叶片断裂事件

叶片断裂事件
叶片断裂事件

3. 50MW汽轮机叶片断裂的原因分析及修复

某电站汽轮机为南京汽轮机厂生产的C50-8.83(主蒸汽压力)/1.27(抽汽压力)-型高压单缸、单抽汽、冲动式汽轮机。其转子为柔性转子(工作转速低于最低阶临界转速的转子称为刚性转子,反之称为柔性转子,临界转速N=310/转子的静绕度(mm)1/2次方),其高温高压部分为叶轮与主轴整锻而成(适应快速启动,整体刚性好);低压部分采用套装结构(由于温度、压力较低,且便于加工),前后支撑在前轴承和后轴承上,并借助半挠性波形联轴器与发电机转子相连(联轴器中间加装波形筒,我们机组上所接触过全是刚性联轴器)。2009年12月10日11时06分,汽轮机带47MW负荷正常运行,轴系振动出现阶跃上升,汽轮机2号轴承垂直振动由33μm突增至47μm,电厂技术人员对振动情况综合分析后,决定停机揭缸检查。3.1. 汽轮机揭缸后损伤情况

汽轮机揭缸后,转子吊出,检查情况如下:汽机转子通流第14级叶片断裂脱落3根,断裂的叶片卡在15级隔板下半静叶栅进汽侧,同级其它均有擦碰痕迹。如图1、

图2所示。

图1 14级动叶片断裂图图2 第14级动叶片断裂图

3.2. 原因分析

汽轮机叶片断裂是各方面因素综合作用的结果,常见的有:动叶片振动特性不合格;叶片结构不合理,动应力较集中;选用叶片材质不当;叶片设计强度不足;圆角、倒角处的制造精度不够,运行中产生微裂纹;运行中汽轮机出力或汽缸流量超过设计限额;装配、安装不当、动静部件碰擦;汽轮机加减负荷频繁、升降速率过大等等。针对该厂50 MW汽轮机发电机动叶片断裂情况,分析原因如下:

(1)静应力及交变应力长期作用

从叶片断裂面看:出汽边断面光洁,断口平整,如陶瓷断面,而叶片进汽边断面不平整,呈撕裂状。从叶片断面情况看,基本可以断定叶片断裂为静应力及交变应力长期作用下的疲劳损坏。汽轮机运行中,动叶片承受着很大的静应力及交变应力。静应力主要是转子旋转时作用在叶片上的离心力所引起的拉应力,叶片愈长,转子的直径及转速愈大,其拉应力愈大。此外,由于蒸汽流的压力作用还会产生弯曲应力和扭力(这也是我们在大修时需要测量通流0°和90°的原因),叶片受激振力的作用产生强迫振动;当强迫振动的频率与叶片自振频率相同时即会引起共振,振幅进一步加大,交变应力急剧增加,会导致叶片出汽边发生疲劳性裂纹,此后叶片进汽边在高速转动产生的强大离心力作用下断裂,如图3所示。

图3 叶片疲劳断裂示意图

(2)14级叶片处位置和运行工况有关

14级叶片处于第 5、6级工业抽汽口之间,流场扰动,增加了该级叶片激振力,加速了叶片疲劳断裂。当需外供汽时,三四级抽汽开启、五六级抽汽关闭。在这种变工况下,14级通流瞬间压力低于抽汽管压力,疏水倒流,可能造成水冲击而损伤叶片。

(3)电化学腐蚀

负荷较低时,汽轮机末级的蒸汽相对含水量大(对叶片产生一定的冲刷),可溶性盐垢(如钠盐)吸收水珠成为电解液(水质较差),造成叶片表面电化学腐蚀。

一侧叶片断裂后,引起汽机末端2号瓦振动徒增。在转子高振动及转子不平衡力的作用下,同级叶片圆周的另一侧叶片也随之发生断裂。

3.3. 修复方案

(1)转子清扫,轴颈检查抛光处理并在转子表面涂色检查有无缺陷。

(2)更换14级动叶片。

(3)更换破损的汽封圈,并对所有汽封分解清扫,更换弹簧片。新更换的汽封圈打磨汽封齿。处理后汽封圈汽封间隙足够,所贴胶布均为轻接触。

3.4. 运行效果

新转子安装后,机组启动过临界时及带额定负荷运行时振动良好,达到设计要求。

振动情况如表1。

表1 机组振动数据

3.5. 结束语

通过对50 MW抽汽凝汽式汽轮机叶片断裂状况的检查、分析,得出如下结论:50 MW汽轮机断裂集中发生在第14级(倒数第四级)上的主要原因是:(1)该级叶片的处于第 5、6级工业抽汽口之间,工况变化多,流场扰动大;(2)该级叶片为中后级叶片,叶型较长,高速旋转中承受很大的静应力及交变应力(3)电化学腐蚀。(对于我厂来说长期的低负荷运行以及工况的突变影响较为明显)

提高汽轮机叶片强度及设计可靠性,加强汽轮机运行参数监控,合理控制汽轮机负荷及抽汽,是防止50 MW汽轮机叶片断裂的有效手段。

叶片的断裂不仅会造成停机影响发电量,更重要的是将会对设备带来巨大的冲击和损坏,因此在每次大修过程中我们都必须对转子清理,目视检查(叶根、铆钉处、连接拉筋处)并进行硬度、着色、叶片测频等一系列的检查,确保设备在一个大修运行过程中万无一失!

