第二章(简单线性回归模型)2-2答案教学文稿

合集下载

(完整版)第二章(简单线性回归模型)2-2答案

(完整版)第二章(简单线性回归模型)2-2答案

2.2 简单线性回归模型参数的估计一、判断题1.使用普通最小二乘法估计模型时,所选择的回归线使得所有观察值的残差和达到最小。

(F)2.随机扰动项和残差项是一回事。

(F )3.在任何情况下OLS 估计量都是待估参数的最优线性无偏估计。

(F )4.满足基本假设条件下,随机误差项i μ服从正态分布,但被解释变量Y 不一定服从正态分 布。

( F )5.如果观测值i X 近似相等,也不会影响回归系数的估计量。

( F )二、单项选择题1.设样本回归模型为i 01i i ˆˆY =X +e ββ+,则普通最小二乘法确定的iˆβ的公式中,错误的是( D )。

A .()()()i i 12i X X Y -Y ˆX X β--∑∑= B .()i i i i 122i i n X Y -X Y ˆn X -X β∑∑∑∑∑=C .i i 122iX Y -nXY ˆX -nX β∑∑= D .i i i i 12x n X Y -X Y ˆβσ∑∑∑= 2.以Y 表示实际观测值,ˆY 表示回归估计值,则普通最小二乘法估计参数的准则是使( D )。

A .i i ˆY Y 0∑(-)=B .2i i ˆY Y 0∑(-)=C .i i ˆY Y ∑(-)=最小D .2i i ˆY Y ∑(-)=最小 3.设Y 表示实际观测值,ˆY 表示OLS 估计回归值,则下列哪项成立( D )。

A .ˆYY = B .ˆY Y = C .ˆY Y = D .ˆY Y = 4.用OLS 估计经典线性模型i 01i i Y X u ββ+=+,则样本回归直线通过点( D )。

A .X Y (,)B . ˆX Y (,)C .ˆX Y (,)D .X Y (,) 5.以Y 表示实际观测值,ˆY表示OLS 估计回归值,则用OLS 得到的样本回归直线i 01iˆˆˆY X ββ+=满足( A )。

A .i i ˆY Y 0∑(-)=B .2i i Y Y 0∑(-)= C . 2i i ˆY Y 0∑(-)= D .2i i ˆY Y 0∑(-)=6.按经典假设,线性回归模型中的解释变量应是非随机变量,且( A )。

计量经济学课后答案第二章 简单线性回归模型

计量经济学课后答案第二章 简单线性回归模型

第二章课后答案2.11)设回归模型为: 01i i i Y X u ββ=++其中,Y 为国内生产总值,i X 为地方预算内财政收入对回归模型的参数进行估计,根据回归结果得:i Y = -3.611151+ 0.134582iX (4.161790) (0.003867)t = (-0.867692) (34.80013)2r =0.991810 F=1211.049 S.E.=7.532484 DW=2.0516402)斜率系数的经济意义:国内生产总值每增加1亿元,地方预算内财政收入平均增加0.315亿元。

3)由以上模型可看出,X 的参数估计的t 统计量远大于2,说明GDP 对地方财政收入确有显著影响。

模型在的可决系数为0.991810,说明GDP 解释了地方财政收入变动的99%,模型拟合程度较好。

4)预测点预测:若2005年GDP 为3600亿元,2005年的财政收入预测值为480.884。

区间预测:由X 、Y 的描述统计结果得: 22(1)587.269(121)3793733.66i x x n σ=-=⨯-=∑22()(3600-917.5874)7195337.357f X X -==取α=0.05,f Y 平均值置信度95%的预测区间为:/2f Y t α f X =3600时,480.884 2.228⨯7.5325⨯ 23.61476991 即,2005年财政收入的平均值预测区间为:480.884 23.34796 (457.2692, 504.4988)f Y 个别值置信度95%的预测区间为:/2f Y t α f X =3600,480.884 2.228⨯7.5325⨯ 28.97079 2005年财政收入的个别值预测区间为:480.884 28.97079 (451.91321,509.8548)2.2令Y 为利润额,X 为研究与发展经费研究与发展经费与利润额的相关系数表:设回归模型为:01i i i Y X u ββ=++其中i Y 为利润额,i X 为研究与发展经费。

(完整版)第二章(简单线性回归模型)2-4答案

(完整版)第二章(简单线性回归模型)2-4答案

2.4 回归系数的区间估计和假设检验一、判断题1.如果零假设H 0:B 2=0,在显著性水平5%下不被拒绝,则认为B 2一定是0。

(F )2.k β的置信度为()α-1的置信区间指真实参数落入该区间的概率是()α-1。

(F)3.假设检验为单侧检验还是双侧检验本质上取决于备择假设的形式。

(F )4.回归系数的显著性检验是用来检验解释变量对被解释变量有无显著解释能力的检验。

(T )二、单项选择题1.对回归模型i i 10i u X Y ++=ββ进行检验时,通常假定i u 服从( C )。

A .()2i 0N σ, B .()2n t - C .()20N σ, D .()n t2.用一组有30个观测值的样本估计模型i i 10i u X Y ++=ββ,在0.05的显著性水平下对1β的显著性作检验,则1β显著地不等于零的条件是其统计量大于( D )。

A .()30t 050. B .()30t 0250.) C .()28t 050. D .()28t 0250. 3.回归模型i i i u X Y ++=10ββ中,关于检验010=β:H 所用的统计量)ˆ(ˆ111βββVar -,下列说法正确的是( D )。

