常压炉和鲁奇炉对比稿
常压炉和鲁奇炉对比稿分解
常压炉和鲁奇炉对比一、气化装置投资对比:鲁奇加压气化炉(含空分)-----------6.665亿;纯氧常压气化炉(含空分)-----------3.297亿;该项对比结果为:纯氧常压气化炉比鲁奇炉少投资3.368亿。
二、年运行费用对比鲁奇加压气化炉-------------年生产费用3.79亿元;纯氧常压气化炉-------------年生产费用4.62亿元;该项对比结果为:纯氧常压气化炉年运行成本比鲁奇炉高 1.43亿元。
三、常压炉和鲁奇炉对比结论加压鲁奇炉一次性投资多3.368亿元。
运行成本年节省1.43亿元,在2.35年回收该一次投资。
对比结论是鲁奇炉比常压炉更适合本项目。
四、常压炉和鲁奇炉分析明细1、投资对比序号项目纯氧常压气化炉万元鲁奇加压气化万元1 焦块筛分+焦粉制块+输送650 6502 入炉前煤锁100 8003 煤气炉系统11700(8开备2)38000(三开一备)5 循环水处理站(回收)1220 120006 气柜+电除尘10007一级压缩机二级压缩机100008 空分8000 15000(汽轮机拖动)投资合计 3.297亿 6.665亿差值+3.368亿该项对比结果为:纯氧常压气化炉比鲁奇炉少投资3.368亿2、年运行费用对比一年(8000小时)生产费用表序号项目纯氧常压气化炉鲁奇加压气化1 焦炭t/h53 568000小时万元13568 14336(焦炭320元/t)2 氧气耗Nm3/h 25920199488000小时万元6220.8 4787.52(氧气0,3元/Nm3)3 蒸汽耗t/h 8212630(回收用)8000小时万元7872 12096(蒸汽120元/t)4 电耗kw h 4080016008000小时万元18604.8 729.6(电价0,57元/kwh)8000小时生产费用46265.631949.125合计万元差值+14316.68对比结果:纯氧常压气化炉年运行成本比鲁奇炉高1.43亿元。
描述气流内热式炉、鲁奇三段炉干馏的工艺流程。
描述气流内热式炉、鲁奇三段炉干馏的工艺
流程。
嘿,朋友!咱今儿就来好好唠唠气流内热式炉和鲁奇三段炉干馏的
工艺流程。
先说这气流内热式炉,就好像一个超级大厨在精心烹饪。
原料就像
是食材,被送进这个“大厨房”。
热气体呢,就像是热情的火焰,从炉
子内部呼呼地冒出来,给原料来个全方位的“加热拥抱”。
这不就和咱
在家用烤箱烤蛋糕一个道理嘛,热量从里到外渗透,让原料发生奇妙
的变化。
在这个过程中,原料被加热到一定温度,各种成分就开始分离啦。
就像一群小伙伴,到了特定的时候,各奔东西,去寻找自己的新天地。
一些变成了油气,欢欢喜喜地跑了出来;还有一些变成了半焦,留在
炉子里继续它们的旅程。
再瞧瞧鲁奇三段炉,这可就更有意思啦!它就像一个分层的大宝藏箱。
第一段呢,是预热干燥区,原料进来就像走进了一个温暖的房间,先把身上多余的水分给去掉,轻装上阵。
第二段是干馏区,这可是关键的一步!就好比是一场激烈的化学反应,原料在高温下发生变化,产生出我们想要的各种产品。
第三段是冷却区,出炉的产品就像刚跑完马拉松的运动员,需要在
这里好好冷静冷静,降降温。
你想想,这整个工艺流程是不是特别神奇?就像是一个精心编排的舞蹈,每个步骤都紧密相连,缺一不可。
如果哪个环节出了岔子,那可就乱套啦!
所以说啊,气流内热式炉和鲁奇三段炉干馏的工艺流程,那是相当的精细和复杂。
但只要咱们搞清楚了每个环节的作用和原理,就能更好地利用它们,为咱们的生产带来更多的好处。
怎么样,朋友,你是不是对这工艺流程有了更清晰的认识呢?。
三种气化炉比较
1。
Lurgi加压气化炉Lurgi炉是一种固定床加压气化炉。
严格来说,Lurgi加压气化炉属于第一代煤气化技术,但自发明以来不断得到改进,至今在南非仍有大规模使用。
Lurgi气化工艺具有以下特点:(1)使用粒度在5~50mm之间的粒煤;(2)可能气化从褐煤到无烟煤的各种煤,但对原料的热稳定性、机械强度、粘结剂等性能指标有一定要求;(3)操作压力从2~3MPa;(4)气化烟煤时,粗煤气中CO:15%~25%;CO2:24%~34%;H2:34%~40%;CH4:9%~13%;(5)炉顶煤气温度250~350℃;(6)单炉产气量30000~50000Nm3/h;(7)冷煤气效率可达80%。
从以上工艺特点可以看出,Lurgi的煤气温度较低,煤气中CH4及焦油含量较高,粗煤气净化和焦油处理单元不可避免,由此引起的环保问题比较突出。
从煤气成份来看,Lurgi是最适合于直接还原的制气技术,只要对煤气进行脱碳处理后就可以直接供还原竖炉使用。
2 。
Texaco水煤浆气化炉Texaco炉是美国Texaco公司在重油气化基础上开发出的煤气化技术,是目前商业业绩最多的第二代气流床气化工艺,优点是压力高,运行和操作经验丰富,气化温度高,煤气有效成分高,主要技术特点如下:(1)进料采用75%以上-200目煤粉制成的水煤浆,煤浆中煤粉质量分数为65~70%。
理论上Texaco可用于各种煤的气化,但经验表明最适宜的煤种应是灰熔点为1300℃左右、灰分低于20%的煤种;(2)气化压力从2.6~8.4MPa;(3)碳转化率在95%以上,冷煤气效率可达到70%以上;(4)干煤气中的(CO+H2)有效气成份在80%以上,CO约占49%,H2约占31%,CO2约占18%(大同煤);(5)气化温度达到1300~1400℃,水激冷后的粗煤气温度为200~260℃。
如果采用热能回收式气化炉,粗煤气的温度换热后从1370℃降至400℃;(6)采用单喷嘴、热壁炉的设备形式,喷嘴寿命平均在1500h,耐材寿命在1~2年,所以必须设有备用系统;(7)生产1000Nm3(CO+H2)有效气的氧耗在400Nm3左右,煤耗在640kg左右;(8)单炉设计最大日处理煤量可达到2000t。
