2020年高考物理试题分类汇编—磁场(后附答案)

合集下载

全国通用2020-2022年三年高考物理真题分项汇编专题10磁场

全国通用2020-2022年三年高考物理真题分项汇编专题10磁场
故选A。
4、(2022·全国甲卷·T18)空间存在着匀强磁场和匀强电场,磁场的方向垂直于纸面( 平面)向里,电场的方向沿y轴正方向。一带正电的粒子在电场和磁场的作用下,从坐标原点O由静止开始运动。下列四幅图中,可能正确描述该粒子运动轨迹的是( )
A. B.
C. D.
【答案】B
【解析】
AC.在xOy平面内电场的方向沿y轴正方向,故在坐标原点O静止的带正电粒子在电场力作用下会向y轴正方向运动。磁场方向垂直于纸面向里,根据左手定则,可判断出向y轴正方向运动的粒子同时受到沿x轴负方向的洛伦兹力,故带电粒子向x轴负方向偏转。AC错误;
CD.对PQ的整体受力分析,竖直方向电子秤对Q的支持力大小等于 + ,即Q对电子秤的压力大小等于 + ,选项C错误,D正确。
故选D。
8、(2022·浙江1月卷·T3)利用如图所示装置探究匀强磁场中影响通电导线受力的因素,导线垂直匀强磁场方向放置。先保持导线通电部分的长度L不变,改变电流I的大小,然后保持电流I不变,改变导线通电部分的长度L,得到导线受到的力F分别与I和L的关系图像,则正确的是( )
减速阶段加速度大小最大时,磁场方向斜向左上方,有
故BC正确,AD错误。
故选BC。
11、(2022·浙江1月卷·T22)如图为研究光电效应的装置示意图,该装置可用于分析光子的信息。在xOy平面(纸面)内,垂直纸面的金属薄板M、N与y轴平行放置,板N中间有一小孔O。有一由x轴、y轴和以O为圆心、圆心角为90°的半径不同的两条圆弧所围的区域Ⅰ,整个区域Ⅰ内存在大小可调、方向垂直纸面向里的匀强电场和磁感应强度大小恒为B1、磁感线与圆弧平行且逆时针方向的磁场。区域Ⅰ右侧还有一左边界与y轴平行且相距为l、下边界与x轴重合的匀强磁场区域Ⅱ,其宽度为a,长度足够长,其中的磁场方向垂直纸面向里,磁感应强度大小可调。光电子从板M逸出后经极板间电压U加速(板间电场视为匀强电场),调节区域Ⅰ的电场强度和区域Ⅱ的磁感应强度,使电子恰好打在坐标为(a+2l,0)的点上,被置于该处的探测器接收。已知电子质量为m、电荷量为e,板M的逸出功为W0,普朗克常量为h。忽略电子的重力及电子间的作用力。当频率为ν的光照射板M时有光电子逸出,

2020年高考磁场专题复习卷(附答案)

2020年高考磁场专题复习卷(附答案)

2020年高考磁场专题复习卷(附答案)一、单选题(共14题;共28分)1.在滑冰场上,甲、乙两小孩分别坐在滑冰板上,原来静止不动,在相互猛推一下后分别向相反方向运动.假定两板与冰面间的动摩擦因数相同.已知甲在冰上滑行的距离比乙远,这是由于()A. 在推的过程中,甲推乙的力小于乙推甲的力B. 在推的过程中,甲推乙的时间小于乙推甲的时间C. 在刚分开时,甲的初速度大于乙的初速度D. 在分开后,甲的加速度的大小小于乙的加速度的大小2.如图所示,在边长为2a的正三角形区域内存在方向垂直于纸面向里的匀强磁场,一个质量为m、电荷量为﹣q的带电粒子(重力不计)从AB边的中点O以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与AB边的夹角为60°,若要使粒子能从AC边穿出磁场,则匀强磁场的大小B需满足()A. B>B. B<C. B>D. B<3.平面OM和平面ON之间的夹角为,其横截面纸面如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外一带电粒子的质量为m,电荷量为粒子沿纸面以大小为v的速度从OM的某点向左上方射入磁场,速度与OM成角已知粒子在磁场中的运动轨迹与ON只有一个交点,并从OM上另一点射出磁场不计重力粒子离开磁场的射点到两平面交线O的距离为A. B. C. D.4.关于电场强度、磁感应强度,下列说法中正确的是()A. 由真空中点电荷的电场强度公式E=k 可知,当r趋近于零时,其电场强度趋近于无限大B. 电场强度的定义式E= 适用于任何电场C. 由安培力公式F=BIL可知,一小段通电导体在某处不受安培力,说明此处一定无磁场D. 通电导线在磁场中受力越大,说明磁场越强5.如图,在同一水平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l,磁感应强度大小相等、方向交替向上向下,一边长为的正方形金属线框在导轨上向左匀速运动,线框中感应电流i随时间t变化的正确图线可能是()A. B. C. D.6.如图所示,某种带电粒子由静止开始经电压为U1的电场加速后,射入水平放置、电势差为U2的两块导体板间的匀强电场中,带电粒子沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子射入磁场和射出磁场的M、N两点间的距离d随着U1或U2的变化情况为(不计重力,不考虑边缘效应)()A. 仅增大U1d将增大B. 仅增大U1 d将减小C. 仅增大U2 d将增大D. 仅增大U2 d将减小7.如图所示,有界匀强磁场边界线SP∥MN,速率不同的同种带电粒子从S点沿SP方向同时射入磁场.其中穿过a点的粒子速度v1与MN垂直;穿过b点的粒子速度v2与MN成60°角,设粒子从S到A、B 所需时间分别为t1、t2,则t1∶t2为(重力不计)( )A. 1∶3B. 4∶3C. 1∶1D. 3∶28.如图所示,竖直悬挂的金属棒AB原来处于静止状态.金属棒CD棒竖直放置在水平磁场中,CD与AB通过导线连接组成回路,由于CD棒的运动,导致AB棒向右摆动,则CD棒的运动可能为()A. 水平向右平动B. 水平向左平动C. 垂直纸面向里平动D. 垂直纸面向外平动9.如图5所示,MN为两个匀强磁场的分界面,两磁场的磁感应强度大小的关系为B1=2B2,一带电荷量为+q、质量为m的粒子从O点垂直MN进入B1磁场,则经过多长时间它将向下再一次通过O点( )A. B. C. D.10.下列说法中正确的是()A. 磁场中某一点的磁感应强度可以这样测定:把一小段通电导线放在该点时受到的磁场力F与该导线的长度L、通过的电流I乘积的比值.即B=B. 通电导线放在磁场中的某点,该点就有磁感应强度,如果将通电导线拿走,该点的磁感应强度就为零C. 磁感应强度B= 只是定义式,它的大小取决于场源以及磁场中的位置,与F、I、L以及通电导线在磁场中的方向无关D. 通电导线所受磁场力的方向就是磁场的方向11.如图所示,在加有匀强磁场的区域中,一垂直于磁场方向射入的带电粒子轨迹如图所示,由于带电粒子与沿途的气体分子发生碰撞,带电粒子的能量逐渐减小,从图中可以看出()A. 带电粒子带正电,是从B点射入的B. 带电粒子带负电,是从B点射入的C. 带电粒子带负电,是从A点射入的D. 带电粒子带正电,是从A点射入的12.春天,水边上的湿地是很松软的,人在这些湿地上行走时容易下陷,在人下陷时()A. 人对湿地地面的压力大小等于湿地地面对他的支持力大小B. 人对湿地地面的压力大于湿地地面对他的支持力C. 人对湿地地面的压力小于湿地地面对他的支持力D. 下陷的加速度方向未知,不能确定以上说法哪一个正确13.如图甲所示有界匀强磁场Ⅰ的宽度与图乙所示圆形匀强磁场Ⅱ的半径相等,一不计重力的粒子从左边界的M点以一定初速度水平向右垂直射入磁场Ⅰ,从右边界射出时速度方向偏转了θ角,该粒子以同样的初速度沿半径方向垂直射入磁场Ⅱ,射出磁场时速度方向偏转了2θ角.己知磁场I、Ⅱ的磁感应强度大小分别为B1、B2,则B1与B2的比值为()A. 2cosθB. sinθC. cosθD. tanθ14.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电源两极相连接的两个D形金属盒,两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示.设D形盒半径为R.若用回旋加速器加速质子时,匀强磁场的磁感应强度为B,高频交流电频率为f,则下列说法正确的是()A. 质子在匀强磁场每运动一周被加速一次B. 质子被加速后的最大速度与加速电场的电压大小有关C. 质子被加速后的最大速度不可能超过2πfRD. 不改变B和f,该回旋加速器也能用于加速α粒子二、多选题(共4题;共12分)15.如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值。

考点十一 磁场--2020年高考物理分类题库

考点十一 磁场--2020年高考物理分类题库

考点十一磁场1.(2020·全国Ⅰ卷)一匀强磁场的磁感应强度大小为B,方向垂直于纸面向外,其边界如图中虚线所示,为半圆,ac、bd 与直径ab 共线,ac 间的距离等于半圆的半径。

一束质量为m、电荷量为q(q>0)的粒子,在纸面内从c 点垂直于ac 射入磁场,这些粒子具有各种速率。

不计粒子之间的相互作用,在磁场中运动时间最长的粒子,其运动时间为()A.76m qBπ B.54m qBπ C.43m qBπ D.32m qBπ【解析】选C。

粒子在磁场中做匀速圆周运动有qBv=2mv r ,T=2r vπ,可得粒子在磁场中的周期T=2m qBπ,粒子在磁场中运动的时间2mt T qB θθπ=⋅=,则轨迹对应的圆心角越大,运动时间越长。

设半圆ab 的半径为R,如图,粒子垂直ca 射入磁场,则轨迹圆心必在ca 直线上,当半径r≤0.5R 和r≥1.5R 时,粒子分别从ac、bd 区域射出,磁场中的轨迹为半圆,运动时间等于半个周期。

当0.5R<r<1.5R 时,粒子从半圆边界射出,将轨迹半径从0.5R 逐渐增大,粒子射出位置从半圆顶端向下移动,轨迹圆心角从π逐渐增大,当ce 与半圆ab 相切时,轨迹圆心角最大,此时轨迹半径r=R,如图,则轨迹对应的最大圆心角θ=π+3π=43π,粒子运动最长时间4243223m m t T qB qBπθππππ==⨯=,故选项C 正确。

【方法技巧】“放缩圆”法适用条件速度方向一定、大小不同粒子源发射速度方向一定、大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v 越大,运动半径也越大。

可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP'上界定方法以入射点P 为定点,圆心位于PP'直线上,将半径放缩作轨迹圆,从而探索出临界条件,这种方法称为“放缩圆”法2.(2020·全国Ⅱ卷)CT 扫描是计算机X 射线断层扫描技术的简称,CT 扫描机可用于对多种病情的探测。

2020年高校自主招生好题精选物理专项汇编:磁场(解析版)

2020年高校自主招生好题精选物理专项汇编:磁场(解析版)

2020年高校自主招生好题精选物理专项汇编:磁场(解析版)1.(复旦大学自主招生)一个充电的球形电容器,由于绝缘层的轻微漏电而缓慢放电,则( ) A.放电电流将产生垂直于球面的磁场B.放电电流将产生沿着经度线的磁场C.放电电流将产生沿着纬度线的磁场D.放电电流不产生磁场【答案】D【解析】由于充电的球形电容器中的电场方向为径向均匀辐射状,故放电电流也为径向均匀辐射状,放电电流垂直于球面。

但是由于对称性,放电电流产生磁场将相互抵消,选项D正确。

2.(“卓越”自主招生)如图所示,匀强磁场的方向垂直于纸面向里。

在磁场中某点沿水平虚线方向发射两个带正电的粒子A和B,其速度分别为v A、v B,两者的质量和电荷量均相同,两个粒子分别经过t A、t B从P A、P B射出,且P A、P B在同一水平线上,则( )A.v A>v B , t A>t B B.v A>v B , t A<t BC.v A<v B , t A>t B D.v A<v B , t A<t B【答案】B【解析】画出粒子运动的轨迹,由图可知,v A>v B。

根据带电粒子在磁场中做匀速圆周运动的周期公式可知,粒子在匀强磁场中运动时间与轨迹所对的圆心角成正比,所以t A<t B,选项B 正确。

3.(复旦大学自主招生)把动能和速度方向相同的质子和α粒子分离开,如果使用匀强电场及匀强磁场,可行的方法是( )A.只能用电场 B.只能用磁场C.电场和磁场都可以 D.电场和磁场都不行【答案】A【解析】带电粒子垂直电场方向射入匀强电场中,利用类平抛运动规律,带电粒子在电场中偏转距离y =12at 2=12qE m ·⎝ ⎛⎭⎪⎫L v 2=qEL 22mv 2。

由于质子和α粒子带电量q 不同,在电场中偏转距离y 不同,可以把动能和速度方向相同的质子和α粒子分离开,选项A 正确。

带电粒子垂直磁场方向进入匀强磁场中,利用洛伦兹力等于向心力,qvB =m v 2R ,解得R =mv qB =2mE k qB 。

【复习指导】2020年高考物理重点试题分项版汇编系列专题11磁场含解析

【复习指导】2020年高考物理重点试题分项版汇编系列专题11磁场含解析

,可知,导致半径减小,则
qB
x 也减小,故 C 错误;减小偏转电场的电压
U 的大小,设速度与磁场边界的夹角为
θ,则由半径公式
R
mv
m v0 sin ,结合几何关系,可得:
Bq Bq
x=2Rsin θ2=mv0 ,则会导致 x 不变,故 D 正确;故选 D. Bq
点睛:考查粒子做类平抛运动与匀速圆周运动的处理规律,掌握圆周运动的半径公式,注意运动的合成与分解的
C. 超级电容器相当电源,放电时两端电压不变
D. 在电容器放电过程中,电容器电容不断减小
【答案】 B
【解析】电容器下极板接正极,所以充电后
N乙极带正电,故 A 错误;放电时,电流由 F 到 E,则由左手定则可
知,安培力向右,所以导体棒向右运动,故
B 正确;电容器放电时,电量和电压均减小,故
C 错误;电容是电容
粒子而变为钍核,在匀强磁场中的径迹如图所示,则正确的说法
()
A. 1 是 , 2 是钍 B. 1 是钍, 2 是 C. 3 是 , 4 是钍 D. 3 是钍, 4 是 【答案】 B 【解析】 一个静止的铀核发生 衰变后变为钍核,
三种情况下带电粒子在两个相互平行平面之间运动时间及加速度大小.各自由相应规律表示出时间和加速度,从
而得到结论. 在复合场中,带电粒子做匀速直线运动,则有
Eq=Bqv,则有 E=Bv.在复合场中的时间
t1
d
,而在单一电场中
v
部编本资料欢迎下载!
最新人教版小学资料
水平方向也是做匀速直线运动,
所以运动的时间 t2
段 ab、bc 和 cd 的长度均为 L,且∠ abc =∠ bcd= 135°。流经导线的电流为 I ,方向如图中箭头所示。 导线段 abcd

