高等数学第七章向量
高等数学第七章 习题答案

习题7-11. 下列向量的终点各构成什么图形?(1)空间中一切单位向量归结为共同的始点;(2)平行于同一平面的一切单位向量归结为共同的始点;(3)平行于同一直线的所有单位向量归结为同一始点;(4)平行于同一直线的所有向量归结为同一始点。
答:(1)单位球面 (2)单位圆 (3)两个点 (4)直线。
2. 设点O 是正六边形ABCDEF 的中心,在向量,,,,,,,,OA OB OC OD OE OF AB BC ,,,CD DE EF FA 中,哪些向量是相等的? 答:,OA EF =,OB FA =,OC AB =,OD BC =,OE CD =.OF DE =3.平面四边形,ABCD 点,,,K L M N 分别是,,,AB BC CD DA 的中点,证明:.KL NM =当四边形ABCD 是空间四边形时,上等式是否仍然成立?证明:连结AC, 则在∆BAC 中,21AC. 与方向相同;在∆DAC 中,21AC. NM 与AC 方向相同,从而KL =NM 且KL 与NM 方向相同,所以KL =NM .当四边形ABCD 是空间四边形时,上等式仍然成立。
4. 解下列各题:(1)化简()()()()2332;x y x y -+-+-a b a b(2)已知12312323,322,=+-=-+a e e e b e e e 求,,32+--a b a b a b.解:(1)()()()()2332x y x y -+-+-a b a b()()()()23322332x y x y x y x y =--++-++⎡⎤⎡⎤⎣⎦⎣⎦a b()()55x y x y --+-=a b;(2)()()123123123233225;+=+-+-+=++a b e e e e e e e e e()()12312312323322;-=+---+=-+a b e e e e e e e +e e()()()()123123123123323232322693644-=+---+=+---+a b e e e e e e e e e e e e 235.=+e e5.四边形ABCD 中,2,568AB CD =-=+-a c a b c,对角线,AC BD 的中点分别是,,E F 求.EF 解:()()111156823352222EF CD AB =+=+-+-=+-a b c a c a b c.6. 设ABC ∆的三条边,,AB BC CA 的中点分别为,,,L M N 另O 为任意一点,证明: .OA OB OC OL OM ON ++=++证明:(1)如果O 在ABC ∆内部(如图1),则O 把ABC ∆分成三个三角形OAB,OAC,OBC 。
高等数学教材向量

高等数学教材向量高等数学教材——向量一、向量的概念及基本性质在高等数学中,向量是一种具有大小和方向的几何量。
它是由起点和终点确定的有向线段,通常用有字母上方带箭头表示,如⃗AB。
1. 向量的定义向量的定义是:若平面上两个点A和B确定了有向线段⃗AB,则称⃗AB为向量。
向量既有大小也有方向,是一个有序数对。
2. 向量的基本性质(1)向量的模长向量的模长代表向量的大小,用两点之间的距离表示。
若有向线段⃗AB,则向量⃗AB的模长记作|⃗AB|或AB,表示点A和点B之间的距离。
(2)向量的方向角向量的方向角是与x轴正向所成的角度,一般用α或θ表示。
方向角的范围在0到360度之间,且相同向量的方向角可以有多个。
(3)向量的相等对于两个向量⃗AB和⃗CD,若所夹角度相同且模长相等,即|⃗AB|=|⃗CD|且⃗⃗AB=⃗⃗CD,则称两个向量相等。
二、向量的基本运算向量的基本运算包括加法、减法和数乘。
1. 向量的加法向量的加法是将两个向量的起点连接起来,然后连接两个终点,构成一个新的向量。
向量的加法满足平行四边形法则,即⃗⃗ABD=⃗⃗CAB,⃗AD=⃗AB+⃗BD。
2. 向量的减法向量的减法是将减去的向量的起点与被减去的向量的终点连接起来,构成一个新的向量。
向量的减法可以转化为向量的加法,即⃗AB-⃗⃗CD=⃗AB+(-⃗CD)。
3. 向量的数乘向量的数乘是将向量的模长与标量做乘法,得到一个新的向量,方向与原向量相同(若标量为正)或相反(若标量为负)。
即k⃗AB=(|k|)⃗AB。
三、向量的数量积和向量积1. 向量的数量积向量的数量积是将两个向量的模长与夹角进行乘法运算,得到一个标量。
向量的数量积的计算公式为:⃗AB·⃗CD=|⃗AB||⃗CD|cos⃗⃗A B⃗CD。
2. 向量的向量积向量的向量积是用来求两个向量所确定的平行四边形的面积,也是一个向量。
向量的向量积的计算公式为:⃗AB×⃗CD=|⃗AB||⃗CD|sin⃗⃗A B⃗CDn,其中n为垂直于⃗AB和⃗CD所在平面的单位法向量。
高等数学第七章向量代数与空间解析几何习题

解 ∵ a + b = AC = 2MC = −2MA ,
D
C
b
M
b − a = BD = 2MD = −2MB ,
∴
MA
=
−
1 2
(a
+
b),
MB
=
−
1 2
(b
−
A a ),
a
B
图 7.2
MC
=
1 2
(a
+
b),
MD
=
1 2
(b
−
a ).
10. 用向量的方法证明: 连接三角形两边中点的线段(中位线)平行且等于第三
而
a⋅b =
a
⋅
b
⋅
cos(a,
b)
=
10
×
cos
π 3
=5,
所以
r 2 = 100 − 60 + 36 = 76 ,
故 r = 76 .
3. 已知 a + b + c = 0 , 求证 a × b = b × c = c × a
证 法1
∵a + b + c = 0 ,
所以
c = −(a + b) ,
解 因 a = m − 2n + 3 p = (8i + 5 j + 8k) − 2(2i − 4 j + 7k) + 3(i + j − k) = 7i + 16 j − 9k ,
故沿 x 轴方向的分向量为 axi = 7i ; 沿 y 轴方向的分向量为 ay j = 16 j .
16. 若线段 AB 被点 C(2, 0, 2)和D(5, −2, 0) 三等分, 试求向量 AB 、点 A 及点 B 的
向量高数知识点总结

向量高数知识点总结一、向量的概念向量是指既有大小又有方向的量。
在数学上,向量可以用有序数对表示,这个有序数对就是向量的坐标表示。
例如,一个二维向量可以表示为(a,b),其中a和b分别代表向量在x轴和y轴上的分量;一个三维向量可以表示为(a,b,c),类似地,a、b、c分别代表向量在x、y、z轴上的分量。
在物理学中,向量的概念也是非常重要的,比如力、速度等都是向量。
二、向量的基本运算1. 向量的加法向量的加法是指两个向量相加的运算。
如果有两个向量a和b,它们的加法运算可以表示为a+b,即将a和b的对应分量相加得到新的向量。
2. 向量的数乘向量的数乘是指一个向量与一个标量相乘的运算。
如果有一个向量a和一个实数k,它们的数乘运算可以表示为ka,即将a的每个分量都乘以k得到新的向量。
3. 向量的减法向量的减法可以通过向量的加法和数乘来表示,即a-b = a+(-1)*b。
三、线性相关与线性无关1. 线性相关如果存在不全为零的实数k1、k2、...、kn,使得向量组中的向量v1、v2、...、vn满足关系式k1*v1+k2*v2+...+kn*vn=0,那么称向量组v1、v2、...、vn是线性相关的。
这就意味着向量组中的某一个向量可以表示为其他向量的线性组合。
2. 线性无关如果向量组中的向量v1、v2、...、vn不是线性相关的,即不存在不全为零的实数k1、k2、...、kn,使得k1*v1+k2*v2+...+kn*vn=0,那么称向量组v1、v2、...、vn是线性无关的。
线性相关与线性无关是线性代数中非常重要的概念,它和矩阵的秩有关系,而矩阵的秩又在模型拟合、降维处理等领域有着重要的应用。
四、向量的线性组合和向量空间1. 向量的线性组合如果有向量组v1、v2、...、vn和实数k1、k2、...、kn,那么k1*v1+k2*v2+...+kn*vn就是向量v1、v2、...、vn的线性组合。
线性组合可以用来表示向量的线性关系,它在数学建模中有着重要的应用。
《高等数学》第七章 空间解析几何与向量代数

首页
上页
返回
下页
结束
关于向量的投影定理(2)
两个向量的和在轴上的投影等于两个向量在 该轴上的投影之和. (可推广到有限多个)
Pr j(a1 a2 ) Pr ja1 Pr ja2 .
A a1 B a2
C
u
A
B
C
首页
上页
返回
下页
结束
关于向量的投影定理(3)
Pr
ju a
M 2M 3 (5 7)2 (2 1)2 (3 2)2 6
M1M3 (5 4)2 (2 3)2 (3 1)2 6
M 2M3 M1M3
M1
M3
即 M1M 2M3 为等腰三角形 .
M2
首页
上页
返回
下页
结束
2. 方向角与方向余弦
设有两非零向量
M B
o
A
中点公式:
B
x1
2
x2
,
y1
2
y2
,
z1 z2 2
M
首页
上页
返回
下页
结束
五、向量的模、方向角、投影
1. 向量的模与两点间的距离公式
设 r (x , y , z ), 作 OM r, 则有 r OM OP OQ OR
由勾股定理得
r OM
z R
解 a 4m 3n p
4(3i 5 j 8k ) 3(2i 4 j 7k )
(5i j 4k ) 13i 7 j 15k,
在x 轴上的投影为ax
13,
[高等教育]高等数学 第七章 空间解析几何与向量代数 第六节 空间直线及其方程.
![[高等教育]高等数学 第七章 空间解析几何与向量代数 第六节 空间直线及其方程.](https://img.taocdn.com/s3/m/4067d540a45177232f60a273.png)
定义 空间直线可看成两平面的交线.
Π 1 : A1 x + B1 y + C1 z + D1 = 0
Π 2 : A2 x + B2 y + C 2 z + D2 = 0
⎧ A1 x + B1 y + C1 z + D1 = 0 ⎨ ⎩ A2 x + B2 y + C 2 z + D2 = 0
例如, 直线 L1 : s1 = (1,−4, 0), 直线 L2 : s2 = (0,0,1),
∵ s1 ⋅ s2 = 0, ∴ s1 ⊥ s2 , 即 L1 ⊥ L2 .
例4
求过点 ( −3, 2, 5) 且与两平面 x − 4 z = 3 和
2 x − y − 5 z = 1的交线平行的直线方程.
x
s = ( m , n, p ), M 0 M = { x − x0 , y − y0 , z − z0 }
x − x0 y − y0 z − z0 直线的对称式方程 = = m n p (点向式方程)
注 : 当方向向量的某个坐标 为零时,比如 m = 0 ,n ≠ 0 ,p ≠ 0时,方程仍然写为 x − x 0 y − y0 z − z 0 , = = n p 0 ⎧ x − x0 = 0 ⎪ 此时理解为二平面的交 线⎨ y − y0 z − z0 ⎪ n = p ⎩
x −1 y +1 z − 3 L: = = , 相交的直线方程. −5 3 2 L
分析: 关键是求得直线上另外 M • P1 一个点 M1. M1在过M且平行 于 平面 P 的一个平面P1上, 待求直线又与已知直线相交, 交点既在P1上,又在 L上,因此是L与P1的交点. 解 过M作平行于 平面 P 的一个平P1
(完整版)高等数学第七章向量

第七章 空间解析几何与向量代数§7.1 空间直角坐标系§7.2 向量及其加减法、向量与数的乘法一、判断题。
1. 点(-1,-2,-3)是在第八卦限。
( ) 2. 任何向量都有确定的方向。
( ) 3. 任二向量b a ,=.则a =b 同向。
( ) 4. 若二向量b a ,+,则b a ,同向。
( )5. 若二向量b a ,满足关系b a -=a +b,则b a ,反向。
( )6. 若ca b a +=+,则c b =( ) 7. 向量ba ,满足=,则ba ,同向。
( ) 二、填空题。
1. 点(2,1,-3)关于坐标原点对称的点是2. 点(4,3,-5)在 坐标面上的投影点是M (0,3,-5) 3. 点(5,-3,2)关于 的对称点是M (5,-3,-2)。
4. 设向量a 与b 有共同的始点,则与b a ,共面且平分a 与b 的夹角的向量为 5. 已知向量a 与b 方向相反,且||2||a b =,则b 由a 表示为b = 。
6.设b a ,有共同的始点,则以b a ,为邻边的平行四边形的两条对角线的向量分别为 。
三、选择题。
1.点(4,-3,5)到oy 轴的距离为 (A )2225)3(4+-+ (B )225)3(+-(C )22)3(4-+ (D )2254+ 2.已知梯形OABC 、CB //OA 且21a ,OC =b ,则AB = (A )21b a - (B )b a 21- (C )a b -21 (D )a b 21-3.设有非零向量b a ,,若a ⊥ b ,则必有(A+(B+-(C+<-(D+>-三、试证明以三点A(4,1,9)、B(10,-1,6)、C(2,4,3)为顶点的三角形为等腰直角三角形。
四、在yoz平面上求与三个已知点A(3,1,2)、B(4,-2,-2)、C(0,5,1)等距离的点D。
六、用向量方法证明:三角形两边中点的连线平行与第三边,且长度为第三边的一半。
第七章第三节空间平面与直线及其方程