鲁奇气化炉
鲁奇气化炉鲁奇加压气化炉1、第三代鲁奇加压气化炉第三代加压气化炉为例,该炉子的内径为3.8m,最大外径为4.128m,高为12.5m,工艺操作压力为3MPa。
主要部分有炉体、夹套、布煤器和搅拌器、炉算、灰锁和煤锁等,现分述如下。
①炉体加压鲁奇炉的炉体由双层钢板制成,外壁按3.6MPa的压力设计,内壁仅能承受比气化炉内高O.25MPa的压力。
两个简体(水夹套)之间装软化水借以吸收炉膛所散失的一些热量产生工艺蒸汽,蒸汽经过液滴分离器分离液滴后送入气化剂系统,配成蒸汽/氧气混合物喷入气化炉内一水夹套内软化水的压力3MPa,这样筒内外两两侧的压力相同,因而受力小。
夹套内的给水由夹套水循环泵进行强制循环。
同时夹套给水流过煤分布器和搅拌器内的通道,以防止这些部件超温损坏。
第三代鲁奇炉取消了早期鲁奇炉的内衬砖.燃料直接与水夹套内壁相接触,避免了在较高温度下衬砖壁挂渣现象,造成煤层下移困难等异常现象,另一方面,取消衬砖后,炉膛截面可以增大5%~10%左右,生产能力相应提高。
②布煤器和搅拌器如果气化黏结性较强的煤,可以加设搅拌器。
布煤器和搅拌嚣安装在同一转轴上,速度为15r/h左右。
从煤箱降下的煤通过转动布煤器上的两个扇形孔,均匀下落在炉内,平均每转可以在炉内加煤150~200mm厚。
搅拌器是一个壳体结构,由锥体和双桨叶组成,壳体内通软化水循环冷却。
搅拌器深入到煤层里的位置与煤的结焦性有关,煤一般在400~500℃结焦,桨叶要深入煤层约l.3m。
③炉算炉箅分四层,相互叠合固定在底座上,顶盖呈锥体。
材质选用耐热的铬钢铸造,并在其表面加焊灰筋。
炉箅上安装刮刀,刮刀的数量取决于下灰量。
灰分低,装1~2把;对于灰分较高的煤可装3~4把。
炉箅各层上开有气孔,气化剂由此进入煤层中均匀分布。
各层开孔数不太一样,例如某厂使用的炉算开孔数从上至下为:第一层6个、第二层16个、第三层16个、第四层28个。
炉箅的转动采用液压传动装置,也有用电动机传动机构来驱动,液压传动机构有调速方便、结构简单、工作平稳等优点。
luiqi与BGL比较
两者均属于移动床气化,又称固定床气化,属于逆流操作。固定床气化可分为常压与加压两种。常压法比较简单,但要求用块煤,低灰熔点的煤难以使用。加压法是常压法的改进和提高,常用O2与水蒸气为气化剂,对煤种适应性大大提高。属于这类炉型的气化炉有UGI炉、鲁奇(Lurgi)炉和液态排渣鲁奇(BGL)炉等。下表是对Lurgi炉和BGL炉比较:
项目
Lurgi炉
BGL炉
发展概况
鲁奇碎煤加压气化技术是20世纪30年代由联邦德国鲁奇公司开发的,是目前世界上建厂数量最多的煤气化技术。国内使用厂家也比较多,有天基集团、义马气化厂、哈尔滨气化厂、兰州气化厂等。
1984年鲁奇公司和英国煤气公司联合开发了BGL液态排渣鲁奇炉。国内云解化从2006年开始对原有国产固定床气化炉进行改造,2006年完成并开车试验,据了解,开车不是十分顺利,没有达到预期的效果,尤其云南的褐煤含水大,且没有制成型煤,因此不太成功。云南瑞气20万吨甲醇项目,去年11月开车成功。
气化压力
2.5~4.0MPa
2.5~3.0MPa
气化温度
800~900℃
1400~1600℃
排渣方式
固态排渣
液态排渣
主要
特点
比较
1〉对煤种和煤质的要求较高,只能使用弱黏结烟煤和褐煤,灰熔点(氧化气氛)大于1500℃。对强黏结性、热稳定性差、灰熔点低以及粉状煤则难以使用。
2〉生产能力大,自工业化以来,单炉生产能力持续增长。
4〉水蒸气耗量低,水蒸气分解率高;
5〉煤气中可燃组分增加,热值提高;
6〉碳ቤተ መጻሕፍቲ ባይዱ化率、气化效率和热效率均有提高;
7〉对环境污染减少。
液态排渣法固定床加压气化具有一系列优点,因而受到广泛重视。但是由于高温、高压的操作条件,对于炉衬材料、熔渣池的结构和材质以及熔渣排出的有效控制都有待于不断改进。
三种煤气化工艺的比较
三种煤气化工艺的比较三种煤气化工艺的比较煤气化技术视炉内气-固状态和运动形式,主要分为三大类∶以块煤(10~50mm)为原料的固定床;以碎煤(小于6mm)为原料的流化床;以粉煤(小于0.1mm)为原料的气流床。
为提高单炉能力和降低能耗,现代气化炉均在适当的压力(1.5~4.5MPa)下运行,相应地出现了增压固定床、增压流化床和增压气流床技术。
我国绝大多数正在运行的气化炉仍为水煤气或半水煤气固定床。
1.固定床气化工艺先进的固定床气化工艺以鲁奇移动床加压气化为代表,其主要优点包括:可以使用劣质煤气化;加压气化生产能力高;氧耗量低,是目前三类气化方法中氧耗量最低的方法;鲁奇炉是逆向气化,煤在炉内停留时间长达1h,反应炉的操作温度和炉出口煤气温度低,碳效率高、气化效率高。
虽然鲁奇气化工艺优点很多,但由于固定床气化只能以不粘块煤为原料,不仅原料昂贵,气化强度低,而且气-固逆流换热,粗煤气中含酚类、焦油等较多,使净化流程加长,增加了投资和成本。
2.气流床气化工艺德士古炉、K-T炉、壳脾炉,以粉煤为原料的气流床在极高温度下运行(1300-1500℃),气化强度极高,单炉能力己达2500煤/日,我国进口的德士古炉也达400~700煤/日,气体中不含焦油、酚类,非常适合化工生产和先进发电系统的要求。
气流床气化工艺的优点包括.煤种适应范围较宽,水煤浆气化炉一般情况下不宜气化褐煤(成浆困难),工艺灵活,合成气质量高,产品气可适用于化工合成,制氢和联合循环发电等.气化压力高,生产能力高.不污染环境,三废处理较方便。
该工艺缺点是,高温气化为使灰渣易于排出,要求所用煤灰熔点低(小于1300℃),含灰量低(低于10%-15%),否则需加人助熔剂(CaO或Fe2O3)并增加运行成本。