A .服从)(22-n χB .服从)(1-n tC .服从)(12-n χ D .服从)(2-n t 4.用一组有30个观测值的样本估计模型后,在0.05的显著性水平上对的显著性作检验,则显著地不等于零的条件是其统计量大于等于( C ) A. B. C. D. 三、简答题1.当α给定后,回归系数2β的置信区间是什么样的?答:总体方差2σ已知时,置信区间为⎥⎥⎦⎤⎢⎢⎣⎡+-∑∑2i 22i2x z xz σβσβˆ,ˆ;总体方差2σ未知则使用2n e 2i2-=∑σˆ估计2σ:①样本容量充分大时,统计量仍服从正态,则置信区间为t t 01122t t t t y b b x b x u =+++1b t 1b t )30(05.0t )28(025.0t )27(025.0t )28,1(025.0F⎥⎥⎦⎤⎢⎢⎣⎡+-∑∑2i 22i 2x z x z σβσβˆˆ,ˆˆ;②样本容量较小时,统计量服从t 分布,则置信区间为⎥⎥⎦⎤⎢⎢⎣⎡+-∑∑2i 222i22x t xt σβσβααˆˆ,ˆˆ 。

应用回归分析_第2章课后习题参考答案

应用回归分析_第2章课后习题参考答案

2.1 一元线性回归模型有哪些基本假定?答:1. 解释变量 1x , ,2x ,p x 是非随机变量,观测值,1i x ,,2 i x ip x 是常数。

2. 等方差及不相关的假定条件为⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧≠=====j i n j i j i n i E j i i ,0),,2,1,(,),cov(,,2,1,0)(2 σεεε 这个条件称为高斯-马尔柯夫(Gauss-Markov)条件,简称G-M 条件。

在此条件下,便可以得到关于回归系数的最小二乘估计及误差项方差2σ估计的一些重要性质,如回归系数的最小二乘估计是回归系数的最小方差线性无偏估计等。

3. 正态分布的假定条件为⎩⎨⎧=相互独立n i n i N εεεσε,,,,,2,1),,0(~212 在此条件下便可得到关于回归系数的最小二乘估计及2σ估计的进一步结果,如它们分别是回归系数的最及2σ的最小方差无偏估计等,并且可以作回归的显著性检验及区间估计。

4. 通常为了便于数学上的处理,还要求,p n >及样本容量的个数要多于解释变量的个数。

在整个回归分析中,线性回归的统计模型最为重要。

一方面是因为线性回归的应用最广泛;另一方面是只有在回归模型为线性的假设下,才能的到比较深入和一般的结果;再就是有许多非线性的回归模型可以通过适当的转化变为线性回归问题进行处理。

因此,线性回归模型的理论和应用是本书研究的重点。

1. 如何根据样本),,2,1)(;,,,(21n i y x x x i ip i i =求出p ββββ,,,,210 及方差2σ的估计;2. 对回归方程及回归系数的种种假设进行检验;3. 如何根据回归方程进行预测和控制,以及如何进行实际问题的结构分析。

2.2 考虑过原点的线性回归模型 n i x y i i i ,,2,1,1 =+=εβ误差n εεε,,,21 仍满足基本假定。

求1β的最小二乘估计。

答:∑∑==-=-=ni ni i i i x y y E y Q 1121121)())(()(ββ∑∑∑===+-=--=∂∂n i n i ni i i i i i i x y x x x y Q111211122)(2βββ 令,01=∂∂βQ即∑∑===-n i ni i i i x y x 11210β 解得,ˆ1211∑∑===ni ini i i xyx β即1ˆβ的最小二乘估计为.ˆ1211∑∑===ni ini ii xyx β2.3 证明: Q (β,β1)= ∑(y i-β0-β1x i)2因为Q (∧β0,∧β1)=min Q (β0,β1 )而Q (β0,β1) 非负且在R 2上可导,当Q 取得最小值时,有即-2∑(y i -∧β0-∧β1x i )=0 -2∑(y i-∧β0-∧β1x i ) x i=0又∵e i =yi -( ∧β0+∧β1x i )= yi -∧β0-∧β1x i ∴∑e i =0,∑e i x i =0(即残差的期望为0,残差以变量x 的加权平均值为零)2.4 解:参数β0,β1的最小二乘估计与最大似然估计在εi~N(0, 2 ) i=1,2,……n 的条件下等价。

第2章课后习题参考答案

第2章课后习题参考答案

第2章课后习题参考答案第二章一元线性回归分析思考与练习参考答案2.1 一元线性回归有哪些基本假定?答:假设1、解释变量X 是确定性变量,Y 是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性:E(εi )=0 i=1,2, …,n Var (εi )=σ2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n 假设4、ε服从零均值、同方差、零协方差的正态分布εi ~N(0, σ2 ) i=1,2, …,n2.2 考虑过原点的线性回归模型Y i =β1X i +εi i=1,2, …,n误差εi (i=1,2, …,n )仍满足基本假定。

求β1的最小二乘估计解:得:2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。

证明:其中:∑∑+-=-=nii i ni X Y Y Y Q 121021))??(()?(ββ2112)?()?(i ni i n i ii e X Y Y Y Q β∑∑==-=-=01i i i i iY X e Y Y ββ=+=-即:∑e i =0 ,∑e i X i =02.4回归方程E (Y )=β0+β1X 的参数β0,β1的最小二乘估计与最大似然估计在什么条件下等价?给出证明。