A 4C 0 , 即 A 4C ,
代入所设方程并消去C (C 0) , 得所求的平面方程为
4x z 0 .
高等数学 第七章 向量代数与空间解析几何
7.3 空间平面与空间直线及其方程
三、空间直线的方程
1.空间直线的点向式方程与参数方程 (1) 直线的方向向量的定义 与直线平行的非零向量, 称为这条直线的一个方向向量. 直线的方向向量有无数多个.
i 1 0 j 1 1 k 0 1
n
M1
M3 M2
(1 , 1 , 1)
又 M1 , 利用点法式得平面 的方程为:
高等数学 第七章 向量代数与空间解析几何
7.3 空间平面与空间直线及其方程
例7.3.1 求过三点
的平面 的方程.
解: 平面 的法向量垂直于该平面内任一向量, 于是可取平面 的法向量为:
高等数学 第七章 向量代数与空间解析几何
7.3 空间平面与空间直线及其方程
例7.3.2 设一平面与
轴的交点分别为
R(0,0, c ) (其中 a 0,b 0,c 0 ), 求该平面的方程.
分析: 可用平面的一般方程做 或平面的点法式方程做. 解: 设平面的方程为
Ax By Cz D 0,
x x0 y y0 n m 得 y y0 z z0 p n
法2: 先找直线上两点A, B; AB 就是直线的方向向量.
高等数学 第七章 向量代数与空间解析几何
7.3 空间平面与空间直线及其方程
例7.3.5 用点向式方程及参数方程表示直线
分析: 先找直线上一点; 再找直线的方向向量. 解: 先在直线上找一点 M0 ( x0 , y0 , z0 ) . y0 z 0 1 0 , 令 x0 0 , 代入原方程组得 2 y0 z 0 1 0 ,
高等数学第七章 向量代数与空间解析几何

第七章向量代数与空间解析几何空间解析几何是多元函数微积分学必备的基础知识.本章首先建立空间直角坐标系,然后引进有广泛应用的向量代数,以它为工具,讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分内容.第一节空间直角坐标系平面解析几何是我们已经熟悉的,所谓解析几何就是用解析的,或者说是代数的方法来研究几何问题.坐标法把代数与几何结合起来.代数运算的基本对象是数,几何图形的基本元素是点.正如我们在平面解析几何中所见到的那样,通过建立平面直角坐标系使几何中的点与代数的有序数之间建立一一对应关系.在此基础上,引入运动的观点,使平面曲线和方程对应,从而使我们能够运用代数方法去研究几何问题.同样,要运用代数的方法去研究空间的图形——曲面和空间曲线,就必须建立空间内点与数组之间的对应关系.一、空间直角坐标系空间直角坐标系是平面直角坐标系的推广.过空间一定点O,作三条两两互相垂直的数轴,它们都以O为原点.这三条数轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴),统称坐标轴.它们的正方向按右手法则确定,即以右手握住z轴,右手的四个手指指向x轴的正向以π2角度转向y轴的正向时,大拇指的指向就是z轴的正向(图7-1),这样的三条坐标轴就组成了一空间直角坐标系Oxyz,点O叫做坐标原点.图7-1三条坐标轴两两分别确定一个平面,这样定出的三个相互垂直的平面:xOy,yOz,zOx,统称为坐标面.三个坐标面把空间分成八个部分,称为八个卦限,上半空间(z>0)中,从含有x 轴、y轴、z轴正半轴的那个卦限数起,按逆时针方向分别叫做Ⅰ,Ⅱ,Ⅲ,Ⅳ卦限,下半空间(z<0)中,与Ⅰ,Ⅱ,Ⅲ,Ⅳ四个卦限依次对应地叫做Ⅴ,Ⅵ,Ⅶ,Ⅷ卦限(图7-2).图7-2确定了空间直角坐标系后,就可以建立起空间点与数组之间的对应关系.设M为空间的一点,过点M作三个平面分别垂直于三条坐标轴,它们与x轴、y轴、z 轴的交点依次为P、Q、R(图7-3).这三点在x轴、y轴、z轴上的坐标依次为x,y,z.这样,空间的一点M就惟一地确定了一个有序数组(x,y,z),它称为点M的直角坐标,并依次把x,y和z叫做点M的横坐标,纵坐标和竖坐标.坐标为(x,y,z)的点M通常记为M(x,y,z).图7-3反过来,给定了一有序数组(x,y,z),我们可以在x轴上取坐标为x的点P,在y轴上取坐标为y的点Q,在z轴上取坐标为z的点R,然后通过P、Q与R分别作x轴,y轴与z 轴的垂直平面,这三个平面的交点M就是具有坐标(x,y,z)的点(图7-3).从而对应于一有序数组(x,y,z),必有空间的一个确定的点M.这样,就建立了空间的点M和有序数组(x,y,z)之间的一一对应关系.如图7-3所示x轴,y轴和z轴上的点的坐标分别为P(x,0,0),Q(0,y,0),R(0,0,z);xOy面,yOz面和zOx面上的点的坐标分别为A(x,y,0),B(0,y,z),C(x,0,z);坐标原点O的坐标为O(0,0,0).它们各具有一定的特征,应注意区分.二、空间两点间的距离设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d,我们过M1,M2各作三个分别垂直于三条坐标轴的平面.这六个平面围成一个以M1,M2为对角线的长方体(图7-4).根据勾股定理,有图7-4|M 1M 2|2=|M 1N |2+|NM 2|2=|M 1P |2+|M 1Q |2+|M 1R |2.由于|M 1P |=|P 1P 2|=|x 2-x 1|,|M 1Q |=|Q 1Q 2|=|y 2-y 1|,|M 1R |=|R 1R 2|=|z 2-z 1|,所以d =|M 1M 2|=212212212)()()(z z y y x x -+-+-,这就是两点间的距离公式.特别地,点M (x,y,z )与坐标原点O (0,0,0)的距离为d =|OM |=222z y x ++。
《高等数学》课件第7章 空间解析几何与向量代数

2 轴的正向.
Ⅲ
yOz面
Ⅳ
xOy面
x
Ⅶ Ⅷ
z zOx面
Ⅱ
Ⅰ
•O
y
Ⅵ Ⅴ
二、空间两点间的距离公式
空间两点间的距离:P1( x1, y1, z1 )、P2( x2 , y2 , z2 )
z
P2
P1
ki j,
j i k, k j i , i k j.
(a ybz azby )i (azbx axbz ) j (axby a ybx )k
设 a ax i ay j az k , b bx i by j bz k , 则 ( ax i ay j az k ) (bx i by j bz k ) i j jk ki 0
(2) 结合律 ( a ) b a ( b ) ( a b )
向量积的坐标表达式
设
a
axi
ay j
azk,
b bxi by j bzk
ab
(a
x
i
a
y
j
az k
)
(bxi
by
j
bzk )
i i j j k k 0,
i j k,
jk i,
第 七 章 向空 量间 代解 数析 几 何 与
目录
第一节 空间直角坐标系 第二节 向量及其线性运算 第三节 向量的坐标 第四节 向量的数量积与向量积 第五节 平面及其方程 第六节 空间直线及其方程 第七节 常见曲面的方程及图形
第一节 空间直角坐标系
一、空间直角坐标系简介
三条垂直相交且具有相同长度单位的数轴,构成一 个空间直角坐标系,交点O称为坐标原点,这三条轴分别 叫做z 轴(横轴)、y 轴(纵轴)和x轴(竖轴).
《高等数学》第7章空间向量与空间解析几何

d 2 M1M2 2
M1Q2QM 22
(△M1QM2 是直角三角形) M 1P2P2 Q Q2 M 2
z1 M1
P
(△M1PQ都是直角三角形)
x1
M 1 P 2P M 2 2Q2 M 2 x2
标式来表示向量M1M 2 与 2M1M2 .
2.已知 O A 4,1,5与O B 1,8,0,求向量AB
与 OAOB的坐标.
7.2 向量的数量积与向量积
掌握向量的数量积和向量积的定 义,能够灵活运用运算规律,并 熟训练使用判断向量平行或垂直 的条件.
7.2.1 向量的数量积
引例 设一物体在常力F 作用下沿直线从点M1移动 到点M2,以S 表示位移M1M 2,则力F 所做的功
C (2, 4, 7), 求 AB 的 C面积.
解:
根据向量积的定义,可
知 ABC 的面积为
S ABC
1 AB 2
AC sin A 1 AB AC . 2
由于 AB 2,2,2,AC 1,2,4,所以
i jk
AB AC 2 2 2 4 i 6 j 2 k
124
于是 S ABC
Oxyz ,点O 叫做坐标原点(或原点).
八封限
每两个坐标轴确定的平面称为坐标
平面,简称为坐标面.x 轴与y 轴所 确定的坐标面称为xOy面,类似地, 有yOz面,zOx面.
z
Ⅲ
Ⅱ
Ⅳ
Ⅰ
O
Ⅶx
Ⅴ
Ⅷ
Ⅵy
这些坐标面把空间分成八个部分,每一个部分称
为一个卦限.x、y、z 轴的正半轴的卦限称为第
高等数学-第七章空间解析几何与向量代数习题课

A12
B12
C
2 1
A22
B
2 2
C
2 2
(3)直线与平面相交(夹角)
设直线 L 的方向向量为 s (m, n, p) , 平面 的法向量为
n ( A, B,C), 则它们的交角: Am Bn Cp
sin
A2 B2 C 2 m2 n2 p2
(4)线、面之间的平行与垂直
3 3
则
a 15 , b 5 a 25
17
3
17
于是
p ( 15 17 , 25 17, 0 )
【例8】已知向量 a (4, 3, 2),u 轴与三坐标轴正向构成 相等锐角,求 a 在 u 轴上的投影。
分析:先求出 u 轴上的单位向量,再利用向量投影公式。
解:设 u 轴的方向余弦分别为 cos,cos ,cos ,
解:M1M2 (1, 2,1)
| M1M2 | 2
方向余弦为
cos 1
2
, cos
2 2
, cos
1 2
方向角为 2 , 3 , 1
3
4
3
【例2】确定 , , 的值,使向量i 3 j ( 1)k 与向量
( 3)i ( ) j 3k 相等。并求此时向量的模与方向余弦。
分析: 向量相等的定义是向量坐标对应相等。
解: 由已知条件得
3
3
1 3
易得
1
4
1
即当 1, 4, 1 时两向量相等。 此时向量为
《高等数学》第七章-数量积-向量积-混合积

首页
上页
返回
下页
结束
3. 运算律
(1) 交换律 (2) 结合律
b a
a ( b)
( a ) ( b) a ( b)
(ab)
(3) 分配律
(a b) c
Pr jc a Pr jc b Pr jc ( a b)
事实上, 当 c 0 时, 显然成立 ; 当c 0时
a b c c Pr jc a b c Prjc a Prjc b
c Pr jc a c Pr jc b a c b c
首页
上页
返回
下页
结束
例1. 证明三角形余弦定理
c2 a2 b2 2abcos
证: 如图 . 设
i j jk ki 0
a b axbx ayby azbz
两向量的夹角公式 当 为非零向量时, 由于
a b cos , 得
cos
axbx ayby azbz
ab
a
2 x
a
2 y
az2
bx2 by2 bz2
首页
上页Biblioteka 返回下页结束
例2. 已知三点 M (1,1,1), A( 2, 2,1), B( 2,1, 2), 求
叉积:
i jk ab ax ay az
bx by bz
首页
上页
返回
下页
结束
ax ay az
混合积: a b c ( a b ) c bx by bz
2. 向量关系:
cx cy cz
ab 0
bx by bz ax ay az
高等数学 第七章 空间解析几何与向量代数 第五节 平面及其方程

首页
上页
返回
下页
结束
二,指出下列各平面的特殊位置,并画出各平面: 1, 2 x 3 y 6 = 0 ; 2, y + z = 1; 3,6 x + 5 y z = 0 . 三,求过点( 1 , 1 ,1 ) , ( 2 ,2 , 2 ) 和( 1 ,1 , 2 ) 三点的 平面方程 . 四,点( 1 , 0 ,1 ) 且平行于向量a = { 2 , 1 , 1 }和 b = { 1 ,1 , 0 }的平面方程 . 五 , 求 通过 Z 轴 和 点 ( 3 , 1 , 2 ) 的 平面方 程 . 六 ,求 与 已 知 平 面 2 x + y + 2 z + 5 = 0 平 行 且 与 三 坐 标面 所构 成的 四面体 体积 为 1 的平 面方程 .
首页 上页 返回 下页 结束
D D D 将A = , B = , C = , a b c
代入所设方程得
x
z
c
y
o
a
b
x y z + + = 1 平面的截距式方程 a b c
x 轴上截距
首页
y 轴上截距
上页 返回
z 轴上截距
下页 结束
例 5 求平行于平面6 x + y + 6 z + 5 = 0 而与三个坐 标面所围成的四面体体积为一个单位的平面方程.
首页 上页 返回 下页 结束
例 1 求过三点 A( 2,1,4), B( 1,3,2) 和
C (0,2,3)的平面方程.
解
AB = { 3, 4,6} AC = {2, 3,1}
取 n = AB × AC = {14, 9,1}, 所求平面方程为 14( x 2) + 9( y + 1) ( z 4) = 0, 化简得 14 x + 9 y z 15 = 0.
专升本高等数学 第七章向量代数与空间解析几何