这一点特别不利于我国煤种的使用。
此外,高温气化炉耐火材料和喷嘴均在高温下工作,寿命短、价格昂贵、投资高,气化炉在高温运行,氧耗高,也提高了煤气生产成本。
浅述鲁奇炉造气
浅述鲁奇炉造气摘要:本文总结了加压气化装置的改进和管理经验。
事实表明,随着工艺的不断改进和生产管理水平的提高,鲁奇加压气化工艺用于贫瘦煤的气化是可行的。
新疆庆华集团隶属于中国庆华集团,是新疆第一个经国家核准的煤制天然气项目。
新疆庆华集团依托丰富的煤炭资源和水资源,于2009年3月落户伊犁,并以“庆华速度”建成新疆庆华煤化工循环经济工业园,该园区总占地面积达10000多亩,计划总投资278亿元,建设项目包括:年产55亿立方米煤制天然气项目、60万吨煤焦油加氢项目、合成氨项目、综合利用热电厂项目、粉煤灰制砖项目和年产200万吨粉煤灰制水泥项目。
整个煤制天然气项目建成投产后,每年需煤炭2100万吨,每年可实现销售收入160亿元,利税26亿元。
关键词: 气化炉的发展;造气系统;煤气冷却;安全防范。
目录1. 概述 .............................. 错误!未定义书签。
1.1简述............................ 错误!未定义书签。
1.2 鲁奇加压气化工艺发展前景展望 (3)2. 煤加压气化技术简述 (4)2.1 煤加压气化的主要技术优势在于 (4)2.2 气化炉的优化操作 (5)2.3 气化炉的事故处理 (5)3. 造气系统 (6)3.1加压气化原理 (6)3.2造气车间的主要设备 (9)3.3主要工艺控制参数 (9)3.4主要任务及设备 (9)4. 煤气冷却工段 (14)4.1 主要任务与设备 (14)4.2 工艺原理 (14)4.3工艺流程简述 (14)4.4主要任务及设备 (15)5. 危险因素分析 (17)5.1 人员自身方面 (17)5.2、操作环境方面 (18)6. 总结 .............................. 错误!未定义书签。
1.概述1.1简述我国石油和化学工业在快速发展的同时,正面临着资源、能源和环境等多重压力”。
由于我国石油和天然气短缺,煤炭相对丰富的资源特征,加之国际油价的持续高位运行状态,煤炭在我国的能源和化工的未来发展中所处的地位会变得越来越重要。
常压炉和鲁奇炉对比稿课件
常压炉和鲁奇炉对比一、气化装置投资对比:鲁奇加压气化炉(含空分)-----------6.665亿;纯氧常压气化炉(含空分)-----------3.297亿;该项对比结果为:纯氧常压气化炉比鲁奇炉少投资3.368亿。
二、年运行费用对比鲁奇加压气化炉-------------年生产费用3.79亿元;纯氧常压气化炉-------------年生产费用4.62亿元;该项对比结果为:纯氧常压气化炉年运行成本比鲁奇炉高 1.43亿元。
三、常压炉和鲁奇炉对比结论加压鲁奇炉一次性投资多3.368亿元。
运行成本年节省1.43亿元,在2.35年回收该一次投资。
对比结论是鲁奇炉比常压炉更适合本项目。
四、常压炉和鲁奇炉分析明细1、投资对比序号项目纯氧常压气化炉万元鲁奇加压气化万元1 焦块筛分+焦粉制块+输送650 6502 入炉前煤锁100 8003 煤气炉系统11700(8开备2)38000(三开一备)5 循环水处理站(回收)1220 120006 气柜+电除尘10007一级压缩机二级压缩机100008 空分8000 15000(汽轮机拖动)投资合计 3.297亿 6.665亿差值+3.368亿该项对比结果为:纯氧常压气化炉比鲁奇炉少投资3.368亿2、年运行费用对比一年(8000小时)生产费用表序号项目纯氧常压气化炉鲁奇加压气化1 焦炭t/h53 568000小时万元13568 14336(焦炭320元/t)2 氧气耗Nm3/h 25920199488000小时万元6220.8 4787.52(氧气0,3元/Nm3)3 蒸汽耗t/h 8212630(回收用)8000小时万元7872 12096(蒸汽120元/t)4 电耗kw h 4080016008000小时万元18604.8 729.6(电价0,57元/kwh)8000小时生产费用46265.631949.125合计万元差值+14316.68对比结果:纯氧常压气化炉年运行成本比鲁奇炉高1.43亿元。
不同煤气化技术优劣性分析
不同煤气化技术优劣性分析如果要问最近我国煤气化技术领域最受关注的事件是什么,那世界第一台水煤浆气化的水冷壁气化炉在山西建成并成功连续运行了几个月当仁不让。
而由此,水煤浆热壁炉和水冷壁炉优缺点的比较再次成为业界的热点话题,继而又引起了关于煤气化技术孰优孰劣的争议。
事实上,目前国内煤气化技术种类众多,近几年围绕各种技术之间的优缺点比较、评判就一直就没有停止过。
国内煤化工企业也想通过选择与比较,寻求最好的技术。
哪种煤气化技术好?什么样的企业适用什么样的技术?企业在选取煤气化技术时应注意什么问题?气化技术各有优劣煤气化技术是煤化工项目的龙头。
目前在国内推广的煤气化技术,包括我国自主开发技术和国外技术10多种。
煤气化技术若按炉型分,主要有固定床、流化床、气流床三种。
具体来讲,固定床气化炉有UGI炉和鲁奇炉,目前我国氮肥产业就主要采用UGI炉,有几千台炉子在运行;流化床常用气化炉有温克勒炉、循环流化床炉、灰熔聚流化床炉、恩德炉、U-Gas气化炉等;气流床按进料形式不同,分为干煤粉进料和水煤浆进料两大类,而以气化炉内是否衬有耐火保温材料分类,又有热壁炉和水冷壁炉两种。
所谓水冷壁,就是由水管、石英砂、煤渣组成的内腔。
一直以来,水冷壁都用于粉煤气化炉,水煤浆气化炉则多用耐火砖结构的热壁炉。