答:由于εi ~N(0, σ2 ) i=1,2, …,n所以Y i =β0 + β1X i + εi ~N (β0+β1X i , σ2 ) 最大似然函数:使得Ln (L )最大的0β,1?β就是β0,β1的最大似然估计值。

同时发现使得Ln (L )最大就是使得下式最小,上式恰好就是最小二乘估计的目标函数相同。

值得注意的是:最大似然估计是在εi ~N (0, σ2 )的假设下求得,最小二乘估计则不要求分布假设。

所以在εi ~N(0, σ2 ) 的条件下,参数β0,β1的最小二乘估计与最大似然估计等价。

(完整版)第二章(简单线性回归模型)2-5答案

(完整版)第二章(简单线性回归模型)2-5答案

2.5 回归模型预测一、判断题1.fY ˆ是对个别值f Y 的点估计。

(F ) 2.预测区间的宽窄只与样本容量n 有关。

(F )3.fY ˆ对个别值f Y 的预测只受随机扰动项的影响。

(F ) 4.一般情况下,平均值的预测区间比个别值的预测区间宽。

(F )5.用回归模型进行预测时,预测普通情况和极端情况的精度是一样的。

(F )二、单项选择题1.某一特定的X 水平上,总体Y 分布的离散度越大,即2σ越大,则( A )。

A .预测区间越宽,精度越低B .预测区间越宽,预测误差越小C 预测区间越窄,精度越高D .预测区间越窄,预测误差越大2.在缩小参数估计量的置信区间时,我们通常不采用下面的那一项措施(D )。

A.增大样本容量nB. 预测普通情形而非极端情形C.提高模型的拟合优度D.提高样本观测值的分散度三、多项选择题1.计量经济预测的条件是(ABC )A .模型设定的关系式不变B .所估计的参数不变C.解释变量在预测期的取值已作出预测 D .没有对解释变量在预测期的取值进行过预测 E .无条件2.对被解释变量的预测可以分为(ABC )A.被解释变量平均值的点预测B.被解释变量平均值的区间预测C.被解释变量的个别值预测D.解释变量预测期取值的预测四、简答题1.为什么要对被解释变量的平均值以及个别值进行区间预测?答:由于抽样波动的存在,用样本估计出的被解释变量的平均值fY ˆ与总体真实平均值()f f X Y E 之间存在误差,并不总是相等。

而用fY ˆ对个别值f Y 进行预测时,除了上述提到的误差,还受随机扰动项的影响,使得总体真实平均值()f f X Y E 并不等于个别值f Y 。

一般而言,个别值的预测区间比平均值的预测区间更宽。

2.分别写出()f f X Y E 和f Y 的置信度为α-1的预测区间。

答:()f f X Y E :()⎪⎪⎪⎭⎫ ⎝⎛-+±∑22f 2f i x X X n 1t Y σαˆˆ;f Y :()⎪⎪⎪⎭⎫ ⎝⎛-++±∑22f 2f i x X X n 11t Y σαˆˆ。

(完整版)第二章(简单线性回归模型)2-2答案

(完整版)第二章(简单线性回归模型)2-2答案

2.2简单线性回归模型参数的估计、判断题1. 使用普通最小二乘法估计模型时, 所选择的回归线使得所有观察值的残差和达到最小。

(F )2. 随机扰动项u i 和残差项e i 是一回事。

(F )3. 在任何情况下 OLS 估计量都是待估参数的最优线性无偏估计。

(F )4. 满足基本假设条件下,随机误差项i 服从正态分布,但被解释变量Y 不一定服从正态分布。

5. 如果观测值X i 近似相等,也不会影响回归系数的估计量。

二、单项选择题D )。

丫? 一 Y5.以Y 表示实际观测值,丫?表示OLS 估计回归值,则用 OLS 得到的样本回归直线 丫?一 ?)满足(A )。

A.(Y i — 丫i ) 一 0 B .(Y i — Y )2 - 0C.(Y i — 丫)2-0 D .(丫— Y ) - 06. 按经典假设,线性回归模型中的解释变量应是非随机变量,且(1. 设样本回归模型为Y i =^0X i+ei ,则普通最小二乘法确定的 的公式中,错误的是A.= 1— X i X Y i -YX i X c. 一X i Y i -nXY X i 2-nX 2_ 1一n X i Y i -X i Y iin X i 2-X i 2n X i Y i - X iY ii2 •以Y 表示实际观测值,Y?表示回归估计值, 则普通最小二乘法估计参数的准则是使 (D )。

A.(Y i — Y i )=o c.(Y — £)=最小3.Y 表示实际观测值,丫?表示OLS 估计回归值,则下列哪项成立( D A.4. 用OLS 估计经典线性模型 Y i 一 0 iX i + u i ,则样本回归直线通过点(D )。

A . (X, 丫).(X , Y?)2 x一A.与随机扰动项不相关 B .与残差项不相关C.与被解释变量不相关 D .与回归值不相关7. 参数的估计量具备有效性是指(B )A. Var ? 0 B . Var ?为最小C. 0 D . ? 为最小三、多项选择题1. 以Y表示实际观测值,Y?表示OLS估计回归值,e表示残差,则回归直线满足(ABE )。