2020高考物理精品习题:磁场(全套含解析)高中物理(20200818125802)

2020高考物理精品习题:磁场(全套含解析)高中物理(20200818125802)

【答案】A5.电饭锅工作时有两种状态:一种是锅内水烧开前的加热状态,另一种是锅内 水烧开后的保温状态,如下图10-1-9是一学生设计的电饭锅电路原理示意图,S 是用感温材料制造的开关•以下讲法中正确的选项是〔 〕A .加热状态时是用 R 1、R 2同时加热的. B. 当开关S 接通时电饭锅为加热状态, S 断开时为保温状态2020高考物理精品习题:磁场(全套含解析 )高中物理第I 课时 部分电路?电功和电功率 i •关于电阻率,以下讲法中不正确的选项是 〔 〕 A •电阻率是表征材料导电性能好坏的物理量,电阻率越大,其导电性能越好 B •各种材料的电阻率都与温度有关,金属的电阻率随温度的升高而增大 C .所谓超导体,当其温度降低到接近绝对零度的某个临界温度时,它的电阻率突然变为零 D •某些合金的电阻率几乎不受温度变化的阻碍,通常用它们制作标准电阻【解析】电阻率表示导体的导电好坏,电阻率越小,导体的导电性能越好. 【答案】 A 2•一个标有” 220V A .接近于807 Q C .明显大于807 Q60W 〃的白炽灯泡,当用多用电表的欧姆挡去测量它的电阻时,其阻值〔 B 接近于0Q D .明显小于807 Q 【解析】 用多用电表的欧姆挡去测量灯泡的电阻时, 应把灯泡从电路中断开, 由于金属的电阻率随温度的升高而增大,现在它的电阻明显小于正常发光时的电阻 【答案】 D 测出的是其不发光时电阻,807 Q 3•如下图10-1-7,一幢居民楼里住着生活水平各不相同的 24户居民,因此整幢居民楼里有各种不同的电 器,例如电炉、电视机、微波炉、电脑等等•停电时,用多用电表测得 A 、B 间的电阻为R ;供电后,各 家电器同时使用,测得 A 、B 间电压为U ,进线电流为I ,那么运算该幢居民楼用电的总功率能够用的公 式是〔 〕c c U 2A . P = I 2R B.P = R C.P = IU D.以上公式都能够 【解析】 因居民楼内各种电器都有,因此不是纯电阻电路, 因此A 、B 、D 不对. 【答案】 CA 居 U 民楼 B A 图 10-1-7 4•如下图10-1-8 ,厚薄平均的矩形金属薄片边长 ab=10 cm , bc=5 cm ,当将A 与B 接入电压为U 的电路中时, 电流强度为1 A ,假设将C 与D 接入电压为U 的电路中,那么电流为 A.4A B.2A 1C. — A 21 D. —A 4 【解析】由电阻定律R = L ,当A 与B 接入电路中时,S ab »亠 R 1= R ,其中 图 10-1-8d 表示金属片的厚度•当 D 接入电路中时, bc R 2= ab d可知R 1= 4,由欧姆定律得 互=4,应选 AR 2I 1图 10-1-9C .要使R 2在保温状态时的功率为加热状态时的1/8 , R 1/R 2 应为 7 : 1当 S 断开,R 1 与 R 2 串联,P'= 2202/〔 R 1 + R 2〕; P > P'A 不正确B 正确.由于电路中总电压 U 不变,D .要使R 2在保温状态时的功率为加热状态时的 1/8, R 1/R 2 应为〔2 . 2 — 1〕:1 应选择功率公式 P =—,可知R 2 2 2202 2202 R 2 R 2 R 1 R 2 R 1 R 28 得兰 —LJ 即D 正确 R 2 1 【答案】BD 6•电子绕核运动可等效为一环形电流,设氢原子中的电子以速度 子的电量,那么其等效电流的电流强度等于 ________________ . 【解析】由电流的定义式I = q/t,那么电子的电流强度的大小应为v 在半径为r 的轨道上运动,用 e 表示电I = e/T,而电子运动的周期 ev T = 2 n /r ,得 I =2 r 【答案】 ev T7 7.—直流电源给蓄电池充电如下图 10-1-10,假设蓄电池内阻 电流表的读数为I ,那么输入蓄电池的电功率为 为 ________ ,电能转化为化学能的功率为 _ 【答案】UI,I 2r,UI-I 2r r ,电压表读数 ,蓄电池的发热功率 &某一直流电动机提升重物的装置,如下图 10-1-11 ,重物的质量 m=50kg ,电源提供给电动机的电压为 U=110V ,不计各种摩擦,当电动机以 v=0.9m/s 的恒定速率向上提升重物时,电路中的电流强度 I=5.0A , g=10m/s 2〕. 求电动机的线圈电阻大小〔取 【解析】电动机的输入功率 P = UI ,电动机的输出功率 P 1=mgv ,电动机发热功率P 2=I 2r 而 P 2=P — P i ,即卩 I 2r= UI — mgv图 10-1-11 代入数据解得电动机的线圈电阻大小为 r=4 Q 【答案】 r=4 Q 9•在图10-1-12中,AB 和A'B'是长度均为L = 2km ,每km 电阻值为p= 1Q 的两根输电线.假设发觉在 距离A 和A'等远的两点C 和C'间发生漏电,相当于在两点间连接了一个电阻•接入电动势 E = 90V 、内 阻不计的电源:当电源接在 A 、A'间时,测得 A'间电压为 U A = 45V.求A 与C 相距 多远? 【解析】在测量过程中的等效电路如 下图〔甲〕、〔乙〕所示•当电源接 在A 、A'时,能够认为电流仅在 A'C'CA 中流,现在U B = 72V 为漏电 阻R 上的电压.设 AC 和BC 间每根 输电线的电阻为 R AC 和R BC .那么有: 芈 R …①同理,当电源接在 E 2R AC R 图 10-1-12B 、B'间时,那么有:U AER…②2R BC R由①②两式可得:【解析】当S 闭合时, 那么可知S 闭合时为加热状态, R 1 被短路,P = 2202 /R 2;S 断开时为保温状态;即【答案】0.4km1R AC = — R BC4依照电阻定律 R = L %L ,可得A 、C 间相距为:SL AC =2km0.4km10.如下图 10-1-13 是- -种悬球式加速度仪 .它能够用来测定沿水平轨道做匀加速直线运动的列车的加速 度.m 是一个金属球,它系在细金属丝的下端,金属丝的上端悬挂在 O 点,AB 是一根长为L 的电阻丝,其阻值为R.金属丝与电阻丝接触良好, 摩擦不计.电阻丝的中点 C 焊接一根导线.从O 点也引出一根导线,两线 之间接入一个电压表 ①〔金属丝和导线电阻不计〕.图中虚线OC 与AB 相垂直,且 OC=h ,电阻丝AB 接在电压恒为 U 的直流稳压电源上.整个 装置固定在列车中使 AB 沿着车前进的方向.列车静止时金属丝呈竖直 状态•当列车加速或减速前进时,金属线将偏离竖直方向 0,从电压表的 读数变化能够测出加速度的大小 〔1〕当列车向右做匀加速直线运动时,试写出加速度 a 与0角的关系 及加速度a 与电压表读数 U'的对应关系. 图 10-1-13〔2〕那个装置能测得的最大加速度是多少 ? 【解析】〔1〕小球受力如下图,由牛顿定律得:a=F 合=mgta ^ =gtan 0 . m m设细金属丝与竖直方向夹角为 0时,其与电阻丝交点为 D , CD 间的电压为U ;U R CD CD CD CD L U 那么 CD,故得 a=gtan 0 =g • g. U R AB AB L h hU 〔2〕因CD 间的电压最大值为 U/2,即U max -U/2,因此a max = — g.2h F E【答案】〔1〕a=gtan0.〔 2〕a max = — g2h 第H 课时 电路分析•滑动变阻器1. 如下图10-2-14,在A 、B 两端加一恒定不变的电压 U ,电阻R 1为 60 Q,假设将R 1短路,R 2中的电流增大到原先的 4倍;那么R 2为〔 〕 A . 40 Q B . 20 Q C . 120 Q D . 6 Q 【答案】B 2. 如下图10-2-15 , D 为一插头,可接入电压恒定的照明电路中, a 、b 、c 为三只 R 1R 2A vBU图 10-2-14相同且功率较大的电炉, a 靠近电源,b 、c 离电源较远,而离用户电灯 炉接入电路后对电灯的阻碍,以下讲法中正确的选项是 A •使用电炉a 时对电灯的阻碍最大 L 专门近,输电线有电阻•关于电 图 10-2-15B •使用电炉b 时对电灯的阻碍比使用电炉 a 时大 C. 使用电炉c 时对电灯几乎没有阻碍 D •使用电炉b 或c 时对电灯阻碍几乎一样【解析】输电线有一定电阻, 在输电线上会产生电压缺失. 使用电炉c 或b 时,对输电线中电流阻碍较大, 使线路上的电压缺失较大, 从而对用户电灯产生较大的阻碍, 而使用电炉a 对线路上的电压缺失阻碍甚微, 能够忽略不计. 【答案】BD3•如图10-2-16 〔甲〕所示电路,电源电动势为 E ,内阻不计,滑动变阻器的最大阻值为 R ,负载电阻为 R o .当滑动变阻器的滑动端S 在某位置时,R o 两端电压为E/2,滑动变阻器上消耗的功率为P .假设将R oA . R o 两端的电压将小于 E/2B . R o 两端的电压将等于 E/2C .滑动变阻器上消耗的功率一定小于 PD .滑动变阻器上消耗的功率可能大于P【解析】在甲图中,设变阻器 R 滑动头以上、以下的电阻 分不为R上、R 下,那么R o //R 下=R 上,有R o > R 上;当接成乙图 电路时,由于R o >R 上,那么R o 两端的电压必大于 E/2,故A 、 而滑动变阻器上消耗的功率能够大于 P .应选D .【答案】D4•如下图io-2-17是一电路板的示意图,a 、b 、c 、d 为接线柱,a 、d 与22oV 的交流电源连接, 间、cd 间分不连接一个电阻.现发觉电路中没有电流,为检查电路故障,用一交流电压表分不测得 两点间以及a 、c 两点间的电压均为 22oV ,由此可知〔 A . ab 间电路通, cd 间电路不通 B . ab 间电路不通,bc 间电路通 C . ab 间电路通, bc 间电路不通 D . bc 间电路不通,cd 间电路通【解析】第一应明确两点:〔 1〕电路中无电流即l=o 时,任何电阻两端均无电压;〔 2〕假设电路中仅有一处断路,那么电路中哪里断路,横跨断路处任意两点间的电压均是电源电压.由题可知, bd 间电压为22oV ,讲明断路点必在 bd 之间;ac 间电压为22oV ,讲明断点又必在 ac 间;两者共同区间是 bc ,故bc 断路,其余各段均完好. 【答案】CD5•传感器可将非电学量转化为电学量,起自动操纵作用.如运算机鼠标中有位移传感器,电熨斗、电饭煲中有温度传感器,电视机、录象机、影碟机、空调机中有光电传感器 ……演示位移传感器的工作原理如下图 io-2-17,物体M 在导 轨上平移时,带动滑动变阻器的金属滑杆 P ,通过电压表显示的数据, 来反映物 体位移的大小 X ,假设电压表是理想的, 那么以下讲法中正确的选项是 〔 〕A .物体M 运动时,电源内的电流会产生变化B .物体M 运动时,电压表的示数会发生变化C .物体M 不动时,电路中没有电流D .物体M 不动时,电压表没有示数【解析】滑动变阻器与电流构成闭合回路,因此回路中总是有电流的,这与与电源位置互换,接成图〔乙〕所示电路时,滑动触头 S 的位置不变,那么〔〔甲〕 〔乙〕ab 间、bc b 、d M 运动与否无关,C 错误.图〕E图 io-2-17中的滑动变阻器实际上是一个分压器,电压表测量的是滑动变阻器左边部分的电压,在图中假设杆 P 右移那么示数增大,左移那么示数减小•因表是理想的,因此 P 点的移动对回路中的电流是无阻碍的•综上所 述,只有B 正确. 【答案】 6.如下图 R 1、R 2、 P'1: P'2: 【解析】 P 1: R 1、 =6 : P 2 : R 2、 B 10-2-18的电路中,电阻 R i =1 Q, R 2=2 Q, R B =3 Q,在A 、B 间接电源,S i 、S 2都打开,现在电阻 R B 消耗的功率之比 P 1: P 2: _______ P 3= ;当S 1、S 2都闭合时,电阻 R 1、R 2、R 3消耗的功率之比 P'3= ________. 当S 1、S 2都打开时, P 3= R 1 : R 2: R 3= 1 R 3相互并联, R 1、R 2、R 3相互串联,那么 :2: 3•当S 1、S 2都闭合时,A P'1: P'2: P'3=1/R 1: 1/R 2: 1/R 3 Si- R 2 RB 3: 2. 【答案】1 : 2 : 3, 6: S 2 图 10-2-18 7•在图 10-2-19 B 间的总电阻为 【解析】用等效替代法,可把除 R 1 与等效电阻R 为并联关系,那么R AB =RR 1〔R+R 1〕=12R 〔 12+R 〕=4,解得R=6Q , 假设 R‘1=6 Q 时,那么 R'AB =RR'1/〔 R+R'1〕=6 ⑹〔6+6〕=3 Q.【答案】3 8.如下图 10-2-20 的电路中,R 1=4 Q, R 2=10 Q, R B =6 Q, R 4=3 Q, a 、b 为接线柱,电路两端所加电压为 24V ,当a 、b 间接入一理想电流表时, - 它的示数应是多少? 【解析】如图乙所示,从图能够看出,接入理想电流表后, 再与R 2串联;而R 2+ R 34与R 1又是并联关系.电流表测的是 的电流之和. R 34 = R 3R 4/〔 R 3+R 4〕=2 Q R 234=R 34 + R 2=12 Q|2=U/R 234 =2A l 1=U/R 1=6A【答案】6.67A 8个不同的电阻组成,R 1=12 Q,其余电阻值未知, 测得A 、 4 Q,今将R 1换成6 Q 的电阻,A 、B 间总电阻变成 ____________ Q. R 1外的其他电阻等效为一个电阻 R ,在AB 间 所示的 旦_ _a bR 3R 2l 3/|4=R 4/R 3=1/2 ••• l 3=|2/3=2/3A ,••• I A =I 1 + I 3=6.67AR 3与R 4并联, R i 与 R 3 —R 4R 2-------- 0 ——_. R4R U --------------图 10-2-20其总电阻为 电路两端加上恒定电压 U ,移动R 的滑动触片,求电流表的示数变化范畴.【解析】设滑动变阻器滑动触头左边部分的电阻为R x . 电路连接为R 0与R x 并联,再与滑动变阻器右边部分的电阻 R - R x 串联, 9.如下图10-2-21,电路中R 0为定值电阻,R 为滑动变阻器, U -乙 R ,当在U 图 10-2-21那么干路中的电流 R 并 + R — R x R 0R xR R xR o R x因此电流表示数| R 0 R xUR °R x R 0R 0 R x "、0、xR RR 0 R xXUR 。

