2018年北京海淀、密云区初三一模数学试卷详解

合集下载

北京市各区2018届中考一模数学试卷精选汇编:函数计算及运用(含答案)

北京市各区2018届中考一模数学试卷精选汇编:函数计算及运用(含答案)

函数计算及运用专题 东城区22. 已知函数()30y x x=>的图象与一次函数()20y ax a =-≠的图象交于点A ()3,n . (1)求实数a 的值;(2) 设一次函数()20y ax a =-≠的图象与y 轴交于点B .若点C 在y 轴上,且=2ABC AOB S S △△,求点C 的坐标.22.解:(1)∵点()3,A n 在函数()30y x x=>的图象上, ∴=1n ,点()3,1A .∵直线()20y ax a =-≠过点()3,1A , ∴ 321a -= .解得 1a =. ----------------------2分 (2)易求得()0,2B -.如图,12AOB A S OB x =⋅△,1=2ABC A S BC x ⋅△∵=2ABC AOB S S △△, ∴=24BC OB =.∴()10,2C ,或()20,6C -. ----------------------5分西城区22.如图,在平面直角坐标系xOy 中,直线y x m =+与x 轴的交点为0()4,A -,与y 轴的交点为B ,线段AB 的中点M 在函数ky x=(0k ≠)的图象上 (1)求m ,k 的值;(2)将线段AB 向左平移n 个单位长度(0n >)得到线段CD ,A ,MB 的对应点分别为C ,N ,D .①当点D 落在函数ky x=(0x <)的图象上时,求n 的值. ②当MD MN ≤时,结合函数的图象,直接写出n 的取值范围.【解析】(1)如图.∵直线y x m =+与x 轴的交点为0()4,A -, ∴4m =.∵直线y x m =+与y 轴的交点为B , ∴点B 的坐标为(0,4)B . ∵线段AB 的中点为M , ∴可得点M 的坐标为(2,2)M -. ∵点M 在函数ky x=(0k ≠)的图象上, ∴4k =-.(2)①由题意得点D 的坐标为(,4)D n -, ∵点D 落在函数ky x=(0k ≠)的图象上, ∴44n -=-, 解得1n =.②n 的取值范围是2n ≥.海淀区22.在平面直角坐标系xOy 中,已知点P (2,2),Q (-1,2),函数my x=.(1)当函数my x=的图象经过点P 时,求m 的值并画出直线y x m =+. (2)若P ,Q 两点中恰有一个点的坐标(x ,y )满足不等式组,m y xy x m⎧>⎪⎨⎪<+⎩(m >0),求m 的取值范围.22.解:(1)∵函数my x=的图象经过点()22P ,, ∴2=2m,即4m =. ………………1分 图象如图所示. ………………2分(2)当点()22P ,满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0)时, 解不等式组2222m m⎧>⎪⎨⎪<+⎩,得04m <<. ………………3分 当点()12Q -,满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0)时, 解不等式组221m m>-⎧⎨<-+⎩,得3m >. ………………4分∵P Q ,两点中恰有一个点的坐标满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0), ∴m 的取值范围是:03m <≤,或4m ≥. ………………5分丰台区22.在平面直角坐标系xOy 中,反比例函数2y x=的图象与一次函数y kx b =+的图象的交点分别为P (m ,2),Q (-2,n ). (1)求一次函数的表达式;(2)过点Q 作平行于y 轴的直线,点M 为此直线上的一点,当MQ = PQ 时,直接写出点M 的坐标.22.(1)解: ∵反比例函数2y x=的图象经过点(,2)P m ,Q (-2,n ), ∴1m =,1n =-.∴点P ,Q 的坐标分别为(1,2),(-2,-1). …….…….…….……2分 ∵一次函数y kx b =+的图象经过点P (1,2),Q (-2,-1),∴2,2 1.k b k b +=⎧⎨-+=-⎩ 解得1,1.k b =⎧⎨=⎩ ∴一次函数的表达式为1y x =+. .…….…….…….……3分(2)点M 的坐标为(-2,)或(-2,)……………5分石景山区22.在平面直角坐标系xOy 中,函数a y x=(0x >)的图象与直线1l y x b =+:交于点(3,2)A a -.