数,即集电极电流与基极电流之比。
16.最大工作频率(fT):指三极管能够正常工作的最高频率。
上述参数都是三极管常用的重要参数,不同型号的三极管具体数值会有所不同。
在选择三极管时,根据具体需求选择合适的参数是非常重要的。
此外,这些参数在设计电子电路时也起到了至关重要的作用。
三极管的主要参数
三极管的主要参数
三极管是一种非常重要的电子元件,它在电子电路中有着广泛的应用。
以下是三极管的6个主要参数:
1.静态工作点:也称为偏置点,指三极管在正常工作状态下的电压和电流值。
静态工作点决定了三极管的放大倍数和直流增益。
2.最大耗散功率:指三极管在规定的工作条件下所能承受的最大功率。
如果耗散功率超过这个值,三极管就会损坏。
3.最大漏极电流:也称为最大集电电流,指集电极上可承受的最大电流值。
超过这个电流值,三极管可能会烧毁或损坏。
4.放大因子:指输入信号与输出信号的比值,通常用β表示。
放大因子决定了三极管对输入信号的放大倍数。
5.饱和电压:指当基极电压比较大时,三极管处于饱和状态时的集电极和发射极之间的电压。
饱和电压一般在0.1至0.3V之间。
6.漏极电阻:指集电极和发射极之间的电阻值。
漏极电阻越小,三极管的放大倍数就越大,而电流放大能力就越强。
了解三极管的这些主要参数,有助于我们选择合适的三极管来设计和调整电子电路,以满足具体的应用需求。
三极管主要的参数
三极管主要的参数
三极管的参数包括:
1、功率额定值:功率额定值定义了三极管在一定温度和额定电源电
压下可以承受的最大功率输出,通常有最大输出功率(Pd)、期望功率(Pc)和阻止功率(Pz)三种,其中最大输出功率是三极管运行时可输出
的最大功率,期望功率是正常工作时的额定功率,而阻止功率是在特定电
流和电压时的最大功率。
2、集电极-发射极电压:集电极-发射极电压(也称为正向伏安数)
是三极管在正向偏压下的集电极与发射极之间的电压,通常被简写为VCE,它受到多种因素的影响,包括正向偏压、温度和负向偏压等。
3、发射极-基极电压:发射极-基极电压(也称为负向伏安数)是三
极管在负向偏压下的发射极与基极之间的电压,通常被简写为VEB,它受
多种因素的影响,包括负向偏压、温度和正向偏压等。
4、集电极穿透电流:集电极穿透电流是三极管在集电极和发射极之
间的电流,它在正向偏压下会出现,通常被简称为ICEO。
它依赖于正向
偏压的大小,通常随着偏压的增大而增大,但随着偏压增大到一定程度时
会突然减小,这是由三极管在饱和区域的特性决定的。
全系列三极管参数
全系列三极管参数三极管是一种常用的电子元件,主要由三个控制电极组成:基极、发射极和集电极。
它可以将小信号放大成大信号,并具有放大和开关两种应用。
下面将详细介绍三极管的各种参数。
1.DC参数:(1)E-B击穿电压:控制电极到基极之间的击穿电压,通常是5V。
(2)集电极饱和电压:集电极电压和基极电压之间的差,通常是0.2V。
(3)极化电压:基极与发射极之间的电压,一般为0.6V。
(4)漂移电流:无输入信号时集电极电流,通常为1μA。
2.小信号参数:(1)共射放大参数:-电流放大倍数:基极电流和集电极电流之比,通常为20。
-输入电阻:基极电阻,通常为50kΩ。
-输出电阻:发射极电阻,通常为100Ω。
-最大功率增益:集电极功率和输入功率之比,通常为300。
-频率响应:放大器对不同频率信号的放大能力。
-带宽:能够通过的频率范围。
(2)共集放大参数:-电流放大倍数:发射极电流和集电极电流之比,通常为1-输入电阻:发射极电阻,通常为10Ω。
-输出电阻:集电极电阻,通常为10kΩ。
-最大功率增益:集电极功率和输入功率之比,通常为1-频率响应:放大器对不同频率信号的放大能力。
-带宽:能够通过的频率范围。
(3)共基放大参数:-电流放大倍数:基极和集电极电流之比,通常为0.99-输入电阻:集电极电阻,通常为10kΩ。
-输出电阻:发射极电阻,通常为0.1Ω。
-最大功率增益:集电极功率和输入功率之比,通常为0.99-频率响应:放大器对不同频率信号的放大能力。
-带宽:能够通过的频率范围。
3.大信号参数:(1)最大集电极电流:集电极电流的最大值。
