单相电机驱动器说明书

合集下载

M542H步进电机驱动器使用手册说明书

M542H步进电机驱动器使用手册说明书

M542H(低成本 4.5A,80V)256细分步进驱动器使用手册Version1.0版权所有不得翻印【使用前请仔细阅读本手册,以免损坏驱动器】宁波纳川自动化科技有限公司M542H步进电机驱动器使用说明在使用本品前,请仔细阅读本使用说明书请妥善保管本说明书,以备日后参考本册外观图片仅供参考,请以实物为准安全注意事项本产品为直流电源供电,请确认电源正负极正确后上电。

请勿带电插拔连接线缆。

此产品非密封,请勿在内部混入镙丝、金属屑等导电性异物或可燃性异物,储存和使用时请注意防潮防湿。

驱动器为功率设备,尽量保持工作环境的散热通风。

在连上步进电机,调节好电流后使其连续工作半小时后观察步进电机是否在额定温度后方可进行后续使用,如果电机温度过高请联系制造商。

一、产品简介1.1 产品特点⏹平均电流控制,两相正弦电流驱动输出⏹供电电压可达80VDC⏹输出电流峰值可达4.5A(均值3.2A)⏹静止时电流自动减半⏹可驱动4,6,8线两相、四相步进电机⏹高速光耦隔离信号输入,脉冲响应频率最高可达300KHZ⏹抗高频干扰能力强⏹输出电流1.5A~4.5A。

⏹输出电流设定方便⏹小巧精美外形尺寸(118*75.5*33mm);⏹细分精度2,4,8,16, 32, 64, 128, 256, 5, 10, 25, 50, 100, 125, 250 细分;⏹有过压、欠压、过流、相间短路保护功能1.2 应用领域适合各种中小型自动化设备和仪器,例如:雕刻机、打标机、切割机、激光照排、绘图仪、数控机床、拿放装置等。

在用户期望低成本、小噪声、高速度的设备中效果特佳。

二、电气、机械和环境指标2.1 电气指标说明 M542H最小值 典型值 最大值 单位 输出电流 1.5 - 4.5(均值3A) A 输入电源电压 18 50~80 120(含纹波)VDC 逻辑输入电流 7 10 16 mA 步进脉冲频率 0 - 300 KHZ 绝缘电阻500M Ω2.2 使用环境及参数冷却方式自然冷却使用环境场合 尽量避免粉尘、油雾及腐蚀性气体环境温度0℃-+50℃ 最高工作温度70℃湿度 40-90% RH9 (不能结露和有水珠)震动 5.9m/S2 Max 保存温度 -20℃-125℃ 重量约280克2.3 机械安装图 单位:毫米※:推荐采用侧面安装,散热效果更佳三、驱动器接口及接线介绍:3.1:弱电接线信号接口描述3.2:强电接口描述3.3输入接口描述M542H 内置高速光电耦合器,允许接收长线控制器,集电极开路和PNP 输出电路的信号。

云南一机驱动器说明书

云南一机驱动器说明书

云南一机驱动器说明书第一章:产品介绍1.1 产品概述云南一机驱动器是一种用于控制电机运行的设备,广泛应用于各个领域的机械设备中。

本驱动器采用先进的技术,具有高效、稳定、可靠的特点。

1.2 产品特点1)高效能:采用先进的控制算法和优化设计,提高能源利用率,降低能源消耗。

2)稳定性强:具备良好的电磁兼容性和抗干扰能力,确保电机运行平稳。

3)可靠性高:采用高品质的元器件和严格的生产工艺,提高产品的可靠性和使用寿命。

4)操作简便:采用人性化设计,配备直观的操作界面,方便用户进行操作和监控。

5)安全可靠:具备多种保护功能,如过载保护、短路保护等,保障设备和人员安全。

第二章:安装与调试2.1 安装准备在安装之前,用户需要检查驱动器的外观是否完好,确认所需的安装配件是否齐全。

同时,还需根据实际需要选择合适的安装位置,并确保该位置通风良好、无阻碍,并且远离易燃、易爆等危险物品。

2.2 连接电源将驱动器的电源线与电源接触器的电源输出端相连,并确保连接牢固可靠。

然后,将电源线的另一端插入电源插座中,但在开机之前,必须确保电源开关处于关闭状态。

2.3 连接电机将驱动器的输出端与电机的输入端连接,注意正确连接相位和接线方式。

接线完成后,应检查连接是否牢固,并确保绝缘性能良好,以防电气故障。

2.4 调试设置在连接完成后,用户需要按照说明书中的操作步骤进行相应的调试设置。

根据实际需求,设置驱动器的运行参数、控制模式、速度曲线等,确保驱动器能够满足设备的要求。

第三章:使用与维护3.1 启动与停止在正式使用驱动器之前,用户需要确保所有的连接都正确无误,并按照说明书中的启动步骤进行操作。

启动后,用户可以通过操作界面进行参数调整和监控。

在停止使用驱动器时,用户应先将电机停止运行,然后再关闭驱动器的电源开关。

同时,还需定期进行设备的维护与检查,确保设备的正常运行。

3.2 故障排除在使用过程中,如果发生故障,用户可以根据说明书中的故障排除指南进行相应的处理。

DVS电机产品说明书

DVS电机产品说明书

OFF
OFF
D7
ON
ON
OFF
OFF
ON
ON
OFF
OFF
D8
ON
OFF
ON
OFF
ON
OFF
ON
OFF
细分数 5000 6400 8000
10000
12800
16000
20000
40000
D5
OFF OFF
OFF
OFF
OFF
OFF
OFF
OFF
D6
ON
ON
DC24V-50V,适配电流在 4.5A 以下、外径 42-57mm 的各种型号的二相混合式步进电机。运行平稳, 震动和噪音极小。定位精度最高可达 40000 步/转。该产品广泛应用于雕刻机、中型数控机床、 电脑绣花机、包装机械等分辨率较高的小、中型数控设备上。 特点 z 高性能、低价格 z 设有 16 档等角度恒力矩细分,最高分辨率 40000 步/转 z 最高反应频率可达 200Kpps z 步进脉冲停止超过 1.5s 时,线圈电流自动减到设定电流的一半 z 光电隔离信号输入/输出 z 驱动电流 0.8A/相到 4.5A/相分 16 档可调 z 单电源输入,电压范围:DC24V-50V
功能设定示意图
深圳市天宇电子设备有限公司 工作电流设定示意图
输入信号波形时序图
深圳市天宇电子设备有限公司 驱动器接线示意图
!注意 1、 千万不要将电源接反,输入电压不要超过 DC40V。 2、 输入控制信号电平为 5V,当高于 5V 时需接限流电阻。 3、 驱动器温度超过 70 度时故障指示灯 O.H 亮,驱动器停止工作,直到驱动器温度降到 50 度,
DR
方向控制信号

Festo 电机驱动器操作手册说明书

Festo 电机驱动器操作手册说明书

原版操作手册的译本© 2020 Festo SE & Co. KG 保留一切权利1适用文件有关产品的所有文件 è/sp 产品的用户文件使用手册EMCA-EC-DIO-…设备及功能说明书;装配、安装、调试和诊断使用手册EMCA-EC-C-HP-…设备配置文件 FHPP (Festo Handling and Positioning Profile)的说明FCT 插件帮助EMCAFesto Configuration Tool (FCT) 的在线帮助,用于调试和参数设置专项文件EMCA-EC_UL-…根据 Underwriters Laboratories Inc. (UL) 认证在美国和加拿大使用本产品的要求Tab. 12安全–务必注意遵守产品相关文件和其它所用部件文件中的安全和警告注意事项。

