概率论和数理统计的Matlab 实现
matlab在概率统计中的应用
实验八matlab在概率统计中的应用一、实验目的1、掌握利用MATLAB处理简单的概率问题;2、掌握利用MATLAB处理简单的数理统计问题。
二、实验内容1、对下列问题,请分别用专用函数和通用函数实现。
(1)X服从[3, 10]上均匀分布,计算P{X≤4},P{X>8};已知P{X>a}=0.4,求a。
(2) X服从正态分布N(2, 9),计算P{|X|≤1},P{|X|>5};已知P{X<b}=0.9,求b。
(3) X服从自由度为9的t分布,计算P{-2<X≤1};已知P{X<c}=P{X>c},求c。
2、绘制下列图形,并比较参数变化对图形的影响。
(1)()2μσ,为(-1,1),(0,0.4),(0,6),(1,1)时正态分布的概率密度函数图形;(2)参数n为1,2,3,4,5时2χ分布的概率密度函数图形。
3、设样本数据为110.1,25.2,39.8,65.4,50.0,98.1,48.3,32.2,60.4,40.3,求该样本的均值、方差、标准差、中位数、几何均值、最大值、最小值、极差并绘出数据的直方图及圆饼图。
4、下表一列出某高校自动化专业研究生招生规模及生源情况请用常用的MATLAB统计作图函数,分析表一中的数据,能否得出近四年招生规模缩小, 总体生源质量下降的结论?5、某高校自动化学院现有教师80人。
其中,教授24人,副教授32人;博士生导师18人,硕士生导师40人;教师队伍中具有博士学位的39人。
请用三维圆饼图描述教师的组成,并在图中显示相应的人数及所占比例。
6、有两组(每组100个元素)正态随机数据,其均值为10,均方差为2,求95%的置信区间和参数估计值。
7、分别使用金球和铂球测定引力常数。
(1)用金球测定观察值为:6.683 6.681 6.676 6.678 6.679 6.672;(2)用铂球测定观察值为:6.661 6.661 6.667 6.667 6.664。
14MATLAB在概率统计中的应用
(2) (X,Y)落在x+y=1,x=0,y=0所围成的区域内的概率。
程序:
>> syms x y
>> f=exp(-x-y);
>> P_XY=int(int(f,y,0,1),x,0,1)
>> P_G=int(int(f,y,0,1-x),x,0,1)
运行结果显示如下:
P_XY= exp(-2)-2*exp(-1)+1
0.1 0.08 0.06 0.04 0.02
0 0
5
10
15
20
25
30
图 2-1
4.指数分布 例4-10 >>x = 0:0.1:10; >>y = exppdf(x,2); >>plot(x,y)
0.正态分布 例4-16 >> x=-3:0.2:3; >> y=normpdf(x,0,1); >> plot(x,y)
k 1
k 1
的和为随机变量X的数学期望,记为E(X),即
E(X) xkpk (1) k1
说明: (1)E的 X 求 E (X 法 ) x : kpk k1
(2)数学期望 存在性的判断:
看 级 数 xk pk是 否 绝 对 收 敛 。 k 1 即 xk pk是 否 收 敛 ? k1
例1:某厂产品的次品率为0.2 ,每生产一件
解:设h为车门高度,X为身高,求满足条件 P{X>h}0.01的h,即P{X<h}0.99。
程序:
>> h=norminv(0.99,175,6)
结果:
h= 188.9581
Matlab在《概率论与数理统计》教学中的应用
Matlab在《概率论与数理统计》教学中的应用
Matlab提供了丰富的概率分布函数,可以帮助学生更好地理解不同的概率分布。
学生可以使用Matlab生成正态分布、二项分布、泊松分布等不同的概率分布,并画出相应的概率密度函数、累积分布函数等图形。
通过实际的计算和绘图,学生可以更直观地看到不同概率分布的特点,加深对概率分布的理解。
Matlab提供了各种统计函数,可以方便地进行数据的描述性统计和推断性统计。
学生可以使用Matlab计算样本的平均值、方差等描述性统计量,还可以使用Matlab进行假设检验、置信区间估计等推断性统计。
通过实际的计算和分析,学生可以更好地掌握统计学中的概念和方法。
Matlab还可以进行模拟实验,帮助学生理解概率和统计的原理。
学生可以使用Matlab 模拟抛硬币的实验,验证概率的定义和性质。
学生还可以使用Matlab模拟中心极限定理,观察样本均值的分布趋于正态分布的情况。
通过实际的模拟实验,学生可以更深入地理解抽样分布和极限定理等重要概念。
Matlab还可以用于数据的可视化。
学生可以使用Matlab绘制直方图、散点图、箱线图等图形,展示数据的分布和变化。
通过可视化的方式,学生可以更好地理解数据的特点和规律,并能够更直观地展示和解释统计分析的结果。
Matlab在《概率论与数理统计》教学中具有广泛的应用价值。
通过利用Matlab进行计算、模拟和可视化等任务,可以帮助学生更好地理解概率和统计的概念和方法,提高学习效果。
在教学中合理地使用Matlab可以有效地促进学生对概率论与数理统计的学习和理解。
Matlab在数理统计中的运用
Matlab在数理统计中的运用摘要:概率论与数理统计是现代数学的重要分支,近年来随着计算机的普及,概率论在经济,管理,金融,保险,生物,医学等方面都发挥着越来越大的作用。
使得概率统计成为今天各类各专业大学生最重要的数学必修课之一。
然而,传统的概率统计教学过于偏重理论的阐述、公式的推导、繁琐的初等运算;同时,缺乏与计算机的结合,给学生的学习带来很多困难。
本文介绍概率统计中的主要问题在Matlab中的实现,让我们从繁琐的计算中解放出来,把更多的时间和精力用于基本概念和基本理论的思考和方法的创新,从而提高教师的教学效率和学生的学习效率。
关键词:区间估计,matlab,概率统计一、常用概率密度的计算Matlab中计算某种概率分布在指定点的概率密度的函数,都以代表特定概率分布的字母开头,以pdf (probability density function)结尾,例如:unid pdf(X, N):计算1到N上的离散均匀分布在X每一点处的概率密度;poisspdf(X, Lambda):计算参数为Lambda的泊松分布在X每一点处的概率密度;exppdf(X, mu):计算参数为mu的指数分布在X每一点处的概率密度;normpdf(X, mu, sigma):计算参数为mu, sigma的正态分布在X每一点处的概率密度。
其他如连续均匀分布、二项分布、超几何分布等也都有相应的计算概率密度的函数。
除计算概率密度的函数外,Matlab中还有计算累积概率密度、逆概率分布函数及产生服从某分布的随机数的函数,分别以cdf,inv和rnd结尾。
下面我们来用一个具体的例子说明一下:例1:计算正态分布N(0,1)的随机变量X在点0.6578的密度函数值。
解:>> pdf('norm',0.6578,0,1)ans =0.3213例2:自由度为8的卡方分布,在点2.18处的密度函数值。
解:>> pdf('chi2',2.18,8)ans = 0.0363二、随机变量数字特征的计算(一)数学期望与方差对离散型随机变量,可利用Matlab矩阵运算计算出其数学期望和方差;而对于连续型随机变量,则可以利用Matlab符号运行计算。
如何在Matlab中进行概率统计分析
如何在Matlab中进行概率统计分析在科学研究和数据分析领域,概率统计分析是一项重要的工具。
Matlab作为一种功能强大的数值计算和数据分析的软件平台,在概率统计分析方面有着广泛的应用。
本文将探讨如何在Matlab中进行概率统计分析,并介绍一些常用的技巧和方法。
一、数据导入和预处理在进行概率统计分析之前,首先需要将数据导入Matlab中,并对数据进行预处理。
Matlab提供了各种函数和工具箱,可以简化数据导入和预处理的过程。
例如,使用`xlsread`函数可以将Excel中的数据导入Matlab,使用`csvread`函数可以导入CSV格式的数据。
在数据预处理阶段,常见的操作包括数据清洗、去除异常值、填充缺失值等。
Matlab中的统计工具箱提供了一系列函数,如`fillmissing`、`rmoutliers`等,可以方便地进行数据预处理。
二、描述性统计分析描述性统计分析是对数据的基本特征进行总结和描述,如均值、方差、百分位数等。
Matlab提供了一系列函数,如`mean`、`std`、`prctile`等,可以方便地进行描述性统计分析。
下面以一个示例来说明如何使用Matlab进行描述性统计分析。
假设我们有一组身高数据,可以使用`mean`和`std`函数计算平均身高和身高的标准差:```matlabheight = [165, 170, 175, 180, 185];mean_height = mean(height);std_height = std(height);```三、概率分布拟合概率分布拟合是将观察到的数据拟合到一个概率分布模型中,以了解数据的分布特征。
Matlab中的统计工具箱提供了丰富的函数,可以进行概率分布的拟合和参数估计。
常见的概率分布包括正态分布、指数分布、泊松分布等。
下面以正态分布为例,演示如何在Matlab中进行概率分布拟合:```matlabdata = randn(1000, 1); % 生成1000个服从正态分布的随机数pd = fitdist(data, 'Normal'); % 拟合正态分布mu = pd.mu; % 估计的均值sigma = pd.sigma; % 估计的标准差```四、假设检验假设检验是概率统计分析的重要内容,用于验证关于总体参数的假设。
第8章 matlab 概率论与数理统计问题的求解
8.1.3 概率问题的求解
图4-9
• 例:
>> b=1; p1=raylcdf(0.2,b); p2=raylcdf(2,b); P1=p2-p1 P1 = 0.8449
>> p1=raylcdf(1,b); P2=1-p1 P2 = 0.6065
• 例:
>> syms x y; f=x^2+x*y/3; >> P=int(int(f,x,0,1/2),y,0,1/2) P= 5/192 >> syms x y; f=x^2+x*y/3; P=int(int(f,x,0,1),y,0,2) P= 1
8.1.2.3
பைடு நூலகம்
分布
• 例:
>> x=[-0.5:.02:5]‘; %x=[-eps:-0.02:-0.5,0:0.02:5]; x=sort(x’);替代 >> y1=[]; y2=[]; a1=[1,1,2,1,3]; lam1=[1,0.5,1,2,1]; >> for i=1:length(a1) y1=[y1,gampdf(x,a1(i),lam1(i))]; y2=[y2,gamcdf(x,a1(i),lam1(i))]; end >> plot(x,y1), figure; plot(x,y2)
8.1.2.2 正态分布
正态分布的概率密度函数为:
• 例:
>> x=[-5:.02:5]'; y1=[]; y2=[]; >> mu1=[-1,0,0,0,1]; sig1=[1,0.1,1,10,1]; sig1=sqrt(sig1); >> for i=1:length(mu1) y1=[y1,normpdf(x,mu1(i),sig1(i))]; y2=[y2,normcdf(x,mu1(i),sig1(i))]; end >> plot(x,y1), figure; plot(x,y2)
(完整版)Matlab概率论与数理统计
Matlab 概率论与数理统计、matlab 基本操作 1. 画图【例01.01】简单画图hold off; x=0:0.1:2*pi; y=sin (x);plot(x,y, '-r'); x1=0:0.1:pi/2; y1=s in( x1); hold on;fill([x1, pi/2],[y1,1/2],'b');【例01.02】填充,二维均匀随机数hold off ;x=[0,60];y0=[0,0];y60=[60,60]; x1=[0,30];y1=x1+30; x2=[30,60];y2=x2-30;plot(x,y0, 'r' ,y0,x, plot(x1,y1, 'r' ,x2,y2, yr=u nifrnd (0,60,2,100);plot(yr(1,:),yr(2,:), axis( 'on'); axis( 'square' ); axis([-20 80 -20 80 ]);xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0]; fill(xv,yv, 'b');hold on ;'r' ,x,y60, 'r' ,y60,x,'r')'r');'m.')2. 排列组合kC=nchoosek(n,k) : CC n ,例 nchoosek(5,2)=10, nchoosek(6,3)=20.prod(n1:n2):从 n1 至U n2 的连乘【例01.03】至少有两个人生日相同的概率365 364|||(365 rs 1)rs365365 364 365 rs 1 365 365365rs=[20,25,30,35,40,45,50]; %每班的人数p1= on es(1,le ngth(rs)); p2=on es(1,le ngth(rs));%用连乘公式计算for i=1:le ngth(rs) p1(i)=prod(365-rs(i)+1:365)/365A rs(i); end%用公式计算(改进) for i=1:le ngth(rs)for k=365-rs(i)+1:365p2(i)=p2(i)*(k/365); end ; end%用公式计算(取对数) for i=1:le ngth(rs)p1(i)=exp(sum(log(365-rs(i)+1:365))-rs(i)*log(365)); end公式计算P 1n!C NN nN!1 (N n)!1N nN (N 1) (N n 1)、随机数的生成3. 均匀分布随机数rand(m,n);产生m行n列的(0,1)均匀分布的随机数rand(n);产生n行n列的(0,1)均匀分布的随机数【练习】生成(a,b)上的均匀分布4. 正态分布随机数randn(m,n); 产生m行n列的标准正态分布的随机数【练习】生成N(nu,sigma42)上的正态分布5. 其它分布随机数三、一维随机变量的概率分布1. 离散型随机变量的分布率(1) 0-1分布(2) 均匀分布_ k k n k(3) 二项分布:binopdf(x,n,p),若X ~ B(n, p),则P{X k} C n p (1 p),x=0:9 ;n=9;p=0.3;y= bin opdf(x ,n, p);plot(x,y,'b-',x,y,'r*')y=[ 0.0404, 0.1556, 0.2668, 0.2668, 0.1715, 0.0735, 0.0210, 0.0039, 0.0004, 0.0000 ]当n较大时二项分布近似为正态分布x=0:100; n=100;p=0.3;y= bin opdf(x ,n, p);plot(x,y,'b-',x,y,'r*')ke⑷泊松分布:piosspdf(x, lambda),若X ~ (),贝U P{ X k}k!x=0:9; lambda = 3;y= poisspdf (x,lambda);plot(x,y,'b-',x,y,'r*')y=[ 0.0498, 0.1494, 0.2240, 0.2240, 0.1680, 0.1008, 0.0504, 0.0216, 0.0081,0.0027]k 1⑸几何分布:geopdf (x, p),贝U P{X k} p(1 p)x=0:9;p=0.3y= geopdf(x,p);plot(x,y,'b-',x,y,'r*')y=[ 0.3000, 0.2100, 0.1470, 0.1029, 0.0720, 0.0504, 0.0353, 0.0247, 0.0173, 0.0121 ] x=0:10;N=20;M=8; n=4;y= hygepdf(x,N,M, n); plot(x,y,'b-',x,y,'r*')y=[ 0.1022, 0.3633, 0.3814, 0.1387, 0.0144, 0, 0, 0, 0, 0, 0 ]2. 概率密度函数(1)均匀分布:unifpdf(x,a,b) , f (x)其它a=0;b=1;x=a:0.1:b; y= uni fpdf (x,a,b);1 2 厂(x )2 ■厂ex=-10:0.1:12;mu=1;sigma=4;y= no rmpdf(x,mu,sigma);rn=10000;z= normrnd (mu,sigma,1,rn); % 产生 10000 个正态分布的随机数 d=0.5;a=-10:d:12;b=(hist(z,a)/rn)/d;%以a 为横轴,求出10000个正态分布的随机数的频率(6)超几何分布:hygepdf(x,N,M,n),则 P{Xk}C k nM CNC N(2)正态分布:normpdf(x,mu,sigma) , f (x)plot(x,y,'b-',a,b,'r.')1 _x⑶指数分布:exppdf(x,mu), f (x)其它x=0:0.1:10;mu=1/2;■ t京■I_ey= exppdf(x,mu); plot(x,y,'b-',x,y,'r*')1n i F⑷2分布:chi2pdf(x,n) , f (x; n) 2n ^( n 2) % e x 0hold onx=0:0.1:30;n=4;y= chi2pdf(x, n);plot(x,y,'b');%blue n=6;y= chi2pdf(x, n);plot(x,y,'r');%red n=8;y=chi2pdf(x ,n );plot(x,y,'c');%cya n n=10;y= chi2pdf(x, n);plot(x,y,'k');%black lege nd(' n=4', 'n=6', 'n=8', 'n=10');n 1((n 1) 2) x2 2⑸t 分布:tpdf(x,n) , f (x; n) ------------------ 1 -J n (n. 2) nhold onx=-10:0.1:10;n=2;y= tpdf(x, n);plot(x,y,'b');%bluen=6;y= tpdf(x, n);plot(x,y,'r');%redn=10;y= tpdf(x ,n );plot(x,y,'c');%cya nn=20;y= tpdf(x, n);plot(x,y,'k');%black lege nd(' n=2', 'n=6', 'n=10', 'n=20');((m山m 门2n2) 2)小2% 2 1 5 % 2(n2 2) n2n2x 0(6) F 分布:fpdf(x,n1,n2) , f (x; n「n2) (E 2)0 x 0hold onx=0:0.1:10;n1=2; n2=6;y= fpdf(x, n1, n2);plot(x,y,'b');%bluen1=6; n2=10;y= fpdf(x, n1, n2);plot(x,y,'r');%red n1=10; n2=6;y= fpdf(x, n1, n2);plot(x,y,'c');%cyann1=10; n2=10;y= fpdf(x, n1,n 2);plot(x,y,'k');%black legend(' n仁2; n2=6', ' n1= 6; n2=10', ' n仁10;n2=6', ' n仁10; n2=10');3.分布函数F(x) P{X x}【例03.01】求正态分布的累积概率值设X ~ N(3,22),求 P{2 X 5}, P{ 4 X 10}, P{ X 2}, P{X 3},14.逆分布函数,临界值y F(x) P{X x} , x F (y) , x称之为临界值【例03.02】求标准正态分布的累积概率值y=0:0.01:1;x=normin v(y,0,1);【例03.03】求2(9)分布的累积概率值hold offy=[0.025,0.975];x=ch i2in v(y,9);n=9;x0=0:0.1:30;y0=chi2pdf(x0, n); plot(x0,y0, 'r'); x1=0:0.1:x(1);y1=chi2pdf(x1, n);x2=x(2):0.1:30;y2=chi2pdf(x2 ,n);hold onfill([x1, x(1)],[y1,0], 'b');fill([x(2),x2],[0,y2], 'b');【练习1.1】二项分布、泊松分布、正态分布(1)对n 10, p 0.2二项分布,画出b(n,p)的分布律点和折线;(2)对np,画出泊松分布()的分布律点和折线;(3)对np, 2叩(1 p),画出正态分布N( , 2)的密度函数曲线;(4)调整n, p,观察折线与曲线的变化趋势。