(1)求a ,b 的值;(2)直线2l y x m =-+:与x 轴交于点B ,与直线1l 交于点C ,若S △ABC 6≥,求m 的取值范围.22.解:(1)∵函数()0a y x x=>的图象过点()3,2A a -,∴23a a -=,解得3a =. ………………1分∵直线1l y x b =+:过点()3,1A ,∴2b =-. ………………2分 (2)设直线2y x =-与x 轴交于点D ,则(2,0)D , 直线y x m =-+与x 轴交于点(,0)B m , 与直线y x b =+交于点22(,)22m m C +-. ①当S △ABC =S △BCD +S △ABD =6时,如图1. 可得211(2)(242m m -+- 解得2m =-,8m =②当S △ABC =S △BCD -S △ABD =6时,如图2.可得211(2)(2)1642m m ---⨯=, 解得8m =,2m =-(舍).综上所述,当8m ≥或2m -≤时,S △ABC 6≥. ………………5分朝阳区22. 如图,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点A 、B ,与反比例函数xky =的图象在第四象限交于点C ,CD ⊥x 轴于点D ,tan ∠OAB =2,OA =2,OD =1. (1)求该反比例函数的表达式;(2)点M 是这个反比例函数图象上的点,过点M作MN ⊥y 轴,垂足为点N ,连接OM 、AN ,如果 S △ABN =2S △OMN ,直接写出点M 的坐标.22. 解:(1)∵AO =2,OD =1,∴AD =AO+ OD =3. ………………………………………………1分 ∵CD ⊥x 轴于点D , ∴∠ADC =90°.在Rt △ADC 中,6tan =∠⋅=OAB AD CD ..∴C (1,-6). ……………………………………………………2分 ∴该反比例函数的表达式是xy 6-=. ……………………………………3分 (2)点M 的坐标为(-3,2)或(53,-10). ……………………5分 ∴OM 27=215 OM=715∴⊙O 的半径是715…………………………………6′门头沟区20. 如图,在平面直角坐标系xOy 中,一次函数y x =与反比例函数ky x=(k ≠0)的图象相交于点)A a . (1)求a 、k 的值;(2)直线x =b (0b >)分别与一次函数y x =、反比例函数ky x=的图象相交于点M 、N , 当MN =2时,画出示意图并直接写出b 的值.20.(本小题满分5分) (1)∵直线y x =与双曲线ky x=(k ≠0)相交于点)A a .∴a =1分∴A3k =………………………2分 (2)示意图正确………………………………3分 3b =或1 ………………………………5分大兴区22.如图,点A 是直线2y x =与反比例函数1m y x-=(m 为常数)的图象的交点.过点A 作x 轴的垂线,垂足为B ,且OB =2.(1)求点A 的坐标及m 的值;(2)已知点P (0,n) (0<n ≤8) ,过点P 作平行于x 轴的直线,交直线2y x =于点C 11(,)x y , 交反比例函数1m y x-=(m 为常数)的图象于点D 22(,)x y ,交垂线AB 于点E 33(,)x y , 若231x x x <<,结合函数的图象,直接写出123++x x x 的取值范围.22.(1)解:由题意得,可知点A 的横坐标是2,……………………1分由点A 在正比例函数2y x =的图象上,∴点A 的坐标为(2,4)……………………………………2分又点A 在反比例函数1m y x-=的图象上,142m -∴=,即9m =.……………………………………… 3分(2)6<x 1+x 2+x 3≤7 ……………………………………………… 5分平谷区22.如图,在□ABCD 中,BF 平分∠ABC 交AD 于点F ,AE ⊥BF 于点O ,交BC 于点E ,连接EF .(1)求证:四边形ABEF 是菱形;(2)连接CF ,若∠ABC=60°, AB= 4,AF =2DF ,求CF 的长.22.(1)证明:∵BF 平分∠ABC ,∴∠ABF =∠CBF . (1)∵□ABCD ,∴AD ∥BC . ∴∠AFB =∠CBF .OF ODF∴∠ABF =∠AFB . ∴AB=AF . ∵AE ⊥BF ,∴∠ABF +∠BAO =∠CBF +∠BEO =90°. ∴∠BAO =∠BEO . ∴AB=BE . ∴AF=BE .