–进行装配和安装工作之前,关闭供电电压并采取保护措施,防止其意外重新启动。

在彻底完成装配和安装工作之后,才能重新接通电源。

–禁止在带电情况下插拔插头。

–遵守有关静电敏感部件的操作规程。

–只有当正确安装驱动器并完成全部参数配置之后,才能启用控制器。

–不允许对本设备进行维修。

若损坏,则更换设备。

–除了外壳盖上的 4 颗螺钉,不得松开其他螺钉。

触碰炙热表面有烫伤危险。

接触壳体可能导致烫伤。

由此可能造成人员惊慌,并作出失控反应。

这还可能造成其他损失。

•避免意外触碰壳体。

•告知操作人员和维护人员可能存在的危险。

•进行维修工作之前:使驱动器冷却到 40 °C 以下。

快速旋转的电机轴具有较高的扭矩。

接触电机轴,可能会造成烫伤和擦伤。

•确保不会接触到旋转的电机轴和其上安装的部件。

产生气体,存在火灾危险。

清洁剂与驱动器的高温表面发生接触,可能会产生气体并着火。

•进行清洁工作之前,使驱动器冷却到室温。

2.1按规定使用按照规定,本产品用于驱动和控制机电驱动器。

本产品设计用于安装在机器中。

仅允许在以下情况下使用:–在技术性能完好的状态下–在未作擅自修改的初始状态下;仅允许使用产品随附文件中的扩展–在本产品技术参数规定的极限值内–在工业领域内除工业环境外,例如在商业和住宅混合区等,必须采取措施防止无线电干扰。

一川电机 aasd 伺服电机驱动器 技术手册说明书

一川电机 aasd 伺服电机驱动器 技术手册说明书

YMPC一川电机V 6.0AASD伺服电机驱动器技术手册台州一川电机有限公司安全注意事项为确保安全使用本产品,必须遵守下列安全标志,以免伤害人员,损坏设备。

!警告表示错误操作可引发危险,导致轻度或中度人身伤害,损坏设备,甚至引发火灾。

!危险表示错误操作引发危险,导致伤害或死亡。

表示禁止操作。

!!表示必须操作。

产品到达后,进行确认、安装、配线、运行维护、检查时,以下是必须遵守的重要事项:●安装时注意事项:!警告严禁安装在潮湿及会发生腐蚀的环境、有易燃性气体的环境下、可燃物的附近及灰尘、金属粉末较多的环境,否则有可能会发生触电和火灾。

●配线时的注意事项:!警告◢伺服驱动器的接地端子必须接地,否则,可能会发生触电和火灾。

◢严禁把伺服驱动器的输出端子U,V,W ,连接至三相电源,否则,可能受伤和引发火灾。

◢严禁把220V驱动器连接至380V电源,否则可以触电和引发火灾。

◢务必将电源端子、电机输出端子拧紧,否则有可能会引发火灾。

●运行时的注意事项:!危险◢在运行中,严禁触摸任何旋转部件,否则可能会受伤。

◢在运行中,严禁触摸电机和驱动器,否则可能会烫伤。

!警告◢在运行前,必须选择好正确的电机型号,否则可能人员受到伤害,损伤设备。

◢在运行前,必须设置好与应用场合相适应的用户参数,否则可能受到伤害,损伤设备。

◢在运行前,确认机械是否可随时紧急停止,否则,可能会受伤。

●保养检查时的注意事项:◢严禁触摸伺服驱动器的内部,否则有可能触电。

◢关闭电源后,在5分钟内,严禁触摸端子,否则,残留的电压可能会导致触电。

◢严禁拆装伺服电机,否则有可能触电。

目录第1章产品检查及安装..................................................................................... - 1 -1.1产品检查............................................................................................................ - 1 -1.2产品铭牌............................................................................................................ - 1 -1.3产品前面板........................................................................................................ - 2 -1.4驱动器技术规格 ................................................................................................ - 3 -1.5伺服电机安装 .................................................................................................... - 4 -1.6 电机旋转方向 ................................................................................................... - 5 -1.7 伺服单元与电机型号适配................................................................................. - 5 -第2章接线 ....................................................................................................... - 8 -2.1系统组成与接线 ................................................................................................ - 8 -2.1.1 220V伺服驱动器接线图 ................................................................................................... - 8 -2.1.2 380V伺服驱动器接线图 ................................................................................................... - 9 -2.1.3接线说明 .......................................................................................................................... - 10 -2.1.4电线规格 .......................................................................................................................... - 10 -2.1.5强电端子说明 .................................................................................................................. - 11 -2.2 CN1通信接口 .................................................................................................. - 12 -2.3 CN2控制接口 .................................................................................................. - 13 -2.4 CN3编码器接口............................................................................................... - 18 -2.5标准接线.......................................................................................................... - 19 -2.5.1位置控制接线图(标准版) ................................................................................................ - 19 -2.5.2速度/转矩控制接线图(标准版) ....................................................................................... - 20 -第3章显示与操作 .......................................................................................... - 21 -3.1面板组成.......................................................................................................... - 21 -3.1.1显示屏与按键(标准版) .................................................................................................... - 21 -3.2模式功换.......................................................................................................... - 22 -3.3监控模式(Dn)操作............................................................................................ - 22 -3.4辅助模式(Fn)操作 ............................................................................................ - 23 -3.5用户参数模式(Pn)操作..................................................................................... - 33 -第4章Pn功能参数........................................................................................ - 34 -4.1 参数设置面板操作.......................................................................................... - 34 -4.2参数一览表...................................................................................................... - 34 -4.2.1系统控制参数 .................................................................................................................. - 34 -4.2.2位置控制参数 .................................................................................................................. - 37 -4.2.3速度控制参数 .................................................................................................................. - 39 -4.2.4转矩控制参数 .................................................................................................................. - 40 -4.2.5扩展控制参数 .................................................................................................................. - 41 -4.3 参数详解......................................................................................................... - 43 -4.3.1系统参数 ........................................................................................................................ - 43 -4.3.2位置控制参数 ................................................................................................................ - 63 -4.3.3速度控制参数 ................................................................................................................ - 70 -4.3.4转矩控制参数 ................................................................................................................ - 76 -4.3.5扩展控制参数 ................................................................................................................ - 81 -4.4端口功能详解 ................................................................................................. - 85 -4.4.1SigIn输入端口功能详解............................................................................................... - 85 -4.4.2 SigOut输出端口功能详解........................................................................................... - 88 -第5章监控参数与操作................................................................................... - 90 -5.1 监控面板操作 ................................................................................................. - 90 -5.2 监控参数一览表.............................................................................................. - 90 -第6章报警及处理 .......................................................................................... - 92 -6.1报警清除操作 .................................................................................................. - 92 -6.2警报内容与对策 .............................................................................................. - 92 -6.3其它故障现象及处理措施................................................................................ - 97 -第7章Modbus串口通信 .............................................................................. - 99 -7.1 Modbus通信简介 ............................................................................................ - 99 -7.1.2 编码含义 ......................................................................................................................... - 99 -7.1.3 数据结构 ......................................................................................................................... - 99 -7.2通信协议结构 ................................................................................................ - 100 -7.3 常用命令码 ................................................................................................... - 102 -7.3.1读多个寄存器 ................................................................................................................ - 102 -7.3.2写单个寄存器 ................................................................................................................ - 103 -7.3.3 诊断 ............................................................................................................................... - 105 -7.3.4 写多个寄存器 ............................................................................................................... - 106 -7.3.5 校验码计算 ................................................................................................................... - 109 -7.3.6 异常码 ........................................................................................................................... - 111 -7.4 伺服参数、状态信息通信地址 ..................................................................... - 112 -第8章运行与调整 ........................................................................................ - 113 -8.1 点动运行....................................................................................................... - 113 -8.2 按键调速运行 ............................................................................................... - 113 -8.3 增益调谐....................................................................................................... - 114 -8.3.1 系统惯量识别 ............................................................................................................... - 115 -8.3.2 自动增益调整 ............................................................................................................... - 117 -8.3.3手动增益调整 ................................................................................................................ - 118 -8.3.4抑制抖动方法 ................................................................................................................ - 119 -第9章伺服单元控制结构与实例.................................................................. - 120 -9.1 位置控制实例 ............................................................................................... - 120 -9.1.1位置控制结构图 ............................................................................................................ - 120 -9.1.2位置控制举例 ................................................................................................................ - 120 -9.2 速度控制实例 ............................................................................................... - 121 -9.2.1速度控制结构图 ............................................................................................................ - 121 -9.2.2速度控制举例 ................................................................................................................ - 121 -9.3转矩控制实例 ................................................................................................ - 121 -9.3.1转矩控制结构图 ............................................................................................................ - 121 -9.3.2转矩控制举例 ................................................................................................................ - 122 -9.4电子齿轮比计算 ............................................................................................ - 122 -9.5电子齿轮比举例 ............................................................................................ - 124 -9.5.1滚珠丝杆 ........................................................................................................................ - 124 -9.5.2圆台 ................................................................................................................................ - 124 -9.5.3皮带+皮带轮 .................................................................................................................. - 125 -第10章绝对式伺服单元的使用 ................................................................... - 126 -10.1绝对数据信息输出方式................................................................................ - 126 -10.2绝对数据信息收发时序................................................................................ - 127 -10.3ABZ脉冲信号分频输出 ................................................................................. - 130 -10.4绝对式编码器的初始化................................................................................ - 131 -10.5绝对式编码器电池的安装 ............................................................................ - 131 -附录 .............................................................................................................. - 132 -附录A 增益切换................................................................................................. - 132 -附录B 控制模式切换.......................................................................................... - 132 -B.1位置/速度控制模式切换.................................................................................................. - 132 -B.2位置/转矩控制模式切换 .................................................................................................. - 133 -B.3速度/转矩控制模式切换 .................................................................................................. - 135 -附录C伺服驱动器工作时序................................................................................ - 135 -C.1电机静止时的ON/OFF动作时序 .................................................................................... - 135 -C.2电机运转时的ON/OFF动作时序 .................................................................................... - 136 -C.3伺服ON时报警的时序 .................................................................................................... - 136 -附录D电磁制动器 .............................................................................................. - 137 -附录E 再生制动电阻.......................................................................................... - 137 -附录F原点回归 .................................................................................................. - 138 -F1.1原点回归运行步骤 ........................................................................................................ - 138 -F1.2原点回归触发时序 ........................................................................................................ - 138 -F1.3原点回归组合模式时序.................................................................................................. - 140 -附录G 内部位置控制 ......................................................................................... - 145 -附录H 定长位移中断 ......................................................................................... - 147 -第1章产品检查及安装- 1 - 1第1章产品检查及安装1.1产品检查本产品在出厂前均做过完整功能测试,为防止产品运送过程中因疏忽导致产品不正常,拆封后请详细检查下列事项:●检查伺服驱动器与伺服电机型号是否与订购的机型相同。

