微分中值定理教案

合集下载

微分中值定理PPT学习教案

微分中值定理PPT学习教案

x0 x
x0 x
lim ex 1. x0 1
当x→0时,
第20页/共37页
例6. 求
解:
原式
lim
x1
3x2 3 3x2 2x 1
lim 6x 3 x1 6x 2 2
注意: 不是未定式不能用洛必达法则 !
lim 6x
x1 6x 2
lim 6 1 x1 6
第21页/共37页
0型 0
0 型
第25页/共37页
0
00
通分
转化
0 取倒数
取对数
0
转化
转化
1
0
例12. 求
lim
x0
1 x
1 ex 1
.

解:
lim
x0
1 x
1 ex 1
lim
x0
ex x 1 x(ex 1)
lim
x0
ex 1 xex ex 1
lim
x0
xex
ex
2ex
1. 2
第26页/共37页
0
00
x ,
之一, 条件 2) 作相应的修改 , 定理 3 仍然成立.
对于 型未定式也有相应的洛必达法则.
2.
若 lim f (x) g(x)
仍属
型或
型,且
满足定理3的条件, 则
也就是说, 如果条件成立, 洛必达法则可以使用多次.
第19页/共37页
例5. 求
0型 0
解: lim ex 1 lim ex 1
2) f (x)与 g(x) 在 (x0 ) 内可导,且
3)
lim
x x0
f (x) A g(x)

微分中值定理与导数的应用教案

微分中值定理与导数的应用教案

微分中值定理与导数的应用教案第一章:微分中值定理概述1.1 引言引入微分中值定理的概念和意义。

解释微分中值定理在数学分析和物理学中的应用。

1.2 罗尔定理介绍罗尔定理的定义和条件。

通过示例解释罗尔定理的应用。

1.3 拉格朗日中值定理阐述拉格朗日中值定理的表述和条件。

通过图形和示例解释拉格朗日中值定理的应用。

第二章:导数的应用2.1 函数的单调性引入函数的单调性的概念。

解释导数与函数单调性的关系。

通过示例说明如何利用导数判断函数的单调性。

2.2 函数的极值介绍极值的概念和分类。

解释导数与函数极值的关系。

通过示例说明如何利用导数找到函数的极值点。

2.3 函数的凹凸性引入函数凹凸性的概念。

解释导数与函数凹凸性的关系。

通过示例说明如何利用导数判断函数的凹凸性。

第三章:微分中值定理的应用3.1 洛必达法则介绍洛必达法则的定义和条件。

通过示例解释洛必达法则的应用。

3.2 泰勒公式阐述泰勒公式的定义和意义。

通过示例解释泰勒公式的应用。

3.3 微分中值定理在其他领域的应用举例说明微分中值定理在物理学、工程学等领域的应用。

第四章:导数在经济学的应用4.1 边际分析介绍边际分析的概念和意义。

解释如何利用导数进行边际分析。

通过示例说明导数在边际分析中的应用。

4.2 优化问题介绍优化问题的概念和分类。

解释如何利用导数解决优化问题。

通过示例说明导数在优化问题中的应用。

第五章:微分中值定理与导数的实际应用5.1 实际应用案例介绍介绍一个实际应用案例,如工程设计、经济决策等。

解释该案例中如何应用微分中值定理和导数。

5.2 学生实践项目分配一个实际应用项目给学生们。

指导学生如何利用微分中值定理和导数解决该项目。

5.3 项目成果展示与讨论让学生们展示他们的项目成果。

进行讨论和交流,分享各自的解题思路和经验。

第六章:导数与函数图像6.1 切线与导数解释导数在函数图像上的几何意义。

展示如何从函数的导数得到函数图像上的切线。

通过实例演示导数与切线的关系。

第三章 微分中值定理与导数应用教案教学设计

第三章  微分中值定理与导数应用教案教学设计

证明:不妨设 x ∈U(x )时, f (x) ≤ f (x ) (若 f (x) ≥ f (x ) ,可以类似地证明).∆x ≤ 0∆x第三章 微分中值定理与导数应用第一节 微分中值定理教学目的:理解并会用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒中值定理。

教学重点:罗尔定理、拉格朗日中值定理。

教学难点:罗尔定理、拉格朗日中值定理的应用。

教学内容:一、罗尔定理1. 罗尔定理几何意义:对于在 [a,b ] 上每一点都有不垂直于 x 轴的切线,且两端点的连线与 x 轴平行的不间断的曲线yf (x) 来说,至少存在一点 C ,使得其切线平行于 xC轴。

y = f ( x )ABoaξ ξ bx21从图中可以看出:符合条件的点出现在最大值和最小值点,由此得到启发证明罗尔定理。

为应用方便,先介绍费马(Fermat )引理费马引理 设函数 f (x) 在点 x 的某邻域U ( x ) 内有定义, 并且在 x 处可导, 如果对任意 x ∈U(x ), 有 f (x) ≤ f (x ) (或 f (x) ≥ f (x )), 那么 f ' (x ) = 0 .0 0 0 0于是对于 x + ∆x ∈U(x ) ,有 f (x + ∆x) ≤ f (x ) , 从而当 ∆x > 0 时, 0f (x + ∆x) - f (x ) ; 而当 ∆x < 0 时, f (x 0 + ∆x) - f (x 0 ) ≥ 0; 0例如 y = ⎨根据函数 f (x) 在 x 处可导及极限的保号性的得f ' (x 0 ) = f '+ (x 0 ) = lim f (x 0 + ∆x) - f (x 0 ) ≤ 0∆x →0+∆xf ' (x 0 ) = f '- (x 0 ) = lim f (x 0 + ∆x) - f (x 0) ≥ 0∆x →0-∆x所以 f ' (x ) = 0 , 证毕.定义 导数等于零的点称为函数的驻点(或稳定点,临界点).罗尔定理 如果函数 f (x) 满足:(1)在闭区间 [a,b ] 上连续, (2)在开区间 (a, b ) 内可导,(3)在区间端点处的函数值相等,即f (a) = f (b ), 那么在 (a,b ) 内至少在一点ξ(a <ξ < b ) ,使得函数 f (x) 在该点的导数等于零,即 f ' (ξ ) = 0 .证明:由于 f (x) 在 [a,b ] 上连续,因此必有最大值 M 和最小值 m ,于是有两种可能的情形:(1) M = m ,此时 f (x) 在 [a,b ] 上必然取相同的数值 M ,即 f (x) = M .由此得 f '(x) = 0. 因此,任取 ξ ∈ (a, b ) ,有 f '(ξ ) = 0.(2) M > m ,由于 f (a) = f (b ) ,所以 M 和 m 至少与一个不等于 f ( x ) 在区间[a,b ] 端点处的函数值.不妨设 M ≠ f (a)(若 m ≠ f (a) ,可类似证明),则必定在 (a,b ) 有一点 ξ 使 f (ξ ) = M . 因此任取 x ∈[a,b ]有 f (x) ≤ f (ξ ) , 从而由费马引理有 f '(ξ ) = 0 . 证毕例 1 验证罗尔定理对 f ( x ) = x 2 - 2 x - 3 在区间[-1,3] 上的正确性解 显然 f ( x ) = x 2 - 2 x - 3 = ( x - 3)( x + 1)在 [-1,3] 上连续,在 (-1,3) 上可导,且f (-1) = f (3) = 0 , 又 f '( x ) = 2( x - 1) , 取 ξ = 1, (1 ∈ (-1,3)) ,有 f '(ξ ) = 0 .说明:1 若罗尔定理的三个条件中有一个不满足, 其结论可能不成立;2 使得定理成立的ξ 可能多于一个,也可能只有一个.例如 y = x , x ∈ [-2,2]在 [-2,2] 上除 f '(0) 不存在外,满足罗尔定理的一切条件, 但 在区间 [-2,2] 内找不到一点能使 f '( x ) = 0 .⎧1 - x, x ∈ (0,1] ⎩0, x = 0除了 x = 0 点不连续外,在 [0,1] 上满足罗尔定理的一切条2 2,]满足定理的一切条件,而ξ = 0,πx ∈ (0,1) 使 f (x ) = 0 , 即 x 为方程的小于 1 的正实根. 0但 f '(x) = 5(x 4 -1) < 0, ( x ∈ (0,1)) , 矛盾, 所以 x 为方程的唯一实根..件,但在区间 [0,1] 上不存在使得 f '(ξ ) = 0 的点例如 y = x, x ∈ [0,1]. 除了 f (0) ≠ f (1) 外,在 [0,1] 上满足罗尔定理的一切条件,但在区间 [0,1] 上不存在使得 f '(ξ ) = 0 的点又例如 y = cos x,x ∈ [- π 3π2.罗尔定理的应用罗尔定理 1)可用于讨论方程只有一个根;2)可用于证明等式.例 2 证明方程 x 5 - 5 x + 1 = 0 有且仅有一个小于 1 的正实根.证明:设 f ( x ) = x 5 - 5x + 1 , 则f (x) 在 [0,1] 上连续,且 f (0) =1, f (1) = -3.由介值定理存在 0 0设另有x ∈ (0,1), x ≠ x , 使 f (x ) = 0. 因为 f (x) 在 x , x 之间满足罗尔定理1 1 0 1 0 1的条件, 所以至少存在一个 ξ (在 x , x 之间)使得 f '(ξ ) = 0 .1拉格朗日中值定理的证明就是罗尔定理证明等式的一个例子(见后面)二、拉格朗日(Lagrange )中值定理1.拉格朗日中值定理在实际应用中,由于罗尔定理的条件(3)有时不能满足,使得其应用受到一定限制。