第七章 向量代数与空间解析几何【考试要求】1.理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦. 2.掌握向量的线性运算、向量的数量积与向量积的计算方法. 3.掌握两向量垂直、平行的条件.4.会求平面的点法式方程、一般式方程.会判定两平面的垂直、平行. 5.会求点到平面的距离.6.了解直线的一般式方程,会求直线的对称式方程、参数方程.会判定两直线平行、垂直. 7.会判定直线与平面的关系(垂直、平行、直线在平面上).【考试内容】一、向量及其运算(一)向量的相关概念1.向量既有大小又有方向的量称为向量(或矢量),用有向线段AB (起点为A 终点为B )或小写字母a 表示. 2.向量的模向量的大小称为向量的模,记为AB 或a .3.向量的坐标表示向量的坐标表示法有两种:axi y j zk =++或(,,)a x y z =.(二)向量的运算1.线性运算 设111(,,)ax y z =,222(,,)b x y z =,则有:加法:121212(,,)a bx x y y z z +=+++;减法:121212(,,)a b x x y y z z -=---;数乘:111(,,)ax y z λλλλ=.2.向量的数量积(点乘积)向量a 、b 的数量积记为cos(,)a ba b a b ⋅=.设111(,,)a x y z =,222(,,)b x y z =,则 121212a b x x y y z z ⋅=++.3.向量的向量积(叉乘积)向量a 、b 的向量积是一个向量,记为a b ⨯,它的模和方向分别定义为: (1)sin(,)a ba b a b ⨯=;(2)a b ⨯同时垂直于a 和b ,且a 、b 、a b ⨯成右手系.设111(,,)a x y z =,222(,,)b x y z =,则 111222ij k a b x y z x y z ⨯= .4.基本性质(1)交换律和反交换律交换律:a b b a +=+,a b b a ⋅=⋅; 反交换律:a b b a ⨯=-⨯. (2)结合律()()a b c a b c ++=++,()()()a a a λμλμμλ==,()()a b a b λλ⋅=⋅,()()()a b a b a b λλλ⨯=⨯=⨯.(3)分配律 ()a a a λμλμ+=+,()a b a b λλλ+=+,()a b c a c b c +⋅=⋅+⋅,()a b c a c b c +⨯=⨯+⨯.(三)平行与垂直的充要条件设向量111(,,)a x y z =,222(,,)b x y z =,1.向量b 与非零向量a 平行的充要条件是存在一个实数λ,使得b a λ=. 2.向量b 与非零向量a 平行的充要条件是存在一个实数λ,使得21x x λ=,21y y λ=,21z z λ=.或者说,向量a 与b 平行的充要条件是它们的对应坐标成比例. 3.两个向量a ,b 平行的充要条件是0a b ⨯= 或 111222x y z x y z ==.4.两个向量a ,b 垂直的充要条件是0a b ⋅= 或1212120x x y y z z ++=.二、平面及其方程1.点法式方程设平面π过点0000(,,)M x y z ,(,,)n A B C =为其一法向量,则平面π的点法式方程为:000()()()0A x x B y y C z z -+-+-=.2.一般式方程0Ax By Cz D +++= (A ,B ,C 不同时为零).3.截距式方程1x y za b c++= (a ,b ,c 均不为零). 其中a ,b ,c 分别称为平面在x ,y ,z 轴上的截距.4.两平面之间的关系设有两个平面1π和2π,它们相应的方程为1π:11110A x B y C z D +++=,2π:22220A x B y C z D +++=,它们的法向量分别为 1111(,,)n A B C =,2222(,,)n A B C =.若12//n n ,即111222A B C A B C ==(若式中分母为零,则规定分子也为零),则两平面1π与2π平行. 若12n n ⊥,即 1212120A A B B C C ++=,则两平面1π与2π垂直.两平面的夹角θ就是它们的法向量的夹角,即1212cos n n n n θ⋅=,02πθ≤≤.三、直线及其方程1.点向式方程设直线L 过点0000(,,)M x y z ,(,,)s m n p =为其一方向向量,则直线L 的点向式方程为:000x x y y z z m n p---== .2.一般式方程空间直线可以看成是两个平面的交线:111122220A xB yC zD A x B y C z D +++=⎧⎨+++=⎩ . 3.参数方程设直线L 过点0000(,,)M x y z ,(,,)s m n p =为其一方向向量,则直线L 的参数方程为000x x mt y y nt z z pt=+⎧⎪=+⎨⎪=+⎩, t -∞<<+∞ . 其中 t 称为参数. 4.两直线之间的关系设有两条直线1L 和2L ,它们的方程分别为1L :111111x x y y z z m n p ---==, 方向向量 1111(,,)s m n p =,2L :222222x x y y z z m n p ---==, 方向向量2222(,,)s m n p =,两直线的方向向量的夹角θ叫做两直线的夹角(通常指锐角),1212cos s s s s θ⋅=,02πθ≤≤.若12//s s ,即111222m n p m n p ==, 则两直线1L 与2L 平行.若12s s ⊥,即 1212120m m n n p p ++=,则两直线1L 与2L 垂直.5.直线与平面的关系 设平面π的方程为π:0Ax By Cz D +++=,法向量 (,,)n A B C =,直线L 的方程为L :000x x y y z z m n p---==,方向向量(,,)s m n p =,直线和它在平面上的投影直线的夹角称为直线与平面的夹角θ,即sin n s n sθ⋅=,02πθ≤<.若//n s ,即A B Cm n p==,则直线L 与平面π垂直. 若 n s ⊥,即 0Am Bn Cp ++=,则直线L 与平面π平行.【典型例题】【例7-1】在z 轴上求与两点(4,1,7)A -和(3,5,2)B -等距离的点. 解:因所求的点M 在z 轴上,所以设该点为(0,0,)M z ,依题意有MA MB =,即=两边去根号,解得149z = .因此,所求的点为14(0,0,)9M 【例7-2】已知两点(4,0,5)A 和(7,1,3)B ,求与AB 同方向的单位向量e . 解:因为(3,1,2)AB=-,所以23AB == 故2)14AB e AB==-. 【例7-3】已知两点1M 和2(1,3,0)M ,计算向量12M M的模、方向余弦和方向角. 解:因12(12,32,0(1,1,M M =---=-, 故12(2M M =-=,方向余弦 1cos 2α=-,1cos 2β=,cos 2γ=-,方向角 23πα=,3πβ=,34πγ=.【例7-4】设(2,1,1)a=-,(1,1,2)b =-,计算a b ⋅ 和 a b ⨯.解:211(1)(1)21a b ⋅=⋅+⋅-+-⋅=-,211(1,5,3)112i j ka b ⨯=-=---.【例7-5】已知三角形ABC 的三个顶点分别是(1,2,3)A =、(3,4,5)B =和(2,4,7)C =,求三角形ABC 的面积.解: 根据向量积的定义可知,三角形的面积11sin 22ABC S AB AC A AB AC ∆=∠=⨯, 由于(2,2,2)AB =,(1,2,4)AC =,因此222(4,6,2)124i j kAB AC ⨯==-,于是112ABCS AB AC ∆=⨯==. 【例7-6】已知向量3a =,向量4b =,向量a 和b 的夹角3πθ=,求23a b -.解:因为223(23)(23)4669a b a b a b a a a b b a b b -=-⋅-=⋅-⋅-⋅+⋅2246cos 6cos 9a a b b a bθθ=--+22431234cos943633π=⋅-⋅⋅⋅+⋅=⋅,故2363a b -=.【例7-7】求过三点(2,1,4)A -、(1,3,2)B --和(0,2,3)C 的平面方程. 解:先找出这平面的法向量n .由于n 与向量AB 、AC 都垂直,而(3,4,6)AB=--,(2,3,1)AC =--,所以可取它们的向量积作为法向量n ,即346(14,9,1)231i j kn AB AC =⨯=--=---,根据平面的点法式方程,所求平面方程为 14(2)9(1)(4)0x y z -++--=,即 149150x y z +--= .说明:此题也可用平面的一般方程求解,步骤如下: 设所求的平面方程为0Ax By Cz D +++=,将(2,1,4)A -、(1,3,2)B --、(0,2,3)C 三点的坐标值代入可得方程组240320230A B C D A B C D B C D -++=⎧⎪-+-+=⎨⎪++=⎩ , 解之得 149953A BB C D B ⎧=⎪⎪⎪=-⎨⎪⎪=-⎪⎩,代入原方程,得 14150993Bx By Bz B +--=, 将B 约掉(0B≠)并化简可得平面方程为 149150x y z +--= .【例7-8】求平行于平面1π:(6,3,2)A -,且与平面428x y z -+=垂直,求此平面的方程.解法1: 设所求的平面方程为 0Ax By Cz D +++=,由平面过原点可知0D =,由平面过点(6,3,2)A -可知,6320A B C -+=,又因为(4,1,2)n ⊥-,所以420A B C -+=,故23A B C ==-,所求平面方程为2230x y z +-=.解法2:设平面的法向量为n .由于n 与向量(6,3,2)OA =-、平面428x y z -+=的法向量1(4,1,2)n =-都垂直,所以可取与它们的向量积平行的向量作为法向量n ,而1632(4,4,6)2(2,2,3)412i j kOA n ⨯=-=---=--,故可取法向量 (2,2,3)n =,平面方程为2(0)2(0)3(0)0x y z -+-+-=,即2230x y z +-= .【例7-9】求平行于平面1π:2340x y z +++=,且与球面2229x y z ++=相切的平面方程.解:因所求平面平行于已知平面1π:2340x y z+++=,故可设所求平面方程为π:230x y z D +++=,又π与球面2229x y z ++=相切,可得球心(0,0,0)到平面π的距离等于半径3,故3=,即D =D =±故所求平面π的方程为230x y z +++= 和 230x y z ++-=.【例7-10】求过两点(3,2,4)M -和(2,1,1)N --的直线方程. 解:因向量(1,3,3)(1,3,3)MN=--=--,故可取直线的方向向量(1,3,3)s =-,故所求直线方程为211133x y z -++==- . 【例7-11】求过点(1,1,1)且平行于直线12212x y -+==的直线方程.解:因所求直线与已知直线平行,故所求直线的方向向量s 可取为 (2,1,2)s =,所求直线又过点(1,1,1),故所求直线的方程为1121x y --== . 【例7-12】求直线L :132321x y z --+==-与平面π:53160x y z -+-=的交点.解法1:根据直线L 的对称式方程可得直线L 的参数方程为 13322x t y t z t =+⎧⎪=-⎨⎪=-+⎩ ,故可设交点坐标为(13,32,2)t t t +--+,然后代入平面方程可得5(13)3(32)2160t t t +--+--=,得 1t =,故交点坐标为 (4,1,1)-.解法2:直线方程与平面方程联立,可得三元一次方程组1332123153160x y x z x y z --⎧=⎪-⎪-+⎪=⎨⎪-+-=⎪⎪⎩, 解此方程组得 411x y z =⎧⎪=⎨⎪=-⎩,即交点坐标为 (4,1,1)-.【例7-13】求与两平面43x z -=和251x y z --=的交线平行且过点(3,2,5)-的直线的方程.解法1:因为所求直线与两平面的交线平行,也就是直线的方向向量s 一定同时与两平面的法向量1n 、2n 垂直,所以可以取12104(4,3,1)215i j ks n n =⨯=-=---,因此所求直线方程为325431x y z +--==. 解法2:过点(3,2,5)-且与平面43x z-=平行的平面方程为 423x z -=-,过点(3,2,5)-且与平面251x y z --=平行的平面方程为 2533x y z --=-,所求直线为上述两平面的交线,故其方程为 4232533x z x y z -=-⎧⎨--=-⎩ .【例7-14】确定直线L :3102230x y z x y z +-+=⎧⎨--+=⎩ 与平面π:250x y z +++=的位置关系. 解:因为直线L的一般方程中的两个平面的法向量分别为1(3,1,1)n =-和2(2,1,2)n =--,而直线L 的方向向量s 同时垂直于1n 和2n ,故直线L 的方向向量s 可取为12311(3,4,5)212i j ks n n =⨯=-=----,而平面π的法向量(1,2,1)n =, 由(3)142(5)10s n ⋅=-⋅+⋅+-⋅= 可知,s n ⊥,故//L π.又L 上一点14(0,,)33不在平面π上,故//L π但L 不在π上.【历年真题】一、选择题1.(2010年,1分)已知向量(1,2,1)a=--与向量(1,2,)b t =垂直,则t 等于( )(A )1- (B )1 (C )5- (D )5 解:因向量a与b 垂直,故0a b ⋅=,即(1)1(2)210t -⋅+-⋅+⋅=,也即50t -+=,故5t =.选项(D )正确.2.(2009年,1分)直线l :34273x y z ++==--与平面π:42230x y z ---=的位置关系是( )(A )平行 (B )垂直相交 (C )l 在π上 (D )相交但不垂直 解:直线l 的方向向量(2,7,3)s =--,平面π的法向量(4,2,2)n =--,由于81460s n ⋅=-+-=,故s n ⊥,所以直线与平面的关系为//l π.又直线上的点(3,4,0)--不在平面π上,故直线与平面的关系为//l π但l 不在π上.选(A ).3.(2008年,3分)过点(,0,0)a 且垂直于x 轴的平面方程为( ) (A )z a = (B )ya = (C )z y = (D )x a =解:垂直于x 轴的平面方程可设为xC =,又平面过点(,0,0)a ,故所求的平面方程为x a =.选项(D )正确.4.(2008年,3分)直线121122x y z --+==--与下列 平面垂直( ) (A )4100x y z +-+= (B )2350x y z -++=(C )24460x y z -+-= (D )90x y z ++-=解:直线与平面垂直,故直线的方向向量(1,2,2)s =--与平面的法向量n 平行,s 的分量与n 的分量对应成比例.对比四个选项中的法向量,选项(C )的法向量(2,4,4)n =-,且122244--==-,故选项(C )正确. 5.(2007年,3分)直线221314x y z -+-==-与平面62870x y z -+-=的位置关系是( )(A )平行但不共面 (B )直线垂直于平面 (C )直线在平面上 (D )两者斜交 解:直线的方向向量(3,1,4)s =-,平面π的法向量(6,2,8)n =-,由于314628-==-,即s 与n 的对应分量成比例,故//s n ,所以直线与平面垂直.选(B ). 二、填空题1.(2009年,2分)通过点(0,0,0),(1,0,1)和(2,1,0)三点的平面方程是 . 解:设平面的一般方程为0Ax By Cz D +++=,将以上三点代入该方程可得,0020D A C D A B D =⎧⎪++=⎨⎪++=⎩ , 即 02D A C B C =⎧⎪=-⎨⎪=⎩ , 代入一般方程可得, 20Cx Cy Cz -++=,即平面方程为 20x y z --=.2.(2009年,2分)设a ,b 为向量,若2a =,3b =,a 与b 的夹角为3π,则a b += .解:根据2()()a b a b a b+⋅+=+ 及cos3a b a b π⋅= 可得,222()()22cos 3a b a b a b a a a b b b a a b bπ+=+⋅+=⋅+⋅+⋅=++22122233192=+⋅⋅⋅+=,故 19a b +=.3.(2006年,2分)点(1,2,3)到平面236x y z -+=的距离是 .解:根据点到平面的距离公式,点(1,2,3)到平面236x y z -+=的距离为2d ===.三、计算题1.(2010年,5分)求平行于y 轴且过点(1,2,3)P 和(3,2,1)Q -的平面方程.解:设平面的法向量为n .因平面与y 轴平行,且沿y 轴正向的单位向量为(0,1,0)k =,故nk ⊥;又平面过点(1,2,3)P 和(3,2,1)Q -,且(2,0,4)PQ =-,故n PQ ⊥,所以n 可取为与 k PQ ⨯ 平行的向量.因 010(4,0,2)204i j kk PQ ⨯==---2(2,0,1)=-,故可取 (2,0,1)n =,又平面过点(1,2,3)P (也可用点(3,2,1)Q -),故平面方程为2(1)0(3)0x z -++-=,即250x z +-=.说明:此题也可用平面的一般方程来解. 2.(2009年,5分)求通过点1(3,5,1)M -和2(4,1,2)M 且垂直于平面8310x y z -+-=的平面方程.解:设所求平面的法向量为n .因平面过点1(3,5,1)M -和2(4,1,2)M ,且12(1,6,1)M M =,故12n M M ⊥;又所求平面垂直于已知平面,且已知平面的法向量1(1,8,3)n =-,故1n n ⊥.所以n 可取为与 121M M n ⨯ 平行的向量.因121161(26,2,14)2(13,1,7)183i j kM M n ⨯==--=---,故可取(13,1,7)n=--,又平面过点1(3,5,1)M -,故所求平面的方程为13(3)(5)7(1)0x y z --+--=,即 137370x y z ---=.说明:此题也可用平面的一般方程来解.。
高等数学(同济大学第五版)第七章 空间解析几何与向量代数()