电机变频驱动器数据手册说明书

电机变频驱动器数据手册说明书

Brake chopper 7-digital display assembly
FS2
with SmartWire-DT module DX-NET-SWD3
Specification for general requirements: IEC/EN 61800-2 EMC requirements: IEC/EN 61800-3 Safety requirements: IEC/EN 61800-5-1
Variable frequency drives
DC1
Ue
115 V AC, single-phase
U2230 ຫໍສະໝຸດ AC, 3-phaseULN
V
110 (-10%) - 115 (+10%)
Ie
A
5.8
Rated operational current at an operating frequency of 16 kHz and an ambient air temperature of +50 °C
Overload cycle for 60 s every 600 s
at 230 V, 50 Hz
P
kW
1.1
IM
A
4.6
at 220 - 240 V, 60 Hz
P
HP
1.5
IM
A
5.8
IP20/NEMA 0
OP-Bus (RS485)/Modbus RTU, CANopen®
SmartWire-DT
CE, UL, cUL, RCM, UkrSEPRO, EAC
RoHS, ISO 9001
ρw
%
< 95%, average relative humidity (RH), non-condensing, non-corrosive

驱动器说明书

驱动器说明书

F
数字位显示值为反馈信号
0~100之间数值
反馈信号值,其显示值为百分数,例如反馈信号为0~10V,当反馈信号为1V时,此时 的显示值为1/10*100=10
2)数码管数字位,包括3位数码管,其最小显示值为0,最大显示值为100,显示精度为±1 3)当驱动器正常运行时,数码管在C和F之间交替显示,即输入信号与驱动器反馈信号交替显示。 故障报警功能: 自适应过程不正常故障报警: ● 黄色报警指示灯点亮 ● 驱动器运行状态:当控制信号>总量程的50% 时,驱动器轴缩进运行到上极限位置,当控制信号<总量程的50%时,驱动器轴伸出运行到下 极限位置,阀位反馈信号始终输出总量程的50%+1%。 ● 数码管显示:功能位:交替显示C与F,数字位显示:交替显示当前控制信号值并且阀位反馈信号显示值50(始终显示为50)。 不能运行指定位置故障报警: ● 黄色报警指示灯点亮 ● 驱动器运行状态:驱动器停止运行 ● 数码管显示:功能位:交替显示C与F,数字位显示:交替显示当前控制信号C与发生故障时的F显示值。
拨码开关设定 ! 根据现场应用情况正确设置拨码开关!
Ver2.1
24VAC, 比例调节型,带手动
MT5000
标称输出力
5000N
阀位反馈信号
0(2)~10VDC, 0(4)~20mA
实际输出力
4500N~5500N
运行方式
直行程调节方式
功率消耗
15VA
工作电压24VAC源自电机交流永磁同步电机
电压输入阻抗
选配功能:
---辅助功能接线端子:
1)端子1,2(UL)为上极限位置干接点输出端(常开),当驱动器缩进到极限位置时,干接点闭合
2)端子3,4(DL)为下极限位置干接点输出端(常开),当驱动器伸出到极限位置时,干接点闭合

ASD-B1021-A 说明书

ASD-B1021-A 说明书

YDM30200100; 伺服编码器配线:YDM37900100;YDM37900200;YDM37900300;YDM37900400;Y4030575940; PUTNCLINE12 ; ASDA-AB 系列进阶泛用型
型号; ASD-A0121-AB ASD-B0121-A ECMA-C30401ES ASD-A0221-AB ASD-B0221-A ECMA-C30602ES ECMA-C30602GS ECMA-C30602FS ASD-A0421-AB ASD-B0421-A ECMA-C30604ES ECMA-C30604AS ECMA-C30604PS ECMA-C30604GS ECMA-C30604CS ECMA-C30604FS ECMA-C30804E7 ECMA-C30804F7 ECMA-C30804EC ECMA-C30804G7 ECMA-E31305ES ECMA-E31305FS ECMA-G31303ES ECMA-G31303FS ASD-A0721-AB ASD-B0721-A ECMA-C30807ES ECMA-C30807FS ECMA-C30807EC ECMA-C30807GS ECMA-C30807GC ECMA-C30807P6 ECMA-G31306ES ECMA-G31306FS ASD-A1021-AB ASD-B1021-A ECMA-C31010ES ECMA-C31010GS ECMA-C31010FS ECMA-E31310ES
ASD-B1021-A,ASD-B1021-A,ASD-B1021-A 定子铁心槽型有以下几种: 半闭口型槽:电动机的效率和功率因数较高,但绕组嵌线和绝缘都较困难。一般用于小
型低压电机中。张经理 182 019 88 309 资料 Q 8788 56087 技术支持 半开口型槽:可嵌放成型绕组,一般用于大型、中型低压电机。所谓成型绕组即绕组可