第三章第一节微分中值定理教学教案

第三章第一节微分中值定理教学教案

拉格朗日中值公式
或 f ( b ) f ( a ) f ( )b ( a ).
设 f(x )在 [a ,b ]上连 在 (a ,b 续 )内, ,可导
x0,x0 x (a,b)则 , 有
f ( x 0 x ) f ( x 0 ) f ( x 0 x ) x ( 0 1 ) 也 y 可 f ( x 0 x 写 ) x ( 0 成 1 ).
在区间 [x1, x2上] 用拉格朗日中值定理得:
f(x 2 ) f(x 1 ) f() (x 2 x 1 )(x1 x2)
由已知 f()0 得
f(x2)f(x1)0
所以f(x)在区间I上任意两点的函数值都相等
故f(x)在区间I上是一个常数.
例2 证 a明 r x c asri x c n ( c 1 o x 1 s ). 2
例1 验证罗尔 f(x定 )x2理 2x对 3在 区[间 1, 3]上的正 . 确性 解 显f然 (x)在 [1,3]上连 ,在 ( 续 1,3)内可导
且 f( 1 )0,f(3)0. 又 f(x)2(x1)
取 1,(1(1,3)), 则f()0.
注意:若罗尔定理的三个条件中有一个不满足,其 结论可能不成立. 例如, yx,x [2,2];
f '( ) 0
证 f(x )在 [a ,b ]连 ,必 续 有最 M大 和值 最m 小 . 值
(1)若 Mm. 则f(x)M. 由此 f(x得 )0. (a,b), 都f有 ()0. (2)若 Mm . f(a ) f(b ), 最值不可能同时在取端得点 . 设 Mf(a),
则(在 a,b)内至少存 使 f在 ()一 M . 点
二 、 试 证 明 对 函 数 y px 2 qx r 应 用 拉 氏 中 值 定 理

第讲微分中值定理

第讲微分中值定理

第21讲微分中值定理一、计划学时:3节二、内容三、要求四、重点五、难点六、教学过程:第七章导数与定积分的应用数学大纲:一、计划学时:18节二、主要内容:中值定理、罗比塔法则、泰勒公式、函数性态的讨论(单调性、凹凸性、极值的求法)、函数图形的描绘。

元素法,求面积、体积等三、目的要求:1、理解并记忆微分学中值定理。

2、熟练掌握用罗比塔法则求不定式极限的方法。

3、会求函数的极值和最大(小)值。

4、掌握用导数研究函数性态的方法,会用微分法做出较简单函数的图形。

四、课时安排:§1、中值定理 2课时§2、罗比塔法则 2课时§3、泰勒公式 2课时§4、函数单调性与凹凸性2课时§5、极值与最大值,最小值问题 2学时§6、函数图形的描绘弧微分曲率 2课时§7、元素法面积§8、体积 2课时§9、物理上的应用 2课时五、重点、难点、特点的说明:本章重点:三个中值定理的理解与应用,罗比塔法则,函数的极限及其求法,微分法做图。

元素法面积、体积本章难点:三个中值定理的理解与应用,泰勒公式,微分法做图。

中值定理是微分学的重要理论。

中值公式是联系函数与导数的桥梁,意义深刻应用广泛,要适当突出中值定理在讨论函数中的作用。

导数的应用部分,项目较多,要通过介绍函数的微分法做图,将它们系统化。

元素法的应用,求面积、体积教学过程:上章中我们详细地讨论了导数、微分的概念及它们的运算问题。

我们知道导数是刻划函数在一点处变化率的数学模型,它反映了函数在一点处的局部变化性态。

但在理论和实际应用中,常常需要把握函数在某区间的整体性质与该区间内部某点处导数之间的关系。

从这节课开始我们将介绍导数的一些更深刻的性质——函数在某区间的整体性质与该区间内部某点处导数之间的关系。

由于这些性质都与自变量区间内部的某个中间值有关,因此被统称为中值定理。

函数在某区间的整体性质与该区间内部某点处导数之间的这种关系不仅是用微分学解决实际问题的数学模型,而且还完善了微分自身发展的理论基础,正是这一点的重要性,中值定理又称为微分基本定理。