最新第二章(简单线性回归模型)2-1答案

最新第二章(简单线性回归模型)2-1答案

2.1回归分析与回归函数一、判断题1. 总体回归直线是解释变量取各给定值时被解释变量条件期望的轨迹。

(T )2. 线性回归是指解释变量和被解释变量之间呈现线性关系。

( F )3. 随机变量的条件期望与非条件期望是一回事。

(F )4、总体回归函数给出了对应于每一个自变量的因变量的值。

(F )二、单项选择题1.变量之间的关系可以分为两大类,它们是( A )。

A .函数关系与相关关系B .线性相关关系和非线性相关关系C .正相关关系和负相关关系D .简单相关关系和复杂相关关系2.相关关系是指( D )。

A .变量间的非独立关系B .变量间的因果关系C .变量间的函数关系D .变量间不确定性的依存关系3.进行相关分析时的两个变量( A )。

A .都是随机变量B .都不是随机变量C .一个是随机变量,一个不是随机变量D .随机的或非随机都可以4.回归分析中定义的( B )。

A.解释变量和被解释变量都是随机变量B.解释变量为非随机变量,被解释变量为随机变量C.解释变量和被解释变量都为非随机变量D.解释变量为随机变量,被解释变量为非随机变量5.表示x 和y 之间真实线性关系的总体回归模型是( C )。

A .01ˆˆˆt t Y X ββ=+B .01()t t E Y X ββ=+C .01t t t Y X u ββ=++D .01t t Y X ββ=+6.一元线性样本回归直线可以表示为( C )A .i i X Y u i 10++=ββ B. i 10X )(Y E i ββ+=C. i i e X Y ++=∧∧i 10ββ D. i 10X i Y ββ+=∧7.对于i 01i i ˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有( D)。

A .ˆ0r=1σ=时,B .ˆ0r=-1σ=时,C .ˆ0r=0σ=时,D .ˆ0r=1r=-1σ=时,或8.相关系数r 的取值范围是( D )。

计量经济学第三版课后习题与答案

计量经济学第三版课后习题与答案

第二章简单线性回归模型2.1(1)①首先分析人均寿命与人均GDP的数量关系,用Eviews分析:Dependent Variable: YMethod: Least SquaresDate: 12/23/15 Time: 14:37Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C 56.64794 1.960820 28.88992 0.0000X1 0.128360 0.027242 4.711834 0.0001R-squared 0.526082 Mean dependent var 62.50000 Adjusted R-squared 0.502386 S.D. dependent var 10.08889 S.E. of regression 7.116881 Akaike info criterion 6.849324 Sum squared resid 1013.000 Schwarz criterion 6.948510 Log likelihood -73.34257 Hannan-Quinn criter. 6.872689 F-statistic 22.20138 Durbin-Watson stat 0.629074 Prob(F-statistic) 0.000134有上可知,关系式为y=56.64794+0.128360x1②关于人均寿命与成人识字率的关系,用Eviews分析如下:Dependent Variable: YMethod: Least SquaresDate: 12/23/15 Time: 15:01Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C 38.79424 3.532079 10.98340 0.0000X2 0.331971 0.046656 7.115308 0.0000R-squared 0.716825 Mean dependent var 62.50000 Adjusted R-squared 0.702666 S.D. dependent var 10.08889 S.E. of regression 5.501306 Akaike info criterion 6.334356 Sum squared resid 605.2873 Schwarz criterion 6.433542 Log likelihood -67.67792 Hannan-Quinn criter. 6.357721 F-statistic 50.62761 Durbin-Watson stat 1.846406 Prob(F-statistic) 0.000001由上可知,关系式为y=38.79424+0.331971x2③关于人均寿命与一岁儿童疫苗接种率的关系,用Eviews分析如下:Dependent Variable: YMethod: Least SquaresDate: 12/23/14 Time: 15:20Sample: 1 22Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C 31.79956 6.536434 4.864971 0.0001X3 0.387276 0.080260 4.825285 0.0001R-squared 0.537929 Mean dependent var 62.50000Adjusted R-squared 0.514825 S.D. dependent var 10.08889S.E. of regression 7.027364 Akaike info criterion 6.824009Sum squared resid 987.6770 Schwarz criterion 6.923194Log likelihood -73.06409 Hannan-Quinn criter. 6.847374F-statistic 23.28338 Durbin-Watson stat 0.952555Prob(F-statistic) 0.000103由上可知,关系式为y=31.79956+0.387276x3(2)①关于人均寿命与人均GDP模型,由上可知,可决系数为0.526082,说明所建模型整体上对样本数据拟合较好。

应用回归分析_第2章课后习题参考答案.

应用回归分析_第2章课后习题参考答案.

应用回归分析_第2章课后习题参考答案1. 简答题1.1 什么是回归分析?回归分析是一种统计建模方法,用于研究自变量与因变量之间的关系。

它通过建立数学模型,根据已知的自变量和因变量数据,预测因变量与自变量之间的关系,并进行相关的推断和预测。

1.2 什么是简单线性回归和多元线性回归?简单线性回归是指只包含一个自变量和一个因变量的回归模型,通过拟合一条直线来描述两者之间的关系。

多元线性回归是指包含多个自变量和一个因变量的回归模型,通过拟合一个超平面来描述多个自变量和因变量之间的关系。

1.3 什么是残差?残差是指回归模型中,观测值与模型预测值之间的差异。

在回归分析中,我们希望最小化残差,使得模型与观测数据的拟合效果更好。

1.4 什么是拟合优度?拟合优度是用来评估回归模型对观测数据的拟合程度的指标。

一般使用R方(Coefficient of Determination)来表示拟合优度,其值范围为0到1,值越接近1表示模型拟合效果越好。

2. 计算题2.1 简单线性回归假设我们有一组数据,其中X为自变量,Y为因变量,如下所示:X Y13253749511我们想要建立一个简单线性回归模型,计算X与Y之间的线性关系。