GH4220高温合金圆棒 GH220涡轮叶片材料

上海勃西曼GH4220高温耐蚀合金板棒国军标GH220板棒 GH4220概述: GH4220是Ni-Co-Cr基沉淀硬化型变形高温合金,使用温度900℃~950℃,合金中加入较多的铝、钛元素形成γ’沉淀强化相,ω(γ’)可达40%以上。同时加入钴、铬、钨和钼元素进行固溶强化,并加入微量铈、硼和镁元素进行晶界强化。合金具有较高的高温强度和高温塑性,综合性能良好。适于制造工作温度在900℃~950℃的燃气涡轮工作叶片。主要产品有转动部件用热轧棒材、模锻涡轮叶片等。 GH4220应用概况及特性: 合金已用于制作航空发动机的Ⅰ级涡轮工作叶片。批产和使用情况良好。 合金通过特殊的弯晶热处理工艺,达到控制晶界上第二相的析出种类及形态,使之形成弯曲的晶界。使晶界与晶内强度匹配性好,降低了晶界脆性,从而显著地提高合金的高温塑性和持久强度。 GH4220对应牌号: GH220(中),ЭП220BД, XH51BMTЮKФ-BД(俄) GH4220化学成分:

GH4220热处理制度: 摘自HB/Z 140,转动件用热轧棒材: A 标准热处理制度:1220℃±10℃×4h/AC﹢1050℃±10℃×4h/AC﹢950℃±10℃×2h/AC; B 弯晶热处理制度:1220℃×4h(3~7)min→1100℃/AC﹢1050℃×4h/AC﹢950℃×2h/AC. GH4220熔化温度范围: 1330℃-1360℃ GH4220密度: 8.36g/cm3 GH4220主要规格: GH4220无缝管、GH4220钢板、GH4220圆钢、GH4220锻件、GH4220法兰、GH4220圆环、GH4220焊管、GH4220钢带、GH4220直条、GH4220丝材及配套焊材、GH4220圆饼、GH4220扁钢、GH4220六角棒、GH4220大小头、GH4220弯头、GH4220三通、GH4220加工件、GH4220螺栓螺母、GH4220紧固件。

防止某型号燃气轮机叶片断裂的措施

防止某型号燃气轮机叶片断裂的措施 一概述 燃气轮机发电机机组具有起、停快,负荷调节灵活,为电网提供电源和调峰.MS6001B型燃气轮机发电机组在我国燃机电厂中是比较多类型机组,由于新设备技术新,没有足够的运行、维护检修经验和相应的技术措施,在燃气轮机运行中,曾经发生了一些非正常故障和叶片断裂事件,增加了机组的运营成本,也影响了企业的经济效益和社会效益. 透平动叶是燃气轮机的重要部件,引起透平动叶断裂的主要因素有: (1)可调进气导向叶片(IGV)卡涩,转动失灵,造成压气机喘振;致使透平动叶断裂. (2)透平叶片因腐蚀,蠕变产生的断裂. 二压气机进气导向叶片(IGV) 的合理间隙 燃气轮机在运行过程中, IGV叶片是以燃机的转速信号和透平排气温度为控制基准,由电液伺服阀控制其开度,最小开度为32°,最大开度84°, IGV 叶片在此范围内连续可调. 叶片在燃汽轮机起停机等低转速过程中是防止压气机喘振的重要机构之一. 燃气轮机在低速运行时,空气容积流量低,压气机前12级容易发生气流旋转脱离现象,进一步发展会形成喘振,其表现为压气机空气流量、压力出现脉动,时高时低,严重时出现压气机气流倒流的现象,同时还会发生低频的怒吼声,机组伴随强烈的震动.由于叶片受到变速的强烈振动,易产生疲劳甚至共振断裂,造成机组灾难性的事故.因此, IGV叶片的安全可靠性,对于燃气轮机至关重要.而IGV叶片的安全可靠性主要取决于其是否卡涩;转动是否失灵,叶顶与进气内缸的间隙、叶根与进气外缸间隙是否超过规范,详见图1、图2。

机组在经过多次起停、水洗等过程后,叶片叶根转轴的铜质垫片A可能会产生腐蚀或锈蚀,尤其是在燃机水洗时,带有污垢的水可能会残留在叶根转轴的台阶孔和垫片A之间,这种残留物会导致垫片A锈蚀变形,进而导致IGV叶片沿转轴孔向叶顶径向移动,于是,叶片叶顶与进气内缸的间隙X1变小。通常该情况主要表现在进气缸的下半缸,因为下半缸中叶根转轴的台阶孔和垫片A之间的间隙容易残留水洗时带来的污垢。(图3) 与此同时,下半缸内缸叶顶转轴石墨衬套的松动,在重力的作用下,向下径向移动,使得叶片叶顶与进气内缸的间隙X1变小更成为可能,严重时,IGV叶片叶顶切入到石墨衬套,石墨衬套破损,叶片发生卡涩,使叶片转动失灵,叶片甚至翘曲变形或断裂,严重影响机组运行的安全性。某电厂就因石墨衬套脱落被IGV叶片切成碎片吸入压气机,酿成压气机叶片外物损坏(FOD)的严重事件。 三透平动叶膨胀间隙的要求 由于燃气轮机透平转子在高温高压燃气的环境中运行,透平动叶必定产生一些膨胀,即透平动叶叶根部分在冷态下(停机状态)需保留一定的间隙(如表1),才能是透平叶片在高温状态下运行时膨胀后处于正常的工作状态。透平一、二、

汽轮机叶片断裂分析与解决方案

汽轮机叶片断裂分析与解决方案 广西机械高级技工学校广西柳州 摘要:分析汽轮机叶片断裂问题,找出最佳解决方案。 关键词:汽轮机叶片断裂修理方案 1.概述 柳州某纸业公司是专业的纸浆生产企业,其热电分厂的主要生产设备是锅炉和汽轮发电机组,实行热电联产,为企业提供蒸汽和电力供应,分厂中的一台C6-35纯凝汽轮发电机在进行大修,揭盖检查后发现转子次末级叶片的一片动叶片断裂缺失,把转子吊出检查后,在缸体内发现了掉落的半截叶片。 2.汽轮发电机大修前运行状况与叶片断裂时间判断 2.1汽轮机在大修前基本处于长期稳定运行状态, 从运行记录了解到,机组运行的进汽量和所带负荷都控 制在规程要求范围内。蒸汽压力和温度也符合要求,基 本排除机组外因造成叶片断裂。进汽量基本维持30吨, 负荷4300~4500kwh,蒸汽压力3.4MPa左右,温度425℃左右。 2.2外观检查 观察转子,除断裂叶片外,其余部分外观完整。断裂叶片的断口已有锈迹,基本和转子其余部分表面锈迹一致,没有太大差异。由此可知断裂时间比较长。通过查阅机组日常巡检记录发现,在本次大修前4个月,机组振动值偏大,由原来的0.05mm变化为0.09mm,略高于正常值(正常值为0.03mm~0.07mm),此后基本维持在0.09mm左右。由此判断,叶片断裂脱落时间应该在大修前4个月。 3.叶片断裂的原因分析与讨论 由于转子整体外观基本正常,除断裂叶片所处次末级叶轮有轻微刮痕外,其余各级叶轮无明显外伤。另外,在缸体内部和机组冷凝器内部也没有发现其他异物,基本可以分析叶片断裂原因是:(一)断裂叶片在制造时本身材料内部有缺陷,估计有细微裂纹,在转子长期负荷工作中逐渐发展扩大所致。但由于机组运行年限将近30年,加上对转子其他叶轮叶片进行探伤检查没有发现其他叶片存