2020年磁场测试(含答案)(1)

2020年磁场测试(含答案)(1)

2020年普通高等学校招生全国统一考试磁场能力测试二、选择题:本题共8小题,每小题6分。

在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分。

14.下列关于磁场的说法中,正确的是( )A. 磁场和电场一样,是客观存在的特殊物质B. 磁场是为了解释磁极间相互作用而人为规定的C. 磁极与磁极间是直接发生作用的D. 磁场只有在磁极与磁极、磁极与电流发生作用时才产生15.长为10 cm的通电直导线,通以1 A的电流,在磁场强弱、方向都一样的空间(匀强磁场)中某处受到的磁场力为0.4 N,则该磁场的磁感应强度( )A.等于4 T B.大于或等于4 TC.小于或等于4 T D.上述说法都错误16、关于磁感应强度B=FIL和电场强度E=Fq,下列说法中正确的是( )A.一小段通电直导线在某处不受磁场力作用,说明此处一定无磁场B.一试探电荷在某处不受电场力作用,说明此处一定无电场C.一小段通电导线在磁场中所受磁场力越大,说明此处的磁场越强D.磁感应强度的方向与该处一小段通电导线所受磁场力的方向可能相同17.如图所示是等腰直角三棱锥,其中侧斜面abcd为边长为L的正方形,abef和ade均为竖直面,dcfe为水平面。

将次等腰直角三棱锥安图示方式放置于竖直向下、磁感应强度为B的匀强磁场中,下面说法中正确的是A.通过abcd面的磁通量大小为BL²B.通过dcfe面的磁通量大小为BL²C.通过ade的磁通量为零D.通过abfe面的磁通量大小为BL²18.电流天平是一种测量磁场力的装置,如图所示。

两相距很近的通电平行线圈Ⅰ和Ⅱ,线圈Ⅰ固定,线圈Ⅱ置于天平托盘上。

当两线圈均无电流通过时,天平示数恰好为零。

下列说法正确的是A.当天平示数为负时,两线圈电流方向相同B.当天平示数为正时,两线圈电流方向相同C.线圈Ⅰ对线圈Ⅱ的作用力大于线圈Ⅱ对线圈Ⅰ的作用力D.线圈Ⅰ对线圈Ⅱ的作用力与托盘对线圈Ⅱ的作用力是一对相互作用19、如图为显像管原理示意图,电子束经电子枪加速后,进入偏转磁场偏转,不加磁场时,电子束打在荧光屏正中的O点。

2020年高考物理试题分类汇编——电磁感应

2020年高考物理试题分类汇编——电磁感应

2020 年高考物理试题分类汇编——电磁感觉〔全国卷1〕17.某地的地磁场磁感觉强度的竖直重量方向向下,大小为 4.5 10 5 T。

一敏捷电压表连结在当地入海河段的两岸,河宽100m,该河段涨潮和落潮时有海水〔视为导体〕流过。

设落潮时,海水自西向东流,流速为2m/s。

以下讲法正确的选项是A .河北岸的电势较高B.河南岸的电势较高C.电压表记录的电压为9mV D.电压表记录的电压为5mV【答案】BD【分析】海水在落潮时自西向东流,该过程可以理解得为:自西向东运动的导体棒在切割竖直向下的磁场。

依据右手定那么,右岸即北岸是正极电势高,南岸电势低, D 对 C 错。

依据法拉第电磁感觉定律E BLv 4.5 10 5100 2 9 10 3V, B对A错。

【命题企图与考点定位】导体棒切割磁场的实质应用题。

〔全国卷2〕18. 如图,空间某地区中有一匀强磁场,磁感觉强度方向水平,且垂直于纸面向里,磁场上界限 b 和下界限 d 水平。

在竖直面内有一矩形金属一致加线圈,线圈上下面的距离特意短,下面水平。

线圈从水平面 a 开始着落。

磁场上下界限之间的距离大于水平面a、 b 之间的距离。

假定线圈下面刚经过水平面b、c〔位于磁场中〕和 d 时,线圈所遇到的磁场力的大小分不为F b、 F c和 F d,那么A.F d> F c> F bB. F c<F d< F bC.F c> F b> F dD. F c< F b< F d【答案】 D【分析】线圈从a到b 做自由落体运动,在b 点开始进入磁场切割磁感线所有遇到安培力F b,因为线圈的上下面的距离特意短,所以经历特意短的变速运动而进入磁场,此后线圈中磁通量不变不产生感觉电流,在 c 处不受安培力,但线圈在重力作用下仍旧加快,所以从 d 处切割磁感线所受安培力必然大于答案 D。

b 处,【命题企图与考点定位】线圈切割磁感线的竖直运动,应用法拉第电磁感觉定律求解。

2020年高考物理模拟试题分类汇编磁场(解析版)

2020年高考物理模拟试题分类汇编磁场(解析版)
C.导体棒ML和LN所遇到的安培力的协力大小为F
D.三角形线框遇到的安培力的大小为
【答案】BD
【分析】
A.由图可知,导体棒MN电流方向有M指向N,由左手定章可得,安培力方向平行于线框平面,且垂直
于导体棒MN,故A错误;
BMLNMNMN
于边MN的电阻的两倍,二者为并联关系,依据欧姆定律可知,导体棒MN中的电流是导体棒
F安=mgsinθ
由a均衡可知
F绳=F安+mgsinθ=2mgsinθ
由c均衡可知
F绳=mcg
因为绳中拉力大小相等,故
2mgsinθ=mcg
即物块c的质量为2msinθ,故A错误;
B.b放上以前,依据能量守恒知,a增添的重力势能与a、c增添的动能之和等于c减小的重力势能,故B
错误;
C.b棒放上导轨后,a匀速上涨重力势能在增添,故依据能量守恒知,物块c减少的重力势能等于回路消
F向左
B.I顺时针,
F向右
C. I逆时针,
F向左
D. I逆时针,
F向右
【答案】
B
【分析】
金属线框
abcd放在导线
MN
上,导线中电流产生磁场,依据安培定章判断可知,线框
abcd左右双侧磁场方
向相反,线框左边的磁通量小于线框右边的磁通量,磁通量存在抵消的状况。若
MN
中电流忽然减小时,
穿过线框的磁通量将减小。依据楞次定律可知,感觉电流的磁场要阻挡磁通量的变化,则线框
应选B。
4、(2020·金太阳高三放学期线上一模)
如下图, 等边三角形线框
LMN
由三根同样的导体棒连结而成,
固定于匀强磁场中,线框平面与磁感觉强度方向垂直,线框极点

2020--2022年三年全国高考物理真题汇编:磁场

2020--2022年三年全国高考物理真题汇编:磁场

2020--2022年三年全国高考物理真题汇编:磁场一、单选题1.(2分)下列说法正确的是()A.恒定磁场对静置于其中的电荷有力的作用B.小磁针N极在磁场中的受力方向是该点磁感应强度的方向C.正弦交流发电机工作时,穿过线圈平面的磁通量最大时,电流最大D.升压变压器中,副线圈的磁通量变化率大于原线圈的磁通量变化率2.(2分)如图(a),直导线MN被两等长且平行的绝缘轻绳悬挂于水平轴OO′上,其所在区域存在方向垂直指向OO′的磁场,与OO′距离相等位置的磁感应强度大小相等且不随时间变化,其截面图如图(b)所示。

导线通以电流I,静止后,悬线偏离竖直方向的夹角为θ。

下列说法正确的是()A.当导线静止在图(a)右侧位置时,导线中电流方向由N指向MB.电流I增大,静止后,导线对悬线的拉力不变C.tanθ与电流I成正比D.sinθ与电流I成正比3.(2分)如图所示,一个立方体空间被对角平面MNPQ划分成两个区域,两区域分布有磁感应强度大小相等、方向相反且与z轴平行的匀强磁场。

一质子以某一速度从立方体左侧垂直Oyz平面进入磁场,并穿过两个磁场区域。

下列关于质子运动轨迹在不同坐标平面的投影中,可能正确的是()A.B.C.D.4.(2分)空间存在着匀强磁场和匀强电场,磁场的方向垂直于纸面(xOy平面)向里,电场的方向沿y轴正方向。

一带正电的粒子在电场和磁场的作用下,从坐标原点O由静止开始运动。

下列四幅图中,可能正确描述该粒子运动轨迹的是()A.B.C.D.5.(2分)截面为正方形的绝缘弹性长管中心有一固定长直导线,长管外表面固定着对称分布的四根平行长直导线,若中心直导线通入电流I1,四根平行直导线均通入电流I2,I1≫I2,电流方向如图所示,下列截面图中可能正确表示通电后长管发生形变的是()A.B.C.D.6.(2分)两足够长直导线均折成直角,按图示方式放置在同一平面内,EO与O′Q在一条直线上,PO′与OF在一条直线上,两导线相互绝缘,通有相等的电流I,电流方向如图所示。

2020年高考物理试题分类汇编——磁场

2020年高考物理试题分类汇编——磁场

2020年高考物理试题分类汇编——磁场〔全国卷1〕26.〔21分〕如以下图,在03x a ≤≤区域内存在与xy 平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy 平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y 轴正方向的夹角分布在0~180°范畴内。

沿y 轴正方向发射的粒子在0t t =时刻刚好从磁场边界上(3,)P a a 点离开磁场。

求:⑴ 粒子在磁场中做圆周运动的半径R 及粒子的比荷q /m ;⑵ 现在刻仍在磁场中的粒子的初速度方向与y 轴正方向夹角的取值范畴; ⑶ 从粒子发射到全部粒子离开磁场所用的时刻。

【答案】⑴a R 332=32Bt m q π= ⑵速度与y 轴的正方向的夹角范畴是60°到120°⑶从粒子发射到全部离开所用 时刻 为02t【解析】 ⑴粒子沿y 轴的正方向进入磁场,从P 点通过做OP 的垂直平分线与x 轴的交点为圆心,依照直角三角形有222)3(R a a R -+=解得a R 332=23sin ==R a θ,那么粒子做圆周运动的的圆心角为120°,周期为03t T =粒子做圆周运动的向心力由洛仑兹力提供,依照牛顿第二定律得R T m Bqv 2)2(π=,T Rv π2=,化简得032Bt m q π= ⑵仍在磁场中的粒子其圆心角一定大于120°,如此粒子角度最小时从磁场右边界穿出;角度最大时从磁场左边界穿出。

角度最小时从磁场右边界穿出圆心角120°,所通过圆弧的弦与⑴中相等穿出点如图,依照弦与半径、x 轴的夹角差不多上30°,因此现在速度与y 轴的正方向的夹角是60°。

角度最大时从磁场左边界穿出,半径与y 轴的的夹角是60°,那么现在速度与y 轴的正方向的夹角是120°。

因此速度与y 轴的正方向的夹角范畴是60°到120° ⑶在磁场中运动时刻最长的粒子的轨迹应该与磁场的右边界相切,在三角形中两个相等的腰为a R 332=,而它的高是 a a a h 333323=-=,半径与y 轴的的夹角是30°,这种粒子的圆心角是240°。

【推荐】2020届高考物理专题卷8:磁场 答案与解析

【推荐】2020届高考物理专题卷8:磁场 答案与解析

绝密★启用前高考物理专题八考试范围:磁场一、选择题(本题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,有的只有一个选项符合题目要求,有的有多个选项符合题目要求。

全部选对的得4分,选对但不全的得2分,有选错的得0分。

)1.电子作近核运动的时候,产生了垂直于相对运动方向的磁场。

如下图所示,为某种用束缚原子的磁场的磁感线分布情况,以O点(图中白点)为坐标原点,沿轴正方向磁感应强度大小的变化最有可能为()2.如右图所示,有一个正方形的匀强磁场区域abcd,e是ad的中点,f是cd的中点,如果在a点沿对角线方向以速度v射入一带负电的带电粒子,恰好从e点射出,则()A.如果粒子的速度增大为原的二倍,将从d点射出B.如果粒子的速度增大为原的三倍,将从f点射出C.如果粒子的速度不变,磁场的磁感应强度变为原的二倍,也将从d点射出D.只改变粒子的速度使其分别从e、d、f点射出时,从f点射出所用时间最短3.“速度选择器”是一个借助带电粒子在电磁场中偏转的原理,挑选出具有所需速度的粒子的装置。