首先,我们需要计算拟合直线的斜率和截距。

根据简单线性回归模型的公式Y = β0 + β1*X,我们可以通过最小二乘法计算出斜率和截距的估计值。

首先,计算X和Y的均值:mean_x = (1 + 2 + 3 + 4 + 5) / 5 = 3mean_y = (3 + 5 + 7 + 9 + 11) / 5 = 7然后,计算X和Y的方差:var_x = ((1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2) / 5 = 2var_y = ((3-7)^2 + (5-7)^2 + (7-7)^2 + (9-7)^2 + (11-7)^2) / 5 = 8接下来,计算X和Y的协方差:cov_xy = ((1-3) * (3-7) + (2-3) * (5-7) + (3-3) * (7-7) + (4-3) * (9-7) + (5-3) * (11-7)) / 5 = 4根据最小二乘法的公式:β1 = cov_xy / var_x = 4 / 2 = 2β0 = mean_y - β1 * mean_x = 7 - (2 * 3) = 1因此,拟合直线的方程为:Y = 1 + 2X。

(完整版)第二章(简单线性回归模型)2-3答案

(完整版)第二章(简单线性回归模型)2-3答案

2.3拟合优度的度量一、判断题1.当()∑-2i y y 确定时,()∑-2iy y ˆ越小,表明模型的拟合优度越好。

(F ) 2.可以证明,可决系数高意味着每个回归系数都是可信任的。

(F ) 3.可决系数的大小不受到回归模型中所包含的解释变量个数的影响。

(F ) 4.任何两个计量经济模型的都是可以比较的。

(F )5.拟合优度的值越大,说明样本回归模型对数据的拟合程度越高。

( T )6.结构分析是高就足够了,作预测分析时仅要求可决系数高还不够。

( F )7.通过的高低可以进行显著性判断。

(F )8.是非随机变量。

(F )二、单项选择题1.已知某一直线回归方程的可决系数为0.64,则解释变量与被解释变量间的线性相关系数为( B )。

A .±0.64B .±0.8C .±0.4D .±0.32 2.可决系数的取值范围是( C )。

A .≤-1B .≥1C .0≤≤1D .-1≤≤1 3.下列说法中正确的是:( D )A 如果模型的2R 很高,我们可以认为此模型的质量较好B 如果模型的2R 较低,我们可以认为此模型的质量较差C 如果某一参数不能通过显著性检验,我们应该剔除该解释变量D 如果某一参数不能通过显著性检验,我们不应该随便剔除该解释变量三、多项选择题1.反映回归直线拟合优度的指标有( ACDE )。

A .相关系数B .回归系数C .样本可决系数D .回归方程的标准差E .剩余变差(或残差平方和)2.对于样本回归直线i 01i ˆˆˆY X ββ+=,回归变差可以表示为( ABCDE )。

A .22i i i i ˆY Y -Y Y ∑∑ (-) (-) B .221ii ˆX X β∑(-) C .22iiRY Y ∑(-) D .2iiˆY Y ∑(-) E .1iiiiˆX X Y Y β∑(-()-) 3.对于样本回归直线i 01iˆˆˆY X ββ+=,ˆσ为估计标准差,下列可决系数的算式中,正确的有( ABCDE )。

计量经济学答案第二章 简单线性回归模型

计量经济学答案第二章  简单线性回归模型

ˆi ei Yi Y

ˆ ˆ X e Yi 1 2 i i
22
样本回归函数的特点
●样本回归线随抽样波动而变化: 每次抽样都能获得一个样本,就可以拟合一条样本回 归线,(SRF不唯一)
Y
SRF1
●样本回归函数的函数形式 应与设定的总体回归函数的 函数形式一致。
SRF2
X
●样本回归线只是样本条件均值的轨迹,还不是总体 回归线,它至多只是未知的总体回归线的近似表现。
rYX
● 线性相关系数只反映变量间的线性相关程度,不
能说明非线性相关关系
● 样本相关系数是总体相关系数的样本估计值,由
于抽样波动,样本相关系数是随抽样而变动的随机变量,
其统计显著性还有待检验
9
4、回归分析
回归的古典意义:
高尔顿遗传学的回归概念
( 父母身高与子女身高的关系) 子女的身高有向人的平均身高"回归"的趋势
21
样本回归函数的函数形式
条件均值形式:
样本回归函数如果为线性函数,可表示为
ˆ ˆX ˆ Y i 1 2 i
ˆ 是与 X i 相对应的 Y 的样本条件均值 Y 其中: i
ˆ 和 ˆ 分别是样本回归函数的参数 1 2
个别值(实际值)形式:
ˆ, 被解释变量Y的实际观测值 Yi 不完全等于样本条件均值 Y i 二者之差用 e i 表示, e i 称为剩余项或残差项:
显然,对旅游起决定性影响作用的是“中国居民的收 入水平”以及“入境旅游人数”等因素。 “旅游业总收入”(Y)与“居民平均收入”(X1)或 者“入境旅游人数”(X2)有怎样的数量关系呢? 能否用某种线性或非线性关系式 Y= f ( X ) 去表现这 种数量关系呢? 具体该怎样去表现和计量呢? 为了不使问题复杂化, 我们先在某些标准的(古典的) 假定条件下,用最简单的模型,对最简单的变量间数 量关系加以讨论