压气机转子叶片的故障分析与维护

提高发动机操纵系统可靠性的维修 【摘要】 在现代技术进步与之密切相关的最迫切的问题当中,压气机叶片质量和维护问题占据着主导的地位,起着十分重要的作用。 论文以维护发动机压气机叶片为目的,以发动机压气机转子叶片的组成,安装技术,压气机叶片的故障分析和各种故障的维修方式,以及常用典型发动机压气机叶片的维护作为主要内容,全面的根据发动机压气机叶片的故障特点对发动机压气机叶片的修理进行论述。 关键词:压气机转子叶片喷丸强化维修 Abstract: In the modern technological progress is closely related with the most pressing problem, compressor blade quality and maintenance problems to occupy a dominant position, plays a very important role. On the maintenance of the engine compressor blade for the purpose, with the engine compressor rotor blade is composed of compressor blade, installation technology, fault analysis and fault repair, as well as the typical engine compressor blade maintenance as the main content, comprehensive according to engine compressor blade fault characteristics of engine compressor blade repair are discussed. Key word:Aeroengine control system reliability maintenance

涡轮叶片材料雨滴侵蚀研究

Investigation of rain droplet erosion of turbine blade materials in the lab Wind turbine blades are getting longer with length, L, exceeding 100 m and generating 12 MW of power per turbine. The power generated scales with the swept area, proportional to L2(Figure 1a). On the contrary, weight increase is proportional to L3 (Figure 1b), as a result these longer blades exert higher stress on the gears used for power transmission. Therefore, light weight advanced hollow blades with higher specific strength materials such as carbon fiber composites are being recommended. However, its erosion resistance against rain fall or water droplet is to be investigated, yet. (Figure 1c). In general, the intensity of erosion is proportional to L5 (Figure 1c), dependent on the tip velocity which can be as high as 150 m/s. Figure 1. Scaling laws for wind rotors (a) power generated scales as L2 (b) weight increase scales as L3 (c) leading edge rain erosion scales as L5. Such aggressive erosion conditions at the leading edge are caused by repetitive impact of rain droplets and the damage progresses from isolated pits to deep gouges and delamination leading to deterioration of the aerodynamic profile. The resulting increase in drag force (50 to 400%) can reduce the AEP (annualized energy production) by 5 –20%. Furthermore, uncontrolled erosion has the potential to rupture the underlying skin leading to imbalance and turbine failure. The mechanisms responsible for the destructive power of water drops are described and test instruments or tribometers that can simulate the field conditions (Table 1) are highlighted. Rain droplet diameter 1.2 – 2 mm Rainfall intensity 1 – 25 mm/h (drizzle to intense rain) Blade tip speed 80 – 120 m/s

汽轮机叶片断裂的原因

汽轮机叶片断裂的原因 The Standardization Office was revised on the afternoon of December 13, 2020

汽轮机叶片的损坏形式主要是疲劳断裂。由于叶片工作条件恶劣,受力情况复杂,断裂事故较常发生,且后果又较严重,所以对叶片断裂事故的分析研究一直受到特别重视。按照叶片断裂的性质,可以分为短期超载疲劳损坏、长期疲劳损坏、高温疲劳损坏、应力疲劳损坏、腐蚀疲劳损坏、接触疲劳损坏等六钟。 1、期超载疲劳损坏 这种损坏是指叶片受到外加较大应力或受到较大激振力,而振动次数低于107次就发生断裂的机械疲劳损坏。如叶片受到水击而承受较大的应力,或因转子不平引起振动及安装不良存在周期力等较大的低频激振力,当这些力引起叶片共振时,叶片会很快断裂。 叶片短期超载疲劳损坏的宏观特征为:断面粗糙,疲劳前沿线(即贝壳纹)不明显,断面上疲劳区面积小于最终静撕断区面积;经受水击而损坏的叶片的断面呈“人”字形纹络特征。 防止短期超载疲劳损坏的主要方法是:防止水击,作好消除低频共振的调频及在正常周波下运行。 2、长期疲劳损坏 长期疲劳损坏是指叶片运行中承受低于疲劳强度极限而应力循环次数又远高于107次发生的一种机械疲劳损坏。 造成长期疲劳损坏的原因有:叶片或叶片组在高频激振力作用下引起的共振损坏;叶片表面缺陷处出现局部应力集中而发生的疲劳损坏;低频率运行、超负荷运行使某些级的叶片应力升高导致提早损坏等等。长期疲劳损坏在电厂叶片断裂事故中最为常见。