习题7-11. 设u =a −b +2c , v =−a +3b −c . 试用a 、b 、c 表示2u −3v .解 2u −3v =2(a −b +2c )−3(−a +3b −c )=2a −2b +4c +3a −9b +3c =5a −11b +7c .2. 如果平面上一个四边形的对角线互相平分, 试用向量证明这是平行四边形. 证明 ; ,→→→OA OB AB −=→→→OD OC DC −=而, ,→→OA OC −=→→OB OD −=所以.→→→→→→AB OA OB OB OA DC −=−=+−=这说明四边形ABCD 的对边AB =CD 且AB //CD ,从而四边形ABCD 是平行四边形.3. 把ΔABC 的BC 边五等分, 设分点依次为D 1、D 2、D 3、D 4, 再把各分点与点A 连接. 试以、表示向量、、A 3、A4.→c =AB →a =BC →A D 1→A D 2→D D →解 →→→a c 5111−−=−=BD BA A D , →→→a c 5222−−=−=BD BA A D , →→→a c 5333−−=−=BD BA A D , →→→a c 5444−−=−=BD BA A D . 4. 已知两点M 1(0, 1, 2)和M 2(1, −1, 0). 试用坐标表示式表示向量及.→→21M M 212M M −→)2 ,2 ,1()2 ,1 ,0()0 ,1 ,1(21−−=−−=M M )4 ,4 ,2()2 ,2 ,1(2221−=−−−=−M M 解 , .→ 5. 求平行于向量a =(6, 7, −6)的单位向量.解 11)6(76||222=−++=a ,平行于向量a =(6, 7, −6)的单位向量为6 ,7 ,6(1−=a 111111||a 或)6 ,7 ,6(1−−=−a 111111||a . 6. 在空间直角坐标系中, 指出下列各点在哪个卦限?A (1, −2, 3);B (2, 3, −4);C (2, −3, −4);D (−2, −3, 1).解 A 在第四卦限, B 在第五卦限, C 在第八卦限, D 在第三卦限.7. 在坐标面上和坐标轴上的点的坐标各有什么特征?指出下列各点的位置:A (3, 4, 0);B (0, 4, 3);C (3, 0, 0);D (0, −1, 0).解 在xOy 面上, 的点的坐标为(x , y , 0); 在yOz 面上, 的点的坐标为(0, y , z ); 在zOx 面上, 的点的坐标为(x , 0, z ).在x 轴上, 的点的坐标为(x , 0, 0); 在y 轴上, 的点的坐标为(0, y , 0), 在z 轴上, 的点的坐标为(0, 0, z ).A 在xOy 面上,B 在yOz 面上,C 在x 轴上,D 在y 轴上.8. 求点(a , b , c )关于(1)各坐标面; (2)各坐标轴; (3)坐标原点的对称点的坐标.解 (1)点(a , b , c )关于xOy 面的对称点为(a , b , −c ); 点(a , b , c )关于yOz 面的对称点为(−a , b , c ); 点(a , b , c )关于zOx 面的对称点为(a , −b , c ).(2)点(a , b , c )关于x 轴的对称点为(a , −b , −c ); 点(a , b , c )关于y 轴的对称点为(−a , b , −c ); 点(a , b , c )关于z 轴的对称点为(−a , −b , c ).(3)点(a , b , c )关于坐标原点的对称点为(−a , −b , −c ).9. 自点P 0(x 0, y 0, z 0)分别作各坐标面和各坐标轴的垂线, 写出各垂足的坐标. 解 在xOy 面、yOz 面和zOx 面上, 垂足的坐标分别为(x 0, y 0, 0)、(0, y 0, z 0)和(x 0, 0, z 0). 在x 轴、y 轴和z 轴上, 垂足的坐标分别为(x 0, 0, 0), (0, y 0, 0)和(0, 0, z 0).10. 过点P 0(x 0, y 0, z 0)分别作平行于z 轴的直线和平行于xOy 面的平面, 问在它们上面的点的坐标各有什么特点?解 在所作的平行于z 轴的直线上, 点的坐标为(x 0, y 0, z ); 在所作的平行于xOy 面的平面上, 点的坐标为(x , y , z 0).11. 一边长为a 的立方体放置在xOy 面上, 其底面的中心在坐标原点, 底面的顶点在x 轴和y 轴上, 求它各顶点的坐标.解 因为底面的对角线的长为a 2, 所以立方体各顶点的坐标分别为)0 ,0 ,2(a −, )0 ,0 ,2(a , )0 ,2 ,0(a −, )0 ,2 ,0(a , ) ,0 ,22(a a −, ) ,0 ,22(a a , ) ,22 ,0(a a −, ) ,22 ,0(a a . 12. 求点M (4, −3, 5)到各坐标轴的距离.解 点M 到x 轴的距离就是点(4, −3, 5)与点(4, 0, 0)之间的距离, 即345)3(22=+−=x d .点M 到y 轴的距离就是点(4, −3, 5)与点(0, −3, 0)之间的距离, 即415422=+=y d .点M 到z 轴的距离就是点(4, −3, 5)与点(0, 0, 5)之间的距离, 即5)3(422=−+=z d .13. 在yOz 面上, 求与三点A (3, 1, 2)、B (4, −2, −2)和C (0, 5, 1)等距离的点.解 设所求的点为P (0, y , z )与A 、B 、C 等距离, 则,→2222)2()1(3||−+−+=z y PA ,→2222)2()2(4||++++=z y PB .→222)1()5(||−+−=z y PC 由题意, 有, →→→222||||||PC PB PA ==即 ⎩⎨⎧−+−=++++−+−=−+−+2222222222)1()5()2()2(4)1()5()2()1(3z y z y z y z y 解之得y =1, z =−2, 故所求点为(0, 1, −2).14. 试证明以三点A (4, 1, 9)、B (10, −1, 6)、C (2, 4, 3)为顶点的三角形是等腰三角直角三角形.解 因为→7)96()11()410(||222=−+−−+−=AB ,→7)93()14()42(||222=−+−+−=AC ,→27)63()14()102(||222=−+++−=BC ,所以, .→→→222||||||AC AB BC +=→→||||AC AB = 因此ΔABC 是等腰直角三角形.15. 设已知两点1) ,2 ,4(1M 和M 2(3, 0, 2). 计算向量的模、方向余弦和方向角. →21M M 解 →)1 ,2 ,1()12 ,20 ,43(21−=−−−=M M ;→21)2()1(||22221=++−=M M ;21cos −=α, 22cos =β, 21cos =γ; 32πα=, 43 πβ=, 3πγ=. 16. 设向量的方向余弦分别满足(1)cos α=0; (2)cos β=1; (3)cos α=cos β=0, 问这些向量与坐标轴或坐标面的关系如何?解 (1)当cos α=0时, 向量垂直于x 轴, 或者说是平行于yOz 面.(2)当cos β=1时, 向量的方向与y 轴的正向一致, 垂直于zOx 面.(3)当cos α=cos β=0时, 向量垂直于x 轴和y 轴, 平行于z 轴, 垂直于xOy 面.17. 设向量r 的模是4, 它与轴u 的夹角是60°, 求r 在轴u 上的投影.解 22143cos ||j Pr =⋅=⋅=πr r u . 18. 一向量的终点在点B (2, −1, 7), 它在x 轴、y 轴和z 轴上的投影依次为4, −4, 7. 求这向量的起点A 的坐标.解 设点A 的坐标为(x , y , z ). 由已知得,⎪⎩⎪⎨⎧=−−=−−=−774142z y x 解得x =−2, y =3, z =0. 点A 的坐标为A (−2, 3, 0).19. 设m =3i +5j +8k , n =2i −4j −7k 和p =5i +j −4k . 求向量a =4m +3n −p 在x 轴上的投影及在y 轴上的分向量.解 因为a =4m +3n −p =4(3i +5j +8k )+3(2i −4j −7k )−(5i +j −4k )=13i +7j +15k ,所以a =4m +3n −p 在x 轴上的投影为13, 在y 轴上的分向量7j .习题7−21. 设a =3i −j −2k , b =i +2j −k , 求(1)a ⋅b 及a ×b ; (2)(−2a )⋅3b 及a ×2b ; (3)a 、b 夹角的余弦.解 (1)a ⋅b =3×1+(−1)×2+(−2)×(−1)=3,k j i kj i b a 75121 213++=−−−=×. (2)(−2a )⋅3b =−6a ⋅b = −6×3=−18,a ×2b =2(a ×b )=2(5i +j +7k )=10i +2j +14k .(3)21236143||||||) ,cos(^==⋅=b a b a b a . 2. 设a 、b 、c 为单位向量, 且满足a +b +c =0, 求a ⋅b +b ⋅c +c ⋅a .解 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0,即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0, 于是 23)111(21)(21−=++−=⋅+⋅+⋅−=⋅+⋅+⋅c c b b a a a c c b b a . 3. 已知M 1(1, −1, 2)、M 2(3, 3, 1)和M 3(3, 1, 3). 求与、同时垂直的单位向量.→21M M →32M M 解 , . →)1 ,4 (2,2)1 ,13 ,13(21−=−+−=M M →)2 ,2 ,0()13 ,31 ,33(32−=−−−=M M →→k j i k j i n 446 220 1423221−−=−−=×=M M M M , 172161636||=++=n ,)223(171)446(1721k j i k j i e −−±=−−±=为所求向量. 4. 设质量为100kg 的物体从点M 1(3, 1, 8)沿直线称动到点M 2(1, 4, 2), 计算重力所作的功(长度单位为m , 重力方向为z 轴负方向).解F =(0, 0, −100×9. 8)=(0, 0, −980), . →)6 ,3 ,2()82 ,14 ,31(21−−=−−−==M M S W =F ⋅S =(0, 0, −980)⋅(−2, 3, −6)=5880(焦耳).5. 在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处, 有一与成角θ→1OP 1的力F 1作用着; 在O 的另一侧与点O 的距离为x 2的点P 2处, 有一与成角θ→2OP 1的力F 1作用着. 问θ1、θ2、x 1、x 2、|F 1|、|F 2|符合怎样的条件才能使杠杆保持平衡?解 因为有固定转轴的物体的平衡条件是力矩的代数和为零, 再注意到对力矩正负的规定可得, 使杠杆保持平衡的条件为x 1|F 1|⋅sin θ1−x 2|F 2|⋅sin θ2=0,即 x 1|F 1|⋅sin θ1=x 2|F 2|⋅sin θ2.6. 求向量a =(4, −3, 4)在向量b =(2, 2, 1)上的投影.解2)142324(31)1 ,2 ,2()4 ,3 ,4(1221||1||j Pr 222=×+×−×=⋅−++=⋅=⋅=⋅=b a b b b a e a a b b .7. 设a =(3, 5, −2), b =(2, 1, 4), 问λ与μ有怎样的关系, 能使得λa +μb 与z 轴垂直? 解 λa +μb =(3λ+2μ, 5λ+μ, −2λ+4μ),λa +μb 与z 轴垂⇔λa +μb ⊥k⇔(3λ+2μ, 5λ+μ, −2λ+4μ)⋅(0, 0, 1)=0,即−2λ+4μ=0, 所以λ=2μ . 当λ=2μ 时, λa +μb 与z 轴垂直.8. 试用向量证明直径所对的圆周角是直角.证明 设AB 是圆O 的直径, C 点在圆周上, 则, .→→OA OB −=→→||||OA OC = 因为,→→→→→→→→→→→→0||||)()()()(22=−=+⋅−=−⋅−=⋅OA OC OA OC OA OC OB OC OA OC BC AC 所以, ∠C =90°.→→BC AC ⊥ 9. 设已知向量a =2i −3j +k , b =i −j +3k 和c =i −2j , 计算: (1)(a ⋅b )c −(a ⋅c )b ; (2)(a +b )×(b +c );(3)(a ×b )⋅c .解 (1)a ⋅b =2×1+(−3)×(−1)+1×3=8, a ⋅c =2×1+(−3)×(−2)=8,(a ⋅b )c −(a ⋅c )b =8c −8b =8(c −b )=8[(i −2j )−(i −j +3k )]=−8j −24k .(2)a +b =3i −4j +4k , b +c =2i −3j +3k ,k j k j i c b b a −−=−−=+×+332443)()(. (3)k j i k j i b a +−−=−−=×58311132, (a ×b )⋅c =−8×1+(−5)×(−2)+1×0=2.10. 已知, , 求ΔOAB 的面积.→j i 3+=OA →k j 3+=OB 解 根据向量积的几何意义, 表示以和为邻边的平行四边形的面积, 于是ΔOAB 的面积为→→||OB OA ×→OA →OB →→|21OB OA S ×=.因为→→k j i k j i +−−==×33310301OB OA , →→191)3()3(||223=+−+−=×OB OA , 所以三角形ΔOAB 的面积为→→1921|21=×=OB OA S . 12. 试用向量证明不等式:||332211232221232221b a b a b a b b b a a a ++≥++++,其中a 1、a 2、a 3、b 1、b 2、b 3为任意实数, 并指出等号成立的条件.解 设a =(a 1, a 2, a 3), b =(b 1, b 2, b 3), 则有,||||) ,cos(||||^b a b a b a b a ⋅≤⋅=⋅于是 ||332211232221232221b a b a b a b b b a a a ++≥++++, 其中当=1时, 即a 与b 平行是等号成立.) ,cos(^b a习题7−31. 一动点与两定点(2, 3, 1)和(4, 5, 6)等距离, 求这动点的轨迹方程.解 设动点为M (x , y , z ), 依题意有(x −2)2+(y −3)2+(z −1)2=(x −4)2+(y −5)2+(z −6)2,即 4x +4y +10z −63=0.2. 建立以点(1, 3, −2)为球心, 且通过坐标原点的球面方程.解 球的半径14)2(31222=−++=R ,球面方程为(x −1)2+(y −3)2+(z +2)2=14,即 x 2+y 2+z 2−2x −6y +4z =0.3. 方程x 2+y 2+z 2−2x +4y +2z =0表示什么曲面?解 由已知方程得(x 2−2x +1)+(y 2+4y +4)+(z 2+2z +1)=1+4+1,即 2222)6()1()2()1(=++++−z y x ,所以此方程表示以(1, −2, −1)为球心, 以6为半径的球面.4. 求与坐标原点O 及点(2, 3, 4)的距离之比为1:2的点的全体所组成的曲面的方程, 它表示怎样曲面?解 设点(x , y , z )满足题意, 依题意有21)4()3()2(222222=−+−+−++z y x z y x , 化简整理得9116)34()1()32(222=+++++z y x , 它表示以)34 ,1 ,32(−−−为球心, 以2932为半径的球面. 5. 将zOx 坐标面上的抛物线z 2=5x 绕x 轴旋转一周, 求所生成的旋转曲面的方程. 解 将方程中的z 换成22z y +±得旋转曲面的方程y 2+z 2=5x .6. 将zOx 坐标面上的圆x 2+z 2=9绕z 轴旋转一周, 求所生成的旋转曲面的方程. 解 将方程中的x 换成22y x +±得旋转曲面的方程x 2+y 2+z 2=9.7. 将xOy 坐标面上的双曲线4x 2−9y 2=36分别绕x 轴及y 轴旋转一周, 求所生成的旋转曲面的方程.解 双曲线绕x 轴旋转而得的旋转曲面的方程为4x 2−9y 2−9z 2=36.双曲线绕y 轴旋转而得的旋转曲面的方程为4x 2+4z 2−9y 2=36.8. 画出下列方程所表示的曲面:(1)222)2()2(a y a x =+−;(2)19422=+−y x ;(3)14922=+z x ;(4)y 2−z =0;(5)z =2−x 2.9. 指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形:析几何中, x =2表示平行于y 轴的一条直线; 在空间解析几何中, x =2表示一析几何中, y =x +1表示一条斜率是1, 在y 轴上的截距也是1的直线; 在空几何中, x 2+y 2=4表示中心在原点, 半径是4的圆; 在空间解析几何中, 几何中, x 2−y 2=1表示双曲线; 在空间解析几何中, x 2−y 2=1表示母线平行旋转曲面是怎样形成的:(1)x =2;解在平面解张平行于yOz 面的平面.(2)y =x +1;解 在平面解间解析几何中,y =x +1表示一张平行于z 轴的平面.(3)x 2+y 2=4;解 在平面解析x 2+y 2=4表示母线平行于z 轴, 准线为x 2+y 2=4的圆柱面.(4)x 2−y 2=1.解 在平面解析于z 轴的双曲面.10. 说明下列 (1)1222=++z y x ; 994 解 这是xOy 面上的椭圆19422=+y x 绕x 轴旋转一周而形成的, 或是zOx 面上的椭圆19422=+z x 绕x 轴旋转一周而形成的. (2)122=+−z y ; 42x 这是xOy 面上的双曲线1422=−y x 解 绕y 轴旋转一周而形成的, 或是yOz 面上的双曲线142=+−z y 绕y 轴旋转一周而形 z 1面上的双曲线x 2−y 2=12成的. (3)x 2−y 2−2=; 解 这是xOy 绕x 轴旋转一周而形成的, 或是zOx 面上的双曲线而形成的.a )2=x 2绕z 轴旋转一周而形成的, 或是yOz 面上的曲线而形成的.( (3x 2−z 2=1绕x 轴旋转一周 (4)(z −a )2=x 2+y 2 .解 这是zOx 面上的曲线(z −(z −a )2=y 2绕z 轴旋转一周 11. 画出下列方程所表示的曲面:(1)4x 2+y 2−z 2=4;2)x 2−y 2−4z 2=4; )94322y x z +=.习题7−41. 画出下列曲线在第一卦限内的图形:(1 (2)⎩⎨⎧==21y x ;)⎩⎨⎧=−−−=0422y x y x z ;(3) =+222az x .2. 下方程组在平面解析几何中与在空间解析几何中分别表示什么图形:⎩⎨⎧=+222a yx 指出(1)⎧+=15x y ; ⎩⎨−=32x y 解 在平面解析几何中, 表示直线y =5x +1与y =2x −3的交点⎩⎨⎧−=+=3215x y x y )317 ,34(−−; 在空间解析几何中, 表示平面y =5x +1与y =2x −3的交线, 它表示过点⎩⎨⎧−=+=3215x y x y )0 ,317 ,34(−−, 并且行于z 轴.(2)⎪⎩⎪⎨⎧22y x ==+3194y . 解 在平面解析几何中, ⎪⎩⎪⎨⎧==+319422y y x 表示椭圆19422=+y x 与其切线y =3的交点(0, 3); 在空间解析几何中, ⎪⎩⎪⎨⎧==+319422y y x 表示椭圆柱面19422=+y x 与其切平面y =3的交线. 3. 分别求母线平行于x 轴及y 轴而且通过曲线的柱面方程. 解 把方程组中的x 消去得方程3y 2−z 2=16, 这就是母线平行于x 轴且通过曲线y z x z y 的柱面方程. 把方程组中的y 消去得方程3x 2+2z 2=16, 这就是母线平行于y 轴且通过曲线y z x z y 的柱面方程. 4. 求球面x 2+y 2+z 2=9与平面x +z =1的交线在xOy 面上的投影的方程.行于z 轴, 准线为=0z 列曲线的一般方程化为参数方程:(1; ⎩⎨⎧=−+=++0162222222y z x z y x ⎩⎨⎧=−+=++0162222222x ⎩⎨⎧=−+=++0162222222x 解 由x +z =1得z =1−x 代入x 2+y 2+z 2=9得方程2x 2−2x +y 2=8, 这是母线平球面x 2+y 2+z 2=9与平面x +z =1的交线的柱面方程, 于是所求的投影方程为⎧=+−82222y x x . ⎩⎨ 5. 将下)⎩⎨⎧==++x y z y x 9222解 将y =x 代入x 2+y 2+z 2=9得2x 2+z 2=9, 即13)23(2222=+z x . 令t x cos 23=, 则z =3sin t . 故所求参数方程为t x cos 23=, t y cos 23=, z =3sin t . (2). ⎩⎨⎧==+++−04)1()1(222z z y x 解 将z =0代入(x −1)2+y 2+(z +1)2=4得(x −1)2+y 2=3.令t x cos 31+=, 则t y sin 3=,于是所求参数方程为t x cos 31+=, t y sin 3=, z =0.6. 求螺旋线在三个坐标面上的投影曲线的直角坐标方程.⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 解 由前两个方程得x 2+y 2=a 2, 于是螺旋线在xOy 面上的投影曲线的直角坐标方程为. ⎩⎨⎧==+0222z a y x 由第三个方程得bz =θ代入第一个方程得 b z a x cos =, 即ax b z arccos =, 于是螺旋线在zOx 面上的投影曲线的直角坐标方程为⎪⎩⎪⎨⎧==0arccos y a x b z . 由第三个方程得bz =θ代入第二个方程得 b z a y sin =, 即ay b z arcsin =, 于是螺旋线在yOz 面上的投影曲线的直角坐标方程为⎪⎩⎪⎨⎧==a y b z x arcsin 0. 7. 求上半球2220y x a z −−≤≤与圆柱体x 2+y 2≤ax (a >0)的公共部分在xOy 面和zOx 面上的投影.解 圆柱体x 2+y 2≤ax 在xOy 面上的投影为x 2+y 2≤ax , 它含在半球2220y x a z −−≤≤在xOy 面上的投影x 2+y 2≤a 2内, 所以半球与圆柱体的公共部分在xOy 面上的投影为x 2+y 2≤ax . 为求半球与圆柱体的公共部分在zOx 面上的投影, 由圆柱面方程x 2+y 2=ax 得y 2=ax −x 2, 代入半球面方程222y x a z −−=, 得ax a z −=2(0≤x ≤a ), 于是半球与圆柱体的公共部分在zOx 面上的投影为ax a z −≤≤20(0≤x ≤a ), 即z 2+ax ≤a 2, 0≤x ≤a , z ≥0.8. 求旋转抛物面z =x 2+y 2(0≤z ≤4)在三坐标面上的投影.解 令z =4得x 2+y 2=4, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在xOy 面上的投影为x 2+y 2≤4. 令x =0得z =y 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在yOz 面上的投影为y 2≤z ≤4. 令y =0得z =x 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在zOx 面上的投影为x 2≤z ≤4.习题7−51. 求过点(3, 0, −1)且与平面3x −7y +5z −12=0平行的平面方程.解 所求平面的法线向量为n =(3, −7, 5), 所求平面的方程为3(x −3)−7(y −0)+5(z +1)=0, 即3x −7y +5z −4=0.2. 求过点M 0(2, 9, −6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程. 解 所求平面的法线向量为n =(2, 9, −6), 所求平面的方程为2(x −2)+9(y −9)−6(z −6)=0, 即2x +9y −6z −121=0.3. 求过(1, 1, −1)、(−2, −2, 2)、(1, −1, 2)三点的平面方程.解 n 1=(1, −1, 2)−(1, 1, −1)=(0, −2, 3), n 1=(1, −1, 2)−(−2, −2, 2)=(3, 1, 0), 所求平面的法线向量为k j i k j i n n n 69301332021++−=−=×=, 所求平面的方程为−3(x −1)+9(y −1)+6(z +1)=0, 即x −3y −2z =0.4. 指出下列各平面的特殊位置, 并画出各平面:(1)x =0;解 x =0是yOz 平面.(2)3y −1=0;解 3y −1=0是垂直于y 轴的平面, 它通过y 轴上的点)0 ,31 ,0(. (3)2x −3y −6=0;解 2x −3y −6=0是平行于z 轴的平面, 它在x 轴、y 轴上的截距分别是3和−2.(4)03=−y x ;解 03=−y x 是通过z 轴的平面, 它在xOy 面上的投影的斜率为33. (5)y +z =1;解 y +z =1是平行于x 轴的平面, 它在y 轴、z 轴上的截距均为1.(6)x −2z =0;解 x −2z =0是通过y 轴的平面.(7)6x +5−z =0.解 6x +5−z =0是通过原点的平面.5. 求平面2x −2y +z +5=0与各坐标面的夹角的余弦.解 此平面的法线向量为n =(2, −2, 1).此平面与yOz 面的夹角的余弦为321)2(22||||) ,cos(cos 122^=+−+=⋅⋅==i n i n i n α; 此平面与zOx 面的夹角的余弦为321)2(22||||) ,cos(cos 122^−=+−+−=⋅⋅==j n j n j n β; 此平面与xOy 面的夹角的余弦为311)2(21||||) ,cos(cos 122^=+−+=⋅⋅==k n k n k n γ. 6. 一平面过点(1, 0, −1)且平行于向量a =(2, 1, 1)和b =(1, −1, 0), 试求这平面方程. 