概率论与数理统计MATLAB上机实验报告
《概率论与数理统计》MATLAB上机实验实验报告一、实验目的1、熟悉matlab的操作。
了解用matlab解决概率相关问题的方法。
2、增强动手能力,通过完成实验内容增强自己动手能力。
二、实验内容1、列出常见分布的概率密度及分布函数的命令,并操作。
概率密度函数分布函数(累积分布函数) 正态分布normpdf(x,mu,sigma) cd f(‘Normal’,x, mu,sigma);均匀分布(连续)unifpdf(x,a,b) cdf(‘Uniform’,x,a,b);均匀分布(离散)unidpdf(x,n) cdf(‘Discrete Uniform’,x,n);指数分布exppdf(x,a) cdf(‘Exponential’,x,a);几何分布geopdf(x,p) cdf(‘Geometric’,x,p);二项分布binopdf(x,n,p) cdf(‘Binomial’,x,n,p);泊松分布poisspdf(x,n) cdf(‘Poisson’,x,n);2、掷硬币150次,其中正面出现的概率为0.5,这150次中正面出现的次数记为X(1) 试计算X=45的概率和X≤45 的概率;(2) 绘制分布函数图形和概率分布律图形。
答:(1)P(x=45)=pd =3.0945e-07P(x<=45)=cd =5.2943e-07(2)3、用Matlab软件生成服从二项分布的随机数,并验证泊松定理。
用matlab依次生成(n=300,p=0.5),(n=3000,p=0.05),(n=30000,p=0.005)的二项分布随机数,以及参数λ=150的泊松分布,并作出图线如下。
由此可以见得,随着n的增大,二项分布与泊松分布的概率密度函数几乎重合。
因此当n足够大时,可以认为泊松分布与二项分布一致。
4、 设22221),(y x e y x f +−=π是一个二维随机变量的联合概率密度函数,画出这一函数的联合概率密度图像。
概率论matlab实验报告
概率论matlab实验报告概率论与数理统计matlab上机实验报告班级:学号:姓名:指导⽼师:实验⼀常见分布的概率密度、分布函数⽣成[实验⽬的]1. 会利⽤MATLAB软件计算离散型随机变量的概率,连续型随机变量概率密度值。
2.会利⽤MATLAB软件计算分布函数值,或计算形如事件{X≤x}的概率。
3.会求上α分位点以及分布函数的反函数值。
[实验要求]1.掌握常见分布的分布律和概率密度的产⽣命令,如binopdf,normpdf2. 掌握常见分布的分布函数命令,如binocdf,normcdf3. 掌握常见分布的分布函数反函数命令,如binoinv,norminv[实验内容]常见分布的概率密度、分布函数⽣成,⾃设参数1、X~B(20,0.4)(1)P{恰好发⽣8次}=P{X=8}(2)P{⾄多发⽣8次}=P{X<=8}(1)binopdf(8,20,0.4)ans =0.1797(2)binocdf(8,20,0.4)ans =0.59562、X~P(2)求P{X=4}poisspdf(4,2)ans =0.09023、X~U[3,8](1)X=5的概率密度(2)P{X<=6}(1)unifpdf(5,3,8)ans =0.2000(2)unifcdf(6,3,8)ans =0.60004、X~exp(3)(1)X=0,1,2,3,4,5,6,7,8时的概率密度(2)P{X<=8}注意:exp(3)与教材中参数不同,倒数关系(1)exppdf(0:8,3) ans =Columns 1 through 30.3333 0.2388 0.1711Columns 4 through 60.1226 0.0879 0.0630Columns 7 through 90.0451 0.0323 0.0232(2)expcdf(8,3)ans =0.93055、X~N(8,9)(1)X=3,4,5,6,7,8,9时的概率密度值(2)X=3,4,5,6,7,8,9时的分布函数值(3)若P{X<=x}=0.625,求x(4)求标准正态分布的上0.025分位数(1)normpdf(3:9,8,3)ans =Columns 1 through 30.0332 0.0547 0.0807 Columns 4 through 60.1065 0.1258 0.1330 Column 70.1258(2)normcdf(3:9,8,3)ans =Columns 1 through 30.0478 0.0912 0.1587 Columns 4 through 60.2525 0.3694 0.5000 Column 70.6306(3)norminv(0.625,8,3)ans =8.9559(4)norminv(0.975,0,1)ans =1.96006、X~t(3)(1)X=-3,-2,-1,0,1,2,3时的概率密度值(2)X=-3,-2,-1,0,1,2,3时的分布函数值(3)若P{X<=x}=0.625,求x(4)求t分布的上0.025分位数(1)tpdf(-3:3,3)ans =Columns 1 through 30.0230 0.0675 0.2067 Columns 4 through 60.3676 0.2067 0.0675 Column 70.0230(2)tcdf(-3:3,3)ans =Columns 1 through 30.0288 0.0697 0.1955 Columns 4 through 60.5000 0.8045 0.9303 Column 70.9712(3)tinv(0.625,3)ans =0.3492(4)tinv(0.975,3)ans =3.18247、X~卡⽅(4)(1)X=0,1,2,3,4,5,6时的概率密度值(2)X=0,1,2,3,4,5,6时的分布函数值(3)若P{X<=x}=0.625,求x(4)求卡⽅分布的上0.025分位数(1)chi2pdf(0:6,4)ans =Columns 1 through 30 0.1516 0.1839 Columns 4 through 6 0.1673 0.1353 0.1026 Column 70.0747(2)chi2cdf(0:6,4)ans =Columns 1 through 30 0.0902 0.2642 Columns 4 through 6 0.4422 0.5940 0.7127 Column 70.8009(3)chi2inv(0.625,4)ans =4.2361(4)chi2inv(0.975,4)ans =11.14338、X~F(4,9)(1)X=0,1,2,3,4,5,6时的概率密度值(2)X=0,1,2,3,4,5,6时的分布函数值(3)若P{X<=x}=0.625,求x(4)求F分布的上0.025分位数(1)fpdf(0:6,4,9)ans =Columns 1 through 30 0.4479 0.1566 Columns 4 through 6 0.0595 0.0255 0.0122 Column 70.0063(2)fcdf(0:6,4,9)ans =Columns 1 through 30 0.5442 0.8218Columns 4 through 60.9211 0.9609 0.9788Column 70.9877(3)finv(0.625,4,9)ans =1.1994(4)finv(0.975,4,9)ans =4.7181实验⼆概率作图[实验⽬的]1.熟练掌握MATLAB软件的关于概率分布作图的基本操作2.会进⾏常⽤的概率密度函数和分布函数的作图3.会画出分布律图形[实验要求]1.掌握MATLAB画图命令plot2.掌握常见分布的概率密度图像和分布函数图像的画法[实验内容]任选四种分布,⾃设参数(已画⼋种分布图像,可熟悉各分布特点)1、X~B(20,0.4)代码:x=0:20;y=binopdf(x,20,0.4)plot(x,y,'.')结果:2、X~exp(3)概率密度图像代码:x=0:0.01:15;y=exppdf(x,3)plot(x,y)结果:分布函数代码:x=-1:0.01:15; y=expcdf(x,3)plot(x,y)结果:3、X~P(4)概率密度图形代码:x=0:10;y=poisspdf(x,4)plot(x,y,'.')结果:分布函数图形代码:x=0:0.01:10; y=poisscdf(x,4) plot(x,y)结果:4、X~U(3,8)概率密度图形代码:x=0:0.01:10;y=unifpdf(x,3,8)plot(x,y,'.')结果:分布函数图形代码:x=0:0.01:10;y=unifcdf(x,3,8) plot(x,y)结果:5、X~N(4,9) 概率密度图形代码:x=-10:0.01:18;y=normpdf(x,4,3); plot(x,y)结果:分布函数图形代码:x=-10:0.01:18;y=normcdf(x,4,3); plot(x,y)结果:同⼀坐标系,均值是4,标准差分别为1,2,3的正态分布概率密度图形代码:x=-5:0.01:15;y1=normpdf(x,4,1);y2=normpdf(x,4,2);y3=normpdf(x,4,3);plot(x,y1,x,y2,x,y3)结果:6、X~t(3)概率密度图形代码:x=-10:0.01:10;y=tpdf(x,3);plot(x,y)结果:分布函数图形代码:x=-10:0.01:10; y=tcdf(x,3); plot(x,y)结果:。
数理统计方法的Matlab实现(6.5版)
数理统计的Matlab实现
[H,SIG,CI]=ttest2 (x, y, ,tail) 对两个正态总 体的均值作检验 若tail=0, 表示 H 1 : 1 2 若tail=1, 表示 H 1 : 1 2 若tail=-1,表示 H 1 : 1 2 结论:H=0,表示接受原假设 H 0 : 1 2 H=1,表示拒绝原假设 H 0 : 1 2 SIG为犯错误的概率,CI为均值差的置信区间。
因素A 因素B B1 B2 B3
A1 95 93 85 86 72 76 A2 A3 A4