防止长期疲劳损坏的办法是:按规定避开高频激振力共振范围,提高叶片加工质量和改善运行条件。如防止低周波、超负荷运行,防止腐蚀和水击等。 3、高温疲劳损坏 高温疲劳损坏是指由蠕变和疲劳共同作用所形成的介于静应力产生的蠕变和动应力产生的疲劳之间的一种损坏形式。裂纹源部位呈蠕变现象,断裂性质为持久断裂和疲劳断裂的组合,而且往往伴随着材料组织的变化。 高温疲劳损坏裂纹基本上是穿晶的,断口宏观貌有贝壳花纹,断口微观貌有较厚的氧化皮。 高温疲劳损坏发生在高压缸前几级叶片、中间再热式汽轮机中压缸前几级叶片以及中压汽轮机的调速级叶片。 防止高温疲劳损坏的主要措施是:选用高温性能好的金属来制造处于高温下工作的叶片,防止叶片共振,防止叶片径向和轴向相摩擦等。) 4、应力腐蚀损坏 产生应力腐蚀的主要原因是:首先,金属晶界偏析,析出碳化物,出现贫铬区,使晶界腐蚀;其次,应力作用;然后,高浓度盐的腐蚀。应力腐蚀主要发生在2Cr13钢制造的末级叶片上。其断口形貌呈颗粒状,微观形态是沿界裂纹,断面上有滑移台阶,并有细小腐蚀坑。 防止叶片应力腐蚀损坏的只要措施是:改善汽水品质、提高叶片材质、降低叶片动应力等。 5、腐蚀疲劳损坏

某电厂3号燃气轮机压气机叶片故障的原因分析

第36卷 第1期热力透平Vol136No11 2007年3月THER M A L T UR BI NE Mar12007某电厂3号燃气轮机压气机叶片故障的原因分析 朱宝田,肖俊锋,祁文玉 (西安热工研究院,西安,710032) 摘 要: 对某电厂3号燃气轮机压气机叶片的故障原因进行分析,调查了故障发生经过、运行记录、控制系统记录、机组分解现场、零部件损坏情况,对叶片材质和断口进行了理化检验分析,得出故障原因,对机组的修复和今后的安全运行具有重要的意义。故障与运行操作无直接关系。故障原因分析的结论成为电厂向制造商索赔的技术依据。 关键词: 发电厂;燃气轮机;压气机;叶片;故障;原因分析 中图分类号:T K47418 文献标识码:A 文章编号:1672-5549(2007)01-0067-04 Analysis on Compressor Blade Failure of No13G as Turbine in a Certain Plant Z H U B ao2ti an,X I A O J un2f eng,QI W en2y u (Thermal Power Research Institute,Xi’an710032,China) Abstract: An analysis on the compressor blade failure of No13gas turbine in a certain plant was analyzed1 The failure occurring,operating record,control system record,unit decomposition site and components damage status were investigated1The physical and chemical inspection analysis for blade material and blade fracture were done to obtain the failure causes,which has a great significance to the rehabilitation of unit and later safe operation1The failure had no direct relation to operation.The conclusion of failure analysis could be considered as technical material used for the plant,who claimed for damages f rom manufacturer1 K ey w ords: power plant;gas turbine;compressor;blade;failure;analysis 1 机组情况 某电厂3号燃气轮机为GE2AL STOM公司制造的P G65812B型燃气轮机,额定功率42100kW(天然气燃料),额定转速5163r/min。2004年9月24日简单循环投运,2005年9月4日,联合循环投运。3号燃气轮机累计点火运行1004314小时;累计启动80次,事故跳闸9次(因燃气轮机引起的跳闸仅本次事故);系统周波4919~5012Hz。机组正常运行负荷在30~40MW之间,平均负荷33MW,冬季环境温度低时最高负荷48MW,调峰时最低负荷25MW。 2 故障情况 故障前,3号燃气轮机负荷37MW。 2005年12月6日凌晨5点左右,1号轴承两个振动监测值由原来的0189mm/s、0197mm/s分别增至1182mm/s、119mm/s。 9时许,1号轴承振动监测值增至316mm/s、3156mm/s,2号轴承两个振动监测值由113mm/ s、1144mm/s增至3139mm/s、3109mm/s;由于上述振动监测值与GE公司规定的报警值1217mm/s尚有距离,机组继续运行。 11:52分,控制系统出现“燃机排气温度高”报警,机组跳闸。跳闸前报警信息如下: 时间 报警信息 2005/12/06 11:52:231343燃机排气温度高2005/12/06 11:52:231343排气超温跳闸2005/12/06 11:52:241718发电机短路器跳闸2005/12/06 11:52:451343高振动跳闸或停机机组跳闸前后燃机有短促异常声响。跳闸后机组惰走时间11分20秒,与正常停机6走时间 收稿日期:2006-09-27 作者简介:朱宝田(1948-),男,西安热工研究院首席研究员,享受国务院政府特殊津贴的专家,从事发电厂设备和系统的研究。本文为2006年中国动力工程学会透平专委会论文研讨会宣读论文,获优秀论文奖。

大修航空发动机涡轮叶片的检修技术示范文本

大修航空发动机涡轮叶片的检修技术示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

大修航空发动机涡轮叶片的检修技术示 范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 介绍了涡轮叶片的清洗、无损检测、叶型完整性检测 等预处理,以及包括表面损伤修理、叶顶修复、热静压、 喷丸强化及涂层修复等在内的先进修理技术。 涡轮叶片的工作条件非常恶劣,因此,在性能先进的 航空发动机上,涡轮叶片都采用了性能优异但价格十分昂 贵的镍基和钴基高温合金材料以及复杂的制造工艺,例 如,定向凝固叶片和单晶叶片。在维修车间采用先进的修 理技术对存在缺陷和损伤的叶片进行修复,延长其使用寿 命,减少更换叶片,可获得可观的经济收益。为了有效提 高航空发动机的工作可靠性和经济性,涡轮叶片先进的修 理技术日益受到发动机用户和修理单位的重视,并获得了

广泛的应用。 1.修理前的处理与检测 涡轮叶片在实施修理工艺之前进行必要的预处理和检测,以清除其表面的附着杂质;对叶片损伤形式和损伤程度做出评估,从而确定叶片的可修理度和采用的修理技术手段。 1.1清洗 由于涡轮叶片表面黏附有燃料燃烧后的沉积物以及涂层和(或)基体经过高温氧化腐蚀后所产生的热蚀层,一般统称为积炭。积炭致使涡轮效率下降,热蚀层会降低叶片的机械强度和叶片表面处理的工艺效果,同时积炭也掩盖了叶片表面的损伤,不便于检测。因此,叶片在进行检测和修理前,要清除积炭。 1.2无损检测 在修理前,使用先进的检测仪器对叶片的叶型完整性