教案微分中值定理

教案微分中值定理

微分中值定理教案章节一:引言与预备知识【教学目标】1. 理解微分中值定理的概念和意义。

2. 掌握基本函数的求导法则。

【教学内容】1. 介绍微分中值定理的背景和应用。

2. 复习基本函数的求导法则,包括幂函数、指数函数、对数函数和三角函数的求导。

【教学活动】1. 教师讲解微分中值定理的概念和意义,引导学生理解其重要性。

2. 学生自主学习基本函数的求导法则,并进行练习。

教案章节二:罗尔定理【教学目标】1. 理解罗尔定理的表述和证明。

2. 掌握罗尔定理在实际问题中的应用。

【教学内容】1. 介绍罗尔定理的表述和证明方法。

2. 通过例题讲解罗尔定理在实际问题中的应用。

【教学活动】1. 教师讲解罗尔定理的表述和证明,引导学生理解其原理。

2. 学生跟随例题学习罗尔定理的应用,并进行练习。

教案章节三:拉格朗日中值定理【教学目标】1. 理解拉格朗日中值定理的表述和证明。

2. 掌握拉格朗日中值定理在实际问题中的应用。

【教学内容】1. 介绍拉格朗日中值定理的表述和证明方法。

2. 通过例题讲解拉格朗日中值定理在实际问题中的应用。

【教学活动】1. 教师讲解拉格朗日中值定理的表述和证明,引导学生理解其原理。

2. 学生跟随例题学习拉格朗日中值定理的应用,并进行练习。

教案章节四:柯西中值定理【教学目标】1. 理解柯西中值定理的表述和证明。

2. 掌握柯西中值定理在实际问题中的应用。

【教学内容】1. 介绍柯西中值定理的表述和证明方法。

2. 通过例题讲解柯西中值定理在实际问题中的应用。

【教学活动】1. 教师讲解柯西中值定理的表述和证明,引导学生理解其原理。

2. 学生跟随例题学习柯西中值定理的应用,并进行练习。

教案章节五:微分中值定理的应用【教学目标】1. 理解微分中值定理在实际问题中的应用。

2. 掌握利用微分中值定理解决实际问题的方法。

【教学内容】1. 介绍微分中值定理在实际问题中的应用,如求函数的单调区间、极值和最值等。

2. 通过例题讲解如何利用微分中值定理解决实际问题。

教案微分中值定理

教案微分中值定理

微分中值定理教案章节一:预备知识1.1 函数的极限教学目标:理解函数极限的概念,掌握极限的计算方法。

教学内容:引入函数极限的概念,探讨极限的性质和计算方法,如夹逼定理、单调有界定理等。

教学方法:通过具体例子和问题引导学生理解极限的概念,利用图形和数学分析软件演示极限过程,让学生体会极限的意义。

1.2 连续函数教学目标:理解连续函数的概念,掌握连续函数的性质和判断方法。

教学内容:介绍连续函数的定义,探讨连续函数的性质,如保号性、保界性等,学习连续函数的判断方法。

教学方法:通过具体例子和问题引导学生理解连续函数的概念,利用图形和数学分析软件演示连续函数的性质,让学生掌握判断连续函数的方法。

教案章节二:微分中值定理2.1 罗尔定理教学目标:理解罗尔定理的内容和意义,学会运用罗尔定理解决问题。

教学内容:介绍罗尔定理的定义,探讨罗尔定理的条件和结论,学习如何应用罗尔定理解决问题。

教学方法:通过具体例子和问题引导学生理解罗尔定理的内容,利用图形和数学分析软件演示罗尔定理的应用,让学生学会运用罗尔定理解决问题。

2.2 拉格朗日中值定理教学目标:理解拉格朗日中值定理的内容和意义,学会运用拉格朗日中值定理解决问题。

教学内容:介绍拉格朗日中值定理的定义,探讨拉格朗日中值定理的条件和结论,学习如何应用拉格朗日中值定理解决问题。

教学方法:通过具体例子和问题引导学生理解拉格朗日中值定理的内容,利用图形和数学分析软件演示拉格朗日中值定理的应用,让学生学会运用拉格朗日中值定理解决问题。

教案章节三:微分中值定理的应用3.1 导数的应用教学目标:理解导数的概念,掌握导数的计算方法。

教学内容:引入导数的概念,探讨导数的性质和计算方法,如求导法则、高阶导数等。

教学方法:通过具体例子和问题引导学生理解导数的概念,利用图形和数学分析软件演示导数过程,让学生体会导数的意义。

3.2 函数的单调性教学目标:理解函数单调性的概念,掌握函数单调性的判断方法。

高数教案_微分中值定理12

高数教案_微分中值定理12

课 题: 微分中值定理 目的要求:掌握罗尔中值定理的条件与结论掌握拉格朗日中值定理的条件与结论掌握柯西中值定理的条件与结论掌握拉格朗日中值定理的应用 教学重点:掌握拉格朗日中值定理的应用 教学难点:掌握拉格朗日中值定理的应用 教学课时:2教学方法: 讲练结合 教学内容与步骤:罗尔中值定理引理(费马):设y =f (x )在开区间(a , b )内有定义. 在x 0∈(a , b )处取得最大值(最小值), 且f (x )在x 0处可导, 则 f '(x 0) = 0.证: 因f (x )在x 0处可导.0000()()lim(),.x f x x f x f x x ∆→+∆-'=∆故存在000000()()()()limlimx x f x x f x f x x f x x x +-∆→∆→+∆-+∆-=∆∆而0()f x '= 设f (x 0)为f (x )在开区间(a , b )内的最大值, 即, ∀x ∈(a , b ), 有 f (x ) ≤ f (x 0). 故当|∆x |充分小时, 有x 0+∆x ∈(a , b ), 从而 : f (x 0+∆x ) – f (x 0) ≤ 0 (1)当∆x >0时,00()()0,f x x f x x+∆-≤∆ 令∆x →0+,由保号性定理,0000()()()lim0.x f x x f x f x x+∆→+∆-'=≤∆(2)当∆x <0时,00()()0,f x x f x x+∆-≥∆ 令∆x →0–,由保号性定理,0000()()()lim0.x f x x f x f x x-∆→+∆-'=≥∆综合(1),(2)有0 ≤ f '(x 0) ≤0, 故 f '(x 0) = 0, 类似可证f (x )在x 0取最小值的情形.注1: 因f '(x0)表示曲线y =f (x)上点M(x0, f (x0))处切线斜率. 而f '(x0)=0表示该点处切线斜率为0. 几何上表示: 若y =f (x)在(a, b)内部某点x0处取最大(小)值, 且在x0可导, 则在M(x0, f (x0))处的切线平行于x 轴. 如下图左注2: 若 f (x)在区间[a, b]的端点a(或b)处取得最大(小)值. 不能保证f '(a)(或 f '(b))=0. 即, 在端点M(a, f (a))或M(b, f (b))处切线不一定平行于x 轴. 如上图右 定理 (罗尔中值定理). 若y=f (x)在[a, b]上连续, 在(a, b)内可导, 且f (a) = f (b). 则在(a, b)内至少存在一点ξ , 使得 f ' (ξ 0=) .证: 因f (x)在[a, b]上连续, 从而可取得最大值M = f (x0)和最小值m = f (x1). 其中, x0, x1∈ [a, b](1) 若 m=M , 因m ≤ f (x) ≤M. 即, M ≤ f (x) ≤M, 所以f (x)=M. 有f ' (x )=0, 故∀ξ∈ (a, b)有 f ' (ξ )=0 .(2) 若 m<M , 因f (a) = f (b). 故在m, M 中必至少有一个不等于f (a) (= f (b)), 不妨设M= f (x )≠0, f (a)= f (b), 故 x0 ≠ a, x0 ≠ b, 从而x0∈ (a, b). 由引理, f ' (x0=0), 记ξ = x0 , 即∃ξ∈ (a, b)使 f ' (ξ)=0 .注1: 几何意义: 若连续曲线y = f (x)除端点外处处有不垂直于x 轴的切线. 且两端点的纵坐标相等. 则在曲线上至少存在一点M. 在M 点的切线平行于x 轴.注2: 从方程的角度看, f ' (ξ)=0表示ξ是方程 f '(x )=0的根.因此, 罗尔定理的意义是若f (x )满足定理条件, 则方程 f '(x )=0在(a , b )内至少有一个根.注3:定理的条件"f (x )在[a , b ]上连续, 在(a , b )内可导, f (a )= f (b ) " 不能减弱. 否则, 结论不对.比如, f (x )= |x |在[–1, 1] 上连续. 在除x =0外的每一点x 处都可导. 且f (–1)=f (1), 但是, 不存在ξ∈(–1, 1), 使得f '(ξ)=0.练习. 设函数 f (x ) = (x -1)(x -2)(x -3), 试判断方程 f '(x 0=) 有几个实根, 分别在何区间? 解: 因为 f (1)= f (2)= f (3), 且f (x )在[1, 2]上连续, 在(1,2)内可导, 由罗尔定理, ∃ξ1∈(1, 2),使 f '(ξ1)=0; 同理, ∃ ξ2∈(2, 3), 使 f ' (ξ2)=0; 又因f ' (x 0=)是二次方程, 至多两个实根, 故f ' (x 0=)有两个实根, 分别位于(1,2) 和(2,3)内.(1)修改: f (x) = (x -1)(x -2)(x -3)(x -4), 结论如何?(2)修改: 不解方程, 问 (x -2)(x -3)+(x -1)(x -3) +(x -1)(x -2)=0有几个实根, 分别在何区间? 拉格朗日中值定理:在罗尔定理中, 曲线上存在一点M , 使得M 点处切线平行于x 轴. 由于f (a )= f (b ). 从而该切线平行于弦AB .如果f (a )≠f (b ), 那么在曲线上是否仍然存在一点M , 使得M 点处切线平行于弦AB 呢?定理 若y =f (x )在[a , b ]上连续, 在(a , b ) 内可导, 则至少存在一点ξ∈(a , b ), 使得()()()f b f a f b aξ-'=-分析: 注意到()()AB f b f a K b a-=-要证()()()f b f a f b a ξ-'=-只需()()()0.f b f a f b a ξ-'-=-即()()()0.x f b f a f x x b a ξ='-⎛⎫-= ⎪-⎝⎭若将括号内函数看作ϕ(x). 则只须证ϕ'(ξ)=0即可.也就是只须证明ϕ(x)满足罗尔定理条件即可.证: 构造函数, 令()()()().f b f a x f x x b a ϕ-=--易见, ϕ(x)在[a, b]上连续, 在(a, b)内可导. 且()()()()()(),()().f b f a f b f a b f b b a f a a b a b aϕϕ--=-⋅=-⋅--故()()()()()()()()0f b f a b a f a f b b a b aϕϕ--=--⋅-=-,即ϕ(a) = ϕ(b).由罗尔定理, ∃ξ∈(a, b), 使ϕ' (ξ)=0 ()()().f b f a f b aξ-'=-即注1. 若f (a )= f (b ),()()()0.f b f a f b aξ-'==- 这正是罗尔定理的结论。

(完整版)高等数学教学设计——中值定理

(完整版)高等数学教学设计——中值定理

4.1微分中值定理单元教学设计一、教案头二、教学设计4.2函数的极值和最值单元教学设计一、教案头二、教学设计案例应用 案例1 求1213123+++=x x x y 的极值案例2 讨论2-x e y 的极值案例3 有一块宽为2a 的长方形铁皮,将宽的两个边缘向上折起,做成一个开口水槽,其横截面积为矩形,高为x,问高x 取和值时水槽的流量最大?案例4 铁路线AB 距离为100公里,工厂C 距A 为20公里,AC 垂直于AB ,今要在AB 上选定一个点D 向工厂修筑一条公路,已知铁路与公路每公里货运费之比是3:5,问D 点选在何处才能使从B 到C 的运费最少? 案例5 现在用一张铝合金材料加工一个日字型窗框,问它的长和宽分别为多少时,才能是窗户的面积最大,最大面积是多少?如下图4.3函数图像的描绘 单元教学设计一、教案头任务1 函数的凸凹性和拐点 任务2 函数的渐近线. 任务3 按步骤描绘函数图像案例1(注水曲线凸凹) 设水以常数0,/3>a s am 注入下图的容器中,请做出水上升的高度关于时间t 的函数)(t f y =,并阐明此函数的拐点和凸凹性。