∴四边形ABEF 是平行四边形.∴□ABEF 是菱形. (2)(2)解:∵AD=BC ,AF=BE ,∴DF=CE . ∴BE =2CE . ∵AB =4,∴BE =4. ∴CE =2.过点A 作AG ⊥BC 于点G . (3)∵∠ABC =60°,AB=BE , ∴△ABE 是等边三角形. ∴BG=GE =2.∴AF=CG =4. ········································································· 4 ∴四边形AGCF 是平行四边形. ∴□AGCF 是矩形. ∴AG=CF .在△ABG 中,∠ABC =60°,AB =4,∴AG =∴CF =怀柔区22.在平面直角坐标系xOy 中,一次函数y=kx+b 的图象与y 轴交于点B (0,1),与反比例函数xmy的图象交于点A(3,-2). (1)求反比例函数的表达式和一次函数表达式;(2)若点C 是y 轴上一点,且BC=BA ,直接写出点C 的坐标.y x–1–2–3–4–512345–1–2–3–4–512345O22.(1)∵双曲线x m y =过A (3,-2),将A (3,-2)代入xmy =, 解得:m= -6.∴所求反比例函数表达式为: y=x6-. …………………………………1分 ∵点A (3,-2)点B (0,1)在直线y=kx+b 上,∴-2=3k+1. …………………………………………………………………………………2分 ∴k=-1.∴所求一次函数表达式为y=-x+1. …………………………………………………………3分 (2)C(0,123+ )或 C(0,231- ). ……………………………………………………5分延庆区22.在平面直角坐标系xOy 中,直(0)y kx b k =+≠ 与x 轴交于点A ,与y 轴交于点B ,与反比例函数(0)my m x=≠的图象在第一象限交于点P (1,3),连接OP . (1)求反比例函数(0)my m x=≠的表达式; (2)若△AOB 的面积是△POB 的面积的2倍,求直线y kx b =+的表达式.-1-2-3-3-2-1y123456x54321O22.(1)3y x……1分错误!未找到引用源。

2018北京市海淀区初三一模数学

2018北京市海淀区初三一模数学

2018北京市海淀区初三一模数学一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.2.(2分)图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.3.(2分)若正多边形的一个外角是120°,则该正多边形的边数是()A.6 B.5 C.4 D.34.(2分)下列图形中,既是中心对称图形,也是轴对称图形的是()A.赵爽弦图B.科克曲线C.河图幻方D.谢尔宾斯基三角形5.(2分)如果a﹣b=1,那么代数式的值是()A.2 B.﹣2 C.1 D.﹣16.(2分)实数a,b,c,d在数轴上的对应点的位置如图所示.若b+d=0,则下列结论中正确的是()A.b+c>0 B.C.ad>bc D.|a|>|d|7.(2分)在线教育使学生足不出户也能连接全球优秀的教育资源.下面的统计图反映了我国在线教育用户规模的变化情况.(以上数据摘自《2017年中国在线少儿英语教育白皮书》)根据统计图提供的信息,下列推断一定不合理的是()A.2015年12月至2017年6月,我国在线教育用户规模逐渐上升B.2015年12月至2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升C.2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万D.2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70%8.(2分)如图1,矩形的一条边长为x,周长的一半为y.定义(x,y)为这个矩形的坐标.如图2,在平面直角坐标系中,直线x=1,y=3将第一象限划分成4个区域.已知矩形1的坐标的对应点A落在如图所示的双曲线上,矩形2的坐标的对应点落在区域④中.则下面叙述中正确的是()A.点A的横坐标有可能大于3B.矩形1是正方形时,点A位于区域②C.当点A沿双曲线向上移动时,矩形1的面积减小D.当点A位于区域①时,矩形1可能和矩形2全等二、填空题(本题共16分,每小题2分)9.(2分)从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是.10.