航空发动机叶片材料及制造技术现状

航空发动机叶片材料及制造技术现状 在航空发动机中,涡轮叶片由于处于温度最高、应力最复杂、环境最恶劣的部位而被列为第一关键件,并被誉为“王冠上的明珠”。涡轮叶片的性能水平,特别是承温能力,成为一种型号发动机先进程度的重要标志,在一定意义上,也是一个国家航空工业水平的显著标志【007】。 航空发动机不断追求高推重比,使得变形高温合金和铸造高温合金难以满足其越来越高的温度及性能要求,因而国外自7O年代以来纷纷开始研制新型高温合金,先后研制了定向凝固高温合金、单晶高温合金等具有优异高温性能的新材料;单晶高温合金已经发展到了第3代。8O年代,又开始研制了陶瓷叶片材料,在叶片上开始采用防腐、隔热涂层等技术。 1 航空发动机原理简介 航空发动机主要分民用和军用两种。图1是普惠公司民用涡轮发动机主要构件;图2是军用发动机的工作原理示意图;图3是飞机涡轮发动机内的温度、气流速度和压力分布;图4是罗尔斯-罗伊斯喷气发动机内温度和材料分布;图5为航空发动机用不同材料用量的发展变化情况。 图1 普惠公司民用涡轮发动机主要构件 图2 EJ200军用飞机涡轮发动机的工作原理

图3 商用涡轮发动机内的温度、气流速度和压力分布 图4 罗尔斯-罗伊斯喷气发动机内温度和材料分布 图5 航空发动机用不同材料用量的变化情况

1变形高温合金叶片 1.1 叶片材料 变形高温合金发展有50多年的历史,国内飞机发动机叶片常用变形高温合金如表1所示。高温合金中随着铝、钛和钨、钼含量增加,材料性能持续提高,但热加工性能下降;加入昂贵的合金元素钴之后,可以改善材料的综合性能和提高高温组织的稳定性。 1.2 制造技术 生产工艺。变形高温合金叶片的生产是将热轧棒经过模锻或辊压成形的。模锻叶片主要工艺如下: (1)镦锻榫头部位; (2)换模具,模锻叶身。通常分粗锻、精锻两道工序;模锻时,一般要在模腔内壁喷涂硫化钼,减少模具与材料接触面之阻力,以利于金属变 形流动; (3)精锻件,机加工成成品; (4)成品零件消应力退火处理; (5)表面抛光处理。分电解抛光、机械抛光两种。 常见问题。模锻叶片生产中常见问题如下: (1)钢锭头部切头余量不足,中心亮条缺陷贯穿整个叶片; (2) GH4049合金模锻易出现锻造裂纹; (3)叶片电解抛光中,发生电解损伤,形成晶界腐蚀; (4) GH4220合金生产的叶片,在试车中容易发生“掉晶”现象;这是在热应力反复作用下,导致晶粒松动,直至剥落。 发展趋势。叶片是航空发动机关键零件.它的制造量占整机制造量的三分之一左右。航空发动机叶片属于薄壁易变形零件。如何控制其变形并高效、高质量地加工是目前叶片制造行业研究的重要课题之一。

航天发动机涡轮叶片失效分析

航空发动机涡轮叶片失效分析 涡轮叶片是航空发动机最主要的部件之一,高温1600-1800度长期工作、要承受300米/秒左右的风速、高负荷(根据作用力的大小确定)、结构复杂的典型热端机械构件,它的设计制造性能和可靠性直接关系到整台发动机的性能水平耐久性和寿命。为了提高发动机的推重比,叶片设计时常采用比强度高的新材料;采用先进复杂的冷却结构及工艺;降低工作裕度等措施来实现。因此,研究涡轮叶片失效分析对提高发动机工作安全及正确评估叶片的损伤形式和损伤程度有重要意义。 1.涡轮转子叶片结构特点 现代航空发动机多处采用多级轴流式涡轮。涡轮叶片具有气动力翼型型面,为了使燃气系统排出的燃气流竜在整个叶片长度上做等量得功,并保证燃气流以均匀的轴向速度进入排气系统从叶根到叶尖有一个扭角,叶尖处的扭角比叶根处要大。 涡轮转子叶片在涡轮盘上的固定方法十分重要,现代大多数燃气涡轮发动机转子都采用“枞树形”榫齿。这种榫齿精确加工和设计,以保证所有榫齿都能按比例承受载荷。当涡轮静止时,叶片在榫槽内有一定的切向活动量;而当涡轮转动时,离心力将叶根拉紧在盘上。 涡轮叶片材料是保证涡轮性能和可靠性的基础,涡轮叶片早期是用变形高温合金,采用锻造的方法制造。由于发动机设计与精铸技术的发展,发动机涡轮叶片从变形合金发展为铸造合金从实心发展为空心,从多晶发展为单晶,从而大大提高了叶片的耐热性能。由于镍基单晶超合金具有卓越的高温蠕变性能已成为制造航空发动机热端部件的重要材料。 涡轮叶片的工作条件和受力分析 2.叶片的工作条件 涡轮叶片时直接利用高温高速燃气做功的关键部件,温度高负荷大应力状态复杂工作环境非常恶劣。涡轮叶片在高温燃气的工作条件下,高温氧化和燃气腐蚀则是其主要的表面损伤形式。氧和硫是影响镍基合金高温合金氧化抗力最有害的两种元素。氧化晶界扩散与晶界上的Cr。Al..。和Ti等元素发生化学反应形成氧化物,然后氧化物开裂,使疲劳裂纹萌生与扩展。硫以引起晶界脆化的方式加速疲劳裂纹的萌生与扩展。 涡轮转子叶片在工作中一直处于高温工作状态,因此热疲劳和高温蠕变性能也是涡轮转子叶片的重要失效抗力指标。