案例2 描绘函数2-)1(42xx y +=的图像。

案例3(最值问题) 要用铁皮造一个容积为V 的圆柱形闭合油罐,问底半径r 和高h 等二、教学设计)渐近线(1)斜渐近线若)(xf满足:kxxfx=∞→)(lim,且bkx]-[f(x)lim=∞→x则曲线)(xfy=有渐近线bkxy+=如下图:例求曲线3-223xxxy+=的斜渐近线例求曲线22-123xxy+=的斜渐近线(2)垂直渐近线如果Cx→(或者+→Cx或者-Cx→)时,参考图像案例2 描绘函数2-)1(42xx y +=的图像。

案例3 要用铁皮造一个容积为V 的圆柱形闭合油罐,问底半径r 和高h 等于多少时,能使所使用的铁皮最省?这时候的半径r 和高h 的比值是多少?案例4 要建造一个上面是半球形,下面是圆柱形的粮仓,其容积是V ,问当圆柱体的高h 和底半径r 为何值时,粮仓所使用的建筑材料最省?6422465510? ??。

微分中值定理教案

微分中值定理教案

微分中值定理【教学内容】 拉格朗日中值定理 【教学目的】1、熟练掌握中值定理,特别是拉格朗日中值定理的分析意义和几何意义;2、能应用拉格朗日中值定理证明不等式。

3、了解拉格朗日中值定理的推论1和推论2 【教学重点与难点】1、拉格朗日中值定理,拉格朗日中值定理的应用2、拉格朗日中值定理证明中辅助函数的引入。

3、利用导数证明不等式的技巧。

【教学过程】一、背景及回顾在前面,我们引进了导数的概念,详细地讨论了计算导数的方法。

这样一来,类似于求已知曲线上点的切线问题已获完美解决。

但如果想用导数这一工具去分析、解决复杂一些的问题,那么,只知道怎样计算导数是远远不够的,而要以此为基础,发展更多的工具。

另一方面,我们注意到:(1)函数与其导数是两个不同的函数;(2)导数只是反映函数在一点的局部特征;(3)我们往往要了解函数在其定义域上的整体性态,需要在导数及函数间建立起联系――搭起一座桥,这个“桥”就是微分中值定理。

由此我们学习了极值点的概念、费马定理、特别是罗尔定理,我们简单回忆一下罗尔定理的内容:若函数)(x f 满足下列条件: ①在闭区间[]b a ,连续 ②在开区间()b a ,可导③)()(b f a f =则在()b a ,内至少存在一点c ,使得0)('=c f二、新课讲解1797年,法国著名的数学家拉格朗日又给出一个微分中值定理,史称拉格朗日中值定理或微分中值定理,但未证明.拉格朗日中值定理具有根本的重要性,在分析中是许多定理赖以证明的工具,是导数若干个应用的理论基础, 我们首先看一下拉格朗日中值定理的内容:2.1拉格朗日定理若函数)(x f 满足下列条件: ①在闭区间[]b a ,连续 ②在开区间()b a ,可导则在开区间()b a ,内至少存在一点c ,使 ()()ab a f b fc f --=)('注:a 、深刻认识定理,是两个条件,而罗尔定理是三个条件。

b 、若加上)()(b f a f =,则()()00)('=-=--=ab a b a f b fc f 即:0)('=c f ,拉格朗日定理变为罗尔定理,换句话说罗尔定理是拉格朗日定理的特例。

最新微分中值定理教案

最新微分中值定理教案

微分中值定理教案第二章一元函数微分学§2.6 微分中值定理【课程名称】《高等数学》【授课题目】微分中值定理【授课时间】2011年11月18日【授课对象】2011级电子信息专业【教学内容】本节课所将要学习的主要内容是微分中值定理中的核心定理——拉格朗日(Lagrange)中值定理,罗尔(Rolle)定理可以看成是拉格朗日中值定理的特殊情形,而柯西(Cauchy)中值定理则是拉格朗日中值定理推广。

微分中值定理揭示的是函数在某个区间的整体性质与该区间内某一点处的导数之间的关系,因而称为中值定理。

它是几个定理的统称。

微分中值定理也是微分学的理论基础,微分学的很多重要的应用都是建立在这个基础之上,后面将要讨论的洛必达(L’hospital)法则、泰勒(Taylor)公式、函数的增减性与极值等都要用到微分中值定理。

【教学目标】1、使学生掌握拉格朗日中值定理,熟练运用拉格朗日中值定理证明恒等式、不等式以及方程根的存在性等;2、使学生在掌握拉格朗日中值定理的同时,能联系前后学习的内容进行层次归纳与总结,形成系统的知识层次与结构;3、使学生经历拉格朗日中值定理的完整的研究过程,体会数学研究与数学应用的乐趣,发展应用意识和解决问题的能力。

【教学重点】微分中值定理中的拉格朗日中值定理及其应用。

【教学难点】微分中值定理中拉格朗日中值定理的证明。

【教学方法及手段】以启发式讲授为主,采用多媒体辅助演示。

§2.6.2 拉格朗日中值定理一、内容回顾定理1(Rolle)若函数«Skip Record If...»满足条件(1)在闭区间«SkipRecord If...»上连续;(2)在开区间«SkipRecord If...»内可导;(3)«Skip Record If...»。

则至少存在一点«Skip Record If...»,使得«Skip Record If...»。

高职班“微分中值定理”教学设计方案

高职班“微分中值定理”教学设计方案
( 二) 本 次课 的 地住
[ 课 堂练 习 ] 验 证 拉 格 朗 日 中值 定 理 对 函数 v = 4 x 一 5 x ‘ + x 一 2 在[ O , 1 ] 上 的正 确性 . [ 新课 讲 授 ] § 3 . 2 函 数 的 单调 性 函数 的 极值 : 极 大值 与极 小 值 的 统 称 .
本 课 教 学 内 容 是 微分 中值 定 理 和 函数 的单 调 性 ,是 导 数 应 用 的基 本 内容 .微 分 中值 定 理 是 获 得 可 导 函 数 单 调 性 判 定 方法的理论 基础. 单 调函数在《 应用数学 》 课 程 中 占有 重 要 的 地位 , 函数单调性的讨论是解决诸如 “ 用料最省 ” “ 产值最 高” “ 质量最好” “ 耗 时最 少 ” 等 最 值 问 题 的 重要 方 法 . ( 三) 教 学设 计 理 念 与 思路 , 学 院 以突 出职 业 能力培 养 为导 向 , 在加 强实 践性 教 学 、 压 缩 基础 课 教学 的实 践 中做 了大胆 的尝试 ,各专 业新 的 培养 方案 要 求在 高 职数 学教 育教 学 中 ,把培 养 数学 素质 作 为教学 过 程 的主 线。 加 强 对学 生进 行数 学 知识 应用 能 力 的培 养 , 从 而使 学 生 的数 学知识 、 能力 、 素质得 到协 调发 展. 根 据教 学 大纲 要求 和 当前 职业 教 育改 革 的先 进理 念 , 课 运用 启 发式 教学 , 精 讲 多练 , 突 出 重点 , 通过 图形 直观 降低 理论 难度 重视 知识 在实 际 问题 中的应用 . 二、 教 学 设 计 分 析 ( 一) 教 学 目标 1 . 掌 握 函数 极 值 的 概念 . 2 . 了解 罗尔 定 理 、 拉 格 朗 日中值 定理 . 能运 用 . 3 . 掌 握 函数 单 调 性 的判 定 方 法 , 能熟 练 运 用. ( 二) 教 学 重 点和 难 点 重点 : 函 数 单 调 性 的判 定 . 难点 : 拉格朗 1 3中值 定 理 的 理解 与运 用 . ( 三) 教 学 方 法 根 据 教 学 大 纲 要 求 和 当前 职 业 教 育 改 革 的 先 进 理 念 , 本 次 课 运 用 启 发式 教学 ,利 用 图形 直 观 直 接 得 出微 分 中值 定 理 ( 拉格 朗 1 3中值 定 理 ) ,通 过 典 型 例 题 的分 析 讲 解 和 一 定 数 量 的练 习 。 精讲多练 . 突 出重 点 , 重 视 知 识 的运 用 . ( 四) 教 学设 计 [ 板书设计 ] 整个黑板分左 中右三大栏 , 左 栏 用 来 书 写 新 课知识要点 . 如 拉 格 朗 日中 值 定 理 及 其 两 个 推 论 、 函数 的极 值 及 极 值 点概 念 、 极 值 点 的必 要 条件 、 单 调性 判 断 定理 等 ; 中栏 右 栏 用来 书写 即写 即擦 的 内容 , 如 例题 示 范 和 课 堂练 习 讲 评等 . 以 下 是 教学 过 程 . [ 新课引入 ] 通 过 前 面 的学 习 , 我 们 已 经 认识 了 导 数 , 它 描 述 函数 随 自变 量 而变 化 的瞬 时 变 化 率 .我们 现 在 已 经 能 够 熟 练 地 计 算 函 数 的 导数 了. 本 章 我 们 开 始 学 习导 数 的 应 用 . [ 新课讲授 ] § 3 . 1 微 分 中 值定 理 定理( 拉格 朗 日中值 定 理 ) : 如 果 函数y q( - x ) 满 足 下列 两个 条