解 所求平面的法线向量可取为k j i k j i b a n 3011112−+=−=×=, 所求平面的方程为(x −1)+(y −0)−3(z +1)=0, 即x +y −3z −4=0.7. 求三平面x +3y +z =1, 2x −y −z =0, −x +2y +2z =3的交点.解 解线性方程组⎪⎩⎪⎨⎧=++−=−−=++3220213z y x z y x z y x 得x =1, y =−1, z =3. 三个平面的交点的坐标为(1, −1, 3).8. 分别按下列条件求平面方程:(1)平行于zOx 面且经过点(2, −5, 3);解 所求平面的法线向量为j =(0, 1, 0), 于是所求的平面为0⋅(x −2)−5(y +5)+0⋅(z −3)=0, 即y =−5.(2)通过z 轴和点(−3, 1, −2);解 所求平面可设为Ax +By =0.因为点(−3, 1, −2)在此平面上, 所以−3A +B =0,将B =3A 代入所设方程得Ax +3Ay =0,所以所求的平面的方程为x +3y =0,(3)平行于x 轴且经过两点(4, 0, −2)和(5, 1, 7).解 所求平面的法线向量可设为n =(0, b , c ). 因为点(4, 0, −2)和(5, 1, 7)都在所求平面上,所以向量n 1=(5, 1, 7)−(4, 0, −2)=(1, 1, 9)与n 是垂直的, 即b +9c =0, b =−9c ,于是 n =(0, −9c , c )=−c (0, 9, −1).所求平面的方程为9(y −0)−(z +2)=0, 即9y −z −2=0.9. 求点(1, 2, 1)到平面x +2y +2z −10=0的距离.解 点(1, 2, 1)到平面x +2y +2z −10=0的距离为1221|1012221|222=++−×+×+=d .习题7−61. 求过点(4, −1, 3)且平行于直线51123−==−z y x 的直线方程. 解 所求直线的方向向量为s =(2, 1, 5), 所求的直线方程为531124−=+=−z y x . 2. 求过两点M 1(3, −2, 1)和M 2(−1, 0, 2)的直线方程.解 所求直线的方向向量为s =(−1, 0, 2)−(3, −2, 1)=(−4, 2, 1), 所求的直线方程为112243−=+=−−x y x . 3. 用对称式方程及参数方程表示直线. ⎩⎨⎧=++=+−421z y x z y x 解 平面x −y +z =1和2x +y +z =4的法线向量为n 1=(1, −1, 1), n 2=(2, 1, 1), 所求直线的方向向量为k j i k j i n n s 3211211121++−=−=×=. 在方程组中, 令y =0, 得, 解得x =3, z =−2. 于是点(3, 0, −2)为所求直线上的点.⎩⎨⎧=++=+−421z y x z y x ⎩⎨⎧=+=+421z x z x 所求直线的对称式方程为32123+==−−z y x ; 参数方程为x =3−2t , y =t , z =−2+3t .4. 求过点(2, 0, −3)且与直线垂直的平面方程. ⎩⎨⎧=+−+=−+−012530742z y x z y x 解 所求平面的法线向量n 可取为直线的方向向量, 即 ⎩⎨⎧=+−+=−+−012530742z y x z y x k j i k j i n 111416253421)2 ,5 ,3()4 ,2 ,1(++−=−−=−×−=. 所平面的方程为−16(x −2)+14(y −0)+11(z +3)=0, 即16x −14y −11z −65=0.5. 求直线与直线的夹角的余弦. ⎩⎨⎧=+−=−+−02309335z y x z y x ⎩⎨⎧=−++=+−+0188302322z y x z y x 解 直线与的方向向量分别为 ⎩⎨⎧=+−=−+−02309335z y x z y x ⎩⎨⎧=−++=+−+0188302322z y x z y xk j i k j i s −+=−−=431233351, k j i k j i s 105101831222+−=−=. 两直线之间的夹角的余弦为010)5(10)1(4310)1()5(4103||||) ,cos(2222222121^21=+−+−++×−+−×+×=⋅×=s s s s s s . 6. 证明直线与直线平行. ⎩⎨⎧=++−=−+7272z y x z y x ⎩⎨⎧=−−=−+028363z y x z y x 解 直线与的方向向量分别为 ⎩⎨⎧=++−=−+7272z y x z y x ⎩⎨⎧=−−=−+028363z y x z y x k j i k j i s 531121211++=−−=, k j i k j i s 15391123632−−−=−−−=. 因为s 2=−3s 1, 所以这两个直线是平行的.7. 求过点(0, 2, 4)且与两平面x +2z =1和y −3z =2平行的直线方程.解 因为两平面的法线向量n 1=(1, 0, 2)与n 2=(0, 1, −3)不平行, 所以两平面相交于一直线, 此直线的方向向量可作为所求直线的方向向量s , 即k j i k j i s ++−=−=32310201. 所求直线的方程为14322−=−=−z y x . 8. 求过点(3, 1, −2)且通过直线12354z y x =+=−的平面方程. 解 所求平面的法线向量与直线12354z y x =+=−的方向向量s 1=(5, 2, 1)垂直. 因为点(3, 1, −2)和(4, −3, 0)都在所求的平面上, 所以所求平面的法线向量与向量s 2=(4, −3, 0)−(3, 1, −2)=(1, −4, 2)也是垂直的. 因此所求平面的法线向量可取为k j i k j i s s n 229824112521−−=−=×=. 所求平面的方程为8(x −3)−9(y −1)−22(z +2)=0, 即8x −9y −22z −59=0.9. 求直线与平面x −y −z +1=0的夹角. ⎩⎨⎧=−−=++003z y x z y x解 直线的方向向量为 ⎩⎨⎧=−−=++003z y x z y x )2(2242111311)1 ,1 ,1()3 ,1 ,1(k j i k j i k j i s −+=−+=−−=−−×=, 平面x −y −z +1=0的法线向量为n =(1, −1, −1).因为s ⋅n =2×1+4×(−1)+(−2)×(−1)=0,所以s ⊥n , 从而直线与平面x −y −z +1=0的夹角为0. ⎩⎨⎧=−−=++003z y x z y x 10. 试确定下列各组中的直线和平面间的关系:(1)37423z y x =−+=−+和4x −2y −2z =3; 解 所给直线的方向向量为s =(−2, −7, 3), 所给平面的法线向量为n =(4, −2, −2).因为s ⋅n =(−2)×4+(−7)×(−2)+3×(−2)=0, 所以s ⊥n , 从而所给直线与所给平面平行. 又因为直线上的点(−3, −4, 0)不满足平面方程4x −2y −2z =3, 所以所给直线不在所给平面上.(2)723z y x =−=和3x −2y +7z =8; 解 所给直线的方向向量为s =(3, −2, 7), 所给平面的法线向量为n =(3, −2, 7). 因为s =n , 所以所给直线与所给平面是垂直的.(3)431232−−=+=−z y x 和x +y +z =3. 解 所给直线的方向向量为s =(3, 1, −4), 所给平面的法线向量为n =(1, 1, 1).因为s ⋅n =3×1+1×1+(−4)×1=0, 所以s ⊥n , 从而所给直线与所给平面平行. 又因为直线上的点(2, −2, 3)满足平面方程x +y +z =3, 所以所给直线在所给平面上.11. 求过点(1, 2, 1)而与两直线和 ⎩⎨⎧=−+−=+−+01012z y x z y x ⎩⎨⎧=+−=+−002z y x z y x 平行的平面的方程.解 直线的方向向量为 ⎩⎨⎧=−+−=+−+01012z y x z y x k j i k j i s 32111121)1 ,1 ,1()1 ,2 ,1(1−−=−−=−×−=, 直线的方向向量为 ⎩⎨⎧=+−=+−002z y x z y xk j k j i s −−=−−=−×−=111112)1 ,1 ,1()1 ,1 ,2(1. 所求平面的法线向量可取为k j i k j i s s n −+−=−−−−=×=11032121, 所求平面的方程为−(x −1)+(y −2)−(z −1)=0, 即x −y +z =0.12. 求点(−1, 2, 0)在平面x +2y −z +1=0上的投影.解 平面的法线向量为n =(1, 2, −1). 过点(−1, 2, 0)并且垂直于已知平面的直线方程为12211−=−=+z y x . 将此方程化为参数方程x =−1+t , y =2+2t , z =−t , 代入平面方程x +2y −z +1=0中, 得(−1+t )+2(2+2t )−(−t )+1=0, 解得32−=t . 再将32−=t 代入直线的参数方程, 得35−=x , 32=y , 32=z . 于是点(−1, 2, 0)在平面x +2y −z +1=0上的投影为点32 ,32 ,25(−. 13. 求点P (3, −1, 2)到直线的距离. ⎩⎨⎧=−+−=+−+04201z y x z y x 解 直线的方向向量为 ⎩⎨⎧=−+−=+−+04201z y x z y x k j k j i s 33112111)1 ,1 ,2()1 ,1 ,1(−−=−−=−×−=. 过点P 且与已知直线垂直的平面的方程为−3(y +1)−3(z −2)=0, 即y +z −1=0.解线性方程组,⎪⎩⎪⎨⎧=−+=−+−=+−+0104201z y z y x z y x 得x =1, 21−=y , 23=z . 点P (3, −1, 2)到直线的距离就是点P (3, −1, 2)与点⎩⎨⎧=−+−=+−+04201z y x z y x )23 ,21 ,1(−间的距离, 即 23)32()11()13(22=−++−+−=d .14. 设M 0是直线L 外一点, M 是直线L 上任意一点, 且直线的方向向量为s , 试证: 点M 0到直线L 的距离→||||0s s ×=M M d . 解 设点M 0到直线L 的距离为d , L 的方向向量, 根据向量积的几何意义, 以和为邻边的平行四边形的面积为 →MN =s →M M 0→MN ,→→→||||00s ×=×M M MN M M 又以和为邻边的平行四边形的面积为. 因此→M M 0→MN →||||s ⋅=⋅d MN d , →||||0s s ×=⋅M M d →||||0s s ×=M M d . 15. 求直线在平面4x −y +z =1上的投影直线的方程. ⎩⎨⎧=−−−=+−0923042z y x z y x 解 过直线的平面束方程为 ⎩⎨⎧=−−−=+−0923042z y x z y x (2+3λ)x +(−4−λ)y +(1−2λ)z −9λ=0.为在平面束中找出与已知平面垂直的平面, 令(4 −1, 1)⋅(2+3λ, −4−λ, 1−2λ)=0, 即4⋅(2+3λ)+(−1)⋅(−4−λ)+1⋅(1−2λ)=0. 解之得1113−=λ. 将1113−=λ代入平面束方程中, 得 17x +31y −37z −117=0.故投影直线的方程为. ⎩⎨⎧=−−+=+−011737311714z y x z y x 16. 画出下列各曲面所围成的立体图形:(1)x =0, y =0, z =0, x =2, y =1, 3x +4y +2z −12=0;4y z =; (2)x =0, z =0, x =1, y =2, (3)z =0, z =3, x −y =0,03=−y x , x 2+y 2=1(在第一卦限内);2, y 2+z 2=R 2(在第一卦限内).(4)x =0, y =0, z =0, x 2+y 2=R总习题七1. 填空(1)设在坐标系[O ; i , j , k ]中点A 和点M 的坐标依次为(x 0, y 0, z 0)和(x , y , z ), 则在[A ; i , j , k ] 坐标系中, 点M 的坐标为___________, 向量的坐标为___________.→OM 解 M (x −x 0, y −y 0, z −z 0), .→) , ,(z y x OM = 提示: 自由向量与起点无关, 它在某一向量上的投影不会因起点的位置的不同而改变.(2)设数λ1、λ2、λ3不全为0, 使λ1a +λ2b +λ3c =0, 则a 、b 、c 三个向量是__________的. 解 共面.(3)设a =(2, 1, 2), b =(4, −1, 10), c =b −λa , 且a ⊥c , 则λ=____________.解3.提示: 因为a ⊥c , 所以a ⋅c =0.又因为由a ⋅c =a ⋅b −λa ⋅a =2×4+1×(−1)+2×10−λ(22+12+22)=27−9λ, 所以λ=3.(4)设a 、b 、c 都是单位向量, 且满足a +b +c =0, 则a ⋅b +b ⋅c +c ⋅a =____________. 解 23−. 提示: 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0,即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是 23)111(21)(21−=++−=⋅+⋅+⋅−=⋅+⋅+⋅c c b b a a a c c b b a . (5)设|a |=3, |b |=4, |c |=5, 且满足a +b +c =0, 则|a ×b +b ×c +c ×a |=____________.解36.提示: c =−(a +b ),a ×b +b ×c +c ×a =a ×b −b ×(a +b )−(a +b )×a =a ×b −b ×a −b ×a =3a ×b ,|a ×b +b ×c +c ×a |=3|a ×b |=3|a |⋅|b |=3⋅3⋅4=36.2. 在y 轴上求与点A (1, −3, 7)和点B (5, 7, −5)等距离的点.解 设所求点为M (0, y , 0), 则有12+(y +3)2+72=52+(y −7)2+(−5)2,即 (y +3)2=(y −7)2,解得y =2, 所求的点为M (0, 2, 0).3. 已知ΔABC 的顶点为A (3,2,−1)、B (5,−4,7)和C (−1,1,2), 求从顶点C 所引中线的长度. 解 线段AB 的中点的坐标为)3 ,1 ,4()271 ,242 ,253(−=+−−+. 所求中线的长度为 30)23()11()14(222=−+−−++=d .4. 设ΔABC 的三边、、, 三边中点依次为D 、E 、F , 试用向量a 、→a =BC →b =CA →c =ABb 、c 表示→AD 、、, 并证明→BE →CF.→→→0=++CF BE AD 解 →→→a c 21+=+=BD AB AD , →→→b a 21+=+=CE BC BE , →→→c b 21+=+=AF CA CF . →→→0=+−=++=++)(23)(23c c c b a CF BE AD 5. 试用向量证明三角形两边中点的连线平行于第三边, 且其长度等于第三边长度的一半.证明 设D , E 分别为AB , AC 的中点, 则有→→→→→)(21AB AC AD AE DE −=−=, ,→→→→→AB AC AC BA BC −=+=所以 →→BC DE 21=, 从而DE //BC , 且||21||BC DE =. 6. 设|a +b |=|a −b |, a =(3, −5, 8), b =(−1, 1, z ), 求z .解a +b =(2, −4, 8+z ), a −b =(4, −6, 8−z ). 因为|a +b |=|a −b |, 所以222222)8()6(4)8()4(2z z −+−+=++−+, 解得z =1.7. 设3||=a , |b |=1, 6) ,(^π=b a , 求向量a +b 与a −b 的夹角. 解 |a +b |2=(a +b )⋅(a +b )=|a |2+|b |2+2a ⋅b =|a |2+|b |2+2|a |⋅|b |cos(a ,^ b )76cos 3213=++=π, |a −b |2=(a −b )⋅(a −b )=|a |2+|b |2−2a ⋅b =|a |2+|b |2−2|a |⋅|b |cos(a ,^ b )16cos 3213=−+=π. 设向量a +b 与a −b 的夹角为θ, 则721713||||||||||||)()(cos 22=⋅−=−⋅+−=−⋅+−⋅+=b a b a b a b a b a b a b a θ, 72arccos =θ.8. 设a +3b ⊥7a −5b , a −4b ⊥7a −2b , 求 .) ,(^b a 解 因为a +3b ⊥7a −5b , a −4b ⊥7a −2b ,所以 (a +3b )⋅(7a −5b )=0, (a −4b )⋅(7a −2b )=0,即 7|a |2+16a ⋅b −15|b |2 =0, 7|a |2−30a ⋅b +8|b |2 =0,又以上两式可得b a b a ⋅==2||||,于是 21||||) ,cos(^=⋅⋅=b a b a b a , 3) ,(^π=b a . 9. 设a =(2, −1, −2), b =(1, 1, z ), 问z 为何值时最小?并求出此最小值. ) ,(^b a 解 2^2321||||) ,cos(z z +−=⋅⋅=b a b a b a . 因为当2) ,(0^π<<b a 时, 为单调减函数. 求的最小值也就是求) ,cos(^b a ) ,(^b a 22321)(z zz f +−=的最大值.令0)2(431)(2/32=+−−⋅=′z z z f , 得z =−4. 当z =−4时, 22) ,cos(^=b a , 所以422arccos ) ,(min ^π==b a .10. 设|a |=4, |b |=3, 6) ,(^π=b a , 求以a +2b 和a −3b 为边的平行四边形的面积. 解 (a +2b )×(a −3b )=−3a ×b +2b ×a =5b ×a .以a +2b 和a −3b 为边的平行四边形的面积为3021435) ,sin(||||5||5|)3()2(|^=⋅⋅⋅=⋅=×=−×+b a a b a b b a b a . 11. 设a =(2, −3, 1), b =(1, −2, 3), c =(2, 1, 2), 向量r 满足r ⊥a , r ⊥b , Prj c r =14, 求r . 解 设r =(x , y , z ).因为r ⊥a , r ⊥b , 所以r ⋅a =0, r ⋅b =0, 即2x −3y +z =0, x −2y +3z =0.又因为Prj c r =14, 所以14||1=⋅c c r , 即 2x +y +2z =42.解线性方程组,⎪⎩⎪⎨⎧=++=+−=+−4222032032z y x z y x z y x 得x =14, y =10, z =2, 所以r =(14, 10, 2).另解 因为r ⊥a , r ⊥b , 所以r 与k j i k j i b a −−−=−−=×57321132平行, 故可设r =λ(7, 5, 1). 又因为Prj c r =14, 所以14||1=⋅c c r , r ⋅c =42, 即 λ(7×2+5×1+1×2)=42, λ=2,所以r =(14, 10, 2).12. 设a =(−1, 3, 2), b =(2, −3, −4), c =(−3, 12, 6), 证明三向量a 、b 、c 共面, 并用a 和b 表示c .证明 向量a 、b 、c 共面的充要条件是(a ×b )⋅c =0. 因为k i k j i b a 36432231−−=−−−=×, (a ×b )⋅c =(−6)×(−3)+0×12+(−3)×6=0,所以向量a 、b 、c 共面.设c =λa +μb , 则有(−λ+2μ, 3λ−3μ, 2λ−4μ)=(−3, 12, 6),即有方程组,⎪⎩⎪⎨⎧=−=−−=+−642123332μλμλμλ解之得λ=5, μ=1, 所以c =5a +b .13. 已知动点M (x ,y ,z )到xOy 平面的距离与点M 到点(1, −1, 2)的距离相等, 求点M 的轨迹方程.解 根据题意, 有222)2()1()1(||−+++−=z y x z ,或 z 2=(x −1)2+(y +1)2+(z −2)2,化简得(x −1)2+(y +1)2=4(z −1),这就是点M 的轨迹方程.14. 指出下列旋转曲面的一条母线和旋转轴:(1)z =2(x 2+y 2);解 旋转曲面的一条母线为zOx 面上的曲线z =2x 2, 旋转轴为z 轴.(2)136936222=++z y x ; 解 旋转曲面的一条母线为xOy 面上的曲线193622=+y x , 旋转轴为y 轴. (3)z 2=3(x 2+y 2);解 旋转曲面的一条母线为yOz 面上的曲线y z 3=, 旋转轴为z 轴.(4)144222=−−z y x . 解 旋转曲面的一条母线为xOy 面上的曲线1422=−y x , 旋转轴为x 轴.15. 求通过点A (3, 0, 0)和B (0, 0, 1)且与xOy 面成3π角的平面的方程. 解 设所求平面的法线向量为n =(a , b , c )., xOy 面的法线向量为k =(0, 0, 1).→)1 ,0 ,3(−=BA 按要求有, →0=⋅BA n 3cos ||||π=⋅⋅k n k n , 即 ⎪⎩⎪⎨⎧=++=−2103222c b a c c a ,解之得c =3a , a b 26±=. 于是所求的平面的方程为0326)3(=+±−z y x ,即 3326=++z y x , 或3326=+−z y x .16. 设一平面垂直于平面z =0, 并通过从点(1, −1, 1)到直线的垂线, 求此平面方程.⎩⎨⎧==+−001x z y 解 直线的方向向量为s =(0, 1, −1)×(1, 0, 0)=(0, −1, −1). ⎩⎨⎧==+−001x z y 设点(1, −1, 1)到直线的垂线交于点(x ⎩⎨⎧==+−001x z y 0, y 0, z 0). 因为点(x 0, y 0, z 0)在直线⎩⎨⎧==+−001x z y 上, 所以(x 0, y 0, z 0)=(0, y 0, y 0+1). 于是, 垂线的方向向量为 s 1=(−1, y 0+1, y 0).显然有s ⋅s 1=0, 即−y 0−1−y 0=0, 210−=y . 从而)21 ,21 ,1() ,1 ,1(001−−=+−=y y s . 所求平面的法线向量可取为j i k j i k s k n −−=−+−×=×=21)2121(1, 所求平面的方程为0)1()1(21=+−−−y x , 即x +2y +1=017. 求过点(−1, 0, 4), 且平行于平面3x −4y +z −10=0, 又与直线21311z y x =−=+相交的直线的方程.解 过点(−1, 0, 4), 且平行于平面3x −4y +z −10=0的平面的方程为3(x +1)−4(y −0)+(z −4)=0, 即3x −4y +z −1=0.将直线21311z y x =−=+化为参数方程x =−1+t , y =3+t , z =2t , 代入平面方程3x −4y +z −1=0, 得3(−1+t )−4(3+t )+2t −1=0,解得t =16. 于是平面3x −4y +z −1=0与直线21311z y x =−=+的交点的坐标为(15, 19, 32), 这也是所求直线与已知直线的交点的坐标.所求直线的方向向量为s =(15, 19, 32)−(−1, 0, 4)=(16, 19, 28),所求直线的方程为28419161−==+z y x . 18. 已知点A (1, 0, 0)及点B (0, 2, 1), 试在z 轴上求一点C , 使ΔABC 的面积最小. 解 设所求的点为C (0, 0, z ), 则, .→) ,0 ,1(z AC −=→)1 ,2 ,0(−−=z BC 因为 →→k j i k j i 2)1(212001+−+=−−−=×z z z z BC AC , 所以ΔABC 的面积为→→4)1(421|2122+−+=×=z z BC AC S . 令04)1(4)1(284122=+−+−+⋅=z z z z dz dS , 得51=z , 所求点为)51 ,0 ,0(C . 19. 求曲线在三个坐标面上的投影曲线的方程. ⎩⎨⎧−+−=−−=2222)1()1(2y x z y x z 解 在xOy 面上的投影曲线方程为, 即. ⎩⎨⎧=−−=−+−02)1()1(2222z y x y x ⎩⎨⎧=+=+022z y x y x 在zOx 面上的投影曲线方程为⎩⎨⎧=−−−±+−=0)12()1(222y z x x z , 即. ⎩⎨⎧==+−−++002342222y z x z xz x 在yOz 面上的投影曲线方程为⎩⎨⎧=−+−−−±=0)1()12(222x y z y z , 即. ⎩⎨⎧==+−−++002342222x z y z yz y 20. 求锥面22y x z +=与柱面z 2=2x 所围立体在三个坐标面上的投影. 解 锥面与柱面交线在xOy 面上的投影为, 即, ⎩⎨⎧=+=0222z y x x ⎩⎨⎧==+−01)1(22z y x 所以, 立体在xOy 面上的投影为. ⎩⎨⎧=≤+−01)1(22z y x 锥面与柱面交线在yOz 面上的投影为⎪⎩⎪⎨⎧=+=0)21(222x y z z , 即⎪⎩⎪⎨⎧==+−01)22(222x y z , 所以, 立体在yOz 面上的投影为⎪⎩⎪⎨⎧=≤+−01)22(222x y z .锥面22y x z +=与柱面z 2=2x 与平面y =0的交线为和⎩⎨⎧==0||y x z ⎩⎨⎧==02y x z , 所以, 立体在zOx 面上的投影为⎩⎨⎧=≤≤02y x z x . 21. 画出下列各曲面所围立体的图形:1224===z y x ; (1)抛物柱面2y 2=x , 平面z =0及 0及x +y =1;(2)抛物柱面x 2=1−z , 平面y =0, z =(3)圆锥面22z y x +=2−x −y =及旋转抛物面z 22;(y 2=x , 平面z =0及x =1.4)旋转抛物面x 2+y 2=z , 柱面。
高等数学 第七章 向量代数与空间解析几何