叶片断裂事件

3. 50MW汽轮机叶片断裂的原因分析及修复 某电站汽轮机为南京汽轮机厂生产的C50-8.83(主蒸汽压力)/1.27(抽汽压力)-型高压单缸、单抽汽、冲动式汽轮机。其转子为柔性转子(工作转速低于最低阶临界转速的转子称为刚性转子,反之称为柔性转子,临界转速N=310/转子的静绕度(mm)1/2次方),其高温高压部分为叶轮与主轴整锻而成(适应快速启动,整体刚性好);低压部分采用套装结构(由于温度、压力较低,且便于加工),前后支撑在前轴承和后轴承上,并借助半挠性波形联轴器与发电机转子相连(联轴器中间加装波形筒,我们机组上所接触过全是刚性联轴器)。2009年12月10日11时06分,汽轮机带47MW负荷正常运行,轴系振动出现阶跃上升,汽轮机2号轴承垂直振动由33μm突增至47μm,电厂技术人员对振动情况综合分析后,决定停机揭缸检查。3.1. 汽轮机揭缸后损伤情况 汽轮机揭缸后,转子吊出,检查情况如下:汽机转子通流第14级叶片断裂脱落3根,断裂的叶片卡在15级隔板下半静叶栅进汽侧,同级其它均有擦碰痕迹。如图1、 图2所示。

图1 14级动叶片断裂图图2 第14级动叶片断裂图 3.2. 原因分析 汽轮机叶片断裂是各方面因素综合作用的结果,常见的有:动叶片振动特性不合格;叶片结构不合理,动应力较集中;选用叶片材质不当;叶片设计强度不足;圆角、倒角处的制造精度不够,运行中产生微裂纹;运行中汽轮机出力或汽缸流量超过设计限额;装配、安装不当、动静部件碰擦;汽轮机加减负荷频繁、升降速率过大等等。针对该厂50 MW汽轮机发电机动叶片断裂情况,分析原因如下: (1)静应力及交变应力长期作用 从叶片断裂面看:出汽边断面光洁,断口平整,如陶瓷断面,而叶片进汽边断面不平整,呈撕裂状。从叶片断面情况看,基本可以断定叶片断裂为静应力及交变应力长期作用下的疲劳损坏。汽轮机运行中,动叶片承受着很大的静应力及交变应力。静应力主要是转子旋转时作用在叶片上的离心力所引起的拉应力,叶片愈长,转子的直径及转速愈大,其拉应力愈大。此外,由于蒸汽流的压力作用还会产生弯曲应力和扭力(这也是我们在大修时需要测量通流0°和90°的原因),叶片受激振力的作用产生强迫振动;当强迫振动的频率与叶片自振频率相同时即会引起共振,振幅进一步加大,交变应力急剧增加,会导致叶片出汽边发生疲劳性裂纹,此后叶片进汽边在高速转动产生的强大离心力作用下断裂,如图3所示。 图3 叶片疲劳断裂示意图 (2)14级叶片处位置和运行工况有关 14级叶片处于第 5、6级工业抽汽口之间,流场扰动,增加了该级叶片激振力,加速了叶片疲劳断裂。当需外供汽时,三四级抽汽开启、五六级抽汽关闭。在这种变工况下,14级通流瞬间压力低于抽汽管压力,疏水倒流,可能造成水冲击而损伤叶片。 (3)电化学腐蚀 负荷较低时,汽轮机末级的蒸汽相对含水量大(对叶片产生一定的冲刷),可溶性盐垢(如钠盐)吸收水珠成为电解液(水质较差),造成叶片表面电化学腐蚀。 一侧叶片断裂后,引起汽机末端2号瓦振动徒增。在转子高振动及转子不平衡力的作用下,同级叶片圆周的另一侧叶片也随之发生断裂。 3.3. 修复方案 (1)转子清扫,轴颈检查抛光处理并在转子表面涂色检查有无缺陷。 (2)更换14级动叶片。 (3)更换破损的汽封圈,并对所有汽封分解清扫,更换弹簧片。新更换的汽封圈打磨汽封齿。处理后汽封圈汽封间隙足够,所贴胶布均为轻接触。 3.4. 运行效果 新转子安装后,机组启动过临界时及带额定负荷运行时振动良好,达到设计要求。

航空发动机涡轮叶片修复中的裂纹控制

航空发动机涡轮叶片修复中的裂纹控制 航空发动机是飞机的动力核心,随着我国航空事业的发展,我国加快了对于航空发动机的研制步伐,通过引进、研发、生产的这一发展战略提高我国航空发动机的效率和使用寿命。在航空发动机的各组成部件中,涡轮叶片是其中最为重要同时也是受负荷最大的部件,涡轮叶片在工作的过程中会承受着高温燃气的高速冲刷、撞击、黏着磨损等从而使得涡轮叶片的使用效率和使用寿命持续下降。并导致涡轮叶片的叶冠间隙增大进而影响到涡轮叶片叶冠的阻尼效果,严重的会导致涡轮叶片在工作中断裂从而威胁到飞机的飞行安全。在航空发动机使用一段时间进行检修时需要对涡轮叶片进行检查处理,通过采用焊接的方式消除涡轮叶片叶冠阻尼凸台缺陷,并注意做好堆焊处理后涡轮叶片焊接处的裂纹控制和处理。提高涡轮叶片的使用效率和使用寿命。 标签:涡轮叶片;叶冠;裂纹;堆焊 前言 航空发动机涡轮叶片在长时间的使用后会导致涡轮叶片叶冠出现阻尼凸台,这一缺陷的存在会对航空发动机的正常使用造成较大的危害。通过采用氩弧焊堆焊的方式来对涡轮叶片叶冠阻尼凸台进行处理的过程中发现在涡轮叶片叶冠焊接处存在焊接热裂纹,为确保涡轮叶片的使用寿命,在做好涡轮叶片叶冠阻尼凸台焊接裂缝分析的基础上通过对涡轮叶片叶冠阻尼凸台氩弧焊堆焊工艺进行改进用以消除热裂纹缺陷,保障航空发动机涡轮叶片的安全、高效的使用。 1 航空发动机涡轮叶片叶冠阻尼凸台焊接热裂纹产生的原因 某航空发动机在长时间使用后进行检修的过程中发现涡轮叶片叶冠存在阻尼凸台从而使得航空发动机涡轮叶片的阻尼效果变差。航空发动机涡轮叶片采用K403型号的材质,为做好航空发动机涡轮叶片的维修通过采用航空发动机涡轮叶片叶冠阻尼凸台氩弧焊堆焊的处理方法,在对航空发动机涡轮叶片叶冠阻尼凸台焊接处理后检查后发现航空发动机涡轮叶片焊接处存在焊缝热影响区裂缝,从而对航空发动机涡轮叶片的安全使用埋下了安全隐患。为提高航空发动机使用的安全性需要做好航空发动机涡轮叶片焊接热影响区裂纹产生的原因分析并针对性的对航空发动机涡轮叶片的热焊接工艺进行改进优化,以确保航空发动机涡轮叶片的修复质量。 在对航空发动机涡轮叶片焊接热影响区进行分析时为避免裂纹对显微观测结果造成影响,在对航空发动机涡轮叶片进行分析的过程中采用金相分析、电镜扫描观测、能谱仪相配合的方式来做好对于裂纹的分析,用以对航空发动机涡轮叶片焊接热影响区裂纹的产生机理进行分析用以对后续的航空发动机涡轮叶片热焊接工艺进行改进,提高航空发动机涡轮叶片的焊接效果。 航空发动机涡轮叶片裂纹观测结果:

大修航空发动机涡轮叶片的检修技术通用版

解决方案编号:YTO-FS-PD367 大修航空发动机涡轮叶片的检修技术 通用版 The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

大修航空发动机涡轮叶片的检修技 术通用版 使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。文件下载后可定制修改,请根据实际需要进行调整和使用。 介绍了涡轮叶片的清洗、无损检测、叶型完整性检测等预处理,以及包括表面损伤修理、叶顶修复、热静压、喷丸强化及涂层修复等在内的先进修理技术。 涡轮叶片的工作条件非常恶劣,因此,在性能先进的航空发动机上,涡轮叶片都采用了性能优异但价格十分昂贵的镍基和钴基高温合金材料以及复杂的制造工艺,例如,定向凝固叶片和单晶叶片。在维修车间采用先进的修理技术对存在缺陷和损伤的叶片进行修复,延长其使用寿命,减少更换叶片,可获得可观的经济收益。为了有效提高航空发动机的工作可靠性和经济性,涡轮叶片先进的修理技术日益受到发动机用户和修理单位的重视,并获得了广泛的应用。 1.修理前的处理与检测 涡轮叶片在实施修理工艺之前进行必要的预处理和检测,以清除其表面的附着杂质;对叶片损伤形式和损伤程度做出评估,从而确定叶片的可修理度和采用的修理技术

涡轮叶片

涡轮叶片的作用、结构特点 和发展趋势 涡轮叶片一般指涡轮工作叶片和导向叶片。工作叶片的外型结构由叶身、缘板、过渡段、榫齿等组成,内型结构包括横向肋、纵向肋、找流柱和积叠轴。导向叶片由外缘板、叶身和内缘板构成。 涡轮是处于燃烧室后面的一个高温部件,燃烧室中产生的高温高压燃气首先经过燃气导向叶片,此时会被整流并通过在收敛管道中将部分压力能转化为动能而加速,最后被赋予一定的角度以更有效地冲击涡轮工作叶片。 涡轮叶片处于温度最高、应力最复杂、环境最恶劣的部位,被誉为“王冠上的明珠”。在涡轮发动机中叶片无论是压气机叶片还是涡轮叶片,它们的数量最多,而发动机就是依靠这众多的叶片完成对气体的压缩和膨胀,以及以最高的效率产生强大的动力来推动飞机前进的工作。涡轮叶片是一种特殊的零件,它的数量多,形状复杂,要求高,加工难度大,而且是故障多发的零件,一直以来各发动机厂的生产的关键。 目前航空发动机涡轮叶片都采用空心结构。就是在涡轮叶片上设计了很多细小的管道,可以使高压冷空气通过这些管道流经高温叶片,起到强制冷却作用,以提高涡轮的耐热性能。 为了提高航空发动机中燃气涡轮的效率,增加航空发动机推重比,就必须提高发动机燃烧室出口燃气温度也即涡轮前的进口温度。也就必须提高涡轮叶片(导叶+动叶)的高温性能。为此,人们在涡轮叶片设计、高温材料的研制、冷却方法研究及表面涂层等方面作了大量的工作。 在涡轮材料方面,近期的发展方向是:定向共晶合金、超单晶合金、机械合金化高温合金,远期的是人工纤维增强高温合金、定向再结晶氧化物弥散强化合金以及新的能承受高温度的材料如金属间化合物及复合材料,碳-碳复合材料,陶瓷和陶瓷基复合材料。未来的发动机将大量采用非金属材料。 在制造工艺和结构上,现在国外在探索更高性能水平的单晶对开和扩散连接的叶片和多孔层板叶片制造技术,这种加工技术可使涡轮进口温度进一步提高。由小孔加工发展的铸造冷却技术使得在涡轮叶片上铸造出0.25mm的气膜孔成为可能,单晶精密铸造、真空扩散焊和优良的表面防护及处理等工艺技术的发展保证了涡轮叶片经过设计越来越精细。 随着快速成型技术在精密铸造领域的应用发展,可以用快速成型制造的原型替代蜡型,在其表面上涂挂耐火材料,然后焙烧,使原型材料烧蚀气化后得到铸壳,用于金属零件的烧