97 96 87 89 90 91 89 90 84 87 92 90 75 73 85 86 88 89
AB2=[95 93 97 96 87 89 90 91;85 86 89 90 84 87 92 90;72 76 75 73 85 86 88 89 ] anova2(AB2',2)
数理统计的Matlab实现
例2自动包装机包装出的产品服从正态分 布 N (0.5 , 0.0152 ) ,从中抽取出9个样品,它们的 重量是 0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512 问包装机的工作是否正常? ( =0.05) x=[0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512]; [H,SIG]=ztest(x, 0.5, 0.015, 0.05,0)
数理统计的Matlab实现
其中 y:y的 n 1 数据向量 x:x的数据 n m 矩阵 b: b0 , b1 ,, bm 的估计值 bint:b的置信区间 r:残差 rint :r的置信区间 stats:第一个值是回归方程的置信度,第二值是F统 计量的值,第三值小说明所建的回归方程有意义。
概率论与数理统计的MATLAB实现讲稿
第9章 概率论与数理统计的MATLAB 实现MATLAB 总包提供了一些进行数据统计分析的函数,但不完整。
利用MATLAB 统计工具箱,可以进行基本概率和数理统计分析,以及进行比较复杂的多元统计分析。
本章主要针对大学本科的概率统计课程介绍工具箱的部分功能。
9.1 随机变量及其分布利用统计工具箱提供的函数,可以比较方便地计算随机变量的分布律(概率密度函数)和分布函数。
9.1.1 离散型随机变量及其分布律如果随机变量全部可能取到的不相同的值是有限个或可列个无限多个,则称为离散型随机变量。
MATLAB 提供的计算常见离散型随机变量分布律的函数及调用格式: 函数调用格式(对应的分布) 分布律y=binopdf(x,n,p)(二项分布) )()1(),|(),,1,0(x I p p x n p n x f n xn x --⎪⎪⎭⎫ ⎝⎛=y=geopdf(x,p)(几何分布) xp p p x f )1()|(-= ),1,0( =xy=hygepdf(x,M,K,n)(超几何分布) ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=n M x n K M x K n K M x f ),,|(y=poisspdf(x,lambda)(泊松分布) λλλ-=e x x f x !)|(),1,0( =x y=unidpdf(x,n)(离散均匀分布) NN x f 1)|(=9.1.2 连续型随机变量及其概率密度对于随机变量X 的分布函数)(x F ,如果存在非负函数)(x f ,使对于任意实数x 有⎰∞-=x dt t f x F )()(则称X 为连续型随机变量,其中函数)(x f 称为X 的概率密度函数。
MA TLAB 提供的计算常见连续型随机变量分布概率密度函数的函数及调用格式:函数调用格式(对应的分布) 概率密度函数y=betapdf(x,a,b)(β分布) )10()1(),(1),|(11<<-=--x x x b a B b a x f b ay=chi2pdf(x,v)(卡方分布) )2(2)|(2212v exv x f v x v Γ=--)0(≥xy=exppdf(x,mu)(指数分布) μμμxe xf -=1)|()0(≥xy=fpdf(x,v1,v2)(F 分布) 2211222121212121111)2()2()2(),|(v v v v v x v x vv v v v v v v x f +-⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛ΓΓ+Γ= y=gampdf(x,a,b)(伽马分布) b xa a e x ab b a x f --Γ=1)(1),|()0(≥xy=normpdf(x,mu,sigma)(正态分布) 22)(21),|(σμπσσμ--=x ex fy=lognpdf(x,mu,sigma)(对数正态分布) 22)(ln 21),|(σμπσσμ--=x ex x fy=raylpdf(x,b)(瑞利分布) 222)|(b x e b x b x f -=y=tpdf(x,v)(学生氏t 分布) 2121)2()21()|(+-⎪⎪⎭⎫ ⎝⎛+Γ+Γ=v v x v v v v x f πy=unifpdf(x,a,b)(连续均匀分布) )(1),|(],[x I ab b a x f b a -=y=weibpdf(x,a,b)(威布尔分布) )(),|(),0(1x I eabx b a x f bax b ∞--= 比如,用normpdf 函数计算正态概率密度函数值。
Matlab在《概率论与数理统计》教学中的应用
Matlab在《概率论与数理统计》教学中的应用【摘要】摘要:本文探讨了Matlab在《概率论与数理统计》教学中的应用。
在介绍了研究背景、目的和意义。
在分别阐述了Matlab在概率论教学中的基本概念应用、在数理统计教学中的数据分析应用、在概率论与数理统计教学中的模拟实验设计、在教学案例分析中的应用以及在编程训练中的应用。
结论部分总结了Matlab在教学中的重要性,并展望了未来研究方向。
本文旨在为教师和学生提供更有效的教学和学习工具,以提高教学效果和学习成果。
Matlab在概率论与数理统计教学中的应用将在未来持续发展,并为该领域的研究和实践提供更多可能性。
【关键词】Matlab, 概率论, 数理统计, 教学, 应用, 模拟实验, 数据分析, 编程训练, 教学案例分析, 重要性, 研究方向, 总结1. 引言1.1 研究背景研究背景部分将重点介绍Matlab在概率论与数理统计教学中的应用现状和意义。
通过Matlab软件,学生可以直观地展示概率分布的图像、计算统计量、进行数据拟合和模拟实验等操作。
Matlab的使用不仅提高了教学效果,也使学生在处理大量数据和复杂问题时更加得心应手。
在现代社会,数据分析已经成为一项必不可少的技能。
运用Matlab软件进行概率论与数理统计教学的实践意义愈发重要。
本文将进一步探讨Matlab在概率论与数理统计教学中的具体应用,以期能够为教学改革和学生能力培养提供参考和借鉴。
1.2 目的引言概率论与数理统计是现代数学中非常重要的一门学科,它不仅是其他学科的基础,而且在各个领域都有着广泛的应用。
而在教学中,如何让学生更加直观地理解和应用这些概念,是一个很重要的问题。
本文旨在探讨Matlab在《概率论与数理统计》教学中的应用,通过应用Matlab软件,可以更好地帮助学生理解难点,提高学习的效率和趣味性,从而提高教学质量。
1.3 意义在《概率论与数理统计》教学中,Matlab的应用具有重要的意义。
-Matlab在概率统计中的应用
第8章 Matlab在概率统计中的应用概率论与数理统计是研究和应用随机现象统计规律性的一门数学科学.其应用十分广泛,几乎遍及所有科学领域、工农业生产和国民经济各部门。
本章将利用Matlab来解决概率统计学中的概率分布、数字特征、参数估计以及假设检验等问题.8.1 数据分析8。
1。
1 几种均值在给定的一组数据中,要进行各种均值的计算,在Matlab中可由以下函数实现。
mean 算术平均值函数。
对于向量X,mean (X)得到它的元素的算术平均值;对于矩阵,mean (X)得到X各列元素的算术平均值,返回一个行向量。
nanmean 求忽略NaN的随机变量的算术平均值。
geomean 求随机变量的几何平均值。
harmmean 求随机变量的和谐平均值。
trimmean 求随机变量的调和平均值.8.1.2 数据比较在给定的一组数据中,还常要对它们进行最大、最小、中值的查找或对它们排序等操作。
Mtalab中也有这样的功能函数。
max 求随机变量的最大值元素。
nanmax 求随机变量的忽略NaN的最大值元素。
min 求随机变量的最小值元素.nanmin 求随机变量的忽略NaN的最小值元素。
median 求随机变量的中值.nanmedian 求随机变量的忽略NaN的中值。
mad 求随机变量的绝对差分平均值。
sort 对随机变量由小到大排序.sortrows 对随机矩阵按首行进行排序。
range 求随机变量的值的范围,即最大值与最小值的差(极差)。
8.1.3 累和与累积求向量或矩阵的元素累和或累积运算是比较常用的两类运算,在Matlab中可由以下函数实现。
sum 若X为向量,sum (X)为X中各元素之和,返回一个数值;若X为矩阵,sum (X)为X中各列元素之和,返回一个行向量.nansum 忽略NaN求向量或矩阵元素的累和。
cumsum 求当前元素与所有前面位置的元素和。
返回与X同维的向量或矩阵。
cumtrapz 梯形累和函数。
MATLAB在概率论和数理统计中的应用论文
MATLAB 在概率论和数理统计中的应用一、 引言概率论与数理统计作为现代数学的重要分支,在自然科学、社会科学和工程技术等领域都具有极为广泛的应用。
概率论和数理统计是研究随机现象的客观规律并付诸应用的数学学科。
用概率论和数理统计的知识来解决实际问题时,大致遵循以下流程图。
实际问题数学表达概率论与数理统计模型符合实际结束分析求解 检验是否随着计算机技术的普及和开展,我们可以用计算机语言轻松的完成以上过程中的求解和建立模型过程。
可以大大提高准确率和使用者的效率。
二、 MATLAB 软件介绍及其特点1984年美国MathWorks 公司推出了MATLAB 软件。
MATLAB 是以矩阵作为数据操作的根本单位的程序设计语言,是主要面对科学计算、数据可视化、系统仿真,以及交互式程序设计的高科技计算环境。
为科学研究、工程设计以及必须进展有效数值计算的众多科学领域提供了一种全面的解决方案。
MATLAB 软件具有以下特点[1]:I,具有强大的数值计算和符号运算功能II,操作界面简单,编程语言自然III,具有先进的数据可视化功能IV,具有强大的开放性和可扩展性总之,MATLAB是工程师和科研者使用最广泛的软件之一。
三、MATLAB中关于概率统计的命令和函数MATLAB中的Statistics Toolbox提供了丰富的关于概率统计的命令和函数,用于解决概率论和数理统计中的常见问题。