多电机单驱动器应用指南说明书

多电机单驱动器应用指南说明书

Multiple m otors - s ingle d riveIntroductionThis document is to help with the installation and setup of a system with multiple motors that are run on a single drive at the same time. In this type of application, the drive can no longer protect individual motors so there are different system considerations as compared to a single drive/ single motor application. System considerations•Because the drive can’t protect individual motors each motor has to have it own thermal protection device. This device cannot be self-resetting and should be something you can turn off to be able to disconnect the motor if needed. This is normally a manual motor protector. It is not recommended to use fuses on the motor unless the fuses are monitored and will remove all 3 phases if it blows one phase.•When calculating the distance of the output run you have to add all of the cabling together. As an example, let’s say we have a single run between the drive and the distribution box of 100’. From there we go to 5 different motors and each of those runs is 25’. The equivalent output run would be 25+25+25+25+25+100=225’. We would need to protect the output for a 225’ output run. In the minimum any multiple motor system should have an output reactor on it. On the above example we would want to put a DV/DT filter on this to be safe.o0-150’ recommended output reactoro150-700’ recommended DV/DT filtero Above 700’ recommended sine filter (need to spec a sine filter capable of DC braking)•As with any drive installation the output cable should be run with a high quality VFD cable. This is to improve performance and reduce risk of adverse results.•For best results all motors should be the same make and model. These motors need to share the load as well as possible and any differences in the motors could cause an unbalanced load share. Drive setupThe following parameters are what you set for this type of setup:•Motor nameplate current: add all of the motor FLAs together and put this in the drive as nameplate current.•Motor nameplate voltage: this is the voltage off of the rating plate of the motor. If you want to output more or less voltage to the motor, it is better to use voltage at field weakening point and not by changing the motor nameplate voltage. The drive uses the motor nameplate information forcalculating a lot of things in the drive so if you skew this data you will make the drive calculatethings like power, torque and temperature incorrectly. As an example, if you have a 230V motor buta 208V input to the drive do not put the motor nameplate at 208, it should be 230. If you want thevoltage to increase up until the field weakening point we would change the voltage at fieldweakening point. In this case we would divide 208 by 230 which would give you 90%. You would put this in the drive for voltage at field weakening point.Multiple m otors - si ngle d riveApplication Note AP 040212ENEffective A pril 20202 EATON •Motor nameplate frequency: this should be taken directly off of the motor.•Motor nameplate speed: this should be taken directly off of the motor.•Power factor: this is taken directly off of the motor. If you can’t find it on the motor rating plate leave it as the default setting. This could potentially change power and torque calculations but hopefully it is close.•Current limit: should be set somewhere between 110-125%. I would start on the low end of this and increase it if we need more starting torque.•Minimum frequency: this is application specific. This will set the minimum reference you can set to the drive.•Maximum frequency: this is application specific. This is the maximum reference you can set to the drive.•Acceleration time: this is application specific. Preferably you set this to a value that will allow the drive to accelerate the application without going into a current limit.•Deceleration time: this is application specific. Preferably this is set to a value that will allow the drive to slow the application down without going into an overvoltage controller.•Start mode: start mode should be set to ramp to start. On multiple motors you can’t really use flying start because you can’t find magnetizing current on multiple motors at the same time. If there is the possibility of flying motors, we will need to use DC braking at start.•Stop mode: this will be application specific. Most of these applications will be fan banks which generally you will coast to stop. There are other applications where ramp to stop may be more preferable.•DC brake current: this is the current that you would use during DC braking. If we have the potential of flying motors when we start, we want to bring them to a stop before starting. I would start with about 30% of the combined FLA of all motors for this value. You do not want to go too high with this value in case motors are removed from the circuit you don’t want to put too much current to theremaining motors. If you go too low you may not be able to slow down the motors. The rough range would be between 30% to 75% of the combined FLA. If you go too high with this value you do not want to remove too many motors from the circuit without lowering this value.•Start DC brake time: this is going to depend on the application. We will use this in combination with the DC brake current to bring the motors to a stop before we start them. A good starting point would be about 60 seconds.•Voltage at field weakening point: this is the setting that you will use if you want the drive to output higher than motor nameplate voltage. If the input voltage is higher than the motor nameplate voltage you may want to use this voltage. You do this by increasing this number above 100%. As anexample, let’s say your input voltage is typically 490VAC. Your motor nameplate is 460V. With default settings the drive will output 460VAC at 60Hz. If we want to output the 490VAC at 60Hz instead of 460V we would take our input voltage and divide it by our motor nameplate voltage and put this in for this value. 490/460=106%Setup of b raking at s tartIf you have an application where it is possible for the motors to be moving when the drive starts you will need to use DC braking at start. You can’t use flying start because the motors are not synced with each other so the drive will not be able to find what speed the motors are at because they are all at different speeds. The way to set this up is to do the following:•The best way to watch the system is normally using the trendplotter on the HMAX or SVX series of drives or the powerexpert tool for DG1 series. This way you can look at multiple readings at once on your laptop. You can do this through the keypad but on the SVX and HMAX series you can record the readings which makes it easier to look at all the data.•Set DC braking current to about 30% of FLA.*•Set DC braking time at start to 60 sec.*•If you are using ramp to stop change to coast to stop.•Start the application with all of the motors attached. Ramp up to full speed if possible.Multiple m otors - s ingle d rive Application Note AP 040212ENEffective A pril 2020EATON 3•Stop the application and then immediately restart it. Time how long it takes the motors to come to a stop.•If the motors did not come to a complete stop before the drive tried to start the motors, you should either increase the braking current or increase the braking time. The caution with this is if you have to go high in braking current you have to be cautious about removing motors. Motors will take more than 100% current for a short period of time but as an example if you have 6 motors in the bank and you have braking set to 75% of the combined FLA you probably would not want to remove more than 3 of the motors from the circuit without changing this current. If you removed 3of the motors from the circuit when you would start you would be putting 150% of FLA to the motors for the length of time you have the braking set for. This won’t hurt for motor for theamount of time we should be using for braking but if you remove 1 more motor that percentage now goes to 225% of FLA. This is getting into an area that you shouldn’t be running and if you go down to 1 motor you will now be at 450% of FLA. This will heat the motor and start to degrade the motor insulation along with the cabling insulation going to the individual motor.•If the motors stopped well before the drive restarts the motors, you will probably want to decrease the braking time. I would recommend setting this about 5 to 10 seconds longer than it takes to stop the motors. This way if system characteristics change we have some leeway in the system.•Retry this after adjusting these settings to make sure everything looks okay while starting and stopping the application.•If you need ramp to stop change back to ramp to stop.*If you are doing this on an HMAX drive you do not have DC braking at start. You will need to use pre-magnetizing current and pre-magnetizing time to get the same results.Motor p rotection d evice Each motor on the system has to be protected individually because the drive cannot tell the difference between motors and know where all of the current is going on the output.This protection has to be something that will not auto-reset. We do not want the motor to bereconnected to a drive that is running. This will cause a lot of current to be drawn off of the drive and will trip the drive. Normally manual motor protectors (MMP) are used for this because you can also manually remove the motor from the circuit if you need to. Fuses should not be used to protect the motors unless there is something that will recognize a blown fuse and remove the other 2 phases to the motor.When you set the protection devices you do not set them for the service factor of the motor. The service factor of the motor is for a clean sinusoidal output. The drive does not put out a cleansinusoidal output so there are harmonics involved. This makes the service factor of the motor 1.0 due to the extra heating. This is what you would set your protection devices for. You may want to give it a little extra to stop any false tripping, but you do not want to use the service factor rating of the motor.Multiple m otors - s ingle d rive Application Note AP040212ENEffective A pril 2020Additional h elpIn the US or Canada: please contact the Technical Resource Center at 1-877-ETN-CAREor 1-877-326-2273 option 2, option 6.All other supporting documentation is located on the Eaton web site at /DrivesEaton1000 Eaton BoulevardCleveland, OH 44122 USA© 2020 EatonAll Rights ReservedPrinted in USAPublication No. AP040212ENApril 2020Eaton is a registered trademark.All other trademarks areproperty of their respectiveowners.。