(2)最大功率:集电极电流和集电极电压之积的最大值。
(3)最大集电极电压:集电极电压的最大值。
(4)开关时间:从信号输入到放大器开关的时间,一般小于1μs。
4.噪声参数:(1)噪声系数:直流电流吸收后引起的输出噪声。
(2)输出噪声电压:由于内部噪声而引起的输出电压。
以上是三极管的一些重要参数,这些参数可以帮助我们了解三极管的性能和适用范围。
常用三极管数据
常用三极管数据标题:常用三极管数据引言概述:三极管是一种常见的半导体器件,广泛应用于电子电路中。
了解三极管的数据对于电子工程师和爱好者来说是非常重要的。
本文将详细介绍常用三极管的数据,包括参数、特性以及应用。
一、三极管的基本参数1.1 放大倍数(hFE):三极管的放大倍数是指输入信号与输出信号之间的放大比例。
不同型号的三极管的放大倍数范围广泛,普通在50至1000之间。
1.2 最大集电极-发射极电压(VCEO):VCEO是三极管能够承受的最大集电极-发射极电压,通常以伏特(V)为单位。
这个参数决定了三极管能够承受的最大工作电压。
1.3 最大集电极-基极电压(VCBO):VCBO是三极管能够承受的最大集电极-基极电压,也以伏特(V)为单位。
这个参数对于三极管的使用和安全性至关重要。
二、三极管的特性2.1 饱和区和截止区:三极管在工作时会处于饱和区和截止区两种状态。
在饱和区,三极管的集电极-发射极之间的电压较低,电流较大;在截止区,电压较高,电流很小。
2.2 频率响应:三极管的频率响应是指它对输入信号频率的响应能力。
普通来说,三极管的频率响应范围在几十千赫兹至几百兆赫兹之间。
2.3 温度特性:三极管的工作温度会影响其性能。
普通来说,三极管的温度特性是负的,即温度升高时,其放大倍数会下降。
三、三极管的应用3.1 放大器:三极管最常见的应用是作为放大器,将输入信号放大到所需的输出信号。
3.2 开关:三极管还可以用作开关,控制电路的通断。
3.3 振荡器:三极管还可以用于构建振荡器电路,产生一定频率的信号。
四、常用三极管型号及参数4.1 BC547:BC547是一种常用的NPN型三极管,其放大倍数在100至800之间,VCEO为45V,VCBO为50V。
4.2 2N3904:2N3904是另一种常用的NPN型三极管,其放大倍数在200至300之间,VCEO为40V,VCBO为60V。
4.3 2N2222:2N2222是一种常用的PNP型三极管,其放大倍数在100至300之间,VCEO为40V,VCBO为60V。
常用三极管参数大全
常用三极管参数大全1. 最大集电极电流(IC max):三极管在特定工作条件下能够承受的最大集电极电流。
这个参数决定了三极管能够驱动的负载电流的最大值。
2. 最大功率耗散(PD max):三极管在特定工作条件下能够承受的最大功率耗散。
这个参数决定了在特定工作条件下,三极管能够承受的最大功率,超过这个功率则可能会损坏。
3. 最大集电极-基极电压(VCEO max):三极管在特定工作条件下能够承受的最大集电极-基极电压。
这个参数决定了三极管能够承受的最大电压,超过这个电压则可能会损坏。
4. 最大集电极-发射极电压(VCE sat):三极管在饱和区的工作条件下,集电极-发射极之间的电压。
这个参数决定了三极管在饱和区时的电压控制能力。
5. 最大基极-发射极电压(VBE max):三极管在特定工作条件下,基极-发射极之间能够承受的最大电压。
这个参数决定了三极管能够承受的最大电压,超过这个电压则可能会损坏。
6.直流电流放大倍数(hFE):这个参数代表了三极管的放大能力。
它表示了当三极管的基极电流变化时,集电极电流变化的倍数。
7. 最大封装功率耗散(PC max):三极管的封装能够承受的最大功率耗散。
这个参数与封装结构和材料有关,超过这个功率则可能会损坏封装。
8. 最大封装温度(Tj max):三极管封装能够承受的最高温度。
超过这个温度则可能会导致封装失效。
9. 最大储存温度(Tstg max):三极管能够承受的最高储存温度。
超过这个温度则可能会导致三极管性能退化。
10.最大工作频率(fT):这个参数代表了三极管的最高工作频率。