但是,山西阳煤丰喜肥业(集团)有限责任公司临猗分公司与清华大学、北京达力科公司共同合作,把水煤浆气化炉的内衬革新改造为了水冷壁,可谓一项重大创新。
江苏索普集团有限责任公司副总经理邵守言向记者介绍,耐火砖结构的水煤浆气化炉,其耐火温度为1350℃。
如果煤的灰熔点超过1350℃,耐火砖会受不了。
水冷壁气化炉最大的优势,就是对灰熔点超过1350℃的煤也能气化。
尽管他认为水冷壁气化炉还要经过几年的工程运行考验,还要解决水带走的热量、结垢后怎么处理等工程问题,但这是个技术发展方向,从技术方案上来说具有可行性。
毕竟目前适合热壁炉的煤种在国内只在河南义马、甘肃华亭、陕西榆林等地有,适合的煤种不多,水冷壁气化炉拓宽了煤种的使用范围。
鲁奇炉、shell、德士古、恩德炉、灰熔炉等气化炉工艺性能比较
几种常见煤气化炉的工艺性能比较德士古、壳牌、GSP气化炉具体参数比较名称Texaco Shell GSP原料要求(1)烟煤、无烟煤、油渣;(2)粒经40%~45%<200目;(3)水煤浆质量分数>60%;(4)灰熔融性温度<1350℃;(5)灰份<15%(1)褐煤-无烟煤全部煤种;(2)粒经90%<100目含水2%干粉煤(褐煤8%);(3)灰熔融性温度<1500℃;(4)灰份8%~20%(1)褐煤-无烟煤全部煤种、石油焦、油渣、生物质;(2)粒经250μm~500μm含水2%干粉煤(褐煤8%);(3)灰熔融性温度<1500℃;(4)灰份1%~20%气化温度/℃1450~1600 1450~1600 1450~1600 气化压力/MPa 4.0~8.0 4.0 4.0气化炉特点水煤浆供料,顶部单喷嘴。
热壁Al2O3-Cr2O3-ZrO2耐火衬里,冷激流程(用于IGCC时有废锅流程),除喷嘴外全为碳钢干煤粉供料,下部多喷嘴对喷。
承压外壳内有水冷壁,废锅流程,充分回收废热产蒸汽。
材质碳钢、合金钢、不锈钢。
干粉煤供料,顶部单喷嘴。
承压外壳内有水冷壁,激冷流程。
由水冷壁回收少量蒸汽,除喷嘴外材质全为碳钢。
投煤2000t/d 单台气化炉尺寸/mmφ内=4500标准炉:φ外=2794和φ外=3175(投煤800t/d)H=11500φ内=4600(投煤2300t/d)H=31640φ内=3500H=17000耐火砖或水冷壁寿命/a1 20 20喷嘴寿命60d 1a~1.5a 10a前端部分1a 60万t/a甲醇气化炉台数4+1 1(φ内约为5000mm) 2冷激室或废锅尺寸/mm2794 2500 冷激室φ内=3500 除尘冷却方式洗涤干式过滤、洗涤分离+洗涤出变换温度/℃210 40 220建筑物(不包括变换)装置占地:9100m2高约55m(气化部分)装置占地:9000m2高约85m~90m(气化部分)装置占地:9000m2高约55m(气化部分)。
合成氨不同工艺能耗对比
10万吨/年合成氨工艺技术比较工艺技术的选择1、造气工段煤气化工艺过程的发展已有百余年的历史,迄今为止已开发的气化方法不下数百种,按照煤在气化炉的运行和接触方式,可以分为(1)流化床气化、(2)气流床气化、(3)熔融床气化、(4)移动床气化(固定床)·流化床气化技术煤的流化床气化是指气化反应在以气化剂与煤形成的流化床内进行的。
流化床气化炉采用粉碎了的煤作为原料,用氧化剂(氧气或空气)来进行床体流化,其温度保持在1000℃以下,以预防灰熔化后与炉床里的物质发生结聚。
氧化剂的有限流量意味着大多数煤粒不会充分燃烧,而是收缩成碳素粒,被合成气带出气化炉。
这就需要大量的碳素粒循环,或被传送到分离燃烧室中燃烧。
流化床气化技术主要有温克勒(winkler)、高温温克勒(HTW)、U-Gas、恩德炉、灰熔聚等流化床粉煤气化技术。
现我国应用较多的是恩德炉、灰熔聚。
目前在朝鲜和我国共有十多台恩德气化炉在运行中,运行最好的是通辽梅花生物科技有限公司,现有2台发气量20000NM3/h的炉子,2006年11月投产,运行正常。
最关键的问题仍然是煤种,该炉要求煤种为褐煤、长焰煤、弱粘结煤,具体数据为灰熔点1250℃以上;煤活性950℃时大于65%,原则上控制在87%以上;粘结性、F.S.N ≤21/2。
另外内外水要干燥到12%以下,目前为止,恩德炉工艺最适宜的煤种是褐煤。
中科院山西煤化学研究所开发的灰熔聚流化床粉煤气化技术,该技术可用多种煤质作原料,如烟煤、焦炭、焦粉等,使用粉煤在1100℃下气化,固体排渣,无废气排放。
该技术工业示范装置已于2001年在陕西城固氮肥厂建成,小时投煤量4.2吨。
其煤种适应性广,操作温度约为1000~1080℃,反应压力为0.03~0.05MPa(G)。
气化炉是一个单段流化床,结构简单,可在流化床内一次实现煤的破粘、脱挥发份、气化、灰团聚及分离、焦油及酚类的裂解。
带出细粉经除尘系统捕集后返回气化炉,再次参加反应,有利于碳利用率的进一步提高。
鲁奇加压气化炉和BGL加压化炉的比较
鲁奇加压气化炉和BGL加压化炉的比较鲁奇炉和BGL炉同属于移动床碎煤煤气化炉;煤在炉内均经过干燥、干馏、还原、氧化四个阶段;气化产物均为:粗煤气、煤焦油、中油等,煤气水中含有较多的酚、氨类物质;加煤系统、汽化炉本体、水夹套等结构基本相同。
现将其不同点比较如下:一、结构比较鲁奇炉和BGL炉主体结构基本相同,均由煤斗、煤锁、炉体、夹套、排灰系统等构成。
结构的主要不同点在于:鲁奇炉的蒸汽、氧气进气位置在炉箅子下部的布气块和炉箅子共同构成的四个半径依次缩小的布气上,而BGL炉则是通过四个对置的喷嘴进气;BGL炉在进气喷嘴附近可以加装粉煤进料喷嘴,可以直接喷入占总进料量30%左右的粉煤,而鲁奇炉无此结构,基本上不能气化粉煤;BGL炉的排灰系统为液态排渣,排灰系统由排渣口、激冷室、灰锁构成,在拍渣口附近有空气进口,以保证液态排渣,鲁奇炉的排灰系统由炉箅子和灰锁构成。