杰瑞尔电子130系列DC电机驱动器说明书

杰瑞尔电子130系列DC电机驱动器说明书

1SPECIFICATIONSAC Input Voltage: ±10% of rated line voltage Acceleration: 0.5 seconds Amps–DC Output130xx12 and 132xx25: 500 mA to 1.2 ADC 130LC100 and 132LC200: 500 mA to 5.5 ADC* 130HC100 and 132HC200: 500 mA to 10 ADC Controller Overload Capacity: 200% for one minute Current Limit Trimpot RangeModels 130xx100 and 132xx200: 1 to 18 ADC Deceleration: 0.5 seconds Dimensions:L C Models: 126.16 W x 107.95 L x 68.27 mm D (4.96 x 4.25 x 2.68") H C Models: 158.75 W x 177.8 L x 103.2 mm D (6.25 x 7.0 x 4.06")Weight:LC Models: 489.87 g (1.08 lb) HC Models: 1496.80 g (3.30 lb)ReveRsing DC MotoR speeD ContRoll P rovides DC Motor Speed Control withReversing Capability l S peed Regulation is ±1% of Base Speed l A djustable Minimum/Maximum Speed l A djustable Current Limit l S peed Adjustment Using 5 k Ω Speedpot or 0 to 10 Vdc Analog Input Signal l O nboard Dynamic Braking Resistor l 5K Speed Pot with 8" Leads, Dial and Knob Included l 50:1 Speed Range130 SeriesThe 130 Series reversing speed control is designed to provide instant reversing, quick precise stopping or rapid cycling for a wide range of DC motor applications. The 130 Series reversing control outperforms other dynamic braking and reversing controls by utilizing unique zero-speed detect and dynamic braking circuits. These circuits eliminate the contact arcing and failed braking problems associated with other reversing and dynamic braking controls. The zero speed detect circuit also eliminates motor plug reversing problems. In the event of a power loss or emergency stop condition, the 130 Series control will drop into a dynamic brake condition to safely and quickly bring the motor to a stop and remain there until power is reapplied and a run condition is recognized.Applicationsl D oor Openers l F eeders l T apping MachinesDrive Service Factor: 1.0Efficiency: 85% typicalInput Frequency: 50 or 60 Hz Trimpot Speed Range Maximum: 60 to 110% of base speed Minimum: 0 to 30% of maximum speed Power Devices: Isolated case tabShunt Field Voltage: 100 Vdc for 120 Vac input; 200 Vdc for 240 Vac inputShunt Field Current: 1 amp DC maximumSpeed Control: Via 5 k Ω 0.5 W potentiometer or 0 to 10 Vdc isolated signalSpeed Range: 50:1Speed Regulation: ±1% of base speedTemperature Range: -10 to 45°C ambient (15 to 115°F)Terminal Block Torque Setting: 4.4 in. lb. maximum or 0.05 NmTransient Protection: G-Mov Trigger: Opto-isolatorStart/Brake Cycle Per Minute LC Models: 3 per min** HC Models: 30 per min**Operating ConditionsTemperature: -10 to 45°C (14 to 113°F) AC Input Voltage: ±10% rated line voltage Input Frequency: 50/60 Hz* With suitable external heat sink (where 130 extrusion temperature does not exceed 70°C), maximum rating for output amps can be increased to 10 amps D.C.** Cycles per minute are based on typical inertia type loads. Higher cycle per minute rates may be achieved with constant torque or low inertia type loads. Lower cycle rates may be required for very high inertia type loads.l P umpsl S creen Presses l C onveyorsOMDC-130LC100 shown smaller than actual size.2Comes complete with manual, speedpot kit, dial and knob.* Up to 10A continuous current output at 1 HP 90 Vdc with heat sink. ** Up to 10A continuous current output at 2 HP 180 Vdc with heat sink.Ordering Example: OMDC-130LC100,reversing DC drive speed control.。

KND-SD200驱动器用户手册

KND-SD200驱动器用户手册

DRIVER SERIESKND-SD200系列全数字交流伺服驱动器用 户 手 册北京凯恩帝数控技术有限责任公司F03B-W00N-0001KND LTD,2006网址(Http) : E-mail :pe@C注意●本驱动器电源为三相或单相交流220V,推荐使用三相隔离变压器。

驱动器不能直接接交流380V,否则会造成驱动器损坏。

●端子排U、V、W端子必须与电机U、V、W相接线一一对应。

●本手册内容适用于驱动器软件V2.0及以上版本。

目录第1章 规格 (1)1.1 伺服驱动器规格 (1)1.2 伺服驱动器尺寸 (2)第2章 安装与接线 (3)2.1 安装场合 (3)2.2 安装方法 (4)2.3 标准连接 (5)2.3.1 位置控制接线图 (5)2.3.2 配线规格 (6)2.4 注意事项 (6)第3章 接口 (7)3.1 电源端子TB (7)3.2 控制信号输入/输出端子CN1 (8)3.3 编码器信号输入端子CN 2 (11)3.4 接口端子配置 (12)3.5 常用输入/输出接口类型 (12)3.5.1 开关量输入接口 (12)3.5.2 开关量输出接口 (12)3.5.3 脉冲量输入接口 (13)3.5.4 编码器信号输出接口 (14)3.5.5编码器Z信号集电极开路输出接口 (14)3.5.6 伺服电机光电编码器输入接口 (14)第4章 参数 (15)4.1 参数一览表 (15)4.2 参数功能 (17)第5章 保护功能 (21)5.1 报警一览表 (21)5.2 报警处理方法 (22)第6章 显示与键盘操作 (27)6.1 第1层 (27)6.2 第2层 (28)6.2.1 监视方式 (28)6.2.2 参数设置 (29)6.2.3 参数管理 (30)6.2.4 速度试运行 (31)第7章 运行 (32)7.1 接地 (32)7.2 工作时序 (32)7.2.1 电源接通次序 (32)7.2.2 时序图 (32)7.3 注意事项 (34)7.4 调整 (35)7.4.1 基本增益调整 (35)7.4.2 基本参数调整图 (36)7.4.3电子齿轮设置 (36)7.4.4启动特性调整 (37)7.5 常见问题 (37)7.5.1 恢复缺省参数 (37)7.5.2 频繁出现Err-15、Err-30、Err-31、Err-32报警 (38)7.5.3 出现Power灯不能点亮现象 (38)7.6 相关知识 (39)7.6.1 位置分辨率和电子齿轮的设置 (39)7.6.2 位置控制是的滞后脉冲 (39)第8章 与KND系统的连接 (40)8.1 与K100T/M/M4及K1000T/M/M4系统的连接 (40)8.2 与K10M系统的连接 (40)8.3 与K1/K2系统的连接 (41)第一章 规 格1.1 伺服驱动器规格型 号 KND SD200输入电源单相或三相AC220V -15~+10% 50/60Hz 温度工作:0~55 ℃存贮:-20℃~80℃ 湿度 小于90%(无结露)使用 环境振动小于0.5G (4.9m/s²),10~60Hz (非连续运行) 控制方法 ①位置控制 ②速度控制 ③转矩控制 JOG ④运行 再生制动内置速度频率响应 200Hz 或更高速度波动率 <±0.03(负载0~100%);<±0.02(电源-15~+10%)(数值对应于额定速度) 调速比 15000∶ 特性脉冲频率 ≤500kHz控制输入 ①伺服使能 ②报警清除 CCW ③驱动禁止 CW ④驱动禁止 ⑤偏差计数器清零/零速箝位 ⑥指令脉冲禁止 CCW ⑦转矩限制 CW ⑧转矩限制控制输出①伺服准备好输出 ②伺服报警输出 ③定位完成输出/速度到达输出 输入方式 脉冲+符号电子齿轮 1~32767 / 1~32767 位置控制反馈脉冲 2500线/转速度控制 4种内部速度加减速功能 参数设置1~10000ms/1000r/min监视功能转速、当前位置、指令脉冲积累、位置偏差、电机转矩转矩指令、速度指令、电机电流、转子绝对位置、编码器状态、运行状态、输入输出端子信号等保护功能 超速、主电源过压欠压、过流、过载、制动异常、编码器异常、控制电源异常、位置超差等 适用负载惯量小于电机惯量的5倍1.2 伺服驱动器尺寸图1-1 KND SD200安装尺寸图第二章安装与接线2.1安装场合1、电气控制柜内的安装由于电气控制柜内部电气设备的发热以及控制柜内的散热条件限制,伺服驱动器周围的温度将会不断升高,所以应考虑驱动器的冷却以及控制柜内的配置情况,保证伺服驱动器周围温度在55℃以下,相对湿度90%以下,长期安全工作温度在45℃以下。

直线电机驱动器说明书

直线电机驱动器说明书

地址(Address):深圳市南山区高新科技园北区朗山二路 6 号赛霸电子一号楼四楼(4/F,1st CYBIO Building, No. 6 Langshan 2 Road,
Hi-Tech Industrial Park North, Nanshan, Shenzhen, Guangdong,P.R.China)
电 话 (Tel) :(86)(755)26982158
传真(Fax):(86)(755)26982786 邮政编码(Postcode):518057
① 用于与生命相关的医疗器械。 ② 用于可能造成人身安全的设备,例如:火车或升降机。 ③ 用于可能造成社会影响的计算机系统 ④ 用于有关对人身安全或对公共设施有影响的其他设备。 (5).对用于易受震动的环境,例如:交通工具上操作,请咨询我们。
1.2 安全注意事项
(1).请勿在易燃易爆的环境下操作本产品,否则易造成伤害或引起火灾。 (2).绝不要触摸驱动器内部任何部件,否则会触电。 (3).在通电情况下,不要进行维修和检查工作,也勿整理电线。如果要的话,至少得提前五分 钟把电源关掉,否则,会有触电危险。 (4).在运输、安装、接线、操作、维修和检查等各方面,请咨询相应的专家。若没有相应专业 技术人员,很可能会发生触电、受到伤害或是引起火灾。 (5).一定要使驱动器 PE 端子(保护接地)接地,电机的接地端子必须要与驱动器的 PE 端子(保 护接地)相连。否则,会出现触电情况。 (6).通电时,绝不要靠近也不要触及接线端子,更不要移动任何接线端子,否则会发生触电。 (7).要安全正确布线,符合电气安装技术标准和附加规则。否则,可能引起短路和火灾。 (8).当报警发生后,须排除故障的起因,检查系统的安全性。然后,报警复位,才能继续操作。 否则,可能受到伤害。 (9).检查电源规格是否规范,否则会出现故障。 (10).在接通电源长时间后或断开电源时间不长时,请勿触及驱动器散热片。否则可能会被灼伤。 (11).需要维修,请与我们联系。如果自己拆卸部件,部件可能会出故障。