(完整版)第二章(简单线性回归模型)2-3答案

(完整版)第二章(简单线性回归模型)2-3答案

、判断题2 21. 当y y确定时,? y越小,表明模型的拟合优度越好。

(F)2. 可以证明,可决系数R2高意味着每个回归系数都是可信任的。

(F)3. 可决系数R2的大小不受到回归模型中所包含的解释变量个数的影响。

(F)4. 任何两个计量经济模型的R2都是可以比较的。

(F)5. 拟合优度R2的值越大,说明样本回归模型对数据的拟合程度越高。

(T)6. 结构分析是R2高就足够了,作预测分析时仅要求可决系数高还不够。

(F )7.通过R2的高低可以进行显著性判断。

(F)8.R2是非随机变量。

(F)二、单项选择题1. 已知某一直线回归方程的可决系数为0.64 , 则解释变量与被解释变量间的线性相关系数为(B )。

A.± 0.64B.± 0.8C.± 0.4D. ± 0.322. 可决系数R2的取值范围是(C)。

A.R2< -1B. R2> 1C.0< R2< 1D.—1 < R2< 13.下列说法中正确的是:(D )A如果模型的R2很高,我们可以认为此模型的质量较好B如果模型的R2较低,我们可以认为此模型的质量较差C如果某一参数不能通过显著性检验,我们应该剔除该解释变量D如果某一参数不能通过显著性检验,我们不应该随便剔除该解释变量三、多项选择题1. 反映回归直线拟合优度的指标有(ACDE )。

A. 相关系数 B .回归系数 C.样本可决系数D.回归方程的标准差E.剩余变差(或残差平方和)2•对于样本回归直线Y?= ?)?X j ,回归变差可以表示为(ABCDE )。

A. (丫厂Y i)2 - (Y i- Y?)2B . ?2(X i - X)2C. R2(Y i-Y i)2 D . (Y?i-Y)2E.? (X i-X(Y i—Y i)2.3拟合优度的度量3•对于样本回归直线丫j=乙F列可决系数的算式中,正确的有(ABCDE )。

计量经济学2答案

计量经济学2答案

第二章 简单线性回归模型一、单项选择题:1、回归分析中定义的( B )。

A 、解释变量和被解释变量都是随机变量B 、解释变量为非随机变量,被解释变量为随机变量C 、解释变量和被解释变量都为非随机变量D 、解释变量为随机变量,被解释变量为非随机变量2、最小二乘准则是指使( D )达到最小值的原则确定样本回归方程。

A 、1ˆ()n t t t Y Y =-∑B 、1ˆn t t t Y Y =-∑C 、ˆmax t t Y Y -D 、21ˆ()n t t t Y Y =-∑ 3、下图中“{”所指的距离是( B )。

A 、随机误差项i 、ˆiY 的离差 4、参数估计量ˆβ是i Y 的线性函数称为参数估计量具有( A )的性质。

A 、线性 B 、无偏性 C 、有效性 D 、一致性5、参数β的估计量βˆ具备有效性是指( B )。

A 、0)ˆ(=βVarB 、)ˆ(βVar 为最小C 、0ˆ=-ββD 、)ˆ(ββ-为最小6、反映由模型中解释变量所解释的那部分离差大小的是( B )。

A 、总体平方和B 、回归平方和C 、残差平方和D 、样本平方和7、总体平方和TSS 、残差平方和RSS 与回归平方和ESS 三者的关系是( B )。

A 、RSS=TSS+ESSB 、TSS=RSS+ESSC 、ESS=RSS-TSSD 、ESS=TSS+RSS8、下面哪一个必定是错误的( C )。

A 、 i i X Y 2.030ˆ+= ,8.0=XY r B 、 i i X Y 5.175ˆ+-= ,91.0=XY r C 、 i i X Y 1.25ˆ-=,78.0=XY r D 、 i i X Y 5.312ˆ--=,96.0-=XY r9、产量(X ,台)与单位产品成本(Y ,元/台)之间的回归方程为ˆ356 1.5Y X =-,这说明( D )。

A 、产量每增加一台,单位产品成本增加356元B 、产量每增加一台,单位产品成本减少1.5元C 、产量每增加一台,单位产品成本平均增加356元D 、产量每增加一台,单位产品成本平均减少1.5元10、回归模型i i i X Y μββ++=10,i = 1,…,25中,总体方差未知,检验010=β:H 时,所用的检验统计量1ˆ11ˆβββS -服从( D )。

第二章(简单线性回归模型)2-2答案

第二章(简单线性回归模型)2-2答案

2.2 简单线性回归模型参数的估计一、判断题1.使用普通最小二乘法估计模型时,所选择的回归线使得所有观察值的残差和达到最小。

(F)2.随机扰动项和残差项是一回事。

(F )3.在任何情况下OLS 估计量都是待估参数的最优线性无偏估计。

(F )4.满足基本假设条件下,随机误差项i μ服从正态分布,但被解释变量Y 不一定服从正态分 布。

( F )5.如果观测值i X 近似相等,也不会影响回归系数的估计量。

( F )二、单项选择题1.设样本回归模型为i 01i i ˆˆY =X +e ββ+,则普通最小二乘法确定的iˆβ的公式中,错误的是( D )。

A .()()()i i 12i X X Y -Y ˆX X β--∑∑= B .()i i i i 122i i n X Y -X Y ˆn X -X β∑∑∑∑∑=C .i i 122i X Y -nXY ˆX -nX β∑∑=D .i i i i 12xn X Y -X Y ˆβσ∑∑∑= 2.以Y 表示实际观测值,ˆY 表示回归估计值,则普通最小二乘法估计参数的准则是使( D )。