鲁奇炉结构图如下:BGL炉结构如下图:二、气化温度主要的不同点在于:气化温度不同,BGL炉气化温度高,一般1200-14000C(鲁奇900-1200 0C);气化效率是鲁奇炉的2-4倍;液态排渣(鲁奇为固态排渣);蒸汽分解率是鲁奇炉的3倍,废水产量约为鲁奇炉的25%。
具体比较如下:鲁奇炉要求气化温度低于煤的灰熔点,不能使灰渣熔化,否则会产生大块的灰渣堵塞排灰通道,因此、气化温度多选择在1000度左右;BGL汽化炉要求气化温度高于煤的灰熔点,以便使灰渣以液态排出,因此,气化温度多选择在1300度左右。
三、处理能力由于BGL汽化炉提高了气化温度,所以反应速度大大加快,使得单炉处理能力大大提高,一般情况是鲁奇炉的2-3倍左右,如:同样为3.8米内径的汽化炉,鲁奇炉日投煤量约900吨左右,BGL炉可达到2000吨以上。
四、蒸汽、氧气消耗BGL汽化炉蒸汽分解率高,蒸汽耗量约为鲁奇炉的30%,氧气耗量略高于鲁奇炉。
五、废水产量移动床气化工艺因经过了煤的干燥、干馏阶段,因此都要产生含油、酚、氨等物质,这些物质随未分解的水蒸气进入粗煤气,冷却分离后产生含油废水,BGL工艺由于提高了气化温度,提高了蒸汽利用率,所以废水产量大大降低,仅为鲁奇炉的25%左右。
鲁奇炉
鲁奇炉德国鲁奇煤和石油技术公司在1926年开发的一种加压移动床煤气化设备。
特点是煤和气化剂(蒸汽和氧气)在炉中逆流接触,煤在炉中停留时间1~3h,压力2.0~3.0MPa。
适宜于气化活性较高,块度3~煤气化炉30mm的褐煤、弱粘结性煤等。
鲁奇煤气化炉为立式圆筒形结构(图2),炉体由耐热钢板制成,有水夹套副产蒸汽。
煤自上而下移动先后经历干燥、干馏、气化、部分氧化和燃烧等几个区域,最后变成灰渣由转动炉栅排入灰斗,再减至常压排出。
气化剂则由下而上通过煤床,在部分氧化和燃烧区与该区的煤层反应放热,达到最高温度点并将热量提供气化、干馏和干燥用。
粗煤气最后从炉顶引出炉外。
煤层最高温度点必须控制在煤的灰熔点以下。
煤的灰熔点的高低决定了气化剂H2O/O2比例的大小。
高温区的气体含有二氧化碳、一氧化碳和蒸汽,进入气化区进行吸热气化反应,再进入干馏区,最后通过干燥区出炉。
粗煤气出炉温度一般在250~500℃之间。
鲁奇炉由于出炉气带有大量水分和煤焦油、苯和酚等,冷凝和洗涤下来的污水处理系统比较复杂。
生成气的组成(体积%)约为:氢37~39、一氧化碳17~18、二氧化碳32、甲烷8~10,经加工处理可用作城市煤气及合成气(见彩图)。
鲁奇炉是采用加压气化技术的一种炉型,气化强度高。
目前共有近200多台工业装置,用于生产合成气的只有中国的9台。
鲁奇炉现已发展到Mark IV型,炉径为4.1m,每台产气量可达60000m3/h,已应用于美国、中国和南非。
煤气化炉正在开发的鲁奇新炉型有:MK+,操作压力6MPa,5m直径,17m高;鲁奇-鲁尔-100型煤气化炉,操作压力为9MPa,两段出气;英国煤气公司和鲁奇公司共同开发的BGL炉,采用熔融排渣技术,降低蒸汽用量,提高气化强度并可将生成气中的焦油、苯、酚和煤粉等喷入炉中回炉气化。
鲁奇炉介绍及附属设备简介
2、煤气化制原料气方法分类 煤气化制原料气方法多种多样,按操作压力煤气化可分
为常压气化和加压气化。在煤加压气化工艺中已经成熟并 工业化的便是壳牌气化炉、德士古煤浆制气和鲁奇加压气 化。
按固体和气体接触方式分为固定床、流化床、气化床和 熔融床。
固定床、流化床、气化床和熔融床简介
固定床:固定床气化炉是最早开 发出的气化炉,炉子下部为炉排, 用以支撑上面的煤层。通常,煤 从气化炉的顶部加入,而气化剂 (氧或空气和水蒸气)则从炉子 的下部供入,因而气固间是逆向 流动的。主要有鲁奇气化炉和 BGL气化炉两种 ;
涡轮蜗杆 减速器
第一代鲁奇气化炉的结构改进
第一代鲁奇加压气化炉由 于以上几个方面的影响,单炉 生产量一般为4500-5000m3/h。 许多厂家对第一代鲁奇炉进行 了改进,主要有:
⑴ 取消炉内的耐火衬,扩大炉 内空间,增加了气化炉横截面 积,从而使单炉产气量增加;
⑵ 将平盘型风帽炉篦改为宝塔 型炉篦(如图7所示),改善炉 篦的布气效果,使炉内反应层 较为均匀,使气化强度提高。
鲁奇气化炉(结构见左图)属于固 定床气化炉的一种。鲁奇气化炉是1939 年由德国鲁奇公司设计,经不断的研究 改进已推出了第五代炉型,目前在各种 气化炉中实绩最好。我国在20世纪60年 代就引进了捷克制造的早期鲁奇炉并在 云南投产。1987年建成投产的天脊煤化 工集团公司从德国引进的4台直径 3800mm的Ⅳ型鲁奇炉,先后采用阳泉 煤、晋城煤和西山官地煤等煤种进行试 验,经过10多年的探索,基本掌握了鲁 奇炉气化贫瘦煤生产合成氨的技术,国 内鲁奇炉在用厂家有云南解放军化肥厂、 哈尔滨煤机厂和河南义马煤气厂等。
通过改进,第一代气化炉 的 生产能力较改进前提高了 50﹪以上。
2. 鲁奇第二代加压气化炉
鲁奇碎煤加压气化工艺分析
鲁奇碎煤加压气化工艺分析一、鲁奇加压气化发展史鲁奇炉是德国鲁奇煤气化公司研究生产的一种煤气化反应器。
该炉型的发展经历了漫长的过程,其发展过程可分为三个阶段。
1、第一阶段:任务是证明煤炭气化理论在工业上实现移动床加压气化。
1936年至1954年,鲁奇公司进行了34次试验。
在这基础上设计了MARK—Ⅰ型气化炉。
该炉型的特点是炉内设有耐火砖,灰锁置于炉侧,气化剂通过炉篦主轴通入炉内。
炉身较短,炉径较小。
这种炉气化强度低,产气量仅为4500~8000Nm3/h,而且仅适用于褐煤气化。
2、第二阶段:任务是扩大煤种,提高气化强度。
为此设计出了第二代气化炉,其特点是(1)改进了炉篦的布气方式。
(2)增加了破粘装置,灰锁置于中央,炉篦侧向传动,(3)去掉了炉膛耐火砖。