【doc】《微分中值定理》教学设计

【doc】《微分中值定理》教学设计

《微分中值定理》教学设计第9眷l999年第4期第4期兵团教育学院JOU'~ALOFBINGTUAN蹦玎DND糟Tm丌rEx~1.9N4Dee.1999《微分中值定理》教学设计王淑责微分学中值定理包括费马定理,罗尔中值定理,拉格朗日中值定理和柯西中值定理.用发现法讲授这组定理,可以使学生体验发现真理的乐趣,学习解决问题的策略.提高发现问题,分析同题,解决问题的能力.文…给出了用发现法讲授微分中值定理的一种教学设计.本文给出用发现法讲授微分中值定理的另一种教学设计.l费马定理1.1有关概念(1)设函数f在的某个邻域U()内有定义,若对U()内的一切x都有f(x)≤U(xo)(f(x)≥U())(1)则称函数f在取得极大(小)值,称xo为函数f的极大(小)值点.如图所示,连续函数y=f(x)的图象C是一条连续曲线,x1与是f的极大值点,是f的极小值点.对应地,点(x1,f())与(,f(x3))是曲线C上的局部最高点,(.f())是曲线C上的局部最低点.(2)设菌敬f在Xo可导,若f(x0)=0,则称为函数f的稳定点.1.2问题l:可导函数f的图象在其极值点处的切线有何特点?能否用f=()表示这一特点?(1)探索问题l的答案:囝1观察图1.容易得出l}(下结论:可导函数f的图象在其板值点处的切线平行于x轴. 这一特点可表示为f()=0(2)概括上述结论,提出猜想l:设函数f在可导,若为f的极值点,则f,()=O(2)(3)判断猜想l的正确性:设为f的极小值点.则存在的某个邻域U(xo.8).使得对一切xEU(,8),均有f(x)一f(xo)I&gt;0于是.当&lt;x&lt;时,≤0.当&lt;x&lt;+由f在可导与极限的不等式性质得到一76—f((≤0,f()(/&gt;o故有f(xo)=0同理可得.当xo为f的极大值点时.亦有r(xo)=0于是.我们得到下面的定理.定理l:设函数f在可导.若xo为f的极值点,则f()=02罗尔中值定理2.1问题2:两端点处等高的连续的光精曲线c'是否存在平行于x轴的切线?(1)探索问题2的答案:观察图2,窖易得出下结论:若函数f在【a,b]上连续,在(a.b)内可导,并且f(a)=f(b),则f在(a,b)内至少有一个极值点毛在该点处,曲线c的切线平行于x轴,即f(})=0(2)概括上述结论,提出猜想2:若函数f在【a.b]上连续,在(a.b)内可导,并且f(a)=f(b).则在(a,b)内至少存在一点e,使得f(e)=0(3)判断猜想2的正确性:由于函数f在【a.b]上连续.所以函数f在【a,b]上存在最大值M与最小值rno若M=m,则f(x)~-c.~(x)------o.任取一点E∈(a,b).均有f(e)=0圉2若M≠m.则由f()=f(b)可知:M与m至少有一个在(a,b)内的某一点e处取得,于是.} 是f的投值点.由定理l,f(e)=0于是,我们得到以下定理.定理2:若函数f满足条件:r在【a,b]上连续;2'在(a,b)内可导;3.f()=fib)剜在(a,b)内至少存在一点∈'使得f(})=02.2思考题:定理2中的三个条件各起什么作用?取消或减弱其中一条,结论会发生什么变化?3拉格朗日中值定理3.1问题3:以A,B为端点的光精曲线c.是否存在平行于弦AB的切线?(1)探索问题3的答案:图3作曲线c的割线1,使它平行于弦AB.移动剖线1.始终保持使I平行于AB.当相邻两个割点重合于点P时.就得到了曲线C 的平行于一77—弦AB的切线.这时切线的斜率f(e)等于弦AB的斜率鱼.(2)概括上述结论.提出猜想3:设函数f在【a'b]上连续.在(a,b)内可导,则在(a,b)内至少存在一点e.使得f(e):(3)(3)判断猜想3的正确性:将f(e)=亡变塑为f(e)一幽毫=0.由此可见,若能找到一个可导函数g(x),使得g(e)=})一{{.则对g(x)应用定理2即可.为使g(x)符合上述要求,根据一求导公式,只要取g(x)=f(x)一x+c(c为任意常数)即可.特别地,当c=0时.g (x):f()一令g(x)=f(x)一x,x∈[a'b】,则g(x)在[a'b]上连续,在(a,b)内可导.并且g(a):=g(b)由定理2,在(a.)内至少存在一点e'使得g)=})一幽三:0.目㈣一于是.我们得到下面的定理:定理3:设函数f在【a'b]上连续,在(alb)内可导,则在(a,b)内至少存在一点使得f(e) :f—(.—b.)——-——f.(—a—)b—a3.2定理3与定理2的关亲:定理2是定理3的特殊情况,定理3是定理2的推广.4柯西中值定理4.1问题4:设C是以A,B为端点的光滑曲线.其参量方程为x=f(t).y=g(t).a≤t≤b,该曲线是否存在平行于弦AB的切线?(1)探索问题4的答案:作曲线C的割线l,使l平行于弦AB,移动1.始终使l平行于弦AB.当相邻两割点莺合于P时.就得到曲线C的平行于弦AB的切线.这时,切线斜率为,割线斜率为撸{罄(2)归纳上述结论,提出猜想4:若函数f与g满足条件:1.,都在[a'b]上连续;2,都在(a.b)内可导;3',f与g在(a'b)内不同时为0;4'.g(a)≠g(b).则在(a.b)内至少存在一点e,使得:(4)g(e)g(b)一g(a)——78一田4(3)判断猜想4的正确性:将=变形为[g(b)一g(a)】f(e)一【f(b)一f(a)]g(∈):0(5)由此可见,若能找到一个函数F(x),它满足定理2的条件,并且(x)=【g(b)一g(a)]f(x)一【f(b)一f(a)]g(x)(6)则对函数F(x)应用定理2即可证得(5)式成立.易知,满足条件(6)的函数F(x)应具有以下形式F(x):[g(b)一g(a)】f(x)一[f(b)一f(a)】g(x)C(c为任意常数)这样的函数F(x)是否满足定理2的条件呢?验证可知.上述F(x)确实满足定理2的所有条件.故对上述F(x)(特别地.取c=0亦可)应用定理2即可.令F(x)=【g(b)一g(a)】f(x)一[f(b)一f(a)】g(x),xE【a,b】,则F(x)在【a.b]上连续.在(a.b)内可导.并且F(a)=f(a)g(b)一g(a)f(b)=F(b),故由定理2可知,至少存在一点e∈(a,b),使得F(∈)=0,即【g(b)一g(a)]f(e)一【f(b)一f(a)]g(∈)=0'(7)假如g(e)=0.则有[g(b)一g(a)】f(e):0,由于g(a)≠g(b),所以f(∈):0,这与"f,在(a.b)内不同时为0矛盾!所以g(e)≠0.故由(7)式即可证得(4)式成立.于是,我们得到下述定理.定理4:若函数f与g满足条件:1',在[a'b】上连续;2',在(a.b)内可导;3.,f与g在(a.b)不同时为0;4',g(a)≠g(b).则在(a.b)内至少存在一点e,使得£一l=ff)g(e)g(b)一g(a)4.2定理4与定理3的关系:在定理4中.取g(t):t.即得定理3.因此,定理4是定理3的推广.5拉格朔日中值定理的应用5.1问题5:设函数f在区间I上可导.并且f一O.是否必有f(x)一c(常数)?(1)探索问题5的答案:在区问I上取定一点,对于区间I上的任意点x(≠),由定理4可知,在与x之间至少存在一点e.使得f(x)一f(xo)=f(∈)?(x一)=0?(x—xo)=0即f(x)~l(xo)于是.我们得到以下推论.推论l:若函数f在区间I上可导,并且r(x)一0,则在I上f(x)一c(2)推论2:若函数f,g在区间I上可导,并且f一.则在I上f(x)一g(x)+C注:令h(x):f(x)一g(x).由推论1即此推论.5.2证明恒等式例1证明:对任何实数x'恒有一79—啡+号,分析:令f(x)=啡+ar.c啦.xE(一∞,+∞),由推论1,只要证明"f'(x)-~--O,并且存在xo使f(xo)号"即可.证明:令f(x)=arc啦+arcctgx,xE(一∞,+..).由于"x)=1+;o,x∈(一...+),并且f(1)删1+ea~tgl号+专号所以arclgx+a号5.3证明不等式例2:证明不等式丽h&lt;a蛐&lt;h,(h&gt;0)分析:由于arctgharctgh—a如,(h&gt;0)所以,要证的不等式等价于:&lt;趔旨&lt;?故应对函数f(x)=眦啦在[0,h]上应用拉格朗日中值定理,将塑}转化为.然后再比较,1,1的大小即可.证明:令f(x)arc啦,x∈[0.h]因为f(x)在[0,hi上连续,在(O,h)内可导故由拉格朗日中值定理.在(O,h)内至少存在一点∈.得因为o&lt;e&lt;h-所以&lt;&lt;于是,有&lt;墅&lt;1又因为h&gt;O,所以,&lt;aret~&lt;:h参考文献l,周祖逵:发现法讲授中值定理的一种尝试,数学通报.1991,3(作者:副教授兵团载院/石大师院)一日O一。