驱动器说明书

驱动器说明书

公司简介上海固若金电子科技有限公司是一家从事步进电机驱动器开发、生产、销售为一体的高科技企业,并且多年从事电机控制系统的开发,致力于机电一体化产品的开发和运动控制系统的优化集成。

公司现主要产品为步进电机驱动器,功能强大,性能可靠,性价比极高。

并且可为客户量身定做各种控制系统。

产品广泛应用于数控机床、电脑绣花、包装机械、雕刻机、绕线机、 XYZ 三维工作台、医疗设备等行业中。

公司拥有一批积累了丰富经验的开发、生产、销售和工程服务人员。

可为用户开发多种层次自动化控制系统,包括产品选型、方案设计。

公司坚持 " 质量第一,用户至上 " 的原则,服务于用户,让用户满意,为用户提供优质产品和服务。

步进电机选型指南步进电机是一种将电脉冲转化为角位移的执行机构。

通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(步进角)。

您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

一、 步进电机的种类:永磁式(PM) :磁式步进一般为两相,转矩和体积较小,步进角一般为7.5度 或15度;多用于空调风摆上。

反应式(VR):国内一般叫BF,常见的有三相反应式,步距角为1.5度;也有五相反应式。

噪音大,无定为转距已大量淘汰。

混合式(HB):常见的有两相混合式,五相混合式,三相混合式,四相混合式,两相跟四相可以通用驱动器,五相跟三相必须使用各自的驱动器;两相、四相混合式步距角多是1.8度,具有小体积,大力距,低噪音;五相混合式步进电机一般为0.72度,电机步距角小,分辨率高,但是驱动电路复杂,接线麻烦,如5相十线制。

三相混合式步进电机步距角为1.2度1、步进电机的保持转距:指步进电机通电但没有转动时,定子锁住转子的力矩。

它是步进电机最重要的参数之一,通常步进电机在低速时的力矩接近保持转矩。

EMAX NANO系列电机驱动器说明书

EMAX NANO系列电机驱动器说明书

EMAX User Instruction for NANO Series ESCThank you for purchasing EMAX ESC, please read this manual carefully before you use the ESC and strictly follow the instructions. EMAX accepts no liability for damage(s) or injuries incurred directly or indirectly from the use of this product, or modification of this product. Due to unforeseen changes or product upgrades in design, appearance, performance, the information contained in this manual is subject to change without notice.A. FeaturesA1: Use authentic electronic components to ensure high quality and enhance the current endurance ability of the ESC.A2: Based on BLHeli firmware, optimized for high performance with great linearity and much quicker throttle response.A3: Special designed for multirotors, and compatible with fixed-wing aircrafts and helicopters.A4: Multiple protection features including Low-voltage cut-off protection / over-heat protection / throttle signal loss protection.A5: Throttle range can be configured and is fully compatible with all receivers, providing smooth, linear and precise throttle response.A6: All parameters can be programmed via using a program card or a transmitter, including default settings.B.Product specificationItem ContinuousCurrentBurstcurrentLi-xxBatteryDimensionL*W*H(mm)Weight (g) wiresIncludedBECOutputProgrammableEMAX NANO -6A 6A 8A 1-2s 26×12.5×5 7 ---- YESEMAX NANO -12A(V2) 12A 15A 3-4s 30×12.5×8 7 ---- YES EMAX NANO -20A 20A 25A 3-4s 45×21×7 17 ---- YES C. InstructionsC1.Normal startup proceduresMove throttle stick to the bottom position and then switch on transmitter→ Connect battery pack to ESC→ The long “beep” sound should be emitted , means the bottom point of throttle range has been detected→ Several “beep” tones should be emitted to present the amount of battery cells→ When self-test is finished, a “♪ 1 2 3” tune should be emitted→ Move throttle stick upwards to go flying.C2.Throttle range setting procedures (when users change a transmitter, throttle range setting is recommended.)Switch on the transmitter, move throttle stick to the top position→ Connect battery pack to ESC→ Two “beep” sounds should be emitted, means the top point of throttle range has been confirmed and saved→ Move throttle stick to the bottom position (within 2s),a long “beep” sound should be emitted , means the bottom point of throttle range has been detected→ Several “beep” tones shouldbe emitted to present the amount of battery cells→ When self-test is finished, a “♪ 1 2 3” tune should be emitted, Move throttlestick upwards to go flying.If the throttle stick is neither at the bottom position nor the top position after powered on, it will constantly make “beep” sounds.D. Programmable parametersD1. Brake Type: There are two options: OFF, ON. The default is OFF.D2. Timing Mode: There are five options: Low: 0°, Mid-low: 8°, Middle:15°, Mid-high:23° and High:30°. The default is Middle: 15°. Low advance timing is recommended for high inductance and low KV motors. High advance timing is recommended for low inductance and high KV outrunner motors. For some high KV motors, if it shakes while rotating in high speed, the High timing mode is recommended.D3. Start Force: There are 13 options: 0.031, 0.047, 0.063, 0.094, 0.125, 0.188, 0.25, 0.38, 0.50, 0.75, 1.00, 1.25, 1.50. The defaultis 0.75. Select the corresponding start force according to the load of motor.D4. Curve Mode: There are 4 options: OFF, Low, Middle and High. The default is OFF.D5. Control Frequency : 2 options: 8KHz and 22KHz. The default is 8KHz. This option is the drive frequency of the motors.D6. Low-voltage Protection: 4 options: OFF, 2.8V/cell, 3.0V/cell, 3.2V/cell. The default is 3.0V/cell. the system will automatically identify the battery cell. E.g. suppose there’re 3 cells, if the voltage is lower than 9V, the system will work according to the current cutoff option.D7. Cutoff Mode: There are two options: Soft-Cut and Cut-Off. The default is Soft-Cut. Soft-Cut option: Gradually reduce throttle power to 31% of the current power when the voltage is lower than the programmed low-voltage protection threshold. Cut-Off Option: immediate motor shutdown occurs in low-voltage.When low-voltage protection, Push the throttle stick to the bottom position and then to the top position, the motor will be restarted. But since it is low-voltage condition, the output power is low or stopped at once.YIN YAN MODEL TECH. MFT. D8. Rotation Direction: There are 3 options: Normal, Reverse, Bidirectional. The default is Normal.E. Protection settingE1. Low-voltage Protection: Whether to shut down the motor immediately or to lower the power when the input voltage drops below the programmed low-voltage protection threshold depends on the values set as Cutoff Mode. (Please refer to D7 for Cutoff Mode )E2. Loss of Signal Protection: Power will be gradually lower to 0 when signal lost, and motor stops. Motor will resume to the current power when the signal is detected again.E3. Over-heat Protection: When the temperature of the ESC MOSFETS exceeds 100 Celsius degree, power will be lowered gradually and will resume when the temperature decreases.F.. Programming via TransmitterStep 1: Enter program modeSwitch the transmitter on→Pull the throttle stick to the top position→Switch the ESC on, wait 2 seconds, you will hear two “beep” sounds, which denotes that Max. throttle has been confirmed→Hold the throttle stick at the top position, and then wait 2 seconds until you hear tune “♪ 1 2 3 ♪1 2 3”, that means you have entered the transmitter programming mode.Step 2: Select program parametersHold the throttle stick on top position, there’re 7 parameters can be set by using your transmitter. You would hear 7 different indicating sounds which correspond to 7 different parameters. Pull the throttle stick to the bottom position (full Off throttle) within 2 seconds after you hear the correspondent sound will brings you to the correspondent parameter setting status. The indicating sounds will repeat in turn as follow.1. “beep-” (a short sound) which indicates the Brake Type2. “beep-beep-” (two short sounds) which indicates the Timing Mode3. “beep-beep-beep-” (three short sounds) which indicates the Start Force4. “beep-beep-beep-beep-” (four short sounds) which indicates the Curve Mode5. “beep-----” (a long sound) which indicates the Control Frequency6. “beep-----beep-” (a long sound and a short) which indicates the Low-voltage Protection7. “beep-----beep-beep-” (a long sound and two short) which indicates the Cutoff Mode8. “beep-----beep-beep-beep-” (a long sound and three short) which indicates the Rotation DirectionStep 3: Select program valuesAfter entering parameter setting status, hold the throttle stick on the bottom position, you will be led to the repeat selection of that parameter setting status. Each sound likes 4 short sounds and one long sound (1 long sound=5short sounds), and by that analogy. After some sound, pull the throttle stick to the top position in 2 seconds, after you hear a tune “♪3 2 1 ♪3 2 1”, which means the correspondent value has been chosen and saved. Hold the stick on the top position, return to the second step and continue programming.Step 4: Exit programPull the throttle stick to the bottom position within 2 seconds and hold on after saving parameters, until you hear a tune “beep---- beep- beep- beep- ♪ 1 2 3”. Set the Min. Throttle at this moment and exit program and operate as normal.(beep----means Loading parameter. beep- beep- beep-means numbers of cells and ♪1 2 3 means ready. )Restore Factory settingsTo restore Factory settings, pull the throttle stick to the bottom position (full Off throttle ) within 1s after entering program mode (Step 1)→Pull the throttle stick to the top position within 2s, then you will hear a tune, which means that the factory settings have been restored. Pull the throttle stick to the bottom position within 2s, the ESC is ready with factory settings.When Bidirectonal mode is chosen, the ESC can not be programmed, and a designated program card is required to restore factory settings.The ESC will not be able to programmed via Program card, but it can still be programmed via transmitter control sticks. If the Bidiretional mode is chosen, the Minimum Throttle actually means Middle Throttle position. Factory settings can be restored under Bidirectional mode.。