下表将列举常用的概率统计中的命令和函数。
利用上述函数产生一个44矩阵的标准正态随机数,MATLAB代码如下:>> R=normrnd(0,1,4,4)R =-0.8095 -0.7549 -0.2414 -0.0301 -2.9443 1.3703 0.3192 -0.16491.4384 -1.7115 0.3129 0.62770.3252 -0.1022 -0.8649 1.0933 产生的随机数可以在工作窗口查看。
假设要想求参数为=1=2=2=3μσμσ,;,的正态分布的期望和方差,那么相应的MATLAB 的代码为: >> clear >> a=[1 2]; >> b=[2 3];>> [m v]=normstat(a,b) m =1 2 v =4 9在MATLAB 的统计工具箱中提供了一个演示程序disttool ,可以直观的演示常见分布的分布函数和概率密度函数。
概率论matlab实验报告
概率论与数理统计matlab上机实验报告班级:学号:姓名:指导老师:实验一常见分布的概率密度、分布函数生成[实验目的]1. 会利用MATLAB软件计算离散型随机变量的概率,连续型随机变量概率密度值。
2.会利用MATLAB软件计算分布函数值,或计算形如事件{X≤x}的概率。
3.会求上α分位点以及分布函数的反函数值。
[实验要求]1.掌握常见分布的分布律和概率密度的产生命令,如binopdf,normpdf2. 掌握常见分布的分布函数命令,如binocdf,normcdf3. 掌握常见分布的分布函数反函数命令,如binoinv,norminv[实验内容]常见分布的概率密度、分布函数生成,自设参数1、X~B(20,0.4)(1)P{恰好发生8次}=P{X=8}(2)P{至多发生8次}=P{X<=8}(1)binopdf(8,20,0.4)ans =0.1797(2)binocdf(8,20,0.4)ans =0.59562、X~P(2)求P{X=4}poisspdf(4,2)ans =0.09023、X~U[3,8](1)X=5的概率密度(2)P{X<=6}(1) unifpdf(5,3,8)ans =0.2000(2) unifcdf(6,3,8)ans =0.60004、X~exp(3)(1)X=0,1,2,3,4,5,6,7,8时的概率密度(2)P{X<=8}注意:exp(3)与教材中参数不同,倒数关系(1)exppdf(0:8,3)ans =Columns 1 through 30.3333 0.2388 0.1711Columns 4 through 60.1226 0.0879 0.0630Columns 7 through 90.0451 0.0323 0.0232(2) expcdf(8,3)ans =0.93055、X~N(8,9)(1)X=3,4,5,6,7,8,9时的概率密度值(2) X=3,4,5,6,7,8,9时的分布函数值(3)若P{X<=x}=0.625,求x(4)求标准正态分布的上0.025分位数(1)normpdf(3:9,8,3)ans =Columns 1 through 30.0332 0.0547 0.0807 Columns 4 through 60.1065 0.1258 0.1330 Column 70.1258(2)normcdf(3:9,8,3)ans =Columns 1 through 30.0478 0.0912 0.1587 Columns 4 through 60.2525 0.3694 0.5000 Column 70.6306(3)norminv(0.625,8,3)ans =8.9559(4)norminv(0.975,0,1)ans =1.96006、X~t(3)(1)X=-3,-2,-1,0,1,2,3时的概率密度值(2)X=-3,-2,-1,0,1,2,3时的分布函数值(3)若P{X<=x}=0.625,求x(4)求t分布的上0.025分位数(1)tpdf(-3:3,3)ans =Columns 1 through 30.0230 0.0675 0.2067 Columns 4 through 60.3676 0.2067 0.0675 Column 70.0230(2)tcdf(-3:3,3)ans =Columns 1 through 30.0288 0.0697 0.1955 Columns 4 through 60.5000 0.8045 0.9303 Column 70.9712(3)tinv(0.625,3)ans =0.3492(4)tinv(0.975,3)ans =3.18247、X~卡方(4)(1)X=0,1,2,3,4,5,6时的概率密度值(2) X=0,1,2,3,4,5,6时的分布函数值(3)若P{X<=x}=0.625,求x(4)求卡方分布的上0.025分位数(1)chi2pdf(0:6,4)ans =Columns 1 through 30 0.1516 0.1839 Columns 4 through 60.1673 0.1353 0.1026 Column 70.0747(2)chi2cdf(0:6,4)ans =Columns 1 through 30 0.0902 0.2642 Columns 4 through 60.4422 0.5940 0.7127 Column 70.8009(3)chi2inv(0.625,4)ans =4.2361(4)chi2inv(0.975,4)ans =11.14338、X~F(4,9)(1)X=0,1,2,3,4,5,6时的概率密度值(2) X=0,1,2,3,4,5,6时的分布函数值(3)若P{X<=x}=0.625,求x(4)求F分布的上0.025分位数(1)fpdf(0:6,4,9)ans =Columns 1 through 30 0.4479 0.1566 Columns 4 through 60.0595 0.0255 0.0122 Column 70.0063(2)fcdf(0:6,4,9)ans =Columns 1 through 30 0.5442 0.8218Columns 4 through 60.9211 0.9609 0.9788Column 70.9877(3)finv(0.625,4,9)ans =1.1994(4)finv(0.975,4,9)ans =4.7181实验二概率作图[实验目的]1.熟练掌握MATLAB软件的关于概率分布作图的基本操作2.会进行常用的概率密度函数和分布函数的作图3.会画出分布律图形[实验要求]1.掌握MATLAB画图命令plot2.掌握常见分布的概率密度图像和分布函数图像的画法[实验内容]任选四种分布,自设参数(已画八种分布图像,可熟悉各分布特点)1、X~B(20,0.4)代码:x=0:20;y=binopdf(x,20,0.4)plot(x,y,'.')结果:2、X~exp(3)概率密度图像代码:x=0:0.01:15;y=exppdf(x,3)plot(x,y)结果:分布函数代码:x=-1:0.01:15;y=expcdf(x,3)plot(x,y)结果:3、X~P(4)概率密度图形代码:x=0:10;y=poisspdf(x,4)plot(x,y,'.')结果:分布函数图形代码:x=0:0.01:10; y=poisscdf(x,4) plot(x,y)结果:4、X~U(3,8)概率密度图形代码:x=0:0.01:10;y=unifpdf(x,3,8)plot(x,y,'.')结果:分布函数图形代码:x=0:0.01:10;y=unifcdf(x,3,8) plot(x,y)结果:5、X~N(4,9)概率密度图形代码:x=-10:0.01:18;y=normpdf(x,4,3); plot(x,y)结果:分布函数图形代码:x=-10:0.01:18;y=normcdf(x,4,3); plot(x,y)结果:同一坐标系,均值是4,标准差分别为1,2,3的正态分布概率密度图形代码:x=-5:0.01:15;y1=normpdf(x,4,1);y2=normpdf(x,4,2);y3=normpdf(x,4,3);plot(x,y1,x,y2,x,y3)结果:6、X~t(3)概率密度图形代码:x=-10:0.01:10;y=tpdf(x,3);plot(x,y)结果:分布函数图形代码:x=-10:0.01:10; y=tcdf(x,3); plot(x,y)结果:7、X~卡方(4)概率密度图形代码:x=0:0.01:15;y=chi2pdf(x,4);plot(x,y)结果:分布函数图形代码:x=0:0.01:15; y=chi2cdf(x,4); plot(x,y)结果:8、X~F(4,9)概率密度图形代码:x=0:0.001:10;y=fpdf(x,4,9);plot(x,y)结果:分布函数图形代码:x=0:0.001:10; y=fcdf(x,4,9); plot(x,y)结果:实验三数字特征[实验目的]1 加深对数学期望,方差的理解2理解数学期望,方差的意义,以及具体的应用3 加深对协方差,相关系数的理解4 了解协方差,相关系数的具体的应用[实验要求]1 概率与频率的理论知识,MATLAB软件2 协方差,相关系数的理论知识,MATLAB命令cov,corrcoef [实验内容]P101-11代码:exp=[];price=[-200 100];exp(1)=expcdf(1,4)exp(2)=1-exp(1)Ey=exp*price'结果:exp =0.2212exp =0.2212 0.7788Ey =33.6402即平均获利为Ey=e^(-1/4)*300-200=33.6402p101-13代码:Syms x yfxy=(x+y)/3;Ex=int(int(fxy*x,y,0,1),x,0,2)Ey=int(int(fxy*y,y,0,1),x,0,2)Exy=int(int(fxy*x*y,y,0,1),x,0,2)E=int(int(fxy*(x^2+y^2),y,0,1),x,0,2)结果:Ex =Ey =5/9Exy =2/3E =13/6>>P102-22代码:Syms x