在高频应用中,这个参数决定了三极管能够工作的最高频率。
通过了解和理解这些三极管参数,我们可以根据具体设计需求选择合适的三极管。
这些参数对于电子电路的设计和分析非常重要,因此研究这些参数并了解它们的意义是很有用的。
常用三极管详细参数和代换大全
常用三极管详细参数和代换大全1.三极管的常用参数:(1)最大耗散功率(Pd):三极管正常工作时允许的最大耗散功率。
超过该功率会导致三极管过热损坏。
(2) 最大封装温度(Tjmax):三极管正常工作时允许的最高封装温度。
超过该温度会导致三极管可靠性下降。
(3) 最大集电极电流(Icmax):三极管正常工作时允许通过集电极的最大电流。
超过该电流会导致三极管损坏。
(4) 最大基极电流(Ibmax):三极管正常工作时允许通过基极的最大电流。
(5) 最大漏极电流(Iemax):三极管正常工作时允许通过漏极的最大电流。
(6) 最大集电极-发射极电压(Vceo):三极管正常工作时允许的最大集电极-发射极电压。
超过该电压会导致三极管损坏。
(7)最大输出功率(Po):三极管工作时允许输出的最大功率。
(8) 增益(β或hfe):三极管输入电流和输出电流之间的比值,用于描述三极管的放大能力。
2.常用三极管型号及其代换:(1)2N3904:NPN型三极管,常用于低功耗放大和开关电路。
可替代型号有PN2222、2SC3355等。
(2)2N3906:PNP型三极管,常用于低功耗放大和开关电路的互补性工作。
可替代型号有PN2907、2SA1013等。
(3)BC547:NPN型三极管,常用于低功耗放大和开关电路。
可替代型号有BC548、BC337等。
(4)BC557:PNP型三极管,常用于低功耗放大和开关电路的互补性工作。
可替代型号有BC558、BC327等。
(5)2N2222:NPN型三极管,常用于中功率放大和开关电路。
可替代型号有2N4401、2SC945等。
(6)2N2907:PNP型三极管,常用于中功率放大和开关电路的互补性工作。
可替代型号有2N5401、2SA733等。
以上仅是常用的一些三极管型号和代换,实际上还有很多其他型号的三极管可供选择。
在选用代替型号时,需要注意参数尽量与原型号相近,以免影响电路性能。
总结:了解三极管的详细参数对正确使用和选择是非常重要的。
三极管的主要参数
三极管的主要参数
1﹑电流放大系数β= Δic/Δib CE=常数
2﹑极间反向电流I CBO 和集射反向电流Iceo﹐也叫穿透电流﹐受温度影响较大(随温度升高而增大)
3﹑集电极最大允许电流Icm﹐当Ic超过一定数值时β下降﹐β下降到正常值β的2/3时所对应的Ic值为Icm﹐当Ic>Icm时﹐长时间工作可导致三极管损坏。
4﹑反向击穿电压Ubr(ceo)基极开路﹐集射极之间最大允许电压。
当Uceo> Ubr(ceo)时三极管Ic﹑Ie剧增﹐使三极管击穿损坏。
5﹑集电极最大允许耗散功率Pcm。
6﹑Rbe基射极电阻﹐Rce集射极电阻。
场效应管主要参数
1﹑开启电压﹕当U ds为常数时﹐将沟道漏源极连接起来的最小Ugs值。
2﹑低频跨导﹕U ds定值﹐漏极电流动的变化量Δid与引起这个变化的栅一源电压U gs的变化量ΔU gs比值。
3﹑漏源击穿电压Uds指管子发生击穿时Id急剧上升时的Uds值。
4﹑最大耗散功率
5﹑最大漏极电流。
三极管的主要参数包括直流参数交流参数极限参数
三极管的主要参数包括直流参数交流参数极限参数摘要:一、三极管简介二、三极管的主要参数1.直流参数2.交流参数3.极限参数三、参数对三极管性能的影响四、总结正文:一、三极管简介三极管,全称为半导体三极管,是一种常用的半导体器件,具有放大和开关等功能。
它由三个区域组成:n型区(发射极)、p型区(基极)和n型区(集电极)。
通过调整基极电流,可以控制集电极电流,从而实现信号的放大和开关。
二、三极管的主要参数1.直流参数直流参数主要包括静态工作点、静态电流和最大耗散功率。
静态工作点是指三极管在直流偏置下的工作状态,它决定了三极管的放大性能和稳定性。
静态电流是三极管在静态工作点下的基极电流,它影响了三极管的电流放大系数。
最大耗散功率是指三极管在最大工作电流下所能承受的热功率,它限制了器件的输出功率。