新代 220V 3kW 二代单轴驱动器 硬体操作手册说明书

新代 220V 3kW 二代单轴驱动器 硬体操作手册说明书

220V 3kW 二代单轴驱动器 硬体操作说明书(SVD-22C1-030)匯出日期:2023-05-11修改日期:2021-04-192023/05/11, 00:291 序言感谢您长期对本公司产品的使用与支持。

本公司伺服团队不断致力於各项产品的研发,期许本公司产品与服务能给使用者带来最大的效益。

新代高性能驱动器系列产品为本公司最新推出之伺服驱动器,本产品使用高品质之元件与材料,并经过严格测试,采用精密向量控制,具有高精确度、高稳定性、高效率之特性。

本使用说明内容包括驱动器的硬体规格、安装、配线与讯号,能提供给使用者最正确的指引与操作,为充分发挥产品应有的优异性能与维护人员及设备的安全,在使用前请详细阅读本使用手册,并且妥善保存,以备日後调校与保养时使用,若有任何疑虑,请与本公司联络,本公司专业人员将竭诚为您服务。

2 适用机型本单轴操作手册适用於新代 3kW 二代单轴驱动器。

3 硬体规格3.1 说明每部驱动器在出厂前均经过详细品管检查与防撞包装处理,请使用者收到产品後应先检查外观有无撞击损伤,并将外盒与产品上之序号做比对是否一致,若有不符,请第一时间与本公司联络。

型号说明3.2 外观介绍3.3 外形尺寸SVD-22C1-030驱动器规格新代驱动器SVD-22C1-030三相 220~230V 50/60Hz电源额定电源电压电源电压容-15 ~ +10%许范围电源频率变±5%动范围输出 额定输出电17.6A流过电流能力150% 60s、200% 1s控制方式 三相全波整流,SVPWM-VVVF控制回生电阻 建议使用内建即可,如要外接,请参考回生电阻选用章节新代驱动器SVD-22C1-030反馈编码器 支援串列介面:Tamagawa、SYNNET、NIKON、FeeDAT选配扩充编码器模组:支援Tamagawa、SYNNET、NIKON、ABZ、串列、SSI、BiSS (不支援UVW省配线型编码器)(若要使用扩充编码器模组,请参考伺服10PX1/10PX3扩充模组操作文件) PC通讯介USB面控制器串列Mechatrolink III通讯介面输出入信号数位输入2点,可规划数位输出1点,可规划STO双通道安全扭矩停止开关(2I 1O)冷却方式 风扇冷却环境 温度0℃ ~ 55℃(若环境温度超过45℃以上时,请强制周边空气循环)、储存:-20~65℃ (非冻结)湿度最大90% RH (非结露)、储存:90%RH以下 (非结露)安装地点室内(避免阳光直射);无腐蚀性气体、易燃性气体、油雾或尘埃海拔1000公尺以下至海平面振动最大 5.9 m/s2重量 2.5 kg•••••••••••••••••••••4 搬运与安装4.1 搬运搬运时必须拿取驱动器的机身,不能只拿取上盖或其中部分,否则可能造成掉落的危险。

驱动器说明书

驱动器说明书

公司简介上海固若金电子科技有限公司是一家从事步进电机驱动器开发、生产、销售为一体的高科技企业,并且多年从事电机控制系统的开发,致力于机电一体化产品的开发和运动控制系统的优化集成。

公司现主要产品为步进电机驱动器,功能强大,性能可靠,性价比极高。

并且可为客户量身定做各种控制系统。

产品广泛应用于数控机床、电脑绣花、包装机械、雕刻机、绕线机、 XYZ 三维工作台、医疗设备等行业中。

公司拥有一批积累了丰富经验的开发、生产、销售和工程服务人员。

可为用户开发多种层次自动化控制系统,包括产品选型、方案设计。

公司坚持 " 质量第一,用户至上 " 的原则,服务于用户,让用户满意,为用户提供优质产品和服务。

步进电机选型指南步进电机是一种将电脉冲转化为角位移的执行机构。

通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(步进角)。

您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

一、 步进电机的种类:永磁式(PM) :磁式步进一般为两相,转矩和体积较小,步进角一般为7.5度 或15度;多用于空调风摆上。

反应式(VR):国内一般叫BF,常见的有三相反应式,步距角为1.5度;也有五相反应式。

噪音大,无定为转距已大量淘汰。

混合式(HB):常见的有两相混合式,五相混合式,三相混合式,四相混合式,两相跟四相可以通用驱动器,五相跟三相必须使用各自的驱动器;两相、四相混合式步距角多是1.8度,具有小体积,大力距,低噪音;五相混合式步进电机一般为0.72度,电机步距角小,分辨率高,但是驱动电路复杂,接线麻烦,如5相十线制。

三相混合式步进电机步距角为1.2度1、步进电机的保持转距:指步进电机通电但没有转动时,定子锁住转子的力矩。

它是步进电机最重要的参数之一,通常步进电机在低速时的力矩接近保持转矩。

直线电机驱动器说明书

直线电机驱动器说明书
① 用于与生命相关的医疗器械。 ② 用于可能造成人身安全的设备,例如:火车或升降机。 ③ 用于可能造成社会影响的计算机系统 ④ 用于有关对人身安全或对公共设施有影响的其他设备。 (5).对用于易受震动的环境,例如:交通工具上操作,请咨询我们。
1.2 安全注意事项
(1).请勿在易燃易爆的环境下操作本产品,否则易造成伤害或引起火灾。 (2).绝不要触摸驱动器内部任何部件,否则会触电。 (3).在通电情况下,不要进行维修和检查工作,也勿整理电线。如果要的话,至少得提前五分 钟把电源关掉,否则,会有触电危险。 (4).在运输、安装、接线、操作、维修和检查等各方面,请咨询相应的专家。若没有相应专业 技术人员,很可能会发生触电、受到伤害或是引起火灾。 (5).一定要使驱动器 PE 端子(保护接地)接地,电机的接地端子必须要与驱动器的 PE 端子(保 护接地)相连。否则,会出现触电情况。 (6).通电时,绝不要靠近也不要触及接线端子,更不要移动任何接线端子,否则会发生触电。 (7).要安全正确布线,符合电气安装技术标准和附加规则。否则,可能引起短路和火灾。 (8).当报警发生后,须排除故障的起因,检查系统的安全性。然后,报警复位,才能继续操作。 否则,可能受到伤害。 (9).检查电源规格是否规范,否则会出现故障。 (10).在接通电源长时间后或断开电源时间不长时,请勿触及驱动器散热片。否则可能会被灼伤。 (11).需要维修,请与我们联系。如果自己拆卸部件,部件可能会出故障。
1.1 概述 ...........................................................................................................................................3 1.2 安全注意事项 ...........................................................................................................................3