炉型有MARK—Ⅱ型与MARK—Ⅲ型。
单台炉产气量为14000~17000Nm3/h。
3、第三阶段:任务是继续提高气化强度和扩大煤种适用范围。
设计了MARK—Ⅳ型炉,内径3.8米,产气量35000~50000Nm3/h,其主要特点是:(1)增加了煤分布器,改进了破粘装置,从而可气化炼焦煤以外的所有煤。
(2)设置多层炉篦,布气均匀,气化强度高,灰渣残炭量少。
(3)采用了先进的制造技术与控制系统,从而增加了加煤排灰频率,运转率提高到80%以上。
4、第四代加压气化炉:第四代加压气化炉是在第三代的基础上加大了气化炉的直径(达Ф5m),使单炉生产能力大为提高,其单炉产粗煤气量可达75000m3(标)/h(干气)以上。
目前该炉型仅在南非sasol公司投入运行。
今后鲁奇炉的发展方向:(1)降低汽氧比,提高气化层温度,扩大煤种适用范围,灰以液态形式排出,从而提高蒸汽分解率,增加热效率,大幅度提高气化强度,气化强度可由2.4t/m2h提高到3-5t/m2h.煤气中的甲烷可下降到7%以下。
(2)提高气化压力,根据鲁尔—100型炉实验,当压力由2.5Mpa提高到10.0Mpa,煤的转化率及气化强度可成倍增加,氧与蒸汽的消耗减少,煤的粒度也可以减少。
鲁奇炉的介绍
灰锁膨胀冷凝器结构示意图
内径φ682mm,壁厚40mm, 总高为6200mm,外壳材料 15Mo3,内件材料HII.内件是一 通流文丘里洗涤器,其喉口处 为φ270mm,此处流速为 50~70m/s,上部缩段入口直径 为φ450mm,锥角为30030’,长 度825mm,下部扩张段出口直 径为φ630mm,锥角为27040’, 长度1280mm,出口速度为 15~20m/s. 气化炉生产的粗煤气由煤气出 口管导入喷冷器,由煤气水处 理装置来的净煤气水入口进入 喷冷器,煤气水通过文丘里洗 涤器上入口处的螺旋叶片(叶 片共16片,d=10mm,安装角度 550)与粗煤气中的重组分由于
气化炉生产的粗煤气由煤气出口管导入喷冷器由煤气水处理装置来的净煤气水入口进入喷冷器煤气水通过文丘里洗涤器上入口处的螺旋叶片叶片共16片d10mm安装角度55与粗煤气中的重组分由于喷淋洗涤冷却器及刮刀图粗煤气和煤汽水的混合物循环煤汽水喷射煤汽水粗煤气出口刮刀刮刀油缸
鲁奇炉设备的构造
Mark-IV型气化炉 型气化炉
鲁奇炉设备的构造
鲁奇炉第三代炉及附属装置介绍
鲁奇三代Mark IV型加压气化炉,与其相配套的传动装置用的是 榆次液压制造的液压传动系统,下面就这套装置对设备作一介绍。 一、气化炉炉体 气化炉炉体 Mark-IV型气化炉炉体外径为φ3848毫米,炉体高度12500毫米, 炉内燃料堆放高度4000毫米,炉体容积为119M3,炉体总重量169.5 吨(包括内件重量40吨),操作重量大约250吨,操作压力大约 3.05MPa(表压),操作温度大约1100℃.炉体除外壳外,还包括 内件(煤分布器、搅拌器)炉篦。 1、壳体 壳体 气化炉外壳是一双层夹套筒体式外壳,夹套在生产时由锅炉给水 保持液位,并在此锅炉水吸热汽化产生饱和蒸汽,此蒸汽并入气化 剂管线返回气化炉内。夹套内压力比气化炉内压力约高0.05MPa,以 克服系统阻力。 气化炉外壁厚50mm,是由WSTE36材料所制,其可承受较高的
几种煤气化炉型的比较
气化工艺各有千秋1.常压固定床间歇式无烟煤(或焦炭)气化技术目前我国氮肥产业主要采用的煤气化技术之一,其特点是采用常压固定床空气、蒸汽间歇制气,要求原料为准 25~75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风放空气对大气污染严重,属于将逐步淘汰的工艺。
2.常压固定床无烟煤(或焦炭)富氧连续气化技术其特点是采用富氧为气化剂、连续气化、原料可采用?准 8~10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合用于有无烟煤的地方,对已有常压固定层间歇式气化技术进行改进。
3.鲁奇固定床煤加压气化技术主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气。
其产生的煤气中焦油、碳氢化合物含量约1%左右,甲烷含量约10%左右。
焦油分离、含酚污水处理复杂,不推荐用以生产合成气。
4.灰熔聚煤气化技术中国科学院山西煤炭化学研究所技术。
其特点是煤种适应性宽,属流化床气化炉,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状灰渣排出。
可以气化褐煤、低化学活性的烟煤和无烟煤、石油焦,投资比较少,生产成本低。
缺点是操作压力偏低,对环境污染及飞灰堆存和综合利用问题有待进一步解决。
此技术适合于中小型氮肥厂利用就地或就近的煤炭资源改变原料路线。
5.恩德粉煤气化技术属于改进后的温克勒沸腾床煤气化炉,适用于气化褐煤和长焰煤,要求原料煤不粘结或弱粘结性,灰分<25%~30%,灰熔点高、低温化学活性好。
在国内已建和在建的装置共有13套22台气化炉,已投产的有16台。
属流化床气化炉,床层中部温度1000~1050℃。
目前最大的气化炉产气量为4万m3/h半水煤气。
缺点是气化压力为常压,单炉气化能力低,产品气中CH4含量高达%~%,飞灰量大、对环境污染及飞灰堆存和综合利用问题有待解决。
气化炉的类型
气化炉的类型煤炭气化技术虽有很多种不同的分类方法,但一般常用按生产装置化学工程特征分类方法进行分类,或称为按照反应器形式分类。