2.交流参数交流参数主要包括交流放大倍数、交流输入阻抗和交流输出阻抗。
交流放大倍数是指三极管在交流信号下的电流放大能力,它决定了三极管的信号放大性能。
交流输入阻抗是指三极管在交流信号下的输入阻抗,它影响了信号的传输效果。
交流输出阻抗是指三极管在交流信号下的输出阻抗,它影响了负载的驱动能力。
3.极限参数极限参数主要包括最大额定电压、最大额定电流和最小工作温度。
最大额定电压是指三极管能承受的最大电压,超过该电压可能导致器件损坏。
最大额定电流是指三极管能承受的最大电流,超过该电流可能导致器件过载。
最小工作温度是指三极管能正常工作的最低温度,低于该温度可能导致器件性能下降。
三、参数对三极管性能的影响直流参数、交流参数和极限参数共同决定了三极管的性能。
静态工作点的选择影响了三极管的放大性能和稳定性;静态电流的大小影响了三极管的电流放大系数;最大耗散功率决定了器件的输出功率;交流放大倍数、交流输入阻抗和交流输出阻抗影响了三极管的信号放大性能和驱动能力;最大额定电压、最大额定电流和最小工作温度则决定了器件的可靠性和稳定性。
四、总结三极管的主要参数包括直流参数、交流参数和极限参数。
三极管的主要参数-三极管知识
三极管的主要参数-三极管知识
三极管的主要参数-三极管知识
三极管的参数反映了三极管各种性能的指标,是分析三极管电路和选用三极管的依据。
下面,店铺为大家提供三极管的主要参数,希望能帮助到大家!
电压/电流
用这个参数可以指定该管的电压电流使用范围。
hFE
电流放大倍数。
特征频率fT
当f= fT时,三极管完全失去电流放大功能。
如果工作频率大于fT,电路将不正常工作。
fT称作增益带宽积,即fT=βfo。
若已知当前三极管的工作频率fo 以及高频电流放大倍数,便可得出特征频率fT。
随着工作频率的升高,放大倍数会下降.fT也可以定义为β=1时的频率。
VCEO
集电极发射极反向击穿电压,表示临界饱和时的饱和电压。
封装形式
指定该管的外观形状,如果其它参数都正确,封装不同将导致组件无法在电路板上实现。
PCM
最大允许耗散功率。
【三极管的主要参数-三极管知识】。
常用三极管的一些参数以及替换型号
常用三极管的一些参数以及替换型号三极管是一种常见的电子元件,常用于各种电子电路中。
以下是常用三极管的一些参数以及替换型号的详细介绍。
1.三极管参数:1.1 耐压(Vceo或Vces):指三极管能够承受的最大开关电压。
这是三极管能够在正常工作条件下稳定工作的重要参数。
1.2最大收集器电流(Ic):指三极管能够承受的最大电流。
如果超过这个电流,三极管可能会被损坏。
1.3最大功耗(Pd):指三极管能够承受的最大功率。
如果功耗过大,三极管可能在工作中过热而损坏。
1.4剩余漏极电流(Ib):指在关闭状态下,基极与发射极之间存在的微小漏电流。
1.5 当前放大倍数(hfe或β):指输入电流与输出电流的比例关系。
这个参数可以反映三极管的放大能力。
1.6 截止频率(ft):指三极管的最高工作频率。
当频率超过截止频率时,三极管的放大能力会显著下降。
2.常用三极管型号:2.1NPN型三极管:BC547、2N3904、2N2222等。
BC547是一种常用的NPN型三极管,其最大耐压为45V,最大收集器电流为100mA,最大功耗为500mW。
适用于一般低功率放大、开关和线性调节应用。
2N3904和2N2222也是常见的NPN型三极管型号,适用于类似应用。
2.2PNP型三极管:BC557、2N3906、2N2907等。
BC557是一种常用的PNP型三极管,其参数与BC547类似,适用于一般低功率放大、开关和线性调节应用。
2N3906和2N2907也是常见的PNP型三极管型号,适用于类似应用。
2.3功率三极管:2SC5200、2SA1943、TIP31C等。
2SC5200是一种NPN型功率三极管,其最大耐压为230V,最大收集器电流为15A,最大功耗为150W。
适用于高功率放大和开关应用。
2SA1943是一种PNP型功率三极管,其参数与2SC5200类似,适用于类似应用。