第四节 空间直线及其方程
一、空间直线的一般方程 二、空间直线的对称式方程与参数方程
三、两直线的夹角 四、直线与平面的夹角
一、空间直线的一般方程
空间直线可以看作是两个平面的交线.
设直线L是平面1和2的交线, 平面的方程分别为
A1xB1yC1zD10和A2xB2yC2zD20, 那么直线L可以用方程组
设α=x1i+y1j+z1k=(x1 , y1 ,z1), 则有:β=x2i+y2j+z2k= (x2,y2,z2).
α+β =(x1+x2 )i +(y1+y2)j +(z1+z2) k
=(x1+x2 , y1+y2 , z1+z2 ). α-β=(x1-x2) i+ (y1-y2 ) j+ (z1-z2)k
一方向向量s(m, n, p)为已知时, 直线L 的位置就完全确定了.
❖直线的对称式方程
求通过点M0(x0, y0, x0), 方向向量为s(m, n, p)的直线的方 程.
设M(x, y, z)为直线上的任一点,
则从M0到M的向量平行于方向向量:
从而有
(xx0, yy0, zz0)//s ,
>>>注
λ >0
由性质1, Prj(λα)=|λα|cos(φ1)
α φ1 = φ
=λ|α|cosφ
λα φ1=π- φ
=λPrjlα
λ<0
当λ<0时 φ1=π-φ
λα
Prj(λα)=|λ|.|α|cos(φ1) =-λ|α|(-cosφ)
λ >0 α
=λPrjlα; 当λ=0时
高等数学向量及其运算PPT(“向量”文档)共40张可修改文字