气化工艺在很大程度上影响煤化工产品的成本和效率,采用高效、低耗、无污染的煤气化工艺(技术)是发展煤化工的重要前提,其中反应器便是工艺的核心,可以说气化工艺的发展是随着反应器的发展而发展的,为了提高煤气化的气化率和气化炉气化强度,改善环境,新一代煤气化技术的开发总的方向,气化压力由常压向中高压(8.5 MPa)发展;气化温度向高温(1500~1600℃)发展;气化原料向多样化发展;固态排渣向液态排渣发展。
1、固定床气化固定床气化也称移动床气化。
固定床一般以块煤或焦煤为原料。
煤由气化炉顶加入,气化剂由炉底加入。
流动气体的上升力不致使固体颗粒的相对位置发生变化,即固体颗粒处于相对固定状态,床层高度亦基本保持不变,因而称为固定床气化。
另外,从宏观角度看,由于煤从炉顶加入,含有残炭的炉渣自炉底排出,气化过程中,煤粒在气化炉内逐渐并缓慢往下移动,因而又称为移动床气化。
固定床气化的特性是简单、可靠。
同时由于气化剂于煤逆流接触,气化过程进行得比较完全,且使热量得到合理利用,因而具有较高的热效率。
固定床气化炉常见有间歇式气化(UGI)和连续式气化(鲁奇Lurgi)2种。
前者用于生产合成气时一定要采用白煤(无烟煤)或焦碳为原料,以降低合成气中CH4含量,国内有数千台这类气化炉,弊端颇多;后者国内有20多台炉子,多用于生产城市煤气;该技术所含煤气初步净化系统极为复杂,不是公认的首选技术。
(1)、固定床间歇式气化炉(UGI)以块状无烟煤或焦炭为原料,以空气和水蒸气为气化剂,在常压下生产合成原料气或燃料气。
该技术是30年代开发成功的,投资少,容易操作,目前已属落后的技术,其气化率低、原料单一、能耗高,间歇制气过程中,大量吹风气排空,每吨合成氨吹风气放空多达5 000 m3,放空气体中含CO、CO2、H2、H2S、SO2、NOx及粉灰;煤气冷却洗涤塔排出的污水含有焦油、酚类及氰化物,造成环境污染。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常压炉和鲁奇炉对比一、气化装置投资对比:鲁奇加压气化炉(含空分)-----------6.665亿;纯氧常压气化炉(含空分)-----------3.297亿;该项对比结果为:纯氧常压气化炉比鲁奇炉少投资3.368亿。
二、年运行费用对比鲁奇加压气化炉-------------年生产费用3.79亿元;纯氧常压气化炉-------------年生产费用4.62亿元;该项对比结果为:纯氧常压气化炉年运行成本比鲁奇炉高 1.43亿元。
三、常压炉和鲁奇炉对比结论加压鲁奇炉一次性投资多3.368亿元。
运行成本年节省1.43亿元,在2.35年回收该一次投资。
对比结论是鲁奇炉比常压炉更适合本项目。
四、常压炉和鲁奇炉分析明细1、投资对比序号项目纯氧常压气化炉万元鲁奇加压气化万元1 焦块筛分+焦粉制块+输送650 6502 入炉前煤锁100 8003 煤气炉系统11700(8开备2)38000(三开一备)5 循环水处理站(回收)1220 120006 气柜+电除尘10007一级压缩机二级压缩机100008 空分8000 15000(汽轮机拖动)投资合计 3.297亿 6.665亿差值+3.368亿该项对比结果为:纯氧常压气化炉比鲁奇炉少投资3.368亿2、年运行费用对比一年(8000小时)生产费用表序号项目纯氧常压气化炉鲁奇加压气化1 焦炭t/h53 568000小时万元13568 14336(焦炭320元/t)2 氧气耗Nm3/h 25920199488000小时万元6220.8 4787.52(氧气0,3元/Nm3)3 蒸汽耗t/h 8212630(回收用)8000小时万元7872 12096(蒸汽120元/t)4 电耗kw h 4080016008000小时万元18604.8 729.6(电价0,57元/kwh)8000小时生产费用46265.631949.125合计万元差值+14316.68对比结果:纯氧常压气化炉年运行成本比鲁奇炉高1.43亿元。
3、气化煤气成分对比 气化方法煤 气 成 分 (V %)CO 2O 2 CO H 2 N 2 CH 4 煤气热值 纯氧常压气化炉16.8 0.3 44.4 36.5 0.2 0.4 10.43 MJ/Nm ³ 鲁奇加压气化 20.4 0.3 35.2 31.3 0.8 12 13.22 MJ/Nm ³对比结果:有效成分都适用本项目,鲁奇加压气化CH 4偏高,可上LNG 装置提升产品的附加值。
4、气化原料需求对比对比结果:焦块和焦粉成型都能在两种炉型上使用。
项 目纯氧常压气化炉 鲁奇加压气化 床层形式固定床 固定床 排渣形式固态 固态 进料形式块煤、型煤 块煤、型煤 适合的煤种无烟煤、焦炭 褐煤、烟煤、焦炭 气化剂氧气+蒸汽 氧气+蒸汽 气化压力Mpa0.03 3.5~4.2 气化温度 ℃1200 1100 煤的粒度要求mm15~50 6~50 煤的灰份要求%<25 <33 煤的灰熔点要求℃>1200 >1200 单炉最大投煤量t/d 180 10005、噪声污染、泄漏率、操作人员数量常压气化炉工艺压缩机的噪音是现在环保要求消除的一项要求,如果使用鲁奇炉工艺,不需要压缩机,噪声污染小。
常压气化占地面积较大、煤气流程长,泄漏率要高于煤气流程短的鲁奇炉,装置环境较差,粉尘产生量大,生产环境没有保障。
同时常压系统在事故状态下停车,例如停电时由于系统压力低,反应物无法送入火炬系统,只能排入大气中,安全和环保问题无法解决,随着环保要求的日益严格,常压不符合时代进步的要求。
鲁奇炉工艺不需要压缩机和电除尘操作工,减少定员28人(每班电除尘2人,压缩机3人,检修人员8)6、运行周期和计划检修对比常压气化炉工艺的主要故障在煤气炉10台炉每个月有1台炉大修,一台炉备用。
7台压缩机,每台压缩机要2个月维修一次。
这样对制氢系统的负荷波动频次17次。
不利于生产的安—稳—长—满—优运行。
鲁奇炉3开一备,运行周期10个月,没有压缩机。
一年只影响3次。