TIP31C是一种常用的NPN型功率三极管,适用于低频功率放大等应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大者为发射极E,较小者为集电极C。
用万用表的 hFE挡检测 值
1. 若有ADJ挡,先置于ADJ 挡进行调零。 2. 拨到 hFE挡。 3. 将被测晶体管的C、B、E三个引脚分别插入相应的
插孔中(TO-3封装的大功率管,可将其3个电极接出 3根引线,再插入插孔)。
放大能力的检测
穿透电流的检测 反向击穿电压的检测
目测判别三极管极性
ECB
C
E
C
E
C
B
B
EBC
BE
用指针式万用表判断三极管极性
红表笔是(表内电源)负极 黑表笔是(表内电源)正极
在 R100或 R1k 挡测量 测量时手不要接触引脚
基极B的判断: 当黑(红)表笔接触某一极,红(黑)表笔分别接触
另两个极时,万用表指示为低阻,则该极为基极,该管为 NPN(PNP)。
3. 点击页面上的返回按纽,则回到上一级目录。
3— 三极管
例:
A — 锗材料 PNP B — 锗材料 NPN C — 硅材料 PNP D — 硅材料 NPN
X — 低频小功率管 G — 高频小功率管 D — 低频大功率管 A — 高频大功率管
3AX31 PNP低频小功率锗三极管
3CG PNP高频小功率硅三极管
3DG12B NPN高频小功率硅三极管
3AD PNP低频大功率锗三极管
3DD6 NPN低频大功率硅三极管
3DK NPN硅开关三极管
三极管的识别和检测
1. 三极管极性的判别 (1) 目测判别极性 (2) 用指针式万用表判别极性 2. 三极管性能的检测
(1) 用万用表的 hFE挡检测 值
(2) 用晶体管图示仪或直流参数测试表检测 (略) (3) 用指针式万用表检测
网上查询
http://
6. 常用国产小功率开关晶体管的主要参数
7. 部分高反压大功率开关晶体管的主要参数及封装形式
39.1 k
增大电源电压,当发光二极管LED亮时,A、 B之间的电压即为晶体管的反向击穿电压。
三极管的特性
iB/A
O
uBE/V
输入特性
iC / mA
4 3 2 1
O2 4
50 µA 40 µA 30 µA 20 µA 10 µA IB = 0 6 8 uCE /V
中、小功率锗管C、E间的电阻 > 10 k; 大功率锗管C、E间的电阻 > 1.5 k; 硅管C、E间的电阻 >100 k(在 R 10 k挡测量)。
检测反向击穿电压 U(BR)CEO
反向击穿电压低于50V的晶体管,可按图示电路检测。
39 k A
B
10~50 V 2SA1015
LED 5.1 k
4. 从表头或显示屏读出该管的电流放大系数 。
三极管放大能力的检测
硅管:100 k 锗管:20 k
0
1k
PNP
硅管:100 k 锗管:20 k
0
1k
NPN 指针偏转角度越大,则放大能力越强
用万用表检测穿透电流 ICEO
通过测量C、E间的电阻来估计穿透电流 ICEO的大小。
0 1k
0 1k
一般情况下,
8. 常用大功率互补对管的主要参数
常用中、小功率互补对管及其主要参数
部分三极管的外型
导航须知
1. 请根据所要查看的内容,置鼠标于相应文字 上方,凡出现了超级链接的提示(小手),点 击鼠标则进入所要查看的内容或下一级目录。
2. 为了避免迷失查看路径,本课件关闭了点击 鼠标实现翻页的功能(除设置有动画的页面)。
输出特性
三极管的参数
1. 常用国产高频小功率晶体管的主要参数
部分进口高频小功率晶体管的主要参数
2. 部分国产高频中、大功率晶体管的主要参数 部分进口高频中、大功率晶体管的主要参数
3. 部分国产低频小功率晶体管的主要参数 部分进口中、低频小功率晶体管的主要参数
5. 常用国产低频大功率晶体管的主要参数 部分进口中、低频大功率晶体管的主要参数
半导体器件的命名方式
第一部分 第二部分
数字 电极数
字母 材料和极性
2— 二极管
A — 锗材料 N 型 B — 锗材料 P 型 C — 硅材料 N 型
D — 硅材料 P 型
第三部分 第四部分 第五部分
字母(汉拼)
数字 字母(汉拼)
器件类型
序号
规格号
P — 普通管
W — 稳压管 K — 开关管 Z — 整流管 U — 光电管