数学分析教案 华东师大版第六章 微分中值定理及其应用

数学分析教案 华东师大版第六章 微分中值定理及其应用

第六章微分中值定理及其应用教学目的:1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基础;2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限;3.掌握泰勒公式,并能应用它解决一些有关的问题;4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根据函数的整体性态较为准确地描绘函数的图象;5.会求函数的最大值、最小值,了解牛顿切线法。

教学重点、难点:本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值及凸性;难点是用辅助函数解决问题的方法。

教学时数:14学时§ 1 中值定理(4学时)教学目的:掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础。

教学要求:深刻理解中值定理及其分析意义及几何意义,掌握三个定理的证明方法,知道三者之间的包含关系。

教学重点:中值定理。

教学难点:定理的证明。

教学难点:系统讲解法。

一、引入新课:通过复习数学中的“导数”及物理上的“速度”、几何上的“切线”之联系,引导学生从直觉上感到导数是一个非常重要而有用的数学概念。

在学生掌握了“如何求函数的导数”的前提下,自然提出另外一个基本问题:导数有什么用?俗话说得好:工欲善其事,必先利其器。

因此,我们首先要磨锋利导数的刀刃。

我们要问:若函数可导,则它应该有什么特性?由此引入新课——第六章微分中值定理及其应用§1 拉格朗日定理和函数的单调性(板书课题)二、讲授新课:(一)极值概念:1.极值:图解,定义 ( 区分一般极值和严格极值. )2.可微极值点的必要条件:Th ( Fermat ) ( 证 )函数的稳定点, 稳定点的求法.(二)微分中值定理:1. Rolle中值定理: 叙述为Th1.( 证 )定理条件的充分但不必要性.grange中值定理: 叙述为Th2. ( 证 ) 图解 .用分析方法引进辅助函数, 证明定理.用几何直观引进辅助函数的方法参阅[1]P157.Lagrange中值定理的各种形式. 关于中值点的位置.推论1 函数在区间I上可导且为I上的常值函数. (证) 推论2 函数和在区间I上可导且推论3 设函数在点的某右邻域上连续,在内可导. 若存在,则右导数也存在,且有(证)但是, 不存在时, 却未必有不存在. 例如对函数虽然不存在,但却在点可导(可用定义求得).Th ( 导数极限定理 ) 设函数在点的某邻域内连续,在内可导. 若极限存在, 则也存在, 且( 证 )由该定理可见,若函数在区间I上可导,则区间I上的每一点,要么是导函数的连续点,要么是的第二类间断点.这就是说,当函数在区间I上点点可导时,导函数在区间I上不可能有第二类间断点.推论4 ( 导函数的介值性 ) 若函数在闭区间上可导, 且( 证 )Th ( Darboux ) 设函数在区间上可导且. 若为介于及之间的任一实数, 则设对辅助函数, 应用系4的结果. ( 证 )3.Cauchy中值定理:Th 3 设函数和在闭区间上连续, 在开区间内可导, 和在内不同时为零, 又则在内至少存在一点使.证分析引出辅助函数. 验证在上满足Rolle定理的条件,必有, 因为否则就有.这及条件“和在内不同时为零”矛盾.Cauchy中值定理的几何意义.(三)中值定理的简单应用:1. 证明中值点的存在性例1 设函数在区间上连续, 在内可导, 则, 使得.证在Cauchy中值定理中取.例2设函数在区间上连续,在内可导,且有.试证明: .2.证明恒等式:原理.例3证明: 对, 有.例4设函数和可导且又则.证明.例5设对, 有, 其中是正常数. 则函数是常值函数. (证明 ).3.证明不等式:例6证明不等式: 时, .例7证明不等式: 对,有.4. 证明方程根的存在性:证明方程在内有实根.例8证明方程在内有实根.§ 2 柯西中值定理和不定式的极限(2学时)教学目的:1. 掌握讨论函数单调性方法;2. 掌握L’Hospital法则,或正确运用后求某些不定式的极限。

微分中值定理与导数的应用教案

微分中值定理与导数的应用教案
微分中值定理是微分学中的基本定理之一,它揭示了函数在某一点的导数与该函数在该点的切线之间的关系。
微分中值定理的重要性
微分中值定理是导数应用的基础,它可以用来研究函数的单调性、极值、拐点等性质。
微分中值定理也是解决一些实际问题的关键工具,例如在物理学、工程学等领域中,微分中值定理的应用非常广泛。
微分中值定理的证明方法有多种,其中最常用的是利用拉格朗日中值定理进行证明。
利用导数求切线方程
总结词
通过导数,我们可以找到函数在某一点的切线斜率,从而确定切线方程。
详细描述
给定一个函数$f(x)$在点$x_0$处的导数$f'(x_0)$,它表示函数在$x_0$处的切线斜率。切线方程可以由点斜式得出,即$y - y_0 = f'(x_0)(x - x_0)$,其中$y_0 = f(x_0)$。
利用微分中值定理证明不等式
微分中值定理也可以用于证明不等式。
总结词
通过构造适当的辅助函数,我们可以利用微分中值定理来证明一些不等式。例如,如果我们想证明一个函数在某个区间上的最大值或最小值不超过某个常数,我们可以构造一个辅助函数,使其在区间端点的函数值为零,然后在区间内部取正值或负值,这样就可以利用微分中值定理来证明不等式。
导数大于零表示函数在该区间内单调递增,导数小于零表示函数在该区间内单调递减。
总结词
如果函数$f(x)$在区间$(a, b)$内的任一点都可导,并且$f'(x) > 0$,则函数$f(x)$在区间$(a, b)$内单调递增;如果$f'(x) < 0$,则函数$f(x)$在区间$(a, b)$内单调递减。
详细描述