对比来讲鲁奇炉对制氢负荷影响次数,少于纯氧常压气化炉。
纯氧常压气化炉鲁奇加压气化运行周期8个月10个月计划检修因计划检修,年影响制氢负荷17次因计划检修,年影响制氢负荷3次7、该项目选择鲁奇炉的七个优势鲁奇碎煤固定床气化介绍:鲁奇碎煤固定床气化,是德国鲁奇煤和石油技术公司在1926年开发的一种加压移动床煤气化设备。
目前共有近200多台工业装置,鲁奇炉现已发展到炉径为5. 0m,每台产气量可达100000m /h,分别应用于美国、中国和南非。
碎煤加压气化采用自热式,逆流移动床生产工艺,气化炉为立式圆筒形结构,炉体由耐热钢板制成,有水夹套副产蒸汽,鲁奇碎煤固定床是干法排灰气化。
鲁奇炉是在高温高压下进行的复杂多相的物理化学反应过程,在本质上是将煤由高分子故态物质转变为低分子气态物质的过程,气化过程的基本反应就是碳与蒸汽的反应,即C+H2O=CO+H2。
在气化炉内煤由上部加入,气化剂逆流流动,煤在向下运动的过程中,在气化炉内煤由上至下大致分为四个区,即干燥区、干馏区、气化区、灰渣区。
气化区又分为氧化层、还原层和甲烷层。
各区、层间并没有明确的界面,只能视其主要反应特性进行分区、分层。
通过对国内外煤制气工艺技术分析,结合本项目原料、产品、规模特点,从生产的环保性、经济性、安全可靠性、投资省、技术适用性等方面考虑,本项目采用鲁奇加压气化技术,是最为适宜的。
具体分析如下:1、鲁奇碎煤加压气化技术是目前世界上建厂数量最多的煤气化技术,运行中的气化炉达数百台。
鲁奇气化炉生产能力大、煤种适应性广,技术成熟,这是本项目选择该炉型的优势之一。
2、针对运行中的鲁奇气化炉气化成分中甲烷含量高(8~10%),不适合合成气使用的弱点。
该项目所需的只是全变换后的氢气,甲烷气选择上LNG装置来解决,发挥对能源的优化利用,这是本项目选择该炉型的优势之二。
3、针对运行的鲁奇气化炉气化成分中且含焦油、酚等物质,气化炉后需设置废水处理及回收等装置,用于造气生产流程长、投资大,生产的煤气比较适合城市煤气弱点。
该项目的气化装置全部采用焦碳为原料,所以鲁奇炉产生的焦油、酚类远低于同行业的鲁奇炉,也要比其他炉型低,所以产生的废水总量和污水含量也远远低于其他炉型,这是本项目选择该炉型的优势之三。
4、鲁奇加压气化采用碎煤加压技术,本项目的气化装置全部采用焦碳为原料,焦炭作为已经加工过的原料,焦炭的含N元素要低于气化煤,所以本项目气化炉作为源头第一步已经比同行业的气化炉在氨氮产生的环节有了一定降低氨氮的优势,这是本项目选择该炉型的优势之四。
5、本项目需要粗煤气为13.3万Nm³/h,规模上选用鲁奇炉是合适的,稳定供气是整个项目的基础。
如果选用其它大型化的炉型,在本项目生产上需要备炉率高,造成投资的大幅度增加;选用小型炉带的占地很大,造成土地资源的浪费。
这是本项目选择该炉型的优势之五。
6、鲁奇炉新工艺中,将气化污水用于气化,大大降低了污水的产生量,这是本项目选择该炉型的优势之六。
8、GSP、Shell、鲁奇三种气化工艺比较GSP、Shell、Lurgi三种气化工艺比较表名称GSP Shell Lurgi原料要求(1)褐煤→无烟煤全部煤种,石油焦、油渣、生物质;(2)粒径250μm~500μm含水2%干粉煤(褐煤8%);(3)灰熔融性温度<1400℃;(4)灰分1%~15%(灰熔点低时可放宽到20%)(1)褐煤→无烟煤全部煤种;(2)90%<100目含水2%干粉煤(褐煤8%);(3)灰熔融性温度<1400℃;(4)灰分8%~15%(灰熔点低时可放宽到20%)除主焦煤外全部煤种,5-50mm碎煤,含水35%以下,灰25%以下,灰熔点≥1200℃气化温度/℃1450~1550 1450~1550 取决煤灰熔点,在DT-ST间操作气化压力/Mpa 4.0 4.0 3-4.0气化工艺特点干粉煤供料,顶部单喷嘴,承压外壳内有水冷壁,激冷流程,由水冷壁回收少量蒸汽,除喷嘴外材质全为碳钢干粉煤供料,下部多喷嘴对喷,承压外壳内有水冷壁,废锅流程,充分回收废热产蒸汽,材质碳钢、合金钢、不锈钢;干法过滤+洗涤除尘,透平循环,煤气冷激炉出口粗煤气粒状煤供料,固体物料和气化剂逆流接触,煤通过锁斗加入到气化炉,通过灰锁斗将灰排出炉外,气化炉由承压外壳、水夹套、转动炉篦组成,炉内物料明显分为干燥、干馏、煤气化洗涤除焦油/尘后进入废锅。
材质为碳钢单台气化炉尺寸/mm 投煤2000t/dφ内=3500H-17000投煤2300t/dφ内=4600H=31640投煤量800-1000t/dφ内=4000 H=11000耐火砖或水冷壁寿命/年20年20年喷嘴寿命10年,前端部分1年1年~1.5年气化炉台数(1200×106m3/d)16 16 46冷激室或废锅尺寸/mm冷激室φ内=3500 约为2500 洗涤+废锅除尘冷却方式分离+洗涤干式过滤+洗涤洗涤去变换温度/℃220 40 180~185标煤消耗t/106kJ (包括干燥)34.2 (包括干燥)34.2 33 氧耗Nm3/106kJ(99.6%)29 29 10 电耗kW/106kJ 3.6 5.8 0.3 碳转化率% 99 99 99 冷气效率% 80 80 80 气化热效率% 90 96 90投资万元(1200×106Nm3/d) 967000(其中空分522000)1272000(其中空分522000)480000(其中空分184000)由上表可知:成熟的气流床气化工艺与Lurgi相比在消耗指标上差别最大的是氧气消耗,Shell、GSP气化是Lurgi气化2.9倍;电:Shell是Lurgi 气化19倍,GSP是Lurgi12倍;投资相差也很大:Shell投资是Lurgi 的2.6倍,GSP是Lurgi的2倍,造成投资大的主要原因除气化装置外,空分装置规模影响更大。