右图是某粒子速度选择器的原理示意图,在一半径为R=10cm的圆柱形桶内有B=10-4T的匀强磁场,方向平行于轴线。

在圆柱形桶的某直径两端开有小孔,作为入射孔和出射孔,离子束以不同角度入射,先后有不同速度的离子束射出,现有一离子发射的比荷为2×1011C/g的阳离子,且粒子束中速度分布连续,当θ=45°时,出射粒子的速度v的大小是()A.2×106m/s B.22×106 m/sC.22×108 m/s D.42×106 m/s4.如右图所示,竖直光滑的墙面上有一闭合导线框a,在导线框a的下方有一面积比导线框a稍小的磁场区域b。

导线框a从图示位置自由下落,在其整个下落过程中,下列说法正确的是()A .导线框做自由落体运动B .导线框通过磁场区域后做曲线运动C .导线框通过磁场区域时机械能会减少D .导线框在穿过磁场区域时,上下两个导线受到的安培力方向都向上5.2010年,上海成功举办盛大的世界博览会。

2020高考物理精品习题:磁场(全套含解析)高中物理

2020高考物理精品习题:磁场(全套含解析)高中物理

2020高考物理精品习题:磁场(全套含解析)高中物理第Ⅰ课时磁场•磁感应强度1.以下关于磁场的讲法中,正确的选项是( )A.只有磁铁周围才存在磁场B.磁场是假想的,不是客观存在的C.磁场是在磁极与磁极、磁极和电流发生作用时才产生D.磁极与磁极,磁极与电流、电流与电流之间差不多上通过磁场发生相互作用【解析】磁铁和电流周围都能够产生磁场,答案A错;磁场归根结底是运动电荷产生的客观物质,答案B 错;在磁体或电流周围第一产生磁场,其次放入磁场中的磁体或电流将通过磁场与之发生相互作用,因此C错,D对.【答案】D2.关于磁感线,以下讲法中正确的选项是( )A.磁感线上每一点的切线方向都跟该点的磁场方向一致B.两条磁感线的间隙处不存在磁场C.不同磁场形成的磁感线能够相交D.磁感线是磁场中客观存在的、肉眼看不见的曲线【解析】磁感线上每一点的切线方向确实是该点的磁场方向,因此A正确;用磁感线的疏密反映磁场的强弱,但不等于间隙处不存在磁场,磁场是充满某个区域的,因此B错误;不同磁源产生的磁场在某一区域叠加合成,磁感线应描画的是叠加后的合磁场,某处的磁感应强度是唯独的,因此磁感线是不相交的,C 错误;磁感线是形象描画磁场假想的曲线,能够用实验来模拟,然而不存在的,D错误.【答案】A3.一条竖直放置的长直导线,通有由下而上的电流,它产生的磁场在它正北方某处的磁感应强度与地磁场在该处的磁感应强度大小相等,设地磁场方向水平向北,那么该处的磁场方向为( ) A.向东偏北450 B.向正西C.向西偏北450 D.向正北【解析】作水平面内的平面图如下图,地磁场的磁感应强度重量向正北,直导线电流产生的磁场在该点的磁感应强度重量向正西,由矢量平行四边形定那么合成可得该点的磁感应强度应为西偏北450角方向.【答案】C4.通电螺线管邻近放置四个小磁针,如下图11-1-7,当小磁针静止时,图中小磁针的指向可能的是(涂黑的一端为N极)( )A.a B.b C.c D.d图11-1-7【解析】依照安培定那么判定在通电螺线管的内部磁感线方向应是向左的,外部是向右的,如图是螺线管内外磁场用磁感线描画的分布图,要求学会用磁感线将磁场的空间分布形象化,以便判定磁场的方向和大小.由此可判定小磁针acd的N极都应向左,而小磁针b的N极应向右.【答案】B5.以下所述的情形,哪一种情形能够确信钢棒没有磁性( )A.将钢棒的一端接近磁针的N极时,那么两者互相吸引,再将钢棒的这一端接近磁针的S极时,那么两者互相排斥B.将钢棒的一端接近磁针的N极时,那么两者互相排斥,再将钢棒的另一端接近磁针的N极时,那么两者互相吸引C.将钢棒的一端接近磁针的N极时,那么两者互相吸引,再将钢棒的另一端接近磁针的S极时,那么两者仍互相吸引D.将钢棒的一端接近磁针的N极时,那么两者互相吸引,再将钢棒的另一端接近磁针的N 极时,那么两者仍互相吸引【解析】A.将钢棒的一端接近磁针的N极,两者互相吸引,钢棒的这一端可能是S极,因为异名磁极互相吸引,再将钢棒的这一端S极接近磁针的S极,两者相互排斥,因为同名磁极互相排斥,因此情形A可能;B.将钢棒的一端接近磁针的N极,两者互相排斥,钢棒的这一端一定是N极,再将钢棒的另一端S 极接近磁针的N极,两者互相吸引,因此情形B成立;C.将钢棒的一端接近磁针的N极,两者互相吸引,钢棒的这一端可能是S极,再将钢棒的另一端N极接近磁针的S极,两者互相吸引,因此情形C可能;D.将钢棒的一端接近磁针的N极,两者互相吸引,钢棒的这一端可能是S极,再将钢棒的另一端N极接近磁针的N极,两者应互相排斥,与所述矛盾.假设钢棒没有磁性,当它接近磁针的N极时,钢棒被磁化,且该端为S极,因此互相吸引,当钢棒的另一端接近磁针N极时,钢棒又被磁化为S极,互相吸引,与所述情形D相符.【答案】D6.〔2002年上海春季高考〕如图11-1-8是一种利用电磁原理制作的充气泵的结构示意图.其工作原理类似打点计时器.当电流从电磁铁的接线柱a流入,吸引小磁铁向下运动,由此可判定:电磁铁的上端为_____极,永磁铁的下端为_____极〔N或S〕【解析】从线圈的绕制方向和安培定那么判定电磁铁上端等效于S 极,由异名磁极相吸原理可知永磁体下端为N极.【答案】S、N7.实验室有一旧的蓄电池,输出端的符号变得模糊不清,无法分不正、负极,某同学设计了下面的判定电源两极的方法:在桌面上放一个小磁针,在磁针右侧放置一个螺线管,如图11-1-9为水平桌面上的俯视图.闭合开关后,磁针指南的一端向东偏转,由此可判定电源A端是_____极〔正或负〕.【解析】磁针指南的一端确实是S极,由于电磁铁的作用而逆时针向东偏转,可知电图11-1-9磁铁的左侧等效于N极,因此判定电路中电流为逆时针方向,B端为电源正极,A端为电源负极.【答案】负8.某试验小组为了探究通电长直导线产生的磁场的磁感应强度B与导线上电流强度I0和距离r间的关系,设计了如下图11-1-10的试验:一根固定通电长直导线通以可调剂的电流强度I0,一根能够自由运动的短导线与之在同一平面内,通以恒定的电流I=2A,长度L=0.1m,应用操纵变量法:〔1〕使两导线距离r保持不变,调剂长直导线中的电流强度I0,测得相应的磁场力F,得到如下实验数据:试验次数 1 2 3 4 5电流强度I0/A 5.0 10 15 20 25磁场力F/×10-4N 1.01 2.00 2.98 3.96 5.02磁感应强度B/×10-3T填充上述表格中的磁感应强度B一栏的值,并归纳磁感应强度B和产生磁场的长直导线上的电流I0的关系是______________.〔2〕使长直导线中的电流强度I0保持不变,调剂短导线与之的距离r,测得相应的磁场力F,得到如下实试验次数 1 2 3 4 5距离r/m 0.05 0.10 0.15 0.20 0.25磁场力F/×10-4N 12.0 5.9 4.1 3.0 2.4磁感应强度B/×10-3T填充上述表格中的磁感应强度B一栏的值,并归纳磁感应强度B和空间位置与长直导线间的距离r的关系是______________.【解析】由磁感应强度的定义式IL F B =运算相应的磁感应强度的值,从数据能够归纳出磁感应强度B 与产生磁场的长直导线上的电流I 0成正比,与距离r 成反比.【答案】0.505,1.00,1.49,1.98,2.51,成正比;6.00,2.95,2.05,1.50,1.20,成反比.9.长为1.2m ,质量为1kg 的金属杆静止于相距1m 的两水平轨道上,金属杆中通有方向如下图11-1-11、大小为20A 的恒定电流,两轨道内外存在竖直方向的匀强磁场.金属杆与轨道间的动摩擦因数为0.6,〔1〕欲使杆向右匀速运动,求磁场的磁感应强度大小和方向〔2/10s m g =〕;〔2〕欲使杆向右以加速度为2/2s m 作匀加速运动,求磁场的磁感应强度大小.【解析】〔1〕匀速运动时磁场力与滑动摩擦力平稳,因此磁场力N mg F F f 6===μ,金属杆上有电流通过部分是导轨间的1m 长,由定义式得T ILF B 3.0==,由左手定那么可判定磁场方向竖直向上.〔2〕匀加速运动时由牛顿第二定律,ma F F f =-,得N F ma F f 8=+=,T B 4.0=. 【答案】0.3T ,0.4T10.如下图11-1-12,不计电阻的U 形导轨水平放置,导轨宽l =0.5m ,左端连接电源,电动势E=6V ,内阻r=0.9Ω和可变电阻R ,在导轨上垂直于导轨放一电阻为0.1Ω的导体棒MN ,并用水平轻绳通过定滑轮吊着质量为m =20g 的重物,整个装置处于竖直向上的匀强磁场中,改变可变电阻的阻值,在1Ω≤R≤5Ω的取值范畴内都能使MN 处于静止,求匀强磁场的磁感应强度.〔g =10m/s 2〕 【解析】可变电阻在一定的取值范畴内都能使MN 处于静止,讲明导体棒MN与导轨间存在摩擦力,由左手定那么判定导体棒所受到的磁场力水平向左,当R=1Ω时,由闭合电路欧姆定律可知电流强度最大且I 1=3A ,所受最大静摩擦力m F 方向向右,三力平稳关系是mg F L BI m +=1,当R=5Ω时,电流强度最小I 2=1A ,所受最大静摩擦力m F 方向向左,三力平稳关系是mg F L BI m =+2,可得mg I I BL 2)(21=+,变形可得磁感应强度为T T I I L mg B 2.0)13(5.01002.02)(221=+⨯⨯⨯=+=. 【答案】0.2T第Ⅱ课时 磁场对电流的作用1.如下图11-2-10是磁场对直线电流的作用力判定,其中正确是( )【解析】A 图中导线是与磁场垂直放置的,所受安培力应该是最大的力的方向也遵守左手定那么,因此A 正确;B 图中的安培力方向应该是垂直导线向左;C 图中的安培力方向向下,大小应该是最大值;D 图中由于导线与磁场平行,因此不受安培力作用.【答案】A2.在赤道上空,沿东西方向水平放置两根通电直导线a 和b ,且导线a 在北侧,导线b 在南侧,导线a 图11-2-10图11-1-11 图11-1-12中的电流方向向东,导线b 中的电流方向向西,那么关于导线a 和地磁场对导线b 的安培力F 1和F 2的方向判定正确的选项是 ( )A .F 1水平向南, F 2竖直向下B .F 1竖直向下, F 2水平向北C .F 1水平向北, F 2竖直向上D .F 1竖直向上, F 2水平向南【解析】由安培定那么判定导线a 产生的磁场在导线b 所在处的方向是竖直向下,由左手定那么判定安培力F 1向南,在赤道上空的地磁场方向是水平向北,因此F 2竖直向下.【答案】A3.一根用导线绕制的螺线管,每匝线圈之间存在一定的间隙,螺线管水平放置,在通电的瞬时,可能发生的情形是( )A .伸长B .缩短C .弯曲D .转动【解析】每匝线圈等效于一个小磁针,且相邻的两个是异名磁极,因此互相吸引,螺线管有收缩可能.【答案】B4.如下图11-2-11,一根通有电流I 的直铜棒MN ,用导线挂在磁感应强度为B的匀强磁场中,现在两根悬线处于张紧状态,以下哪些措施可使悬线中张力为零( )A .适当增大电流强度IB .使电流反向并适当减小电流强度IC .保持电流强度I 不变,适当减小磁感应强度BD .使电流反向,适当减小磁感应强度B【解析】依照左手定那么判定,铜棒MN 所受的安培力竖直向上,但因为小于铜棒重力,因此悬线依旧处于张紧状态,适当增大电流强度I 使安培力恰好平稳重力时,张力就为零.【答案】A5.磁电式电流表中通以相同电流时,指针偏转角度越大,表示电流表灵敏度越高,假设其余条件都相同,那么灵敏度高的电流表具有( )A .比较小的通电线圈的横截面积B .劲度系数比较大的两个螺旋弹簧C .比较少的通电线圈匝数D .比较强的辐向分布的磁场【解析】电流表中指针偏转角度与线圈匝数n 、磁感应强度B 、线圈面积S 和与两个螺旋弹簧劲度系数k 的关系为k nBS =θ, 因此n 、B 、S 越大,灵敏度越高;k 越大,灵敏度越低. 【答案】D6.在磁感应强度B =0.4T 的匀强磁场中,一段长为0.5m 的通电导体在外力作用下做匀速直线运动,设通过导体的电流强度为4A ,运动速度是0.6m /s ,电流方向、速度方向、磁场方向两两相互垂直,那么移动这段导线所需要的功率是 W .【解析】导体所受安培力方向与电流方向和磁场方向两两垂直,而外力与安培力两力平稳,因此能够判定外力与导体速度方向相同,因此48w .0v BIL v =⋅=⋅=外F P .【答案】0.487.一只磁电式电流表,线圈长为2.0cm ,宽为1.0cm ,匝数为250匝,线圈所在处的平均辐向分布的磁场的磁感应强度为0.2T .如下图11-2-12.当通入电流为0.10mA 时,作用在线圈上的安培力的力矩大小为 ,线圈转动的方向为 ;假设螺旋弹簧的旋转力矩M =K θ,其中K =3.3×10-6N ·m /rad ,那么线圈偏转的角度为 .【解析】1.安培力力矩公式是nBIS M =,面积S=2.0×10-4m 2电流强度I=10-4A,因此Nm Nm M 64410100.2102.0250---=⨯⨯⨯⨯=;依照左手定那么,左边所受安培力竖直向上,右边所受安培力竖直向下,线圈顺时针方向转动.2.当螺旋弹簧的旋转力矩与安培力力矩平稳时,偏转角度稳固,且0662.173.0103.310==⨯==--rad rad k M θ. 【答案】10-6Nm ,顺时针方向,17.20图11-2-11 图11-2-128.电磁炮是一种理想的兵器,它的要紧原理如下图11-2-13,1982年澳大利亚国立大学制成了能把2.2g 的炮体(包括金属杆MN 的质量)加速到10km /s的电磁炮,假设轨道宽为2m ,长为100m ,通过的电流为10A ,那么轨道间所加匀强磁场的磁感应强度B 为多少?(不计摩擦)【解析】电磁炮作匀加速直线运动,依照as v v t 2202=-,电磁炮的加速度为252242/105/1002)10(2s m s m s v a t ⨯=⨯==,使之加速的力确实是安培力,因此安培力N N ma F 353101.1105102.2⨯=⨯⨯⨯==-,磁感应强度T T IL F B 55210101.13=⨯⨯==. 【答案】55T9.如图11-2-14,质量为m ,长为L 的金属棒MN ,通过柔软金属丝挂于a ,b 点,ab 点间电压为U ,电容为C 的电容器与a 、b 相连,整个装置处于磁感应强度为B ,竖直向上的匀强磁场中.接通S ,电容器瞬时终止放电后又断开S ,那么MN 能摆起的最大高度是多少? 