当=0时, |a|=0, 即a为零向量. 当=1时, 有1a=a; 当=-1时, 有(-1)a =-a.
11
•向量与数的乘积的运算规律
(1)结合律 (a)=(a)=()a;
(2)分配律 (+)a=a+a;
(a+b)=a+b.
•向量的单位化
设a0, 则向量 a 是与a同方向的单位向量,
9
的三角形是等腰三角形 .
思考: 五、向量的模、方向角、投影
“”
以OM为对角线、三条坐标轴为棱作长方体 有
例3 已知两点A(x1 y1 z1)和B(x2 y2 z2)以及实数
1
(1) 如何求在 xoy 面上与A , B 等距离之点的轨迹方程?
(2) 如何求在空间与A , B 等距离之点的轨迹方程 ?
20
任给向量r, 存在点M及xi、yj、zk, 使
则 r =OM = xi + yj + zk .
• 上式称为向量r的坐标分解式. • xi、yj、zk称为向量r沿三个坐标轴方向的分向量.
点M、向量r与三个有序x、y、z之
间有一一对应的关系
M r =OM = xi + yj + zk (x, y, z) .
在直线 AB 上求一点 M, 使 AM =MB .
解 由于
解 由于 AM =OM -OA , MB =OB-OM ,
=OM -OA , MB =OB-OM ,
因此 OM -OA=(OB-OM ) ,
从而
OM
=
1
1+
(OA+
OB)
(x,
y,
z)
高等数学第7章 向量代数与空间解析几何