(2分)我国计划2023年建成全球低轨卫星星座﹣﹣鸿雁星座系统,该系统将为手机网络用户提供无死角全覆盖的网络服务.2017年12月,我国手机网民规模已达753 000 000,将753 000 000用科学记数法表示为.11.(2分)如图,AB∥DE,若AC=4,BC=2,DC=1,则EC=.12.(2分)请写出一个根为1的分式方程:.13.(2分)京张高铁是2022年北京冬奥会的重要交通基础设施,考虑到不同路段的特殊情况,将根据不同的运行区间设置不同的时速.其中,北京北站到清河段全长11千米,分为地下清华园隧道和地上区间两部分,运行速度分别设计为80千米/小时和120千米/小时.按此运行速度,地下隧道运行时间比地上大约多2分钟(小时),求清华园隧道全长为多少千米.设清华园隧道全长为x千米,依题意,可列方程为.14.(2分)如图,四边形ABCD是平行四边形,⊙O经过点A,C,D,与BC交于点E,连接AE,若∠D=72°,则∠BAE=°.15.(2分)定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦.阿基米德折弦定理:如图1,AB和BC组成圆的折弦,AB>BC,M是弧ABC的中点,MF⊥AB于F,则AF=FB+BC.如图2,△ABC中,∠ABC=60°,AB=8,BC=6,D是AB上一点,BD=1,作DE⊥AB交△ABC的外接圆于E,连接EA,则∠EAC=°.16.(2分)下面是“过圆上一点作圆的切线”的尺规作图过程.已知:⊙O和⊙O上一点P.求作:⊙O的切线MN,使MN经过点P.作法:如图2,(1)作射线OP;(2)以点P为圆心,小于OP的长为半径作弧交射线OP于A,B两点;(3)分别以点A,B为圆心,以大于长为半径作弧,两弧交于M,N两点;(4)作直线MN.则MN就是所求作的⊙O的切线.请回答:该尺规作图的依据是.三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题5分;第27~28小题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:.18.(5分)解不等式组:19.(5分)如图,△ABC中,∠ACB=90°,D为AB的中点,连接CD,过点B作CD的平行线EF,求证:BC平分∠ABF.20.(5分)关于x的一元二次方程x2﹣(2m﹣3)x+m2+1=0.(1)若m是方程的一个实数根,求m的值;(2)若m为负数,判断方程根的情况.21.(5分)如图,▱ABCD的对角线AC,BD相交于点O,且AE∥BD,BE∥AC,OE=CD.(1)求证:四边形ABCD是菱形;(2)若AD=2,则当四边形ABCD的形状是时,四边形AOBE的面积取得最大值是.22.(5分)在平面直角坐标系xOy中,已知点P(2,2),Q(﹣1,2),函数y=.(1)当函数y=的图象经过点P时,求m的值并画出直线y=x+m.(2)若P,Q两点中恰有一个点的坐标(x,y)满足不等式组(m>0),求m的取值范围.23.(6分)如图,AB是⊙O的直径,弦EF⊥AB于点C,过点F作⊙O的切线交AB的延长线于点D.(1)已知∠A=α,求∠D的大小(用含α的式子表示);(2)取BE的中点M,连接MF,请补全图形;若∠A=30°,MF=,求⊙O的半径.24.(6分)某校九年级八个班共有280名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,请将下面的过程补全.收集数据调查小组计划选取40名学生的体质健康测试成绩作为样本,下面的取样方法中,合理的是(填字母);A.抽取九年级1班、2班各20名学生的体质健康测试成绩组成样本B.抽取各班体育成绩较好的学生共40名学生的体质健康测试成绩组成样本C.从年级中按学号随机选取男女生各20名学生学生的体质健康测试成绩组成样本整理、描述数据抽样方法确定后,调查小组获得了40名学生的体质健康测试成绩如下:77 83 80 64 86 90 75 92 83 8185 86 88 62 65 86 97 96 82 7386 84 89 8 692 73 57 77 87 8291 81 86 71 53 72 90 76 68 78整理数据,如下表所示:2018年九年级部分学生学生的体质健康测试成绩统计表调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了对比,你能从中得到的结论是,你的理由是.