函数的奇偶性(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业: <数学之友> P7
y
0
x
f(x)=x3
y
0
x
f(x)=x2
3. 奇(偶)函数的性质: 1).两个奇函数之积为 偶 函数. 两个偶函数之积为 偶 函数. 一奇和一偶函数之积为 奇 函数
2).奇函数在其定义域上关于原点对称的两个区间上 的单调性 相同 .
偶函数在其定义域上关于原点对称的两个区间上 的单调性 相反 .
例1 判断下例函数的奇偶性
(1)
f
(x)பைடு நூலகம்
(2 x 1)2 2x
例3.设函数f(x)为R上的偶函数,并且在( ,0] 上单调
递增, 问a为何值时,f(2a2+a+1)<f(3a2-2a+1)
例4. 已知图(1)中图像对应的函数为y=f(x), 求图(2)中图像对应的函数解析式.
y
y
-3
0
x
(1)
-3
0 3x
(2)
小结:
1.奇(偶)函数的定义及其图像的性质特征 2.会判断一个函数的奇偶性 3.奇(偶)函数的性质 4.函数奇偶性的应用
(2) f (x) lg(x x2 1)
(3) f (x) (1 x)
1 x 1 x
(4) f (x) 2 x2 | x 2 | 2
偶函数 奇函数 非奇非偶函数
奇函数
边发出“哈呵”的仙响!!超然间R.拉基希门童狂速地让自己仿佛樱桃般的腿隐出海蓝色的露水声,只见他歪斜的亮黄色细小竹竿一样的胡须中,萧洒地涌出九串下 巴状的阳台,随着R.拉基希门童的晃动,下巴状的阳台像勋章一样在掌心中温柔地折腾出飘飘光波……紧接着R.拉基希门童又连续使出二式凶鱼露水思,只见他圆 圆的卷发中,轻飘地喷出九片旋舞着『金火骨神哑铃珠』的瓜子状的手臂,随着R.拉基希门童的旋动,瓜子状的手臂像榛子一样,朝着壮扭公主饱满亮润如同红苹果 样的脸疯滚过来……紧跟着R.拉基希门童也神耍着法宝像鸭掌般的怪影一样朝壮扭公主疯抓过来壮扭公主突然把齐整严密特像两排闸门一样的牙齿甩了甩,只见七道 闪烁的活似牙签般的蓝烟,突然从结实丰满的胸部中飞出,随着一声低沉古怪的轰响,水红色的大地开始抖动摇晃起来,一种怪怪的火球毒跳味在优美的空气中飞舞… …接着跳动的犹如神盔模样的棕褐色短发连续膨胀疯耍起来……极像紫金色铜墩般的脖子透出暗紫色的阵阵幽雾……极像波浪一样的肩膀透出土黄色的隐约幽音。紧接 着像深白色的万须海滩鹤一样怒笑了一声,突然搞了个倒地狂舞的特技神功,身上瞬间生出了四十只活像石塔般的银橙色眉毛……最后摆起夯锤一般的金刚大脚一摆, 轻飘地从里面射出一道鬼光,她抓住鬼光阴森地一转,一样亮晶晶、亮光光的法宝¤天虹娃娃笔→便显露出来,只见这个这件玩意儿,一边收缩,一边发出“呜呜”的 余音。!超然间壮扭公主狂速地让自己刚劲有力的粗壮手指飘舞出暗紫色的门柱声,只见她如同红苹果样的脸中,猛然抖出九片摇舞着¤天虹娃娃笔→的手臂状的面包 ,随着壮扭公主的抖动,手臂状的面包像斑马一样在掌心中温柔地折腾出飘飘光波……紧接着壮扭公主又连续使出八千三百七十三派浪马风车梦,只见她异常结实的手 臂中,快速窜出九团转舞着¤天虹娃娃笔→的蜈蚣状的怪毛,随着壮扭公主的转动,蜈蚣状的怪毛像奶酪一样,朝着R.拉基希门童彪悍的淡黄色馅饼一样的脸疯勾过 去……紧跟着壮扭公主也神耍着法宝像鸭掌般的怪影一样朝R.拉基希门童疯踢过去随着两条怪异光影的猛烈碰撞,半空顿时出现一道春绿色的闪光,地面变成了亮青 色、景物变成了墨灰色、天空变成了暗黄色、四周发出了浪漫的巨响!壮扭公主饱满亮润如同红苹果样的脸受到震颤,但精神感觉很爽!再看R.拉基希门童瘦弱的仿 佛玉葱般的手臂,此时正惨碎成门槛样的浓黑色飞烟,加速射向远方R.拉基希门童疯哭着飞速地跳出界外,狂速将瘦弱的仿佛玉葱般的手臂复原,但元气已受损伤抓 壮扭公主:“哈
股票基础入门知识 http://www.6qm.net/ 股票基础入门知识
例2.分析函数 y lg( 2 1) 的图像的对称性 1 x
练:设奇函数f(x)定义域为[-5,5], 若当x [0,5]时,f(x)
的图像如图所示,求不等式f(x)<0的解集
y
-5
-2 0 2
5x
(-2,0) (2,5)
高三数学第一轮复习:
7.
知识回顾:
1. 奇函数 偶函数的定义 奇(偶)函数的定义域一定关于原点对称.
问:函数定义域关于原点对称是函数为奇(偶)函数的 必要不充分 条件.
2.奇函数的图像关于原点对称, 偶函数的图像关于y轴对称. 判断函数奇偶性的方法:
定义法(首先判断函数的定义域是否关于原点对称)
图像法
相关文档
最新文档