yfxy=1;Ex=int(int(fxy*x,y,-x,x),x,0,1) Ey=int(int(fxy*y,y,-x,x),x,0,1)Ex2=int(int(fxy*x^2,y,-x,x),x,0,1) Ey2=int(int(fxy*y^2,y,-x,x),x,0,1) Dx=Ex2-Ex^2Dy=Ey2-Ey^2结果:Ex =Ey =Ex2 =1/2Ey2 =1/6Dx =1/18Dy =1/6>>P103-26代码:Syms x yfxy=2-x-y;Ex=int(int(fxy*x,y,0,1),x,0,1);Ey=int(int(fxy*y,y,0,1),x,0,1);Ex2=int(int(fxy*x^2,y,0,1),x,0,1);Ey2=int(int(fxy*y^2,y,0,1),x,0,1);Dx=Ex2-Ex^2;Dy=Ey2-Ey^2;Exy=int(int(fxy*x*y,y,0,1),x,0,1);Covxy=Exy-Ex*Eyrxy=Covxy/(sqrt(Dx)*sqrt(Dy))D=4*Dx+Dy结果:Covxy =-1/144rxy =-1/11D =55/144实验四统计中的样本数字特征实验五两个正态总体均值差,方差比的区间估计[实验目的]1掌握两个正态总体均值差,方差比的区间估计方法2会用MATLAB求两个正态总体均值差,方差比的区间估计[实验要求]两个正态总体的区间估计理论知识[实验内容]P175-27代码:x1=[0.143 0.142 0.143 0.137]x2=[0.140 0.142 0.136 0.138 0.140] x=mean(x1)y=mean(x2)s1=var(x1)s2=var(x2)s=sqrt((3*s1+4*s2)/7)t=tinv(0.975,7)d1=(x-y)-t*s*sqrt(1/4+1/5)d2=(x-y)+t*s*sqrt(1/4+1/5)结果:s =0.0026t =2.3646d1 =-0.0020d2 =0.0061即置信区间为(-0.0020,0.0061)P175-28代码:u=norminv(0.975,0,1)s=sqrt(0.035^2/100+0.038^2/100)d1=(1.71-1.67)-u*sd2=(1.71-1.67)+u*s结果:u =1.9600s =0.0052d1 =0.0299d2 =0.0501>>即置信区间为(0.0299,0.0501)P175-30代码:f1=finv(0.975,9,9)f2=finv(0.025,9,9)f3=finv(0.95,9,9)f4=finv(0.05,9,9)s12=0.5419s22=0.6065d1=s12/s22/f1d2=s12/s22/f2d3=s12/s22/f3d4=s12/s22/f4结果:d1 =0.2219d2 =3.5972d3 =0.2811d4 =2.8403>>即置信区间为(0.2219,3.5972),置信下界为0.2811,置信上界为2.8403实验五假设检验[实验目的]1 会用MATLAB进行单个正态总体均值及方差的假设检验2 会用MATLAB进行两个正态总体均值差及方差比的假设检验[实验要求]熟悉MATLAB进行假设检验的基本命令与操作[实验内容]P198-2原假设H0:平均尺寸mu=32.25;H1:平均尺寸mu<>32.25方差已知,用ztest代码:x=[32.56,29.66,31.64,30.00,31.87,31.03][h,sig,ci,zval]=ztest(x,32.25,1.1,0.05)[h,sig,ci,zval]=ztest(x,32.25,1.1,0.01)(注:h是返回的一个布尔值,h=0,接受原假设,h=1,拒绝原假设;sig表示假设成立的概率;ci为均值的1-a的置信区间;zval为Z统计量的值)结果:h =1sig =0.0124ci =30.2465 32.0068zval =-2.5014h =sig =0.0124ci =29.9699 32.2834zval =-2.5014即a=0.05时,拒绝原假设H0;a=0.01时,接受原假设H0p198-3原假设H0:总体均值mu=4.55;H1:总体均值mu<>4.55方差未知,用ttest代码:x=[4.42,4.38,4.28,4.40,4.42,4.35,4.37,4.52,4.47,4.56][h,sig,ci,tval]=ttest(x,4.55,0.05)结果:h =1sig =6.3801e-004ci =4.3581 4.4759tval =tstat: -5.1083df: 9sd: 0.0823h=1,即拒绝原假设H0p198-10是否认为是同一分布需要分别检验总体均值和方差是否相等原假设H0:mu1-mu2=0;H1:mu1-mu2<>0代码:x=[15.0,14.5,15.2,15.5,14.8,15.1,15.2,14.8]y=[15.2,15.0,14.8,15.2,15.1,15.0,14.8,15.1,14.8][h,sig,ci]=ttest2(x,y,0.05)结果:h =sig =0.9172ci =-0.2396 0.2646h=0,即接受原假设H0,mu1-mu2=0,两分布的均值相等;验证方差相等的matlab方法没有找到可采用以下语句整体检验两个分布是否相同,检验两个样本是否具有相同的连续分布[ h ,sig, ksstat]=kstest2(x,y,0.05)原假设H0:两个样本具有相同连续分布H1:两个样本分布不相同代码:x=[15.0,14.5,15.2,15.5,14.8,15.1,15.2,14.8]y=[15.2,15.0,14.8,15.2,15.1,15.0,14.8,15.1,14.8][ h ,sig, ksstat]=kstest2(x,y,0.05)结果:h =sig =0.9998ksstat =0.1528>>h=0,即接受原假设H0,两个样本有相同的连续分布。
Matlab在《概率论与数理统计》教学中的应用
Matlab在《概率论与数理统计》教学中的应用1. 引言1.1 研究背景概率论与数理统计作为现代科学研究的基础,广泛应用于物理、生物、经济、工程等各个领域。
在教学中,传统的概率论与数理统计教学往往通过纸笔计算和手工绘图进行,这样的方式在一定程度上限制了学生对概念的理解和实际应用能力的培养。
而引入Matlab这样的数学计算软件,可以极大地提高教学效率,使学生更直观地理解抽象的数学概念,提高他们的学习兴趣和动手能力。
通过将Matlab与概率论与数理统计相结合,可以更好地展示概率分布、统计分析、随机模拟等概念,加深学生对这些内容的理解和掌握。
研究Matlab在概率论与数理统计教学中的应用具有重要意义。
本文将探讨Matlab在概率论与数理统计教学中的具体应用,分析其在教学中的优势和未来发展方向。
1.2 研究意义概率论与数理统计作为数学学科中重要的分支,旨在研究事件的发生规律以及数据的分布特征,对现代科学、技术和社会管理等领域都具有重要的应用价值。
在教学中,采用Matlab作为工具可以加深学生对概率与统计理论的理解,提高他们的计算和分析能力,培养他们解决实际问题的能力。
通过引入Matlab,学生可以更加直观地掌握数学模型的建立和计算方法,提高他们对概率与统计学习的兴趣和积极性,进一步激发他们学习的潜力。
Matlab在教学中的应用也有助于培养学生的动手能力和实际解决问题的能力,提高他们的实践能力和创新思维。
教师可以结合具体案例,引导学生运用Matlab工具分析问题,并进行模拟实验和数据处理,使学生在实践中不断探索、思考和总结,从而提高他们的学习效果和实际应用能力。
Matlab在概率论与数理统计教学中的应用具有重要的意义和价值。
2. 正文2.1 Matlab在概率论教学中的基本概念应用Matlab可以用来计算概率。
通过编写简单的代码,可以计算各种随机事件发生的概率,例如掷硬币、抛骰子等。
这样的实践可以帮助学生深入理解概率的概念,同时提高他们的计算能力。
完整版Matlab概率论及数理统计
Matlab概率论与数理统计一、 matlab 基本操作1.画图【例】简单画图hold off;x=0:0.1:2*pi;y=sin(x);plot(x,y,'-r');x1=0:0.1:pi/2;y1=sin(x1);hold on;fill([x1, pi/2],[y1,1/2],'b' );【例】填充,二维平均随机数hold off;x=[0,60];y0=[0,0];y60=[60,60];x1=[0,30];y1=x1+30;x2=[30,60];y2=x2-30;xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0];fill(xv,yv,'b');hold on ;plot(x,y0,'r',y0,x,'r',x,y60,'r' ,y60,x,'r' );plot(x1,y1,'r',x2,y2,'r');yr=unifrnd (0,60,2,100);plot(yr(1,:),yr(2,:),'m.')axis('on');axis('square');2.排列组合C=nchoosek(n,k) :C C n k,例 nchoosek(5,2)=10, nchoosek(6,3)=20.prod(n1:n2) :从 n1 到 n2 的连乘【例】最少有两个人寿辰相同的概率n!C N nN !( N n)!N(N1)(N n1)公式计算 p 111N nN n N n365 364 (365rs1)365364365rs 1 1365rs1365365365rs=[20,25,30,35,40,45,50];%每班的人数p1=ones(1,length(rs));p2=ones(1,length(rs));%用连乘公式计算for i=1:length(rs)p1(i)=prod(365-rs(i)+1:365)/365^rs(i);end%用公式计算(改进)for i=1:length(rs)for k=365-rs(i)+1:365p2(i)=p2(i)*(k/365);end ;endp1(i)=exp(sum(log(365-rs(i)+1:365))-rs(i)*log(365));endp_r1=1-p1;p_r2=1-p2;Rs =[20253035404550 ]P_r=[0.4114 0.5687 0.7063 0.8144 0.8912 0.9410 0.9704]二、随机数的生成3.