(完整版)2019考研数学三真题及参考答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019全国研究生考试数学三真题及参考答案解析
一、选择题
1.()
为同阶无穷小,则与时,若当=-→k x
x x x k
tan 0 A.0 B.1 C.2 D.3 2.
的取值范围为()个不同的实根,则有已知k k x x 3055=+- A.()4-∞-, B.()∞+,4 C.]44[,- D.
),(44- 3.
c ,b ,a ,x C C y ce by y a y x -x x 则的通解为已知e )e (21++==+'+''的值
为( )
A.1,0,1
B.1,0,2
C.2,1,3
D.2,1,4
4.的是()条件收敛,则下列正确绝对收敛,已知∑∑∞
=∞
=11n n
n n n
v nu A.
条件收敛n
n n v u ∑∞=1 B.绝对收敛∑∞
=1n n
n v u
C.
)收敛(n
n n
v u +∑
∞
=1
D.)发散(n
n n
v u +∑∞
=1
5个的基础解析有的伴随矩阵,且为阶矩阵,为已知204*
=Ax A A A 线性无关的
解,则
) ()(=*
A r A.0 B.1 C.2 D.3
6.设A 是3阶实对称矩阵,E 是3阶单位矩阵.若E A A 22
=+,且4=A ,则二次型
Ax x T 的规范形为
A.232221y y y ++.
B.232221y y y -+.
C.232221y y y --.
D.2
32221y y y ---.
7.设B A ,为随机事件,则)()(B P A P =的充分必要条件是
A.).()()(B P A P B A P +=Y
B.).()()(B P A P AB P =
C.).()(A B P B A P =
D.).()(B A P AB P =
8.设随机变量X 与Y 相互独立,且都服从正态分布),(2
σμN ,则{}
1<-Y X P A.与μ无关,而与2σ有关. B.与μ有关,而与2σ无关. C.与2
,σμ都有关. D.与2,σμ都无关.
二.填空题,9~14小题,每小题4分,共24分.
9.
()=⎪⎪⎭⎫
⎝
⎛+++⨯+⨯∞→n
n n n 11321211lim Λ 10. 曲线⎪⎭
⎫
⎝⎛-+=232
cos 2sin ππ
<
<x x x y 的拐点坐标为 11. 已知()t t x f x
d 11
4⎰
+=
,则()=⎰x x f x d 10
2
12. A, B 两种商品的价格为A p ,B p ,A 商品的价格需求函数为
2
22500B B A A p p p p +--,则当A p =10,B p =20时,A 商品的价格需求弹性AA η(0>AA η)=
13. 设⎪⎪⎪⎭⎫ ⎝⎛---=11011
11012a A ,⎪⎪⎪
⎭
⎫
⎝⎛=a b 10,若b Ax =有无穷多解,则a= 14 设随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=,其他,
02
0,2)(x x
x f )
(x F 为X 的分布函数,X E 为X 的数学期望,则{}=->1X X F P E )
( . 三、解答题
15.已知函数⎩
⎨⎧≤+>=010
)(2x xe x x x f x x ,求的极值并求)(f )('f x x
16.设)(v u f ,具有连续的2阶偏导数,求
),,(),(y x y x f xy y x g -+-=2
2222y g
y x g x g ∂∂+∂∂∂+∂∂ 17.)(x y 显微分方程2
2
21'x e x
xy y =-满足条件e y =)1(的特解.
(1)求)(x y
(2)区域D {}
)(0,21,x y y x y x ≤≤≤≤)(,D 绕轴旋转的旋转体的体积 18.求曲线)0(sin >=-x x e y x
与x 轴之间图形的面积。 19.设dx x x a n n ⎰
-=
1
21,n=(0,1,2…)
(1)证明数列{}n a 单调减少,且22
1
-+-=n n a n n a (n=2,3…) (2)求1
lim
-∞→n n
n a a .
20.设向量组Ⅰ.,)3,1,1(,)3,2,1(,)4,0,1(,)4,1,1(42321T
T T T a a +=+===αααα Ⅱ..)3,3,1(,)1,2,0(,)3,1,1(2321T
T T a a a +=-=+=βββ
若向量组Ⅰ与向量组Ⅱ等价,求a ,并将3β用321,,ααα表示
21.已知矩阵相似与⎪⎪⎪
⎭
⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛----=y B x A 0001001220022
122 (1)求y x ,,
(2)求可逆矩阵,P 使得B AP P =-1
22.已知随机变量
Y
X ,相互独立,X 服从参数为1的指数分布
10,111~<<⎪⎪⎭
⎫
⎝⎛--p p p Y ,令XY Z =.
x