A .i i ˆY Y 0∑(-)=B .2i i ˆY Y 0∑(-)=C .i i ˆY Y ∑(-)=最小D .2i i ˆY Y ∑(-)=最小 3.设Y 表示实际观测值,ˆY 表示OLS 估计回归值,则下列哪项成立( D )。

A .ˆYY = B .ˆY Y = C .ˆY Y = D .ˆY Y = 4.用OLS 估计经典线性模型i 01i i Y X u ββ+=+,则样本回归直线通过点( D )。

A .X Y (,)B . ˆX Y (,)C .ˆX Y (,)D .X Y (,) 5.以Y 表示实际观测值,ˆY表示OLS 估计回归值,则用OLS 得到的样本回归直线i 01iˆˆˆY X ββ+=满足( A )。

A .i i ˆY Y 0∑(-)=B .2i i Y Y 0∑(-)= C . 2i i ˆY Y 0∑(-)= D .2i i ˆY Y 0∑(-)=6.按经典假设,线性回归模型中的解释变量应是非随机变量,且( A )。

第二章(简单线性回归模型)2-1答案

第二章(简单线性回归模型)2-1答案

2.1回归分析与回归函数一、判断题1. 总体回归直线是解释变量取各给定值时被解释变量条件期望的轨迹。

(T )2. 线性回归是指解释变量和被解释变量之间呈现线性关系。

( F )3. 随机变量的条件期望与非条件期望是一回事。

(F )4、总体回归函数给出了对应于每一个自变量的因变量的值。

(F )二、单项选择题1.变量之间的关系可以分为两大类,它们是( A )。

A .函数关系与相关关系B .线性相关关系和非线性相关关系C .正相关关系和负相关关系D .简单相关关系和复杂相关关系2.相关关系是指( D )。

A .变量间的非独立关系B .变量间的因果关系C .变量间的函数关系D .变量间不确定性的依存关系3.进行相关分析时的两个变量( A )。

A .都是随机变量B .都不是随机变量C .一个是随机变量,一个不是随机变量D .随机的或非随机都可以4.回归分析中定义的( B )。

A.解释变量和被解释变量都是随机变量B.解释变量为非随机变量,被解释变量为随机变量C.解释变量和被解释变量都为非随机变量D.解释变量为随机变量,被解释变量为非随机变量5.表示x 和y 之间真实线性关系的总体回归模型是( C )。

A .01ˆˆˆt t Y X ββ=+B .01()t t E Y X ββ=+C .01t t t Y X u ββ=++D .01t t Y X ββ=+6.一元线性样本回归直线可以表示为( C )A .i i X Y u i 10++=ββ B. i 10X )(Y E i ββ+=C. i i e X Y ++=∧∧i 10ββ D. i 10X i Y ββ+=∧7.对于i 01i i ˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有( D)。

A .ˆ0r=1σ=时,B .ˆ0r=-1σ=时,C .ˆ0r=0σ=时,D .ˆ0r=1r=-1σ=时,或8.相关系数r 的取值范围是( D )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章(简单线性回归模型)2-2答案
2.2 简单线性回归模型参数的估计
一、判断题
1.使用普通最小二乘法估计模型时,所选择的回归线使得所有观察值的残差和达到最小。

(F)
2.随机扰动项i u 和残差项i e 是一回事。

(F )
3.在任何情况下OLS 估计量都是待估参数的最优线性无偏估计。

(F )
4.满足基本假设条件下,随机误差项i μ服从正态分布,但被解释变量Y 不一定服从正态分
布。

( F )
5.如果观测值i X 近似相等,也不会影响回归系数的估计量。

( F ) 二、单项选择题
1.设样本回归模型为i 01i i ˆˆY =X +e ββ+,则普通最小二乘法确定的i
ˆβ的公式中,错误的是( D )。

A .
()()
()
i i 1
2
i
X X Y -Y ˆX
X β--∑∑= B .
()
i i i i 1
2
2i i n X Y -X Y ˆn X -X β
∑∑∑∑∑=
C .i i 122i X Y -nXY ˆX -nX β∑∑=
D .i i i i 12
x
n X Y -X Y ˆβσ∑∑∑= 2.以Y 表示实际观测值,ˆY
表示回归估计值,则普通最小二乘法估计参数的准则是使( D )。

A .i i ˆY Y 0∑(-)=
B .2
i i ˆY Y 0∑
(-)=
C .i i ˆY Y ∑(-)=最小
D .2
i i ˆY Y ∑
(-)=最小 3.设Y 表示实际观测值,ˆY
表示OLS 估计回归值,则下列哪项成立( D )。

A .ˆY
Y = B .ˆY Y = C .ˆY Y = D .ˆY Y = 4.用OLS 估计经典线性模型i 01i i Y X u ββ+=+,则样本回归直线通过点( D )。

A .X Y (,)
B . ˆX Y (,)
C .ˆX Y (,)
D .X Y (,)
5.以Y 表示实际观测值,ˆY
表示OLS 估计回归值,则用OLS 得到的样本回归直线
i 01i
ˆˆˆY X ββ+=满足( A )。

A .i i ˆY Y 0∑(-)=
B .2
i i Y Y 0∑
(-)= C . 2i i ˆY Y 0∑(-)= D .2i i ˆY Y 0∑(-)=
6.按经典假设,线性回归模型中的解释变量应是非随机变量,且( A )。