平均分布随机数rand(m,n); 产生 m 行 n 列的 (0,1) 平均分布的随机数rand(n); 产生 n 行 n 列的 (0,1)平均分布的随机数【练习】生成(a,b)上的平均分布4.正态分布随机数randn(m,n); 产生 m 行 n 列的标准正态分布的随机数【练习】生成N(nu,sigma.^2) 上的正态分布5.其他分布随机数函数名调用形式注释Unidrnd unid rnd (N,m,n)平均分布(失散)随机数binornd bino rnd (N,P,m,n)参数为 N, p的二项分布随机数Poissrnd poiss rnd (Lambda,m,n)参数为 Lambda的泊松分布随机数geornd geornd (P,m,n)参数为 p 的几何分布随机数hygernd hygernd (M,K,N,m,n)参数为 M, K, N 的超几何分布随机数Normrnd normrnd (MU,SIGMA,m,n)参数为 MU, SIGMA的正态分布随机数,SIGMA是标准差Unifrnd unif rnd ( A,B,m,n)[A,B] 上平均分布 ( 连续 ) 随机数Exprnd exprnd (MU,m,n)参数为 MU的指数分布随机数chi2rnd chi2 rnd(N,m,n)自由度为 N 的卡方分布随机数Trnd t rnd(N,m,n)自由度为 N 的 t分布随机数Frnd f rnd(N1, N2,m,n)第一自由度为N1, 第二自由度为 N2 的 F 分布随机数gamrnd gamrnd(A, B,m,n)参数为 A, B的分布随机数betarnd betarnd(A, B,m,n)参数为 A, B的分布随机数lognrnd lognrnd(MU, SIGMA,m,n)参数为 MU, SIGMA的对数正态分布随机数nbinrnd nbinrnd(R, P,m,n)参数为 R,P 的负二项式分布随机数ncfrnd ncfrnd(N1, N2, delta,m,n)参数为 N1, N2, delta 的非中心 F 分布随机数nctrnd nctrnd(N, delta,m,n)参数为 N,delta的非中心 t 分布随机数ncx2rnd ncx2rnd(N, delta,m,n)参数为 N,delta的非中心卡方分布随机数raylrnd raylrnd(B,m,n)参数为 B 的瑞利分布随机数weibrnd weibrnd(A, B,m,n)参数为 A, B的韦伯分布随机数三、一维随机变量的概率分布1.失散型随机变量的分布率(1)0-1 分布(2)平均分布(3) 二项分布: binopdf(x,n,p) ,若X ~ B(n, p),则P{ X k} C n k p k (1p) n k,x=0:9;n=9;p=0.3;y= binopdf(x,n,p);plot(x,y,'b-',x,y,'r*')y=[ 0.0404, 0.1556, 0.2668, 0.2668, 0.1715, 0.0735, 0.0210, 0.0039, 0.0004, 0.0000 ]‘当 n 较大时二项分布近似为正态分布x=0:100;n=100;p=0.3;y= binopdf(x,n,p);plot(x,y,'b-',x,y,'r*')(4) 泊松分布: piosspdf(x, lambda) ,若X ~k e ( ) ,则 P{ X k}k !x=0:9; lambda = 3;y= poisspdf (x,lambda);plot(x,y,'b-',x,y,'r*')y=[ 0.0498, 0.1494, 0.2240, 0.2240, 0.1680, 0.1008, 0.0504, 0.0216, 0.0081, 0.0027 ](5) 几何分布: geopdf (x, p),则P{ X k} p(1p) k 1y= geopdf(x,p);plot(x,y,'b-',x,y,'r*')y=[ 0.3000, 0.2100, 0.1470, 0.1029, 0.0720, 0.0504, 0.0353, 0.0247, 0.0173, 0.0121 ]C M k C N n k Mx=0:10;N=20;M=8;n=4;y= hygepdf(x,N,M,n);plot(x,y,'b-',x,y,'r*')y=[ 0.1022, 0.3633, 0.3814, 0.1387, 0.0144, 0, 0, 0, 0, 0, 0 ]2.概率密度函数1a x b(1)平均分布: unifpdf(x,a,b) ,f ( x)b a0其他a=0;b=1;x=a:0.1:b;y= unifpdf (x,a,b);112(2)正态分布: normpdf(x,mu,sigma) ,f ( x)e2 2 ( x)2x=-10:0.1:12;mu=1;sigma=4;y= normpdf(x,mu,sigma);rn=10000;z= normrnd (mu,sigma,1,rn); %产生 10000 个正态分布的随机数d=0.5;a=-10:d:12;b=(hist(z,a)/rn)/d;% 以 a 为横轴,求出 10000 个正态分布的随机数的频率plot(x,y,'b-',a,b,'r.')(3) 指数分布: exppdf(x,mu) ,f (x)1 e1xa x by= exppdf(x,mu); plot(x,y,'b-',x,y,'r*')1n1(4)2分布: chi2pdf(x,n) , f (x; n)2n 2x2( n 2)hold on x=0:0.1:30;n=4;y= chi2pdf(x,n);plot(x,y,'b');%blue n=6;y= chi2pdf(x,n);plot(x,y,'r');%redn=8;y= chi2pdf(x,n);plot(x,y,'c');%cyan n=10;y= chi2pdf(x,n);plot(x,y,'k');%black legend('n=4', 'n=6', 'n=8', 'n=10');(( n 1) 2) x 2(5) t 分布: tpdf(x,n) , f (x; n)(n 2)1nnhold on x=-10:0.1:10;n=2;y= tpdf(x,n);plot(x,y,'b');%blue e 2n 1 2x 0x 0n=20;y= tpdf(x,n);plot(x,y,'k');%black legend('n=2', 'n=6', 'n=10', 'n=20');n1n1 2n1n222(6) F 分布: fpdf(x,n1,n2) ,f ( x; n1, n2)(( n1n2 ) 2) n1x 21n1x x 0 (n1 2)(n2 2) n2n20x 0hold onx=0:0.1:10;n1=2; n2=6;y= fpdf(x,n1,n2);plot(x,y,'b');%bluen1=6; n2=10;y= fpdf(x,n1,n2);plot(x,y,'r');%redn1=10; n2=6;y= fpdf(x,n1,n2);plot(x,y,'c');%cyann1=10; n2=10;y= fpdf(x,n1,n2);plot(x,y,'k');%blacklegend(' n1=2; n2=6', ' n1=6; n2=10', ' n1=10; n2=6', ' n1=10; n2=10');3.分布函数 F (x) P{ X x}【例】求正态分布的累积概率值设 X ~ N(3,22),求P{2X 5},P{ 4 X 10},P{ X 2}, P{X3} ,4.逆分布函数,临界值y F (x) P{ X x} , x F 1 ( y) , x 称之为临界值【例】求标准正态分布的累积概率值y=0:0.01:1;x=norminv(y,0,1);【例】求2 (9) 分布的累积概率值hold offy=[0.025,0.975];x=chi2inv(y,9);n=9;x0=0:0.1:30;y0=chi2pdf(x0,n);plot(x0,y0,'r');x1=0:0.1:x(1);y1=chi2pdf(x1,n);x2=x(2):0.1:30;y2=chi2pdf(x2,n);hold onfill([x1, x(1)],[y1,0],'b');fill([x(2),x2],[0,y2],'b');5. 数字特色函数名调用形式注释sort sort(x),sort(A)排序 ,x 是向量, A 是矩阵,按各列排序sortrows sortrows(A) A 是矩阵,按各行排序mean mean(x)向量 x 的样本均值var var(x)向量 x 的样本方差std std(x)向量 x 的样本标准差median median(x)向量 x 的样本中位数geomean geomean(x)向量 x 的样本几何平均值harmmean harmmean(x)向量 x 的样本调停平均值skewness skewness(x)向量 x 的样本偏度max max(x)向量 x 的最大值min min(x)向量 x 的最小值cov cov(x), cov(x,y)向量 x 的方差,向量x,y 的协方差矩阵corrcoef corrcoef(x,y)向量 x,y 的相关系数矩阵【练习】二项分布、泊松分布、正态分布( 1)对n10, p 0.2 二项分布,画出 b(n, p) 的分布律点和折线;( 2)对np ,画出泊松分布( ) 的分布律点和折线;( 3)对np,2np(1 p) ,画出正态分布N ( , 2 )的密度函数曲线;( 4)调整 n, p ,观察折线与曲线的变化趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
expcdf 函数 功能:计算累加指数分布函数。 语法:P = expcdf(X,MU) 描述:expcdf(X,MU) 计算参数为 MU 的数据 X 的累加指数分布函数。指数 MU 必须为
正。 累加指数分布函数的计算公式为:
概率论和数理统计的 Matlab 实现
1概 述
自然界和社会上会发生各种各样的现象,其中有的现象在一定条件下是一定要发生的, 有的则表现出一定的随机性,但总体上又有一定的规律可循。一般称前者为确定性事件, 后者为不确定性事件(或称随机事件)。概率论和数理统计就是研究和揭示不确定事件统计 规律性的一门数学学科。
f (x |l) =
lx x!