驱动器说明书手册

驱动器说明书手册

SGD7S-120A00A驱动器说明书手册伺服电机(servo motor )是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。

伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。

伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。

分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。

中文名伺服电机外文名Servo motor 类型设备使用场合自动控制系统目录1 工作原理2 发展历史3 选型比较4 调试方法5 性能比较6 选型计算7 制动方式8 注意事项9 特点对比10 使用范围11 主要作用12 优点工作原理编辑1、伺服系统(servo mechanism)是使物体的位置、方位、伺服电机状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。

伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001 mm。

直流伺服电机分为有刷和无刷电机。

有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护不方便(换碳刷),产生电磁干扰,对环境有要求。

因此它可以用于对成本敏感的普通工业和民用场合。

无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。

控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。

HR9110 玩具单通道直流电机驱动器说明书

HR9110 玩具单通道直流电机驱动器说明书

描述HR9110是应用于直流电机方案的单通道H桥驱动器芯片。

HR9110的H桥驱动部分采用低导通电阻的PMOS和NMOS功率管。

低导通电阻保证芯片低的功率损耗,使得芯片安全工作更长时间。

此外HR9110拥有低待机电流、低静态工作电流。

这些性能使能HR9110易用于玩具方案。

HR9110内部含有过温关断保护。

当负载电机是低阻抗的,或者输出端短路,这样使能HR9110的输出电流急剧上升,同时内部温度也急剧上升。

当芯片温度超过最大温度阈值(典型150℃),HR9110会关断所有的输出,防止潜在安全隐患。

只有当确认了芯片回归到安全的工作温度,内置温度迟滞电流才重新控制驱动电路。

应用锂电池直流电机驱动玩具机器人控制型号选择Part Number Package HR9110S SOP8 HR9110D DIP8特点●内置PMOS、NMOS的单通道H桥驱动器●四种驱动功能:正传、反转、停转和刹车功能●低RDS(ON)电阻(0.3Ω),连续输出电流1.2A●低待机电流(0.01uA)和低静态工作电流(0.2mA)●低工作电压●宽电压供电,1.8V-6.8V●内置过温关断保护电路●符合RoHS标准封装形式SOP8DIP8功能模块示意图电路工作极限at Ta=25°CParameter Symbol Conditions Ratings UnitLogic Supply Voltage VCC 5.5VLoad Supply Voltage VM 6.8VLogic Input voltage V IN VCC VOutput Current I OUT±1.2APeak Out Current Iop3A Operating Ambient Temperature T A Range S-20to85°C Maximum Junction T J(max)150°CStorage Temperature T stg-55to150°C推荐工作条件at Ta=25°CMin NOM Max Unit Logic Supply Voltage Range VCC 1.8-5VLoad Supply Voltage Range VM 1.8-6VLogic Input Voltage Range VIN0-VCC V Continuous RMS or DC output current per bridge IOUT-1200+1200mA电特性at Ta=25°C,VCC=3V,VM=3V,RL=15Ω,unless otherwise noted。

派克汉尼汾FL20系列伺服驱动器和电机说明书

派克汉尼汾FL20系列伺服驱动器和电机说明书

警告 - 用户责任错误以及不恰当的选择者使用本文档所描述的产品及其相关部件,能够导致死亡、人身伤害及财产损失。

� 来自派克汉尼汾公司产品以及其它的相关信息,它附属的机构或者授权的经销商在技术上具有专业知识并为长远投资的客户提供 产品或系统选件。

� 用户通过自己的分析和测试,单独并负责地做出最后的系统和组件的选型,并确认符合性能、耐用性、维修、安全设置以及应用 方面的警告要求。

用户必须认真进行在应用、遵循合适的工业标准以及遵循产品目录或其它由派克、其附属机构、经销商提供的 材料中所涉及的信息等所有方面的分析。

� 派克、其附属机构或者经销商基于数据或规格提供组件或系统选件给客户,客户负责任的决定这些数据和规格是合适的并且符合 所需的应用,并合理地使用这些组件或系统。

FL20 伺服驱动器FM 系列伺服电机概览...........................................................................................5订货号.......................................................................................6技术参数...................................................................................7驱动器接口..............................................................................10端子信息.................................................................................12输入输出信号配线..................................................................16连接到外围设备......................................................................17典型主电路配线......................................................................18伺服驱动器尺寸......................................................................20概览.........................................................................................24订货号.....................................................................................25产品一览表 (26)技术参数.................................................................................29电机TN曲线图.........................................................................32电机尺寸.................................................................................36配件.........................................................................................41优选驱动器和电机匹配表. (44)派克汉尼汾运动与控制领域的先行者前沿的产品设计在伺服、控制、 电机和机械产品的设计和制造方面,派克拥有超过40 年的经验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Manual of 2-phase hybrid stepper motor driver DM542
Introduction:
DM542 is a type of two-phase hybrid stepping motor driver, The drive voltage of which is from 18VDC to 50VDC. It is designed for use with 2-phase hybrid stepper motor of all kinds with 42mm to 86mm outside diameter and less than 4.0A phase current. This circuit that it adopts is similar to the circuit of servo control which enables the motor run smoothly almost without noise and vibration. Hording torque when DM542 run under high speed is also significantly higher than the other two-phase driver, what’s m ore, the positioning accuracy is also higher. It is widely used in middle and big size numerical control devices such as curving machine, CNC machine, Computer embroider machine, packing machines and so on. Features:
●High performance, low price
●Average current control, 2-phase sinusoidal output current drive
●Supply voltage from 18VDC to 50VDC
●Opto-isolated signal I/O
●Overvoltage, under voltage, overcorrect, phase short circuit protection
●15 channels subdivision and automatic idle-current reduction
●8 channels output phase current setting
●Offline command input terminal
●Motor torque is related with speed, but not related with step/revolution
●High start speed
●High hording torque under high speed
Electrical specification:
1.
1) Connector Pins Configurations
2) Pins wiring diagram:
PC’s control signals can be active in high and low electrical level. When the high electrical level is active, all control negative signals will be connected together to GND. When low electrical level is active, all control positive signals will be connected together to public port. Now give two examples( Open collector &PNP), please check them:
Fig 1. Input port circuit (Yang connection)
PC open connector output
Fig. 2 Input port circuit ( Yin connection)
PC PNP output
Note: When VCC=5V, R=0
When VCC=12V, R=1K, >1/8W
When VCC=24V, R=2K,>1/8W
R must connect in the control signal part .
3.Function choice ( Using DIP pins to achieve this function)
1) Micro step resolution is set by SW 5,6,7,8 of the DIP switch as shown in the following table: :
2) Standstill current setting
SW4 is used for this purpose. OFF meaning that the standstill current is set to be half of the selected dynamic current and ON meaning that standstill is set to be the same as the selected dynamic current.
3) Output current setting:
The first three bits (SW 1, 2, 3)of the DIP switch are used to set the dynamic current. Select a setting
Closest to your motor’s required current
4) Semi-flow function:
Semi-flow function is that there is not step pulse after 500 ms, the driver output current automatically reduced to 70% of rated output current, which is used to prevent motor heat. 4. Power connections
(1)+V、GND:Power Supply.
+V: Power supply, 16~50 VDC, Including voltage fluctuation and EMF voltage. The max current is 5A.
(2) A+ A- B+ B-:Connecting 2 phase stepper motors.
The driver & 2-phase hybrid stepping motor use four-wire connection, the motor can be connected in parallel & series bipolar. As for bipolar connection, it is higher performance with high-speed, but the current of driv er is larger (it is 1.73 times more than the motor’s winding current).
Connecting in series, the driver’s current is equal to the motor winding one.
5. Fixing
There should be 20mm of space, it can’t be placed next to other heating devices, to avoid dust, oil mist, corrosive gas, humidity and strong vibration places.
(Unit=mm)
Picture 3
6. Troubleshooting
1, the status on light’s indication
RUN: green, normal work light.
ERR: red, failure light, the motor with phase short-circuit, overvoltage and undervoltage protection.
2 Troubles
7. Driver Wiring
A complete stepper motor control system should contain stepper drives, DC power supply and controller (pulse source). The following is a typical system wiring diagram。

相关文档
最新文档