体育老师计划根据2018年的统计数据安排75分以下的同学参加体质加强训练项目,则全年级约有名同学参加此项目.25.(6分)在研究反比例函数y=的图象与性质时,我们对函数解析式进行了深入分析.首先,确定自变量x 的取值范围是全体非零实数,因此函数图象会被y轴分成两部分;其次,分析解析式,得到y随x的变化趋势:当x>0时,随着x值的增大,的值减小,且逐渐接近于零,随着x值的减小,的值会越来越大…,由此,可以大致画出y=在x>0时的部分图象,如图1所示:利用同样的方法,我们可以研究函数y=的图象与性质.通过分析解析式画出部分函数图象如图2所示.(1)请沿此思路在图2中完善函数图象的草图并标出此函数图象上横坐标为0的点A;(画出网格区域内的部分即可)(2)观察图象,写出该函数的一条性质:;(3)若关于x的方程=a(x﹣1)有两个不相等的实数根,结合图象,直接写出实数a的取值范围:.26.(6分)在平面直角坐标系xOy中,已知抛物线y=x2﹣2ax+b的顶点在x轴上,P(x1,m),Q(x2,m)(x1<x2)是此抛物线上的两点.(1)若a=1,①当m=b时,求x1,x2的值;②将抛物线沿y轴平移,使得它与x轴的两个交点间的距离为4,试描述出这一变化过程;(2)若存在实数c,使得x1≤c﹣1,且x2≥c+7成立,则m的取值范围是.27.(7分)如图,已知∠AOB=60°,点P为射线OA上的一个动点,过点P作PE⊥OB,交OB于点E,点D在∠AOB内,且满足∠DPA=∠OPE,DP+PE=6.(1)当DP=PE时,求DE的长;(2)在点P的运动过程中,请判断是否存在一个定点M,使得的值不变?并证明你的判断.28.(7分)在平面直角坐标系xOy中,对于点P和⊙C,给出如下定义:若⊙C上存在一点T不与O重合,使点P 关于直线OT的对称点P'在⊙C上,则称P为⊙C的反射点.下图为⊙C的反射点P的示意图.(1)已知点A的坐标为(1,0),⊙A的半径为2,①在点O(0,0),M(1,2),N(0,﹣3)中,⊙A的反射点是;②点P在直线y=﹣x上,若P为⊙A的反射点,求点P的横坐标的取值范围;(2)⊙C的圆心在x轴上,半径为2,y轴上存在点P是⊙C的反射点,直接写出圆心C的横坐标x的取值范围.数学试题答案一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.【分析】根据高线的定义即可得出结论.【解答】解:B,C,D都不是△ABC的边BC上的高,故选:A.【点评】本题考查的是作图﹣基本作图,熟知三角形高线的定义是解答此题的关键.2.【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【解答】解:A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选:C.【点评】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.3.【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.【解答】解:多边形的每个外角相等,且其和为360°,据此可得=3,即该正多边形的边数是3.故选:D.【点评】本题主要考查了正多边形外角和的知识,正多边形的每个外角相等,且其和为360°,比较简单.4.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项正确;C、不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.【分析】先计算括号内的减法,再计算乘法,继而将a﹣b=1整体代入计算可得.【解答】解:原式==•=2(a﹣b),当a﹣b=1时,原式=2×1=2,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.6.【分析】根据数轴上的点表示的数右边的总比左边的大,可得a<b<0<c<d,根据有理数的运算,可得答案.【解答】解:由数轴上的点表示的数右边的总比左边的大,得a<b<0<c<d,A、b+d=0,∴b+c<0,故A不符合题意;B、<0,故B不符合题意;C、ad<bc<0,故C不符合题意;D、|a|>|b|=|d|,故D正确;故选:D.【点评】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a<b<0<c<d是解题关键,又利用了有理数的运算.7.【分析】根据折线统计图表示出数量的增减变化情况解答.