e-l
I (0,1,K )
(x)
y=
f (x | b) =
x b2
çæ - x 2 ÷ö
eçè 2b2 ÷ø
y
=
f
(x
| v)
=
Gçæ è
v
+ 2
1
÷ö ø
Gçæ è
v 2
÷ö ø
1
1
vp
ççèæ1 +
v +1
x2 v
÷÷øö
2
y=
f (x | N) =
1 N
I (1,..., N ) ( x)
y
=f(x|r,p)
=
ççèæ
r
+
x x
+
1÷÷øö
p
x
q
x
I
(
0,1,...)
(
x)
其中, q = 1 - p
Y=nbinpdf(X,R,P)
假设随机变量 c12 (m) 服从自由度为 f1 、
非中心参数为
m
的非中心卡方分布,
c
2 2
服从自由度为 f 2 的卡方分布,且 c12 (m)
和
c
2 2
相互独立,则随机变量
ncfpdf
nctpdf
对应的分 布
数学意义
调用格式
贝塔分布
y=
f (x | a,b) =
1 B(a,b)
x a-1(1 -
x)b-1 I(0,1) ( x)
(0< x<1)
Y = betapdf(X,A,B)
二项分布 卡方分布
y
=
f (x | n, p)
=
ççèæ
n x
÷÷øö
p
x
q
(1-
x
)
I
(
-1-
2 概率分布
试验得到的数据通常呈现一定的规律性,引入随机变量以后,可以将随机数据表达为
随机变量的函数。常见的随机变量有离散型随机变量和连续型随机变量两种。
● 当变量全部可以取到的值是有限个或可列无限多个时,称为离散型随机变量。
● 如果对于随机变量 x 的分布函数 F(x),存在非负函数 f(x),使得对于任意实数 x
作为一门实用性很强的数学分支,概率论和数理统计的理论和方法已经广泛应用于管 理、经济、心理、教育、体育、医学、生物、化学、机械、水文、地质、林业、气象、工 业生产、建筑、通讯、自动控制等几乎所有社会和科学技术领域。
Matlab6.0 的统计工具箱相对于前面一些版本,改进较大。目前已经可以与 SPSS、SAS 等软件的统计功能相媲美。具体而言,它包括下面几个方面的内容:
几何分布
y = f ( x | p) = pqx I(0,1,K ) ( x) 其中, q = 1 - p
Y=geopdf(X,P)
超几何分布
y
=
f (x | M ,K,n) =
ççèæ
K x
÷÷øöççèæ
M n
-
K x
÷÷øö
ççèæ
M n
÷÷øö
Y=hygepdf(X,M,K,N)
正态(高斯) 分布
F (-¥) = lim F ( x) = 0, x ®-¥
-5-
F (¥) = lim F ( x) = 1, x ®¥
● F ( x + 0) = F( x) ,即 F(x)是右连续的。
2.2.2 相关函数介绍
normcdf 函数 功能:计算累加正态分布函数。 语法:P = normcdf(X,MU,SIGMA) 描述:normcdf(X,MU,SIGMA) 计算服从参数为 MU 和 SIGMA 的正态分布数据 X 的累加
● 概率分布 给出了常见的 20 种概率分布类型的概率密度函数、累加分布函数(分 布函数)、逆累加分布函数、参数估计函数、随机数生成函数和统计量计算函数。
● 参数估计 提供了多种分布类型分布参数及其置信区间的估计方法。 ● 样本描述 提供了描述中心趋势和离中趋势的统计量函数,缺失数据条件下的样本
描述方法以及其它一些统计量计算函数。 ● 方差分析 包括单因子方差分析、双因子方差分析和多因子方差分析。 ● 多元方差分析 包括单因素多元方差分析、分组聚类和多元比较等。 ● 回归分析 包括多元线性回归(包括逐步回归)、岭回归、一般线性模型拟合、多
结果 p 为源于指数分布的单个观测量落在区间[0 x]中的概率。 举例:
指数为 µ 的指数分布数据的中值等于 µ*log(2),下例进行演示。 mu = 10:10:60; p = expcdf(log(2)*mu,mu) p=
中心参数为 m 的非中心 t 分布。
如 果 随 机 变 量 Xi 服 从 参 数 为 mi
(i=1,…,v)和 s 2 的正态分布,并且相
互独立,则随机变量
c
2
(
m
)
=
(
X
2 1
+L+
X
2 v
)
/s
2
所服从的分
布称为自由度为 v、非中心参数为
m2
=
( m12
+L+
m
2 v
)
/s
2
的非中心
c2
分
布。
y=
Y=ncfpdf(X,NU1,NU2,DELTA)
F
=
c12 (m) / f1
c
2 2
/
f2
的分布称为自由度为(
f1 ,
f 2 )、非中心参数为 m 的非中心 F 分布。
如果 U 服从参数为 m 和 1 的正态分布,
c2 (v)
服从自由度为
v
的
c
2
分布,并且
U
Y=nctpdf(X,V,DELTA)
与
y = f ( x | m,s ) =
1
-( x-m)2
e 2s 2
s 2p
Y=normpdf(X,MU,SIGMA)
对数正态分 布
y = f (x | m,s ) =
1
-(ln x -m )2
e 2s 2
xs 2p
Y=lognpdf(X,MU,SIGMA)
负二项分布 非中心 F 分布 非中心 t 分布
P{X=xk}=pk, k=1,2,… pk 即称为分布律。它有下面两个性质:
● pk ³ 0, k = 1,2,...;
¥
å pk = 1.
● k =1
2.1.2 相关函数介绍 对于连续型概率分布函数,表 2 给出了对应函数的概率密度函数及其数学意义和调用
-2-
格式。下面选择正态分布概率密度函数和指数分布概率密度函数进行重点介绍。
有
ò F (x) = x f (t)dt, -¥
(1)
则称 X 为连续型随机变量。
对应于离散型随机变量和连续型随机变量,有离散型概率分布函数和连续型概率分布函数。
2.1 概率密度函数
2.1.1 基本数学原理
对于离散型概率分布和连续型概率分布,二者的概率密度函数定义有所不同。上面(1) 式中,函数 f(x)称为 X 的概率密度函数。该函数具有以下性质:
y=
f (x | a,b) =
1 b-a
I[a,b] ( x)
y = f ( x | a, b) = abxb-1e-axb I (0,¥) ( x)
Y=ncx2pdf(X,V,DELTA)
Y=poisspdf(X,LAMBDA) Y=raylpdf(X,B) Y=tpdf(X,V) Y=unidpdf(X,N) Y=unifpdf(X,A,B) Y=weibpdf(X,A,B)
Gêëé
v1
+ 2
v2
ù úû
Gçæ è
v1 2
÷öGçæ øè
v2 2
÷ö ø
ççèæ
v1 v2
v1
÷÷øö 2
v1 -2
x2
v1 + v2
é ê1 êë
+
ççèæ
v1 v2
÷÷øö
x
ù ú úû
2
y
=
f (x | a,b) =
1 b a G(a)
x e a-1
-
x b
Y=fpdf(X,V1,V2) Y=gampdf(X,A,B)
2.2 累加分布函数
2.2.1 基本数学原理
对于连续型随机变量,其分布函数的定义为:若 X 为随机变量,x 为任意实数,则函 数
F ( x) = p{X £ x} 称为 X 的分布函数。如果知道 X 的分布函数,就知道了 X 落在任一区间(x1,x2]上的 概率。 分布函数 F(x)具有以下一些性质: ● F(x)是不减函数; ● 0 £ F( x) £ 1, 且
1.5000