利用导数研究函数的单调性
VS
函数的极值点满足导数为零或不可导的条件,通过这些点可以找到函数的极值。

微分中值定理教案

微分中值定理教案

§3. 1 中值定理一、罗尔定理一、罗尔定理首先,观察图1. 设曲线弧 是函数[]) ,)((b a x x f y ∈=的图形. 这是一条连续的曲线弧,除端点外处处具有不垂直于x 轴的切线,且两 个端点的纵坐标相等,即)()(b f a f =.可以发现曲线的最高点或最低 点C 处, 曲线有水平的切线. 如果记C 点的横坐标为ξ,那么就有0)(='ξf现在用分析语言把这个几何现象描述出来,就是下面的罗尔定理. 为了应用方便,先介绍费马(Fermat )引理.费马(Fermat )引理 设函数)(x f 在点0x 的某邻域)(0x U 内有定义,并且在0x 处可导,如果对任意的)(0x U x ∈,有 )()(0x f x f ≤ (或)()(0x f x f ≥), 那么0)(0='x f .证明 不妨设)(0x U x ∈时,)()(0x f x f ≤ (如果)()(0x f x f ≥,可以类似地证明).于是,对于)(00x U x x ∈∆+,有 )()(00x f x x f ≤∆+, 从而当0>∆x 时,0)()(00≤∆-∆+xx f x x f ;当0<∆x 时,0)()(00≥∆-∆+xx f x x f .根据函数)(x f 在0x 可导的条件及极限的保号性,便得到0)()(lim )()(0000≤∆-∆+='='+→∆+xx f x x f x f x f x , .0)()(lim )()(0000- 0≥∆-∆+='='-→∆x x f x x f x f x f x 所以,0)(0='x f .证毕. (通常称导数等于零的点为函数的驻点(或稳定点,临界点))罗尔定理 如果函数y =f (x )在闭区间[a , b ]上连续, 在开区间(a , b )内可导, 且有f (a )=f (b ), 那么在(a , b )内至少在一点ξ , 使得f '(ξ)=0.证明 由于)(x f 在闭区间[]b a ,上连续,根据闭区间上连续函数的最大值和最小值定理,)(x f 在闭区间[]b a ,上必定取得它的最大值M 和最小值m .这样,只有两种可能情形:(1)M =m .这时)(x f 在区间[]b a ,上必然取相同的数值M :)(x f =M .由此,),(b a x ∈∀,有0)(='x f .因此,任取),(b a ∈ξ,有0)(='ξf .(2)M >m .因为)()(b f a f =,,所以M 和m 这两个数中至少有—个不等于)(x f 在区间[]b a ,的端点处的函数值.为确定起见,不妨设M )(a f ≠(如果设m )(a f ≠,证达完全类似).那末必定在开区间(b a ,) 内有一点ξ使=)(ξf M .因此,[]b a x ,∈∀ ,有)()(ξf x f ≤,从而由费马引理可知0)(='ξf .定理证毕. 注 证明方程有根,一是用零点定理,二是用罗尔定理.y图1⌒AB例1 设)(x f 在[]1,0上连续,)1,0(内可导,且1)21(,0)1()0(===f f f ,试证:至少存在一个)1,0(∈ξ,使1)(='ξf . 证明: 令x x f x F -=)()(,则0)0(=F ,21)21(=F ,1)1(-=F .由闭区间上连续函数的零点定理可知,存在)1,21(∈η,使0)(=ηF .再由罗尔定理得,至少存在一个)1,0(),0(⊂∈ηξ,使0)(='ξF ,即1)(='ξf .二、拉格朗日中值定理罗尔定理中)()(b f a f =这个条件是相当特殊的,它使罗尔定理的应用受到限制.如果把)()(b f a f =这个条件取消,但仍保留其余两个条件,并相应地改变结论,那末就得到微分学中十分重要的拉格朗日中值定理.拉格朗日中值定理 如果函数f (x )在闭区间[a , b ]上连续, 在开区间(a ,<b ), 使得等式 f (b )-f (a )=f '(ξ)(b -a ) 成立.在证明之前,先看一下定理的几何意义.如果把(1)式改写成)()()(ξf a b a f b f '=--, 由图2可看出,ab a f b f --)()(为弦AB 的斜率,而)(ξf '为曲线在点C 处的切线的斜率.因此拉格朗日中值定理的几何意义是;如果连续曲线)(x f y =的弦AB 上除端点外处处具有不垂直于x 那末这弧上至少有一点C ,使曲线在C 点处的切线平行于弦AB .从罗尔定理的几何意义中(图1)看出,由于)()(b f a f =,弦AB 是平行于x 轴的,因此点C 处的切线实际上也平行于弦AB .由此可见,罗尔定理是拉格朗日中值定理的特殊情形.从上述拉格朗日中值定理与罗尔定理的关系,自然想到利用罗尔定理来证明拉格朗日中值定理.但在拉格朗日中值定理中,函数)(x f 不一定具备)()(b f a f =这个条件,为此我们设想构造一个与)(x f 有密切联系的函数)(x φ(称为辅助函数),使)(x φ满足条件)()(b a φφ=.然后对)(x φ应用罗尔定理,再把对)(x φ所得的结论转化到)(x f 上,证得所要的结果.我们从拉格朗日中值定理的几何解释中来寻找辅助函数,从图3—2中看到,有向线段NM 的值是x 的函数,把它表示为)(x φ,它与)(x f 有密切的联系,当a x =及b x =时,点M 与点N 重合,即有0)()(==b a φφ.为求得函数)(x φ的表达式,设直线AB 的方程为)(x L y =,则)()()()()(a x ab a f b f a f x L ---+=,由于点M 、N 的纵坐标依次为)(x f 及)(x L ,故表示有向线段NM 的值的函数)()()()()()()()(a x ab a f b f a f x f x L x f x -----=-=φ.下面就利用这个辅助函数来证明拉格朗日中值定理.定理的证明: 引进辅函数 令 ϕ(x )=f (x )-f (a )-ab a f b f --)()((x -a ).容易验证函数f (x )适合罗尔定理的条件: ϕ(a )=ϕ(b )=0, ϕ(x )在闭区间[a , b ] 上连续在开区间(a , b )内可导, 且ϕ '(x )=f '(x )-ab a f b f --)()(.根据罗尔定理, 可知在开区间(a , b )内至少有一点ξ, 使ϕ '(ξ)=0, 即 f '(ξ)-ab a f b f --)()(=0.图2由此得ab a f b f --)()(= f '(ξ) , 即 f (b )-f (a )=f '(ξ)(b -a ). 定理证毕.f (b )-f (a )=f '(ξ)(b -a )叫做拉格朗日中值公式. 这个公式对于b <a 也成立. 拉格朗日中值公式的其它形式:设x 为区间[a , b ]内一点, x +∆x 为这区间内的另一点(∆x >0或∆x <0), 则在[x , x +∆x ] (∆x >0)或[x +∆x , x ] (∆x <0)应用拉格朗日中值公式, 得f (x +∆x )-f (x )=f '(x +θ∆x ) ⋅∆x (0<θ<1).如果记f (x )为y , 则上式又可写为∆y =f '(x +θ∆x ) ⋅∆x (0<θ<1).试与微分d y =f '(x ) ⋅∆x 比较: d y =f '(x ) ⋅∆x 是函数增量∆y 的近似表达式, 而 f '(x +θ∆x ) ⋅∆x 是函数增量∆y 的精确表达式.作为拉格朗日中值定理的应用, 我们证明如下推论:推论1 如果函数f (x )在区间I 上的导数恒为零, 那么f (x )在区间I 上是一个常数. 证 在区间I 上任取两点x 1, x 2(x 1<x 2), 应用拉格朗日中值定理, 就得f (x 2)-f (x 1)=f '(ξ)(x 2 - x 1) (x 1<ξ< x 2).由假定, f '(ξ)=0, 所以f (x 2)-f (x 1)=0, 即f (x 2)=f (x 1).因为x 1, x 2是I 上任意两点, 所以上面的等式表明: f (x )在I 上的函数值总是相等的, 这就是说, f (x )在区间I 上是一个常数. 例2. 证明当x >0时,x x xx <+<+)1ln(1. 证 设f (x )=ln(1+x ), 显然f (x )在区间[0, x ]上满足拉格朗日中值定理的条件, 根据定理, 就有 f (x )-f (0)=f '(ξ)(x -0), 0<ξ<x 。

3.1微分中值定理讲稿

3.1微分中值定理讲稿
0
0
0
x → x0
g ( x)
x → x0
g ′( x)
当x→∞,x→ x0 等其它变化过程时定
理结论仍成立
+
例4.求 lim 求
sin x 1 2 解: ( x sin )′ x 解: (ln 2 x)′ 原式= x→0 原式 lim 原式= →+∞ 原式 xlim (sin x)′ ( x)′ 1 1 2 1 2 x sin + x (sin )′ 2 ln x ⋅ x x = lim x = lim x →0 cos x x → +∞ 1 1 1 1 2 x sin + x 2 ⋅ cos ⋅ (− 2 ) (2 ln x)′ x x x = lim (再用一次洛 (再用一次洛 = lim x →0 cos x x → +∞ ( x)′ 必达法则Ⅱ 必达法则Ⅱ) 1 1 2 x sin − cos x x 极限不存在 还能再用洛必达法 2 = lim = lim x →0 则Ⅱ吗? cos x x → +∞ x
ξ
b
x
反之若三条件中有一条件不满足,就可 反之若三条件中有一条件不满足 就可 能在开区间(a,b)内找不到一个点的导数 能在开区间 内找不到一个点的导数 恰好为零(如图 图 图 如图1 恰好为零 如图 ,图2 ,图3)
满足条件: 2.拉格朗日中值定理 如果函数 f (x) 满足条件: 拉格朗日中值定理. 拉格朗日中值定理 ⑴在闭区间[a,b]上连续 在闭区间 上连续 ⑵在开区间(a,b)内可导 在开区间 内可导 则在开区间(a,b)内至少存在一个点 ξ 使 内至少存在一个点 则在开区间 f (b) − f (a) f ′(ξ ) = 或 f (b) − f (a) = f ′(ξ )(b − a) b−a y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微分中值定理【教学内容】 拉格朗日中值定理 【教学目的】1、熟练掌握中值定理,特别是拉格朗日中值定理的分析意义和几何意义;2、能应用拉格朗日中值定理证明不等式。