【解析】分析金属棒MN 的物理过程有:〔1〕在金属丝竖直时,电容器放电的瞬时,受到安培力冲量作用而获得水平动量,〔2〕在竖直平面内以ab 为轴线向上摆动,此过程中金属棒机械能守恒.由动量定理,mv t L I B =⋅,得mv BqL =,而CU q =,因此mBCUL v =;摆动过程mgh mv =221,最大高度为2222)(2gmBCUL g v h ==. 【答案】222)(gmBCUL 10. 如下图11-2-15,在倾角为300的斜面上,放置两条宽L=0.5m 的平行导轨,将电源、滑动变阻器用导线连接在导轨上,在导轨上横放一根质量m=0.2kg 的金属杆ab ,电源电动势E=12V ,内阻r=0.3Ω,金属杆与导轨间最大静摩擦力为fm=0.6N ,磁场方向垂直轨道所在平面,B=0.8T .金属杆ab 的电阻为0.2Ω,导轨电阻不计.欲使杆的轨道上保持静止,滑动变阻器的使用电阻的范畴多大?(g 取10m /s 2)【解析】重力沿斜面向下的分力G 1=mgsin300=1.0N >fm,因此在没有安培力的情形下,金属杆ab 将下滑.金属杆ab 所受的安培力方向沿斜面向上,假如所取电阻较小,电流强度较大,那么安培力BIL 可能大于金属杆ab 的重力沿斜面方向的分力G 1,金属杆ab 有向上滑动的趋势,静摩擦力沿斜面向下,当静摩擦力为最大值时,金属杆ab 处于临界状态;反之,假如所取电阻较大,电流强度较小,那么安培力BIL 可能小于G 1,金属杆ab 有向下滑动的趋势,静摩擦力沿斜面向上,当静摩擦力为最大值时,金属杆ab 又处于临界状态;在两个临界状态的临界条件分不为:m f G L BI +=11和12G f L BI m =+,对应的电流强度A BLf G I m 411=+=和112=-=BL f G I m A ,依照闭合电路欧姆定律最小电阻Ω=--=5.211r r I E R ab 和最大电阻Ω=--=5.1122r r I E R ab . 【答案】2.5Ω≤R≤11.5Ω第Ⅲ课时 磁场对运动电荷的作用1.如下图11-3-10,在电子射线管上方平行放置一通电长直导线,那么电子射线将( )A .向上偏转B .向下偏转C .向纸内偏转D .向纸外偏转【解析】依照安培定那么,通电导线产生的磁场在电子射线处的方向是指向图11-2-13 图11-2-14图11-2-15 图11-3-10读者,射线管内电子的运动方向是水平向右,依照左手定那么判定电子所受洛伦兹力方向向上,因此电子向上偏转,答案A 正确.【答案】A2.一带电粒子,沿垂直于磁场的方向射人一匀强磁场,粒子的一段径迹如下图11-3-11,径迹上每一小段都能够看成圆弧,由于带电粒子使沿途的空气电离,粒子的能量逐步减小(电量不变),那么可判定( )A .粒子从a 到b ,带正电B .粒子从b 到a ,带正电C .粒子从a 到b ,带负电D .粒子从b 到a ,带负电【解析】带电粒子在运动中动能逐步减少,即速率逐步减小,依照半径公式,粒子的运动半径逐步减小,由轨迹形状可知,粒子的运动方向是b 到a ,选择轨迹上的一个点〔如b 点〕依照左手定那么能够判定粒子是带正电的.【答案】B3.如下图11-3-12,电子以垂直于匀强磁场的速度V A ,从A 处进入长为d ,宽为h 的磁场区域,发生偏移而从B 处离开磁场,从A 至B 的电子通过的弧长为s,假设电子电量为e ,磁感应强度为B ,那么( )A .电子在磁场中运动的时刻为t=d /V AB .电子在磁场中运动的时刻为t =s /V AC .洛伦兹力对电子做功是BeV A ·hD .电子在A 、B 两处的速度相同【解析】解题时容易受带电粒子在匀强电场中运动的负迁移,错误地将电子的运动判定成类似于平抛运动的匀变速曲线运动,答案A 和C 确实是这种错误判定引起的;要区分洛伦兹力作用下的匀速圆周运动和匀强电场中在电场力作用下的匀变速曲线运动,此题中在洛伦兹力作用下作匀速圆周运动时,洛伦兹力是一个变力,对粒子不做功;A 、B 两处的速度方向是不同的,故答案D 错误;因为是匀速圆周运动,因现在间等于弧长除于速度,答案B 正确.【答案】B4.在电视机的显像管中,电子束的扫描是用磁偏转技术实现的,其扫描原理如下图11-3-13.电子从电子枪射出,向右射入圆形区域内的偏转磁场,磁场方向垂直于圆面,设磁场方向向里时磁感应强度为正值.当不加磁场时,电子束将通过O 点而打在屏幕的中心M 点.为了使屏幕上显现一条以M 点为中点,并从P 点向Q 点逐次扫描的亮线PQ ,偏转磁场的磁感应强度B 随时刻变化的规律应是图11-3-14中的〔 〕【解析】第一要使通过磁场的电子在中心点O 左右两侧偏转,那么需改变磁场的方向,在一次扫描过程中,沿电子运动方向观看,由左向右逐次扫描,那么洛伦兹力先向左后向右,依照左手定那么判定,磁场方向应先向外〔B 为负值〕后向里〔B 为正值〕;其次要使电子偏转到PQ 间任何一点上,即通过磁场时,要求有不同的偏转角度,因此磁感应强度B 的大小应随时刻而变化,答案C 正确.【答案】C5.如下图11-3-15,比荷为e /m 的电子,以速度0v 从A 点沿AB 边射入边长为图11-3-11 图11-3-12图11-3-13 图11-3-14图11-3-15a 的等边三角形的匀强磁场区域中,欲使电子能从BC 边穿出,磁感应强度B 的取值为〔 〕A .ae mvB 03= B .ae mv B 02=C .ae mv B 03<D .aemv B 02< 【解析】先依照题意画出电子沿弧运动的轨迹,因为弧上任意一点的速度方向必定与过该点的半径垂直,故能够过A 点作与0v 方向〔即AB 方向〕垂直的直线,此直线即为带电粒子做匀速圆周运动的半径所在的直线.同理过C 点作垂直于BC 的直线,也为过该点的半径所在的直线,两直线相交于O点,即为带电粒子做匀速圆周运动的圆心,如下图,由图示情形能够看出圆心角∠AOC=1200,θ=600.当3232sin 2a a a r ===θ时,电子刚好不能从BC 边射出, 要使电子能够从BC 边射出,必满足r >3a,而r =Bemv 0, 因此 B <aemv 03时,电子能够从BC 边射出. 【答案】C6.质量为m 、电量为+q 的带电粒子〔不计重力〕,以速度V 垂直进入磁感应强度为B 的匀强磁场中,并作顺时针方向的匀速圆周运动,那么粒子的角速度大小为________,向心加速度大小为________;带电粒子的匀速圆周运动等效于一个环形电流,该环形电流的电流强度为________,其产生的磁场的方向与匀强磁场的方向________〔相同或相反〕.【解析】洛伦兹力提供向心力2ωmr Bqv =,且r v ω=,得到2ωωmr r Bq =,mBq =ω;向心加速度mBqv a =;等效环形电流的电流强度m Bq T q I π22==;电流方向是顺时针方向,由安培定那么判定电流产生的磁场垂直轨道平面向里,而依照左手定那么判定匀强磁场方向垂直轨道平面向外,因此两者方向相反.【答案】m Bq =ω;mBqv a =;m Bq I π22=;相反. 7.如下图11-3-16为一正方形空腔的横截面,a 、b 、c 为三个小孔(孔径不计),腔内有一垂直于纸面向里的匀强磁场,一束具有不同速率的电子,由孔a 垂直磁场方向射入空腔.如从孔b 、c 分不有电子射出,那么从两孔射出电子的速率之比V b :V c =________,飞行时刻之比t b :t c =________.【解析】由各孔的轴线方向可知,从孔b 射出的电子的速度方向改变1800,圆周运动的圆心为ab 的中点,直径为ab ;从孔c 射出的电子的速度方向改变900,圆周运动的圆心是b 点,半径是ab .因此两者的轨道半径之比为1:2,依照半径公式可知,两者的速度之比为1:2;轨道对应的圆心角之比是2:1,依照时刻公式Bq mt θ=,可知两者的运动时刻之比是2:1. 图11-3-16 图11-3-17【答案】1:2; 2:18.〔2001年高考全国卷〕如下图11-3-17,在y<0的区域内存在匀强磁场,磁场方向垂直于xoy 平面并指向纸面外,磁感应强度为B ,一带正电的粒子以速度V 0从O 点射入磁场,入射方向在xoy 平面内,与x 轴正方向的夹角为θ,假设粒子射出磁场的位置与O 点的距离为L ,求该粒子的电量和质量之比(比荷)q/m .【解析】如下图,带正电粒子在磁场中匀速圆周运动而从x 轴上的A 点射出,半径O 1O 和O 1A 分不与入射的初速度和出射的末速度垂直,由平面几何知识能够判定:其中∠OO 1A=2θ,那么∠OO 1D=θ,因此圆周运动的半径为θsin 2L r =,由半径公式Bq mv r =,可得比荷为LB v Br v m q θsin 20⋅==. 【答案】LB v θsin 20⋅9.两极板M 、N 相距为d ,板长为3d ,两极板都未带电,板间有垂直于纸面向外的匀强磁场,如下图11-3-18,一群电子沿平行于极板的方向从各个位置以速度V 射入板间.为了使电子都不从板间穿出,磁感应强度B 的取值范畴是如何样的?(设电子电量为e 、质量为m)【解析】如下图,电子射入磁场时所受洛伦兹力向上,都向上偏转,明显从下极板A 点射入的电子最容易从右侧或左侧穿出,因此以该电子为研究对象,假设半径足够大,恰好从上极板C 点处射出,对应的半径为r 1,由直角三角形O 1CD 得22121)3()(d d r r +-=,d r 51=;假设半径足够小,恰好从上极板D 点处射出,对应的半径为r 2,22d r =,由半径公式Bq mv r =,得de mv q r mv B 511==,de mv B 22=.当电子的轨道半径的取值为2r <r <1r 时,电子可不能从板间穿出,依照半径公式可知磁感应强度越大,电子的轨道半径越小,因此磁感应强度B 的范畴是:21B B B <<.【答案】demv B de mv 25<< 10.正负电子对撞机的最后部分的简化示意图如下图11-3-19〔俯视图〕,位于水平面内的粗实线所示的圆环形真空管道是正、负电子作圆周运动的〝容器〞,通过加速器加速后的正、负电子分不引人该管道时,具有相等的速度v ,它们沿管道向相反的方向运动.在管道内操纵它们运动的是一系列圆形电磁铁,即图中的n 个A 1、A 2、A 3、……An ,同时平均分布在整个圆环上(图中只示意性地用细实线画了几个.其它的用虚线表示),每个电磁铁内的磁场差不多上匀强磁场,同时磁感应强度都相同,方向都竖直向下.每个磁场区域的直径为d ,改变电磁铁内电流的大小,就可改变磁感应强度,从而改变电子偏转角度的大小,通过精确的调整,第一实现了电子沿管道的粗虚线运动,这时电子经每个电磁铁时射入点和射出点都在圆形电磁铁的直径两端,这就为进一步实现正、负电子的对撞作好了预备.〔 1 〕试确定正、负电子在管道中分不沿什么方向运动;〔 2 〕正、负电子的质量差不多上m ,所带的电荷为e ,重力不计.求电磁铁内磁感应强度的大小.【解析】〔 1 〕如下图,以电子通过磁场中C 点时分析:洛伦兹力指向圆心O ,由左手定那么判定,负电子在磁场中应从C 点顺时针方向向D 点运动,正电子在图中沿逆时针方向运动.图11-3-19 图11-3-18〔 2 〕电子通过每个电磁铁产生的磁场时,入射点与出射点是直径的两端,圆弧CD 对应的圆心角是n πθ2=,因此由图所示可知,r d 22sin =θ ,半径2sin 2θd r =,电子在电磁铁内做圆运动的半径为Be mv r =,解得de nmv B )sin 2(π⋅=. 【答案】正电子沿逆时针方向运动,负电子沿顺时针方向运动;de nmv )sin 2(π⋅.第Ⅳ课时 带电粒子在复合场中的运动 1.用回旋加速器分不加速α粒子和质子时,假设磁场相同,那么加在两个D 形盒间的交变电压的频率应不同,其频率之比为( )A .1:1B .1:2C .2:1D .1:3【解析】粒子每次在磁场中回旋的时刻是匀速圆周运动的半周期,那个时刻也正是交变电压的半周期,因此交变电压的频率确实是粒子在磁场中匀速圆周运动的频率,依照m Bq f π2=,频率与粒子的比荷成正比,α粒子和质子的比荷之比是1:2,因此频率之比也是1:2.【答案】B2.如11-4-10图,空间某一区域中存在着方向互相垂直的匀强电场和匀强磁场,电场的方向水平向右,磁场方向水平向里.一个带电粒子在这一区域中运动时动能保持不变,不计粒子的重力,那么带电粒子运动的方向可能是〔 〕 A . 水平向右 B . 水平向左C. 竖直向上D. 竖直向下 【解析】带电粒子所受的洛伦兹力一定对它不做功,而粒子的动能又保持不变,因此能够判定所受的电场力对它也没有做功,粒子一定沿电场中的等势面移动,即竖直方向,假设是竖直向上运动,不论是正电荷依旧负电荷,洛伦兹力与电场力一定方向相反,可能平稳而作匀速直线运动,粒子的动能保持不变;假设是竖直向下运动,不论是正电荷依旧负电荷,洛伦兹力与电场力一定方向相同,在两力的作用下而作曲线运动,电场力做功,粒子的动能将发生变化.【答案】C3.如下图11-4-11,一带负电的滑块从粗糙斜面的顶端滑至底端时的速率为V ,假设加一个垂直纸面向外的匀强磁场,当滑块沿斜面滑至底端,那么滑至底端时的速率( )A .变大B .变小C .不变D .条件不足,无法判定【解析】由左手定那么判定带负电的滑块沿斜面下滑时所受洛伦兹力方向垂直斜面向下,因此使滑块与斜面之间的弹力增大,滑动摩擦力增大,从顶端滑到底端过程中克服摩擦力做功增大,依照动能定理,滑到底端时的动能小于无磁场时到底端的动能,速率变小.【答案】B4.某空间存在着如下图11-4-12的水平方向的匀强磁场,A 、B 两个物块叠放在一起,并置于光滑的绝缘水平地面上.物块A 带正电,物块B 为不带电的绝缘块.水平恒力F 作用在物块B 上,使A 、B 一起由静止开始向左运动.在A 、B 一起向左运动的过程中,以下关于A 、B 受力的讲法中正确的选项是〔 〕 A .A 对B 的压力变小 B .B 对A 的摩擦力保持不变C .A 对B 的摩擦力变大D .B 对地面的压力保持不变【解析】AB 系统在水平方向仅受水平恒力F 作用,因此作匀加速直线运动,随着AB 速度的增大,带正电的物块A 所受的洛伦兹力逐步增大,且由左手定那么判定洛伦兹力方向竖直向下,因此A 对B 的压力变大,B 对地面的压力变大,B 对A 的摩擦力为静摩擦力,且a m F A f =,由于系统作匀加速直线运动,加速度a× × × × × × B E 图11-4-10图11-4-11图11-4-12。