汽轮机叶片断裂失效分析

汽轮机叶片断裂失效分析 摘要:汽轮机能否正常运转,叶片起着极其重要的作用。材料的选择、加工和 安装都决定了机器人的安全运行。过去,汽轮机叶片经常发生故障。虽然我国的 机械制造技术越来越完善,但汽轮机的机械制造技术也越来越完善,叶片断裂事 故并不少见,但要找出断裂原因,防止出现安全隐患。 关键词:汽轮机叶片;断裂 引言 疲劳断裂是汽轮机叶片最常见的实用形式。汽轮机叶片的工作条件和环境非 常恶劣。主要发生在应力状态、工作温度、环境介质等方面。根据叶片的断裂形式,可分为应力疲劳损伤、腐蚀疲劳损伤和其它损伤原因。根据叶片断裂的原因,提出了有效消除叶片断裂安全事故,阻碍基因生产的解决措施。 1叶片断裂分析 当叶片断裂时,通常发生在叶片的中部和根部。汽轮机叶片在工作过程中的 粘聚力和变形是由离心力和蒸汽压力引起的。刀锋在振东作用下不仅引起强迫, 而且产生共振。复杂的交流力最终是由应变力和松弛应变力引起的。刀刃的疲劳 会折断。各级叶片的工作温度不同。第一级叶片温度最高。蒸汽的步进温度逐渐 降低,末级叶片在100℃以下滑动,蒸汽容易在末级叶片上形成小液滴。在蒸汽中,水滴在蒸汽中。如果有腐蚀性元素,会与水形成电解液,电解液的形成和微 电池的形成导致电化学腐蚀。这部分腐蚀点是叶片的薄弱环节,其影响往往就是 这一腐蚀点。 叶片断裂是由疲劳引起的。疲劳在叶片排气中承受着较高的应力和应变。最 常见的机翼沟槽在叶片表面形成应力状态,裂纹容易扩展。核电汽轮机二级和末 级叶片的有效作用。对其原因进行了分析和优化。叶片的绝热特性是由空诊断引 起的高血压破裂所致。优化设计方案是在叶片工作部件的适当位置安装并加固叶片。叶片断裂的原因是应力集中。随着裂口的逐渐扩大,叶片被拆除,叶片被拆除。介绍了300mw和300mw组件。分析了600mw汽轮机的振动特性、频率数 据和宏观特性,总结了叶片、叶根和叶片的有效模态。 叶片失效的原因是通过振动测量来确定的。叶片疲劳试验为叶片疲劳分析提 供了参考。母花电站蒸汽动力装置末端发现叶片表面硬化层。 2 断裂原因分析过程与步骤 (1)叶片断裂实况调查。第一时间对发生断裂的汽轮机叶片进行详细记录,记录内容包括叶片断裂时间、叶片工作地点、断裂部位、检查、断口类型及其实 景取样。(2)现场检查。汽轮机运行过程中出现短距离。对过滤、叶片超速、 异物冲突、振动科学大学等进行了研究。(3)热断裂分析。通过切片研究,可 以更快地找到叶片断裂的原因。主要通过宏观和微观分析。检测研究可以发现叶 片损伤的特征和疲劳损伤的位置。微视觉研究是叶片研究的主题。可以分析,金 属内部的分子是光滑和硬化的。所有这些都有助于找出骨折的原因和损伤的性质。重点分析尖角等特殊结构。(4)经营状况分析。在对叶片的工作环境进行调查时,是否应在高温下对其接触特性不良物质进行长期的工作检查。(5)叶片强 度检查。严格计算剪切力、切削力、电制动等力学性能,严格计算绝缘件强度。 与强度、振动和允许值进行比较。(6)振动分析。分析了损伤叶片的分散性和 安全性在理论最大安全值中的存在性。(7)损坏叶片的材料分析。对受损叶片 材料进行了研究。结果表明,单列叶片在品牌、化学成分、青铜图像结构、转角、

航空发动机涡轮叶片断裂原因分析

航空发动机涡轮叶片断裂原因分析 【摘要】本文针对实际使用中航空发动机涡轮叶片断裂的故障,从理论上分析造成断裂的机理,分析实际中引起涡轮叶片断裂的原因,并提出预防措施,对飞行安全起到一定的参考价值。 【关键词】航空发动机;涡轮叶片;断裂分析 0 引言 涡轮叶片是航空发动机最主要的结构件之一,由于其长期工作在高温燃气包围下,承受转子高速旋转时叶片自身的离心力、气动力、热应力以及振动负荷,是发动机中工作条件最为恶劣的零件。 在实际的使用过程中,由于各种原因,涡轮叶片可能发生断裂。当涡轮叶片断裂时,不仅会出现发动机振动进而引起飞机振动,还会打坏其他机件、甚至导致飞机着火等现象,这将严重影响到飞行安全。长期以来,由于涡轮叶片断裂引发的飞行事故在飞行中屡见不鲜。 本文从涡轮叶片的工作条件出发,分析了引起涡轮叶片断裂故障的原因,并举例分析,在此基础上指出预防措施。 1 涡轮叶片故障机理 从理论上看,涡轮叶片断裂的故障机理有疲劳、超应力、蠕变、腐蚀、磨损等。 1.1 疲劳 发动机工作时,由于经常起动、加速、减速、停车以及其他条件的影响,发动机内流扰动、自激振动、流动畸变、转子不平衡、燃气温度分布不均等激励因素的作用,会使涡轮各部件承受复杂的循环载荷作用,使得叶片经受大量弹性应力循环,最终引起高周疲劳、低周疲劳或热疲劳,使得涡轮叶片断裂。其中,高周疲劳是指失效循环数范围在105—107周次的疲劳。低周疲劳是指失效循环数低于104—105周次的疲劳。高周疲劳和低周疲劳都能够引起涡轮叶片断裂,实际使用中,断裂还会来自于高低周复合疲劳[1-3]。热疲劳是来自于涡轮叶片温度的循环变化。涡轮叶片的温度的循环变化来自于燃气温度的变化。 1.2 超应力 涡轮叶片的组成包括叶根、叶身和叶冠。由于其形状的不规则,叶片中存在应力集中部位。尽管在设计中已经采取了一些措施,实际上,超应力仍然是造成涡轮叶片断裂的一个原因。

相关文档
最新文档