3、了解拉格朗日中值定理的推论1和推论2 【教学重点与难点】1、拉格朗日中值定理,拉格朗日中值定理的应用2、拉格朗日中值定理证明中辅助函数的引入。

3、利用导数证明不等式的技巧。

【教学过程】一、背景及回顾在前面,我们引进了导数的概念,详细地讨论了计算导数的方法。

这样一来,类似于求已知曲线上点的切线问题已获完美解决。

但如果想用导数这一工具去分析、解决复杂一些的问题,那么,只知道怎样计算导数是远远不够的,而要以此为基础,发展更多的工具。

另一方面,我们注意到:(1)函数与其导数是两个不同的函数;(2)导数只是反映函数在一点的局部特征;(3)我们往往要了解函数在其定义域上的整体性态,需要在导数及函数间建立起联系――搭起一座桥,这个“桥”就是微分中值定理。

由此我们学习了极值点的概念、费马定理、特别是罗尔定理,我们简单回忆一下罗尔定理的内容:若函数)(x f 满足下列条件: ①在闭区间[]b a ,连续 ②在开区间()b a ,可导③)()(b f a f =则在()b a ,内至少存在一点c ,使得0)('=c f二、新课讲解1797年,法国著名的数学家拉格朗日又给出一个微分中值定理,史称拉格朗日中值定理或微分中值定理,但未证明.拉格朗日中值定理具有根本的重要性,在分析中是许多定理赖以证明的工具,是导数若干个应用的理论基础, 我们首先看一下拉格朗日中值定理的内容:2.1拉格朗日定理若函数)(x f 满足下列条件: ①在闭区间[]b a ,连续 ②在开区间()b a ,可导则在开区间()b a ,内至少存在一点c ,使 ()()ab a f b fc f --=)('注:a 、深刻认识定理,是两个条件,而罗尔定理是三个条件。

b 、若加上)()(b f a f =,则()()00)('=-=--=ab a b a f b fc f 即:0)('=c f ,拉格朗日定理变为罗尔定理,换句话说罗尔定理是拉格朗日定理的特例。

c 、形象认识(几何意义),易知()()ab a f b f --为过A 、B斜率,)('c f 为曲线)(x f 上过c 点的切线的斜率;若()()ab a f b fc f --=)('即是说割线的斜率等于切线的斜率。

几何意义:若在闭区间[]b a ,上有一条连续的曲线,曲线上每一点都存在切线,则曲线上至少有一点))(,(c f c C ,使得过点C 的切线平行于割线AB 。

它表明“一个可微函数的曲线段,必有一点的切线平行于曲线端点的弦。

”2.2 拉格朗日定理的证明下面我们证明一下该定理。

分析:如何来证明该定理呢?由于罗尔定理为拉格朗日定理的特例,我们考虑是否可将拉格朗日定理的证明转化到罗尔定理上来,为此需要构造一个辅助函数)(x ϕ,使他满足罗尔定理的条件。

注意罗尔定理的结果是0)('=c f ,对应拉格朗日定理的结果是()()a b a f b f c f --=)(',即()()0)('=---ab a f b fc f ,实际上就是0)('=c ϕ,即是说()()a b a f b f c f c ---=)()(''ϕ,两边积分得()()()C x ab a f b f x f x +---=)(ϕ,注意)(x ϕ要满足罗尔定理的三个条件,故取()()()()()][)(a x ab a f b f a f x f x ---+-=ϕ证明:作辅助函数()()()()()][)(a x ab a f b f a f x f x ---+-=ϕ,易知)(x ϕ在闭区间[]b a ,连续,在开区间()b a ,可导,又)()(b a ϕϕ=,根据罗尔定理,)(x ϕ在()b a ,内至少存在一点c ,使得0)('=c ϕ,而()()a b a f b f x f x ---=)()(''ϕ,于是()()0)()(''=---=ab a f b fc f c ϕ,即()()ab a f b fc f --=)(',命题得证。

注:a 、本定理的证明提供了一个用构造函数法证明数学命题的精彩典范;同时通过巧妙地数学变换,将一般化为特殊,将复杂问题化为简单问题的论证思想,也是数学分析的重要而常用的数学思维的体现,其中构造函数()()()()()][)(a x a b a f b f a f x f x ---+-=ϕ中的()()()()a x ab a f b f a f ---+其实就是过两点A 、B 两点的割线方程。

b 、拉格朗日中值定理的中值点c 是开区间(a,b )内的某一点,而非区间内的任意点或指定一点。

换言之,这个中值定理都仅“定性“地指出了中值点c 的存在性,而非”定量“地指明c 的具体数值。

c 、拉格朗日中值定理的其他表达形式:(1).).)(()()(时也成立当b a a b f a f b f >-'=-ξ (2)x f x f x x f ∆'=-∆+)()()(ξ 之间和在x x x +∆ξ2.3 拉格朗日定理的应用例1: 验证函数()f x =3x -3x 在区间[0,2]上是否满足拉格朗日中值定理的条件,若满足,求使定理成立的ξ的值.解:因 3() =3f x x x -,在[]0,2上连续,在(0,2)内可导,满足定理的条件。

而2()=33f x x '-由()()()02)(02'-=-ξf f f 得231ξ-=3,3ξ=注 在验证拉格朗日中值定理时,必须注意: (1)该函数是否满足定理的两个条件。

(2)是否存在一点ξ∈(a,b ),使))(()()(a b f a f b f -'=-ξ成立.例2 .)1ln(1,0x x xxx <+<+>时证明当 分析:此题难以下手,由此考虑到使用拉格朗日中值定理。

证明:设()()x x f +=1ln易知()x f 在],0[x 上满足拉格朗日中值定理的条件 故,()()()()()x x f f x f <<-=-ξξ0,00'又,()()xx f f +==11,00',有上式得: ()ξ+=+11ln x x 又,111111110<+<+⇒+<+<⇒<<ξξξx x x 则,x x x x <+<+ξ11 ,即 x x xx <+<+)1ln(1,命题得证。

小结:用拉格朗日中值定理证明不等式,关键是选取适当的函数,并且该函数满足中值定理的条件。

便得到)( ))(()()(b a a b f a f b f <<-'=-ξξ,再根据b a <<ξ放大或缩小)(ξf ',证出不等式。

推论1 如果()f x 在区间(,)a b 内的导数恒等于零,那么()f x 在(,)a b 内恒等于一个常数.(证明作为课外作业)证:在区间(,)a b 内任意取两点1x ,2x (设12x x <),则()f x 在[]12,x x 上满足拉格朗日中值定理条件.故有()2121()()()f x f x x x f c '-=-⋅ 12()x c x <<,由于()0f c '=,所以21()()0f x f x -=,即21()()f x f x =.由于1x ,2x 是在(,)a b 内任意取的两点,因此()f x 在区间(,)a b 内函数值总是相等的,这表明()f x 在区间(,)a b 内恒为一个常数.推论2 若(,)x a b ∀∈有()()f x g x ''=,则(,)x a b ∀∈有()()f x g x c =+.(证明作为课外作业) 证:(,)x a b ∀∈,[]()()()()0f x g x f x g x '''-=-=,根据推论1知()()f x g x c -=,即()()f x g x c =+.三、小结1、拉格朗日定理的内容2、拉格朗日定理的几何意义3、拉格朗日定理的证明过程——构造函数法4、拉格朗日定理的应用微分学基本定理1、极值点的概念定义:设函数)(x f 在区间I 上有定义。

若I x ∈0,且存在0x 的某邻域,)(0I x U ⊂)(0x U x ∈∀,有 ()()0x f x f ≤ (()()0x f x f ≥)则称0x 是函数)(x f 的极大点(极小点),()0x f 是函数)(x f 的极大值(极小值)。

2、费马定理设函数)(x f 在区间I 上有定义。

若函数)(x f 在0x 点可导,且0x 是函数)(x f 的极值点,则0)(0'=x f3、罗尔定理若函数)(x f 满足下列条件: ①在闭区间[]b a ,连续 ②在开区间()b a ,可导③)()(b f a f =则在()b a ,内至少存在一点c ,使得0)('=c f4、拉格朗日定理若函数)(x f 满足下列条件:①在闭区间[]b a ,连续②在开区间()b a ,可导则在开区间()b a ,内至少存在一点c ,使 ()()ab a f b fc f --=)('5、柯西中值定理若函数)(x f 和)(x g 满足下列条件: ①在闭区间[]b a ,连续②在开区间()b a ,可导,且),(b a x ∈∀,有0)('≠x g ,则在()b a ,内至少存在一点c ,使得()()()()()()a gb g a f b fc g c f --=''。

相关文档
最新文档