2020届高考物理专题训练:磁场(两套 附详细答案解析)

2020届高考物理专题训练:磁场(两套 附详细答案解析)

高考物理专题训练:磁场(基础卷)一、 (本题共13小题,每小题4分,共52分。

在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~13题有多项符合题目要求。

全部选对的得4分,选对但不全的得2分,有选错的得0分)1.关于安培力,下列说法正确的是( )A.通电直导线在某处所受安培力的方向跟该处的磁场方向相同B.通电直导线在某处不受安培力的作用,则该处没有磁场C.通电直导线所受安培力的方向可以跟导线垂直,也可以不垂直D.通电直导线跟磁场垂直时受到的安培力一定最大【答案】D【解析】安培力的方向一定与磁场垂直,也一定与导线垂直,选项A、C错误;当通电直导线与磁场平行放置时,不受安培力作用,选项B错误。

2.在重复奥斯特电流磁效应的实验时,需要考虑减少地磁场对实验的影响,则以下关于奥斯特实验的说法中正确的是( )A.通电直导线竖直放置时,实验效果最好B.通电直导线沿东西方向水平放置时,实验效果最好C.通电直导线沿南北方向水平放置时,实验效果最好D.只要电流足够大,不管通电直导线怎样放置实验效果都很好【答案】C【解析】由于在地球表面小磁针静止时北极指北、南极指南,所以通电直导线沿南北方向水平放置时,电流在小磁针所在位置的磁场方向为东西方向,此时的效果最好。

3.科学研究发现,在地球的南极或北极所看到的美丽极光,是由来自太阳的高能带电粒子受到地磁场的作用后,与大气分子剧烈碰撞或摩擦所产生的结果,如图所示。

则下列关于地磁场的说法中,正确的是( )A.若不考虑磁偏角的因素,则地理南极处的磁场方向竖直向下B.若不考虑磁偏角的因素,则地理北极处的磁场方向竖直向上C.在地球赤道表面,小磁针静止时南极指向北的方向D.在地球赤道表面,小磁针静止时南极指向南的方向【答案】D【解析】在不考虑磁偏角的情况下,地球的南极相当于磁体的北极,故该处的磁场方向竖直向上,选项A、B错误;赤道处的地磁场方向向北,所以小磁针的南极指向南的方向,D正确。

2020高考物理专题卷:专题九《磁场》 含答案解析

2020高考物理专题卷:专题九《磁场》 含答案解析

2020衡水名师原创物理专题卷专题九磁场考点25 电流的磁场安培力(2、3、4、7、10)考点26 洛伦兹力带电粒子在匀强磁场中的运动(6、9、11、13、16、18)考点27 带电粒子在复合场中的运动(1、8、12、15、17、19、20)考点28 现代科技中的电磁场问题(5、14)第I卷(选择题 68分)一、选择题(本题共17个小题,每题4分,共68分。

每题给出的四个选项中,有的只有一个选项符合题意,有的有多个选项符合题意,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分)1.【山东省实验中学2017届高三第一次诊断性考试】考点27 易一带电粒子在电场和磁场同时存在的空间中(不计重力),不可能出现的运动状态是()A.静止B.匀速直线运动C.匀加速直线运动D.匀速圆周运动2.【2017·浙江省绍兴市高三学考选考科目适应性考试】考点25 易如图所示,电子枪向右发射电子束,其正下方水平直导线内通有向右的电流,则电子束将()A.向上偏转B.向下偏转C.向纸外偏转D.向纸内偏转3.【2017·重庆市高三上学期(一诊)期末测试】考点25 易如图所示,在倾角为30°的光滑斜面上,垂直纸面放置一根长为L、质量为m的直导体棒,导体棒中电流为I.要使导体棒静止在斜面上,需要外加匀强磁场的磁感应强度B的最小值为()A.2mgIL B.32mgILC.mgIL D.3mg4.【2017·天津市五区县高三上学期期末考试】考点25 易如图所示,A、B、C是等边三角形的三个顶点,O是A、B连线的中点.以O为坐标原点,A、B连线为x轴,O、C连线为y轴,建立坐标系.过A、B、C、O四个点各有一条长直导线垂直穿过纸面,导线中通有大小相等、方向向里的电流。

则过C点的通电直导线所受安培力的方向为()A.沿y轴正方向B.沿y轴负方向C.沿x轴正方向D.沿x轴负方向5.【2017·河北省定州中学高三上学期第二次月考】考点28 中速度相同的一束粒子(不计重力)经速度选择器射入质谱仪后的运动轨迹如右图所示,则下列相关说法中正确的是()A.该束带电粒子带正电B.速度选择器的P1极板带负电C.能通过狭缝S0的带电粒子的速率等于1EBD.若粒子在磁场中运动半径越大,则该粒子的比荷越小6.【2017·哈尔滨市第六中学上学期期末考试】考点26中不计重力的两个带电粒子1和2经小孔S 垂直磁场边界,且垂直磁场方向进入匀强磁场,在磁场中的轨迹如图所示.分别用v 1与v 2,t 1与t 2, 11m q 与 22m q 表示它们的速率、在磁场中运动的时间及比荷,则下列说法正确的是( )A .若 11m q < 22m q ,则v 1>v 2B .若v 1=v 2,则 11m q < 22m qC .若 11m q < 22m q ,则t 1<t 2D .若t 1=t 2,则 11m q > 22m q7.【广东省肇庆市2017届高三第二次模拟考试】考点25 难如图甲所示,电流恒定的通电直导线MN ,垂直平放在两条相互平行的水平光滑长导轨上电流方向由M 指向N ,在两轨间存在着竖直磁场,取垂直纸面向里的方向为磁感应强度的正方向,当t =0时导线恰好静止,若B 按如图乙所示的余弦规律变化,下列说法正确的是( )A .在最初的一个周期内,导线在导轨上往复运动B .在最初的一个周期内,导线一直向左运动C .在最初的半个周期内,导线的加速度先增大后减小D .在最初的半个周期内,导线的速度先增大后减小 8.【2017·哈尔滨市第六中学上学期期末考试】考点27 中如图所示,在虚线宽度范围内,存在方向垂直纸面向外磁感应强度为B 的匀强磁场,某种正离子以初速度v 0垂直于左边界射入,离开右边界时偏转角度为 θ.在该宽度范围内,若只存在竖直向下的匀强电场,该离子仍以原来的初速度穿过该区域,偏角角度仍为θ(不计离子的重力),则下列判断正确的是( )A .匀强电场的电场强度大小为θBv E cos 0=S21MNB(甲)(乙) B /Tt /sT θv 0B .匀强电场的电场强度大小为 θBv E sin 0C .离子穿过电场和磁场的时间之比为 θθsinD .离子穿过电场和磁场的时间之比为 0sin v θθ9.【2017年全国普通高等学校招生统一考试物理(全国2卷正式版)】考点26 中如图,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P 为磁场边界上的一点,大量相同的带电粒子以相同的速率经过P 点,在纸面内沿不同的方向射入磁场,若粒子射入的速度为1v ,这些粒子在磁场边界的出射点分布在六分之一圆周上;若粒子射入速度为2v ,相应的出射点分布在三分之一圆周上,不计重力及带电粒子之间的相互作用,则 21:v v 为( )32: 21:31: D. 2:10.【2017年全国普通高等学校招生统一考试物理(全国3卷正式版)】考点25 难 如图,在磁感应强度大小为 0B的匀强磁场中,两长直导线P 和Q 垂直于纸面固定放置,两者之间的距离为 l .在两导线中均通有方向垂直于纸面向里的电流 I 时,纸面内与两导线距离为 l 的a 点处的磁感应强度为零。