30
31
32
7.2.4 向量线性运算的坐标表示
33
34
35
36
7.2.5 向量数量积的坐标表达式 设有两个向量
37
38
39
40
41
42
43
44
习题7.2 A组 1.在空间直角坐标系中,指出下列各点在哪个卦 限.A(1,-2,3),B(2,3,-4),C(2,-3,-4), D( -2,-3,1)。 2.求点p( -3,2,-1)关于坐标面与坐标轴对称点 的坐标。 3.求点A( -4,3,5)在坐标面与坐标轴上的投影 点的坐标。
21
22
23
7.2 空间直角坐标系与向量的坐标表示
7.2.1 空间直角坐标系 在空间中任意选定一点O,过O点作三条相互垂直 且具有相同单位长度的数轴,分别称为x轴、y轴和z轴.x 轴、y轴和z轴要满足右手定则,即右手握住z轴,大拇 指指向z轴的正向,其余四个手指从x轴的正方向。
24
25
7.2.2 向量的坐标表示 设x轴、y轴、z轴正向的单位向量依次为i,j,k,如 图7.17所示。
第7章 向量代数与空间解析几何
空间解析几何是通过点与坐标的对应,把抽象的数 与空间的点统一起来,从而使得人们可以用代数的方法 研究几何问题,也可以用几何的方法解决代数问题.本章 首先介绍向量及其代数运算,然后以向量为工具研究空 间的直线与平面,最后讨论空间曲面与曲线的一般方程 和特点.
1
7.1 向量及其运算
12
13
(6)向量的数量积 1)数量积的概念在物理学中,如果物体受到恒力F 的作用,沿直线发生的位移s,设力F 与位移s的夹角为 θ,则力F对物体所做的功为 W =|F|·|s|·cosθ
高等数学第七章空间解析几何与向量代数试题[1]
![高等数学第七章空间解析几何与向量代数试题[1]](https://img.taocdn.com/s3/m/51951a814693daef5ef73db7.png)
(一)选择题1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是:( )A )B )C ) 6D )9532. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( )A ){-1,1,5}.B ) {-1,-1,5}.C ) {1,-1,5}.D ){-1,-1,6}.3. 设a ={1,-1,3}, b ={2,-1,2},求用标准基i , j , k 表示向量c ;A )-i -2j +5kB )-i -j +3kC )-i -j +5kD )-2i -j +5k4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:( )A )B )C )D )2π4π3ππ5. 一质点在力F =3i +4j +5k 的作用下,从点A (1,2,0)移动到点B (3, 2,-1),求力F 所作的功是:( )A )5焦耳B )10焦耳C )3焦耳D )9焦耳6. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是:( )A )B )C )D )2π4π3ππ7. 求点)10,1,2(-M 到直线L :12213+=-=z y x 的距离是:( )A ) B C ) D )13811815818. 设求是:(),23,a i k b i j k =-=++r r r r r r r a b ⨯r r A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )3i -3j +3k9. 设⊿的顶点为,求三角形的面积是:( ABC (3,0,2),(5,3,1),(0,1,3)A B C -)A )B )C )D )33623643210. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:( )A )2x+3y=5=0B )x-y+1=0C )x+y+1=0D )01=-+y x .填空题(1) a ∙b = (公式)(2) a ·b = (计算)(3).=⨯b a r r (4)][c b a r r r =(5) 平面的点法式方程是(6) 三维向量 21M M 的模为| 21M M |=(7) 坐标面的曲线绕轴旋转生成的旋转曲面的方程是:yoz 0),(=z y f z (8) 已知两点与,与向量方向一致的单位向量= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 空间解析几何与向量代数§7.1 空间直角坐标系§7.2 向量及其加减法、向量与数的乘法一、判断题。
1. 点(-1,-2,-3)是在第八卦限。
( ) 2. 任何向量都有确定的方向。
( ) 3. 任二向量,=则=同向。
( ) 4. 若二向量,,则,同向。
( )5. 若二向量b a ,满足关系b a -=a +b,则b a ,反向。
( )6. 若+=+,则=( ) 7. 向量,满足=,则,同向。
( ) 二、填空题。
1. 点(2,1,-3)关于坐标原点对称的点是2. 点(4,3,-5)在 坐标面上的投影点是M (0,3,-5) 3. 点(5,-3,2)关于 的对称点是M (5,-3,-2)。
4. 设向量与有共同的始点,则与,共面且平分与的夹角的向量为 5. 已知向量a 与b 方向相反,且||2||a b =,则b 由a 表示为b = 。
6.设b a ,有共同的始点,则以b a ,为邻边的平行四边形的两条对角线的向量分别为 。
三、选择题。
1.点(4,-3,5)到oy 轴的距离为(A )2225)3(4+-+ (B )225)3(+-(C )22)3(4-+ (D )2254+2.已知梯形OABC 、CB //OA 且=21a ,OC =b ,则AB = (A )21- (B )21- (C )-21 (D )21-3.设有非零向量,,若a ⊥ b ,则必有(A+(B+(C<-(D+>三、试证明以三点A(4,1,9)、B(10,-1,6)、C(2,4,3)为顶点的三角形为等腰直角三角形。
四、在yoz平面上求与三个已知点A(3,1,2)、B(4,-2,-2)、C(0,5,1)等距离的点D。
六、用向量方法证明:三角形两边中点的连线平行与第三边,且长度为第三边的一半。
§7.3 向量的坐标一、判断题1.若一向量在另一向量上的投影为零,则此二向量共线。
( ) 2.零向量在任一轴上投影为零。
( ) 3.设向量a 的方向角α=0,则a 必垂直于yoz 面。
( ) 4.若α、β、γ是向量的方向角,则{cos α,cos β,cos γ}是单位向量。
( ) 5.若={z y x a a a ,,},则平行于向量的单位向量为x ,a z 。
( )二、填空题1=4,a 与轴l 的夹角为6π,则al prj =2.已知向量={4,-4,7}的终点坐标为(2,-1,7),则的始点坐标为 3.设三角形的三个顶点A (2,-1,4)、B (3,2,-6)、C (-5,0,2),则AB 边的中点坐标为 ,∆ABC 的重心坐标为 。
4.已知平行四边形ABCD 的两个顶点A (2,-3,-5)、B (-1,3,2)。
以及它的对角线交点E (4,-1,7),则顶点C 的坐标为 ,则顶点D 的坐标为 。
5.设向量与坐标轴正向的夹角为α、β、γ,且已知α =60,β=120。
则γ=6.设a 的方向角为α、β、γ,满足cos α=1时,a 垂直于 坐标面。
三、设A (4,2 ,1)、B (3,0,2),求的方向余弦及与反向的单位向量。
五、已知OA ={2,-3,6},OB ={-1,2,-2}。
OD 为AOB ∠的平分线,在OD 上求一长度为342的向量。
五、设1F ={2,3,-5}2F ={-5,1,3}3F ={1,-2,4}。
这三个力作用于点P (1,1,1),它们的合力为=,求:(1)点Q 的坐标。
(2)的大小。
(3)的方向余弦。
§ 7.4 数量积 向量积 混合积一、判断题1.222)(⋅=⋅ ( )2.a(b a ⋅)=2a b⋅ ( ) 3.若a ⨯b=c a ⨯且0≠a ,则c b=。
( )4.若b a ==1,则b a⨯=1 ( )5+=222b b a a +⋅+( ) 6.a b b a⨯=⨯ ( )7.[c b a⋅⋅]=][a c b ⋅⋅ ( )8.当a =3时,[b a ⋅⋅]=0 ( )9.若c b a 、、满足a c b c b a⨯=⨯=,,则c b a 、、两两垂直。
( )10.设非零向量b a,的方向角分别为111,,γβα和222,,γβα则cos b a ,(∠=212121cos cos cos cos cos cos γγββαα++ ( ) 二、填空题1.设)(b a ∧=3π,,8,5==b a 则b a-= 。
2.若24,19,13=+==b a b a 。
则b a-= 。
3.若32)(π=∧b ,且2,1==b a 。
则b a⨯= 。
4.已知72,26,3=⨯==b a b a ,则b a⋅= 。
5.三向量c b a ,,的混合积],,[c b a的几何意义是 。
6.设}1,2,2{},4,3,4{=-=b a,则Prj a = 。
7.设}4,6,4{},2,3,2{--=-=b a,则)(b ∧= 。
8.设b a ,为不共线向量,则当λ= 时。
b a P 5+=λ与b a Q-=3共线。
三、选择题1.设空间三点的坐标分别为M (1,-3,4)、N (-2,1,-1)、P (-3,-1,1)。
则MNP ∠=(A )、π (B )、43π (C )、2π (D )、4π2.下列结论正确的是(A )、2= (B )、若0=⋅b a 则必0 =a 或0=b(C )、c a b a c b a -=-)( (D )、若0 ≠a ,且c a b a =则c b =3.设}.4,4,1{},2,3,{-==b x a若b a //,则(A )、x=0.5 y=6 (B)、x=-0.5 y=-6 (C)、x=1 y=-7 (D)、x=-1 y=-3四、设}1,3,1{1},1,1,2{-=-=b a,求与b a 、均垂直的单位向量。
五、设向量}2,1,2{}3,2,1{}1,3,2{=-=-=c b a 、、,向量d 与b a,均垂直,且在向量.14d c,求向量上的投影是六、应用向量证明:当、332211b a b a b a ==时,2332211232221232221)())((b a b a b a b b b a a a ++=++++七、设AD 为∆ABC 中BC 边上的高,记..a C B c A B==证明:c a c a SABD⨯⋅=∆§7.5 曲面及其方程一、填空题1.设点P (1,-1,a )在曲面x 2+y 2+z 2-2x+4y=0上,则a= .2.以原点为球心,且过点P(1,1,1)的球面方程是 。
3.设球面的方程为x 2+y 2+z 2-2x-4y+2z=0,则该球面的球心坐标是 ,球面的 半径 为 。
4.将zox 面上的抛物线z 2=5x,绕ox 轴旋转而成的曲面方程是 。
5.圆锥为x 2+y 2=3z 2的半顶角α= 。
6.方程y 2=z 表示的曲面是曲线平行与 轴的 柱面。
7.方程y=x+1在平面解析几何中表示 。
而在空间解析几何中表示 。
二、选择题1.设球面的方程是x 2+y 2+z 2+Dx+Ey+Fz+G=0,若该球面与三个坐标系都相切,则方程 的系数应满足条件 。
(A)、D=E=F=0 (B)、D2+E2+F2=6G(C)、D2+E2+F2+6G=0 (D)G=02.XOZ 坐标面上的直线x=z-1 绕oz 轴旋转而成的圆锥面的方程是 。
(A)x 2+y 2=z-1 (B)2z =x 2+y 2+1 (C)2)1(-z = x 2+y 2 ( D )2)1(+x =y 2+z 2 3.方程x=2在空间表示 。
(A)、YOZ坐标面。
(B)、一个点。
(C)、一条直线。
(D)、与YOZ面平行的平面。
4.下列方程中 表示母线平行与oy 轴的双曲柱面。
(A) x 2-y 2=1 (B) x 2 +z 2=1 (C) x 2+z=1 (D) xz=1二、已知两点A(5,4,0)、B(-4,3,4)=,求点P的轨迹方程。
四、说明下列旋转曲面是怎样形成的。
1.Z=2( x 2+y 2) 2. 4x 2+9y 2+9z 2=36五.画出下列各曲面的图形。
1. Y 2=2px (p>0) 2.由 x+y=1 x 2+y 2=1和z=0所围立体的表面。
§7.6 空间曲线及其方程一、填空题 1.方程组{1532+=-=x y x y 在平面解析几何中表示 ,在空间解析几何表示 。
2.曲面x 2+y 2-92z =0与平面z=3的交线圆的方程是 ,其圆心坐标是 ,圆的半径为 。
3.曲线{1122222)1()1(=+=++--y x z y x 在YOZ面上的投影曲线为 。
4.螺旋线x=acos θ,y=asin θ,z=b θ在YOZ面上的投影曲线为 。
5.上半锥面Z=22y x +(01≤≤z )在XOY面上的投影为 ,在XOZ面上的投影为 ,在YOZ面上的投影为 。
6.曲线⎪⎩⎪⎨⎧+==+=1212t z t y t x 的一般式方程为 。
二、选择题 1.方程{19422=+=yx zy 在空间解析几何中表示 。
(A)、椭圆柱面 (B)、椭圆曲线 (C)、两个平行平面 (D)、两条平行直线 2.已知曲线{2222=++=++z y x az y x 在YOZ坐标面上的投影曲线为{122=++=zyyz x ,则a = 。
(A)、-1 (B)、0 (C)、1 (D)、2 4.参数方程⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 的一般方程是 。
(A)、x 2+y 2=a 2(B)、x=acos b z (C)、y=asin b z (D)、{cos sin b za x bz a y == 三、化曲线{9222=++=z y x xy 为参数方程。
五.画出下列曲线在第一卦限内的图形。
1.{12==x y 2。
{222222ay x az x =+=+§7.7 平面及其方程一、填空题1.过点M(3,0,1)且与平面3x-7y+5z-12=0平行的平面方程 。
2.三平面x+3y+z=1,2x-y-z=0,-x+2y+2z=3的交点坐标是 。
3.过点(2,-5,3)且平行与XOZ平面的平面方程是 。
4.过点M1(4,0,-2)和M2(5,1,7)且平行于OX轴的平面方程是 。
5.点P(1,2,1)到平面x+2y+2z-10=0的距离是 。
6.当l = ,及m= 时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。
二、选择题1.平面x -2z = 0的位置是 。
(A)、平行XOZ坐标面。
(B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 2.下列平面中通过坐标原点的平面是 。