A .与随机扰动项不相关 B .与残差项不相关 C .与被解释变量不相关 D .与回归值不相关
7.参数β的估计量β
ˆ具备有效性是指( B ) A .()0Var =β
ˆ B .()βˆVar 为最小 C .()0=-ββ
ˆ D .()ββ-ˆ为最小 三、多项选择题
1.以Y 表示实际观测值,ˆY
表示OLS 估计回归值,e 表示残差,则回归直线满足(ABE )。

A .X Y 通过样本均值点(,)
B .
i
i ˆY Y
∑∑=
C .2
i i ˆY Y 0

(-)= D .2
i i ˆY Y 0∑
(-)= E .i i cov(X ,e )=0
2.用OLS 法估计模型i 01i i Y X u ββ+=+的参数,要使参数估计量为最佳线性无偏估计量,则要求( ABCE )。

A .i E(u )=0
B .2
i Var(u )=σ C .i j Cov(u ,u )=0 D .i u 服从正态分布 E .X 为非随机变量,与随机扰动项i u 不相关。

3.假设线性回归模型满足全部基本假设,则其参数的估计量具备( CDE )。

A .可靠性
B .合理性
C .线性性
D .无偏性
E .有效性 4.普通最小二乘估计的直线具有以下特性( ABDE )。

A .通过样本均值点(,)X Y B .ˆi
i
Y Y
=∑∑ C .2
ˆ()0i
i
Y Y -=∑
D .
0i
e =∑ E .(,)0i
i
Cov X e =
5.线性回归模型的变通最小二乘估计的残差i e 满足( ACDE )。

A .
i
e 0∑= B .i i
e Y 0∑= C .i i
ˆe Y
0∑=
D .
i
i
e X 0∑= E .i
i
cov(X ,e )=0
四、简答题
1.古典线性回归模型的基本假定是什么?
答:①零均值假定。

即在给定t X 的条件下,随机扰动项的数学期望(均值)为0,即
t E(u )=0。

②同方差假定。

误差项t u 的方差与t 无关,为一个常数。

③无自相关假定。


不同的误差项相互独立。

④解释变量与随机扰动 项不相关假定。

⑤正态性假定,即假定随机扰动项t u 服从均值为0,方差为2σ的正态分布。

2.用普通最小二乘法拟合的样本回归线具有哪些性质?这些性质分别由哪个正规方程求得?
答:①样本回归线通过样本均值。

②估计值Y
ˆ的均值等于实际值i Y 的均值Y 。

③剩余项i e 的均值为零。

④被解释变量估计值i
Y ˆ与剩余项i e 不相关。

⑤解释变量i X 与剩余项i e 不相关 。

前三条由第一个正规方程
0e
i
=∑求得,后两条由0e i =∑和第二个正规方程
0X
e i
i
=∑求得。

3.在满足古典假定条件下,一元线性回归模型的普通最小二乘估计量有哪些统计性质?这些统计性质与哪些基本假定有关?
答:①线性,是指参数估计量0ˆb 和1ˆb 分别为观测值t y 和随机扰动项t u 的线性函数或线性组合。

②无偏性,指参数估计量0ˆb 和1ˆb 的均值(期望值)分别等于总体参数0b 和1b 。

③有效性(最小方差性或最优性),指在所有的线性无偏估计量中,最小二乘估计量0ˆb 和1
ˆb 的方差最小。

其中,无偏性与零均值假定、解释变量与随机扰动项无关假定有关;有效性与除正态性假定外的假定均有关。

五、计算分析题
1、令kids 表示一名妇女生育孩子的数目,educ 表示该妇女接受过教育的年数。

生育率对受教育年数的简单回归模型为
μββ++=educ kids 10
(1)随机扰动项μ包含什么样的因素?它们可能与受教育水平相关吗? (2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。

答:(1)收入、年龄、家庭状况、政府的相关政策等也是影响生育率的重要的因素,在上述简单回归模型中,它们被包含在了随机扰动项之中。

有些因素可
能与受教育水平相关,如收入水平与教育水平往往呈正相关、年龄大小与教育水平呈负相关等。

(2)当归结在随机扰动项中的重要影响因素与模型中的教育水平educ 相关时,上述回归模型不能够揭示教育对生育率在其他条件不变下的影响,因为这时出现解释变量与随机扰动项相关的情形,基本假设3不满足。

2.下表中的数据是从某个行业5个不同的工厂收集的,请回答以下问题:
总成本Y 与产量X 的数据
Y 80 44 51 70 61 X
12
4
6
11
8
(1)估计这个行业的线性总成本函数:i 01i
ˆˆˆY =b +b X (2)01
ˆˆb b 和的经济含义是什么? 答:(1)由于
2700t t
x y
=∑,41t x =∑,306t y =∑,2381t x =∑,
2()1681t x =∑,61.2y =,8.2x =,得
1
22
5270041306ˆ 4.2653811681()t t t t t t n x y x y b n x x -⨯-⨯===⨯--∑∑∑∑∑( 01
ˆˆ61.2 4.268.226.28b y b x =-=-⨯= 总成本函数为:i i
ˆY =26.28+4.26X (2)截距项0ˆb 表示当产量X 为0时工厂的平均总成本为26.28,也就是工厂的平均固定成本;斜率项1
ˆb 表示产量每增加1个单位,引起总成本平均增加4.26个单位。

相关文档
最新文档