2020年高考物理 高考试题+模拟新题分类汇编专题11 磁场

2020年高考物理 高考试题+模拟新题分类汇编专题11 磁场

K单元磁场K1 磁场安培力2.K1 [2020·天津卷] 如图所示,金属棒MN两端由等长的轻质细线水平悬挂,处于竖直向上的匀强磁场中,棒中通以由M向N的电流,平衡时两悬线与竖直方向夹角均为θ.如果仅改变下列某一个条件,θ角的相应变化情况是( )A.棒中的电流变大,θ角变大B.两悬线等长变短,θ角变小C.金属棒质量变大,θ角变大D.磁感应强度变大,θ角变小2.A [解析] 作出侧视图(沿MN方向),并对导体棒进行受力分析,如图所示.据图可得tanθ=BILmg,若棒中的电流I变大,则θ变大,选项A正确;若两悬线等长变短,则θ不变,选项B错误;若金属棒的质量m变大,则θ变小,选项C错误;若磁感应强度B变大,则θ变大,选项D错误.K2 磁场对运动电荷的作用17.K2[2020·全国卷] 质量分别为m1和m2、电荷量分别为q1和q2的两粒子在同一匀强磁场中做匀速圆周运动.已知两粒子的动量大小相等.下列说法正确的是( )A .若q 1=q 2,则它们做圆周运动的半径一定相等B .若m 1=m 2,则它们做圆周运动的半径一定相等C .若q 2≠q 2,则它们做圆周运动的周期一定不相等D .若m 1≠m 2,则它们做圆周运动的周期一定不相等17.A [解析] 根据半径公式r =mvqB ,两粒子的动量mv 大小相等,磁感应强度B 相同,若q 1=q 2,则它们做圆周运动的半径一定相等,A 正确,B 错误.根据周期公式T =2πm qB ,若mq相等,则周期相等,C 、D 错误.9.K2[2020·江苏卷] 如图所示,MN 是磁感应强度为B 的匀强磁场的边界. 一质量为m 、电荷量为q 的粒子在纸面内从O 点射入磁场.若粒子速度为v 0,最远能落在边界上的A 点.下列说法正确的有( )图7A .若粒子落在A 点的左侧,其速度一定小于v 0B .若粒子落在A 点的右侧,其速度一定大于v 0C .若粒子落在A 点左右两侧d 的范围内,其速度不可能小于v 0-qBd 2mD .若粒子落在A 点左右两侧d 的范围内,其速度不可能大于v 0+qBd2m9.BC [解析] 带电粒子沿垂直边界的方向射入磁场时,落在边界上的点离出发点最远,当入射方向不是垂直边界的方向时,落在边界上的点与出发点的距离将小于这个距离,即速度大于或等于v 0,但入射方向不是90°时,粒子有可能落在A 点的左侧,A 项错误;但粒子要落在A 点的右侧,其速度一定要大于临界速度v 0,B 项正确;设OA 之间距离为L ,若粒子落在A 点两侧d 范围内,则以最小速度v 入射的粒子做圆周运动的直径应为L-d,由洛伦兹力提供向心力,qvB=mv2L-d2,qvB=mv2L2,解得v=v0-qBd2m,C项正确;由于题中没有强调粒子的入射方向,因此无法确定速度的最大值,D项错误.15.K2[2020·广东卷] 质量和电荷量都相等的带电粒子M和N,以不同的速率经小孔S垂直进入匀强磁场,运行的半圆轨迹如图2中虚线所示.下列表述正确的是()图2A.M带负电,N带正电B.M的速率小于N的速率C.洛伦兹力对M、N做正功D.M的运行时间大于N的运行时间15.A [解析] 由左手定则判断知,A正确;粒子在磁场中运动,洛伦兹力提供向心力,有qvB=m v2r,半径r=mvqB,在质量与电荷量相同的情况下,半径大说明速率大,即M的速率大于N的速率,B错误;洛伦兹力不做功,C错误;粒子在磁场中运动半周,即时间为周期的一半,而周期为T=2πmqB,故M的运行时间等于N的运行时间,D错误.16.K2 [2020·北京卷] 处于匀强磁场中的一个带电粒子,仅在磁场力作用下做匀速圆周运动.将该粒子的运动等效为环形电流,那么此电流值( ) A.与粒子电荷量成正比B.与粒子速率成正比C.与粒子质量成正比D.与磁感应强度成正比16.D [解析] 由电流的定义I=Qt可知,设粒子的电荷量为q,质量为m,在磁场中运动的周期为T=2πmqB,则I=qT=q2B2πm,对于一个粒子来说,电荷量和质量是一定的,所以产生的环形电流与磁感应强度成正比,D项正确,A、B、C项错误.K3 带电粒子在组合场及复合场中运动24.K3[2020·重庆卷] 有人设计了一种带电颗粒的速率分选装置,其原理如图所示,两带电金属板间有匀强电场,方向竖直向上,其中PQNM矩形区域内还有方向垂直纸面向外的匀强磁场.一束比荷(电荷量与质量之比)均为1k的带正电颗粒,以不同的速率沿着磁场区域的水平中心线为O′O进入两金属板之间,其中速率为v的颗粒刚好从Q点处离开磁场,然后做匀速直线运动到达收集板.重力加速度为g,PQ=3d,NQ=2d,收集板与NQ的距离为l,不计颗粒间相互作用.求:(1)电场强度E的大小;(2)磁感应强度B的大小;(3)速率为λv(λ>1)的颗粒打在收集板上的位置到O点的距离.[解析] (1)设带电颗粒的电荷量为q,质量为m.有Eq=mg将qm=1k代入,得E=kg(2)如图,有qv0B=mv2RR2=(3d)2+(R-d)2得B=kv0 5d(3)如图所示,有qλv0B=mλv2R1tanθ=3dR21-3d2y 1=R1-R21-3d2y2=ltanθy=y1+y2得y=d(5λ-25λ2-9)+3l25λ2-912.K3 [2020·天津卷] 对铀235的进一步研究在核能的开发和利用中具有重要意义.如图所示,质量为m、电荷量为q的铀235离子,从容器A下方的小孔S1不断飘入加速电场,其初速度可视为零,然后经过小孔S2垂直于磁场方向进入磁感应强度为B的匀强磁场中,做半径为R的匀速圆周运动.离子行进半个圆周后离开磁场并被收集,离开磁场时离子束的等效电流为I.不考虑离子重力及离子间的相互作用.(1)求加速电场的电压U;(2)求出在离子被收集的过程中任意时间t内收集到离子的质量M;(3)实际上加速电压的大小会在U±ΔU范围内微小变化.若容器A中有电荷量相同的铀235和铀238两种离子,如前述情况它们经电场加速后进入磁场中会发生分离,为使这两种离子在磁场中运动的轨迹不发生交叠,ΔUU应小于多少?(结果用百分数表示,保留两位有效数字)12.[解析] (1)设离子经电场加速后进入磁场时的速度为v,由动能定理得qU=12mv2①离子在磁场中做匀速圆周运动,所受洛伦兹力充当向心力,即qvB=m v2 R②由①②式解得U=qB2R2 2m(2)设在t时间内收集到的离子个数为N,总电荷量为Q,则Q=It③N=Q q ④M=Nm⑤由③④⑤式解得M=mIt q(3)由①②式有R=1B2mUq设m′为铀238离子质量,由于电压在U±ΔU之间有微小变化,铀235离子在磁场中最大半径为R max =1B2m U+ΔUq铀238离子在磁场中最小半径为R′min =1B2m′U-ΔUq这两种离子在磁场中运动的轨迹不发生交叠的条件为R max <R′min即1B2m U+ΔUq<1B2m′U-ΔUq则有m(U+ΔU)<m′(U-ΔU)得ΔUU<m′-mm′+m其中铀235离子的质量m=235 u(u为原子质量单位),铀238离子的质量m′=238 u,故ΔU U <238 u-235 u 238 u+235 u解得ΔUU<0.63%图1025.K3[2020·课标全国卷] 如图,一半径为R的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m、电荷量为q的粒子沿图中直线在圆上的a点射入柱形区域,在圆上的b点离开该区域,离开时速度方向与直线垂直.圆心O到直线的距离为35R.现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a点射入柱形区域,也在b点离开该区域.若磁感应强度大小为B,不计重力,求电场强度的大小.25.[解析] 粒子在磁场中做圆周运动.设圆周的半径为r,由牛顿第二定律和洛伦兹力公式得qvB=m v2 r①式中v为粒子在a点的速度.过b点和O点作直线的垂线,分别与直线交于c和d点.由几何关系知,线段a c、b c和过a、b两点的轨迹圆弧的两条半径(未画出)围成一正方形.因此a c=b c=r②设cd=x,由几何关系得ac=45R+x③bc=35R+R2-x2④联立②③④式得r=75R⑤再考虑粒子在电场中的运动.设电场强度的大小为E,粒子在电场中做类平抛运动.设其加速度大小为a,由牛顿第二定律和带电粒子在电场中的受力公式得qE=ma⑥粒子在电场方向和直线方向所走的距离均为r,由运动学公式得r=12at2⑦r=vt⑧式中t是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得E=14qRB25m⑨15.K3[2020·江苏卷] 如图所示,待测区域中存在匀强电场和匀强磁场,根据带电粒子射入时的受力情况可推测其电场和磁场.图中装置由加速器和平移器组成,平移器由两对水平放置、相距为l的相同平行金属板构成,极板长度为l、间距为d,两对极板间偏转电压大小相等、电场方向相反.质量为m、电荷量为+q的粒子经加速电压U0加速后,水平射入偏转电压为U1的平移器,最终从A点水平射入待测区域.不考虑粒子受到的重力.(1)求粒子射出平移器时的速度大小v1;(2)当加速电压变为4U时,欲使粒子仍从A点射入待测区域,求此时的偏转电压U;(3)已知粒子以不同速度水平向右射入待测区域,刚进入时的受力大小均为 F.现取水平向右为x轴正方向,建立如图所示的直角坐标系Oxyz.保持加速电压为U0不变,移动装置使粒子沿不同的坐标轴方向射入待测区域,粒子刚射入时的受力大小如下表所示.射入方向y -y z -z受力大小5F 5F 7F 3F图1815.[解析] (1)设粒子射出加速器的速度为v,由动能定理得qU0=12mv2由题意得v 1=v 0,即v 1=2qU 0m(2)在第一个偏转电场中,设粒子的运动时间为t. 加速度的大小a =qU 1md在离开时,竖直分速度v y =at 竖直位移y 1=12at 2水平位移l =v 1t粒子在两偏转电场间做匀速直线运动,经历时间也为t 竖直位移y 2 =v y t由题意知,粒子竖直总位移y =2y 1+y 2 解得y =U 1l 2U 0d则当加速电压为4U 0时,U =4U 1(3)(a)由沿x 轴方向射入时的受力情况可知:B 平行于x 轴,且E =Fq .(b)由沿±y 轴方向射入时的受力情况可知:E 与Oxy 平面平行. F 2+f 2 =(5F)2,则f =2F 且f =qv 1B 解得B =F q2m qU 0(c)设电场方向与x 轴方向夹角为α.若B 沿x 轴方向,由沿z 轴方向射入时的受力情况得 (f +Fsinα)2+(Fcosα)2 =(7F)2 解得α=30°或α=150°即E 与Oxy 平面平行且与x 轴方向的夹角为30°或150°.同理,若B 沿-x 轴方向,E 与Oxy 平面平行且与x 轴方向的夹角为-30°或-150°.K4 磁场综合23.K4[2020·山东卷] 如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L的平行金属极板MN和PQ,两极板中心各有一小孔S1、S2,两极板间电压的变化规律如图乙所示,正反向电压的大小均为U0,周期为T.在t=0时刻将一个质量为m、电荷量为-q(q>0)的粒子由S1静止释放,粒子在电场力的作用下向右运动,在t=T2时刻通过S2垂直于边界进入右侧磁场区.(不计粒子重力,不考虑极板外的电场)图甲图乙(1)求粒子到达S2时的速度大小v和极板间距d.(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件.(3)若已保证了粒子未与极板相撞,为使粒子在t=3T0时刻再次到达S2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小.23.[解析] (1)粒子由S1至S2的过程,根据动能定理得qU0=12mv2①由①式得v=2qU0 m②设粒子的加速度大小为a,由牛顿第二定律得q Ud=ma③由运动学公式得d=12a⎝⎛⎭⎪⎫T022④联立③④式得d=T42qUm⑤(2)设磁感应强度大小为B,粒子在磁场中做匀速圆周运动的半径为R,由牛顿第二定律得qvB=m v2 R⑥要使粒子在磁场中运动时不与极板相撞,须满足2R>L 2⑦联立②⑥⑦式得B<4L2mUq⑧(3)设粒子在两边界之间无场区向左匀速运动的过程用时为t1,有d=vt1⑨联立②⑤⑨式得t 1=T4⑩若粒子再次到达S2时速度恰好为零,粒子回到极板间应做匀减速运动,设匀减速运动的时间为t2,根据运动学公式得d=v2t2⑪联立⑨⑩⑪式得t 2=T2⑫设粒子在磁场中运动的时间为tt=3T0-T2-t1-t2⑬联立⑩⑫⑬式得t=7T4⑭设粒子在匀强磁场中做匀速圆周运动的周期为T,由⑥式结合运动学公式得T=2πm qB⑮由题意可知T=t⑯联立⑭⑮⑯式得B=8πm7qT⑰图118.K4[2020·全国卷] 如图,两根相互平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相反的电流.a、o、b在M、N的连线上,o为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到o点的距离均相等.关于以上几点处的磁场,下列说法正确的是( )A.o点处的磁感应强度为零B.a、b两点处的磁感应强度大小相等,方向相反C.c、d两点处的磁感应强度大小相等,方向相同D.a、c两点处磁感应强度的方向不同18.C [解析] 磁感应强度是矢量,某处磁感应强度大小和方向由M、N两点处的电流产生的磁感应强度的矢量之和决定.直线电流的磁感线是以电流为中心的一系列同心圆,某点磁感应强度的方向就是该点磁感线的切线方向.在o点,同方向的磁场相叠加,磁感应强度不是零,A错误.a、b处的磁感应强度等于M、N分别在a、b处产生的磁感应强度相叠加,因此,a、b处的磁感应强度大小相等,方向都是向下,所以B错误;同理,可得C正确.对M、N分别在c处产生的磁感应强度矢量叠加求和,可知方向向下,与a处的磁感应强度方向相同,D错误.24.K4[2020·浙江卷] 如图所示,两块水平放置、相距为d 的长金属板接在电压可调的电源上.两板之间的右侧区域存在方向垂直纸面向里的匀强磁场.将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷出质量均为m 、水平速度均为v 0、带相等电荷量的墨滴.调节电源电压至U ,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入电场、磁场共存区域后,最终垂直打在下板的M 点.(1)判断墨滴所带电荷的种类,并求其电荷量;(2)求磁感应强度B 的值;(3)现保持喷口方向不变,使其竖直下移到两板中间的位置.为了使墨滴仍能到达下板M 点,应将磁感应强度调至B′,则B′的大小为多少?24.[解析] (1)墨滴在电场区域做匀速直线运动,有q U d=mg 解得:q =mgd U由于电场方向向下,电荷所受电场力向上,可知:墨滴带负电荷.(2)墨滴垂直进入电、磁场共存区域,重力仍与电场力平衡,合力等于洛伦兹力,墨滴做匀速圆周运动,有qv 0B =m v 20R考虑墨滴进入磁场和撞板的几何关系,可知墨滴在该区域恰完成四分之一圆周运动,则半径R =d联立解得B =v 0U gd 2(3)根据题设,墨滴运动轨迹如图,设圆周运动半径为R′,有qv 0B′=m v 20R′由图示可得:R′2=d 2+⎝ ⎛⎭⎪⎫R′-d 22 得:R′=54d 联立解得:B′=4v 0U 5gd 21.2020·临汾月考关于导体在磁场中受力,下列说法正确的是( )A .通电导体在磁场中一定受到力的作用B .通电导体在磁场中有时不会受到力的作用C .通电导体中的电流方向与磁场方向不平行也不垂直时,不会受到力的作用D .只要导体放入磁场中,无论是否通电都会受到力的作用1.B2.2020·江西调考如图所示,一个半径为R 的导电圆环与一个轴向对称的发散磁场处处正交,环上各点的磁感应强度B 大小相等,方向均与环面轴线方向成θ角(环面轴线为竖直方向).若导线环上载有如图所示的恒定电流I ,则下列说法正确的是( )A.导电圆环所受安培力方向竖直向下B.导电圆环所受安培力方向竖直向上C.导电圆环所受安培力的大小为2BIRD.导电圆环所受安培力的大小为2πBIRsinθ3.BD [解析] 将导线分成小的电流元,任取一小段电流元为对象,把磁场分解成水平方向和竖直方向的两个分量,则竖直方向的分磁场产生的安培力为零,水平方向的分磁场产生的安培力为:F=BIL=2πBIRsinθ,方向为竖直向上,所以B、D正确.3.2020·陕西调研如图所示,边界OA与OC之间分布有垂直纸面向里的匀强磁场,边界OA上有一粒子源S.某一时刻,从S平行于纸面向各个方向发射出大量带正电的同种粒子(不计粒子的重力及粒子间的相互作用),所有粒子的初速度大小相同,经过一段时间有大量粒子从边界OC射出磁场.已知∠AOC=60°,从边界OC射出的粒子在磁场中运动的最长时间等于T2(T为粒子在磁场中运动的周期),则从边界OC射出的粒子在磁场中运动的时间不可能为( )A.T8B.T6C.T4D.T33.A [解析] 因为所有粒子的初速度大小相同,它们在磁场中做匀速圆周运动的轨道半径r=mvBq也相同;如图所示,当粒子沿SA方向水平向右进入磁场,然后沿图中实线运动,最后交OC 于M 时,在磁场中的运动时间最长为T 2,设OS =l ,由几何关系可得,轨道半径r =32l ;当粒子在磁场中运动后交OC 于N 点,而SN ⊥OC 时,粒子的运动时间最小,根据几何关系可知,其运动时间为T 6,所以这些粒子在磁场中的运动时间T 6~T 2之间,本题答案为A.4.2020·忻州联考回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流两极相连接的两个D 形金属盒,盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两个D 形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法正确的是( )A .增大电场的加速电压B .增大D 形金属盒的半径C .减小狭缝间的距离D .减小磁场的磁感应强度4.B [解析] 根据Bqv =mv 2r ,可得E k =12mv 2=B 2q 2r 22m,可见,质子被加速获得的动能受到D 形金属盒半径和磁感应强度的制约,即可通过增大D 形金属盒的半径和增大磁场的磁感应强度来增大带电粒子射出时的动能.本题答案为B.5.2020·佛山模拟如图所示,将一束等离子体喷射入磁场,在场中有两块金属板A 、B ,这时金属板上就会聚集电荷,产生电压.如果射入的等离子体速度均为v ,两金属板的板长为L ,板间距离为d ,板平面的面积为S ,匀强磁场的磁感应强度为B ,方向垂直于速度方向,负载电阻为R ,电离气体充满两板间的空间.当发电机稳定发电时,电流表示数为I ,那么板间电离气体的电阻率为( )A.d S (Bdv I -R)B.S d (Bdv I-R) C.S d (BLv I -R) D.S L (Bdv I-R) 5.B [解析] 在洛伦兹力的作用下,正离子向极板B 偏转,负电子向极板A 偏转,在极板间建立电场,形成电势差.电路闭合时,E =Bdv =I(R +r)=I ⎝⎛⎭⎪⎫R +ρd S ,可得:ρ=S d (Bdv I -R).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考物理试题分类汇编—磁场(后附答案)26.(21分)如下图,在0x ≤≤区域内存在与xy 平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy 平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y 轴正方向的夹角分布在0~180°范围内。