【解答】解:2015年12月至2017年6月,我国在线教育用户规模逐渐上升,A推断合理;2015年12月至2016年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续下降,B推断不合理;2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万,C推断合理;2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70%,D推断合理;【点评】本题考查的是折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.8.【分析】A、根据反比例函数k一定,并根据图形得:当x=1时,y<3,得k=xy<3,因为y是矩形周长的一半,即y>x,可判断点A的横坐标不可能大于3;B、根据正方形边长相等得:y=2x,得点A是直线y=2x与双曲线的交点,画图,如图2,交点A在区域③,可作判断;C、先表示矩形面积S=x(y﹣x)=xy﹣x2=k﹣x2,当点A沿双曲线向上移动时,x的值会越来越小,矩形1的面积会越来越大,可作判断;D、当点A位于区域①,得x<1,另一边为:y﹣x>2,矩形2的坐标的对应点落在区域④中得:x>1,y>3,即另一边y﹣x>0,可作判断.【解答】解:设点A(x,y),A、设反比例函数解析式为:y=(k≠0),由图形可知:当x=1时,y<3,∴k=xy<3,∵y>x,∴x<3,即点A的横坐标不可能大于3,故选项A不正确;B、当矩形1为正方形时,边长为x,y=2x,则点A是直线y=2x与双曲线的交点,如图2,交点A在区域③,故选项B不正确;C、当一边为x,则另一边为y﹣x,S=x(y﹣x)=xy﹣x2=k﹣x2,∵当点A沿双曲线向上移动时,x的值会越来越小,∴矩形1的面积会越来越大,故选项C不正确;D、当点A位于区域①时,∵点A(x,y),∴x<1,y>3,即另一边为:y﹣x>2,矩形2落在区域④中,x>1,y>3,即另一边y﹣x>0,∴当点A位于区域①时,矩形1可能和矩形2全等;故选项④正确;故选:D.【点评】本题考查了函数图象和新定义,有难度,理由x和y的意义是关键,并注意数形结合的思想解决问题.二、填空题(本题共16分,每小题2分)9.【分析】由在“加”“油”“向”“未”“来”这5个字的卡片中只有1张写有“加”字,利用概率公式计算可得.【解答】解:∵在“加”“油”“向”“未”“来”这5个字的卡片中只有1张写有“加”字,∴这张卡片上面恰好写着“加”字的概率是,故答案为:.【点评】本题考查了统计与概率中概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.10.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:753 000 000=7.53×108.故选:7.53×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.【分析】由AB∥DE,即可证得△ABC∽△ECD,然后由相似三角形的对应边成比例,即可求得CE的长.【解答】解:∵AB∥DE,∴△ABC∽△ECD,∴,∵AC=4,BC=2,DC=1,∴,解得:CE=2.故答案为:2【点评】此题考查了相似三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.12.【分析】分式方程的根就是能够使方程左右两边相等的未知数的值.【解答】解:把x=1代入方程+k=0中,得k=﹣1,则有方程﹣1=0.故答案为﹣1=0,此题答案不唯一.【点评】本题考查了分式方程的解,此题答案不唯一,紧扣分式方程的定义,写出一个比较简单的方程即可.13.【分析】设清华园隧道全长为x千米,根据“,地下隧道运行时间比地上大约多2分钟(小时)”列出方程.【解答】解:设清华园隧道全长为x千米,则地上区间全长为(11﹣x)千米,依题意得:.故答案是:.【点评】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.14.【分析】根据平行四边形的性质得到∠DCB=(180°﹣∠D)=108°,根据圆内接四边形的性质得到∠AEB=∠D=72°,由三角形的内角和即可得到结论.