已知沿y 轴正方向发射的粒子在0t t =时刻刚好从磁场边界上,)P a 点离开磁场。

求:⑴ 粒子在磁场中做圆周运动的半径R 及粒子的比荷q /m ;⑵ 此时刻仍在磁场中的粒子的初速度方向与y 轴正方向夹角的取值范围; ⑶ 从粒子发射到全部粒子离开磁场所用的时间。

【答案】⑴a R 332=32Bt m q π= ⑵速度与y 轴的正方向的夹角范围是60°到120°⑶从粒子发射到全部离开所用 时间 为02t【解析】 ⑴粒子沿y 轴的正方向进入磁场,从P 点经过做OP 的垂直平分线与x 轴的交点为圆心,根据直角三角形有222)3(R a a R -+=解得a R 332=23sin ==R a θ,则粒子做圆周运动的的圆心角为120°,周期为03t T =粒子做圆周运动的向心力由洛仑兹力提供,根据牛顿第二定律得R T m Bqv 2)2(π=,T Rv π2=,化简得032Bt m q π= ⑵仍在磁场中的粒子其圆心角一定大于120°,这样粒子角度最小时从磁场右边界穿出;角度最大时从磁场左边界穿出。

角度最小时从磁场右边界穿出圆心角120°,所经过圆弧的弦与⑴中相等穿出点如图,根据弦与半径、x 轴的夹角都是30°,所以此时速度与y 轴的正方向的夹角是60°。

角度最大时从磁场左边界穿出,半径与y 轴的的夹角是60°,则此时速度与y轴的正方向的夹角是120°。

所以速度与y 轴的正方向的夹角范围是60°到120° ⑶在磁场中运动时间最长的粒子的轨迹应该与磁场的右边界相切,在三角形中两个相等的腰为a R 332=,而它的高是 a a a h 333323=-=,半径与y 轴的的夹角是30°,这种粒子的圆心角是240°。

所用 时间 为02t 。

所以从粒子发射到全部离开所用 时间 为02t 。

26(21分)图中左边有一对平行金属板,两板相距为d ,电压为V;两板之间有匀强磁场,磁场应强度大小为B 0,方向平行于板面并垂直于纸面朝里。

图中右边有一边长为a 的正三角形区域EFG(EF 边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里。

假设一系列电荷量为q 的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF 边中点H 射入磁场区域。

不计重力(1)已知这些离子中的离子甲到达磁场边界EG 后,从边界EF 穿出磁场,求离子甲的质量。

(2)已知这些离子中的离子乙从EG 边上的I 点(图中未画出)穿出磁场,且GI 长为34a ,求离子乙的质量。

(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达。

解析:(1)在粒子进入正交的电磁场做匀速直线运动,设粒子的速度为v ,电场的场强为E 0,根据平衡条件得00E q B qv = ①0VE d=② 由①②化简得0Vv B d=③ 粒子甲垂直边界EF 进入磁场,又垂直边界EF 穿出磁场,则轨迹圆心在EF 上。

粒子运动中经过EG ,说明圆轨迹与EG 相切,在如图的三角形中半径为R=acos30°tan15° ④ tan15°=1cos302sin 30-︒=︒⑤联立④⑤化简得3)2R a = ⑥在磁场中粒子所需向心力由洛伦磁力提供,根据牛顿第二定律得203)2mv B qv a= ⑦联立③⑦化简得03)2qadBB m V =⑧ (2)由于1点将EG 边按1比3等分,根据三角形的性质说明此轨迹的弦与EG 垂直,在如图的三角形中,有1cos30sin 302cos304a a R ︒︒⨯==︒⑨同理4qadBB m V=(10) (3)最轻离子的质量是甲的一半,根据半径公式mvR Bq=离子的轨迹半径与离子质量呈正比,所以质量在甲和最轻离子之间的所有离子都垂直边界EF 穿出磁场,甲最远离H的距离为3)a ,最轻离子最近离H的距离为3)2a ,所以在离H的距离为3)a到3)2a 之间的EF 边界上有离子穿出磁场。

比甲质量大的离子都从EG 穿出磁场,期中甲运动中经过EG 上的点最近,质量最大的乙穿出磁场的1位置是最远点,所以在EG 上穿出磁场的粒子都在这两点之间。

25.(18分)如图所示,在0≤x≤a 、o≤y≤2a范围内有垂直于xy 平面向外的匀强磁场,磁感应强度大小为B 。

坐标原点O 处有一个粒子源,在某时刻发射大量质量为m 、电荷量为q 的带正电粒子,它们的速度大小相同,速度方向均在xy 平面内,与y 轴正方向的夹角分布在0~90°范围内.己知粒子在磁场中做圆周运动的半径介于2a到a 之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一,求最后离开磁场的粒子从粒子源射出时的:(1)速度大小;(2)速度方向与y 轴正方向夹角正弦。

解析:设粒子的发射速度为v ,粒子做圆周运动的轨道半径为R ,由牛顿第二定律和洛伦磁力公式,得2mv qvB R=,解得:mv R qB =当2a<R <a 时,在磁场中运动时间最长的粒子,其轨迹是圆心为C 的圆弧,圆弧与磁场的边界相切,如图所示,设该粒子在磁场中运动的时间为t ,依题意,4T t =时,2OCA π∠=设最后离开磁场的粒子的发射方向与y 轴正方向的夹角为α,由几何关系可得:sin ,sin cos 2aR R R a R ααα=-=-再加上22sin cos 1αα+=,解得:6(2,(2,sin 2210aqB R a v m α-=-=-= 13. 如图,长为2l 的直导线拆成边长相等,夹角为60o的V 形,并置于与其所在平面相垂直的匀强磁场中,磁感应强度为B ,当在该导线中通以电流强度为I 的电流时,该V 形通电导线受到的安培力大小为(A )0 (B )0.5BIl (C )BIl (D )2BIl 答案:C解析:导线有效长度为2l sin30°=l ,所以该V 形通电导线收到的安培力大小为BIl 。

选C 。

本题考查安培力大小的计算。

难度:易。

21.如题21图所示,矩形MNPQ 区域内有方向垂直于纸面的匀强磁场,有5个带电粒子从图中箭头所示位置垂直于磁场边界进入磁块,在纸面民内做匀速圆周运动,运动轨迹为相应的圆弧,这些粒子的质量,电荷量以及速度大小如下表所示由以上信息可知,从图中a 、b 、c 处进大的粒子对应表中的编号分别为 A 3、5、4 B4、 2、5 C5、3、2 D2、4、5 答案:D【解析】根据半径公式Bqmvr =结合表格中数据可求得1—5各组粒子的半径之比依次为0.5︰2︰3︰3︰2,说明第一组正粒子的半径最小,该粒子从MQ 边界进入磁场逆时针运动。

由图a 、b 粒子进入磁场也是逆时针运动,则都为正电荷,而且a 、b 粒子的半径比为2︰3,则a 一定是第2组粒子,b 是第4组粒子。

c 顺时针运动,都为负电荷,半径与a 相等是第5组粒子。

正确答案D 。

9.如图所示,在匀强磁场中附加另一匀强磁场,附加磁场位于图中阴影区域,附加磁场区域的对称轴OO ’与SS ’垂直。

a 、b 、c 三个质子先后从S 点沿垂直于磁场的方向摄入磁场,它们的速度大小相等,b 的速度方向与SS ’垂直,a 、c 的速度方向与b 的速度方向间的夹角分别为αβ、,且αβ>。

三个质子经过附加磁场区域后能达到同一点S ’,则下列说法中正确的有A .三个质子从S 运动到S ’的时间相等B .三个质子在附加磁场以外区域运动时,运动轨迹的圆心均在OO ’轴上C .若撤去附加磁场,a 到达SS ’连线上的位置距S 点最近D .附加磁场方向与原磁场方向相同答案:CD 解析:A.三个质子从S 运动到S’的时间不相等,A 错误;B.三个质子在附加磁场意外区域运动时,只有b 运动轨迹的圆心在OO’轴上,因为半径相等,而圆心在初速度方向的垂线上,所以B 错误;C.用作图法可知,若撤去附加电场,a 到达SS’连线上的位置距S 点最近,b 最远;C 正确;D.因b 要增大曲率,才能使到达SS’连线上的位置向S 点靠近,所以附加磁场方向与原磁场方向相同,D 正确;本体选CD 。

本体考查带电粒子在磁场中的运动。

难度:难。

21、(19分)如图所示,两条平行的光滑金属导轨固定在倾角为θ的绝缘斜面上,导轨上端连接一个定值电阻。

导体棒a 和b 放在导轨上,与导轨垂直并良好接触。

斜面上水平虚线PQ 以下区域内,存在着垂直穿过斜面向上的匀强磁场。

现对a 棒施以平行导轨斜向上的拉力,使它沿导轨匀速向上运动,此时放在导轨下端的b 棒恰好静止。

当a 棒运动到磁场的上边界PQ 处时,撤去拉力,a 棒将继续沿导轨向上运动一小段距离后再向下滑动,此时b 棒已滑离导轨。

当a 棒再次滑回到磁场边界PQ 处时,又恰能沿导轨匀速向下运动。

已知a 棒、b 棒和定值电阻的阻值均为R,b 棒的质量为m ,重力加速度为g ,导轨电阻不计。

求(1)a 棒在磁场中沿导轨向上运动的过程中,a 棒中的电流强度I ,与定值电阻R 中的电流强度I R 之比;(2)a 棒质量m a ;(3)a 棒在磁场中沿导轨向上运动时所受的拉力F 。

解析:(1)a 棒沿导轨向上运动时,a 棒、b 棒及电阻R 中的电流分别为I a 、I b 、I R ,有R b b I R I R = a b R I I I =+解得:21a b I I = (2)由于a 棒在PQ 上方滑动过程中机械能守恒,因而a 棒在磁场中向上滑动的速度大小v 1与在磁场中向下滑动的速度大小v 2相等,即v 1=v 2=v设磁场的磁感应强度为B ,导体棒长为L 乙,a 棒在磁场中运动时产生的感应电动势为 E=Blv当a 棒沿斜面向上运动时322b EI R =⨯sin b A BI L m g θ=向下匀速运动时,a 棒中的电流为I a ’、则'2a EI R='sin a A BI L m g θ=由以上各式联立解得:32a m m =(3)由题可知导体棒a 沿斜面向上运动时,所受拉力7sin sin 2a F BI L mg mg θθ=+=36.(18分)如图16(a )所示,左为某同学设想的粒子速度选择装置,由水平转轴及两个薄盘N 1、N 2构成,两盘面平行且与转轴垂直,相距为L ,盘上各开一狭缝,两狭缝夹角θ可调(如图16(b ));右为水平放置的长为d 的感光板,板的正上方有一匀强磁场,方向垂直纸面向外,磁感应强度为B.一小束速度不同、带正电的粒子沿水平方向射入N 1,能通过N 2的粒子经O 点垂直进入磁场。

相关文档
最新文档