【解答】解:∵四边形ABCD是平行四边形,∠D=72°,∴∠DCB=(180°﹣∠D)=108°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=72°,∠DAC=180°﹣∠DCB=72°∴∠BAE=180°﹣72°﹣72°=36°,故答案为:36【点评】本题考查了平行四边形的性质,三角形的内角和,圆内接四边形的性质,熟练掌握平行四边形的性质是解题的关键.15.【分析】如图2,连接OA、OC、OE,先计算得到AD=BD+BC=7,则根据阿基米德折弦定理得到点E为弧ABC 的中点,即弧AE=弧CE,根据圆心角、弧、弦的关系得到∠AOE=∠COE,接着利用圆周角得到∠AOC=2∠ABC =120°,则可得到∠AOE=∠COE=120°,然后再利用圆周角定理得到∠CAE的度数.【解答】解:如图2,连接OA、OC、OE,∵AB=8,BC=6,BD=1,∴AD=7,BD+BC=7,∴AD=BD+BC,而ED⊥AB,∴点E为弧ABC的中点,即弧AE=弧CE,∴∠AOE=∠COE,∵∠AOC=2∠ABC=2×60°=120°,∴∠AOE=∠COE=120°,∴∠CAE=∠COE=60°.故答案为60°.【点评】本题考查了三角形的外接圆与外心:熟练掌握三角形外心的定义和外心的性质.也考查了圆周角定理.16.【分析】根据两点确定一条直线、线段的垂直平分线的性质和切线的判定定理进行作图.【解答】解:利用两点确定一条直线画OP,利用与一条线段两端点距离相等的点在这条线段的垂直平分线上画MN⊥AB于P,利用经过半径的外端并且垂直于这条半径的直线是圆的切线确定MN为⊙O的切线.故答案为两点确定一条直线;与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;经过半径的外端并且垂直于这条半径的直线是圆的切线.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的判定与性质.三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题5分;第27~28小题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.【分析】直接利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简得出答案.【解答】解:原式=3﹣2+3×+2﹣=5﹣2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【解答】解:解不等式①,得x>﹣3,解不等式②,得x<2,所以原不等式组的解集为﹣3<x<2.【点评】本题考查的是一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.19.【分析】根据直角三角形的性质得到CD=BD,根据等边对等角得到∠ABC=∠DCB,根据平行线的性质证明即可.【解答】证明:∵∠ACB=90°,D为AB的中点,∴,∴∠ABC=∠DCB,∵DC∥EF,∴∠CBF=∠DCB,∴∠CBF=∠ABC.∴BC平分∠ABF.【点评】本题考查的是直角三角形的性质、平行线的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.20.【分析】(1)由方程根的定义,代入可得到关于m的方程,则可求得m的值;(2)计算方程根的判别式,判断判别式的符号即可.【解答】解:(1)∵m是方程的一个实数根,∴m2﹣(2m﹣3)m+m2+1=0,∴;(2)△=b2﹣4ac=﹣12m+5,∵m<0,∴﹣12m>0.∴△=﹣12m+5>0.∴此方程有两个不相等的实数根.【点评】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.21.【分析】(1)根据平行四边形的性质和菱形的判定证明即可;(2)根据正方形的判定和性质解答即可.【解答】(1)证明:∵AE∥BD,BE∥AC,∴四边形AEBO是平行四边形,∵四边形ABCD是平行四边形,∴DC=AB.∵OE=CD,∴OE=AB.∴平行四边形AEBO是矩形,∴∠BOA=90°.∴AC⊥BD.∴平行四边形ABCD是菱形;(2)当AD=2时,四边形ABCD的形状是正方形,AB=AD=2,OE=AB=2,即四边形AOBE的面积取得最大值是2.故答案为:正方形,2【点评】此题考查菱形的判定和性质,解本题的关键是根据平行四边形的性质和菱形的判定解答.22.【分析】(1)依据函数的图象经过点P(2,2),即可得到m=4.进而得出函数y=x+4的图象;(2)当点P(2,2)满足(m>0)时,解不等式组得0<m<4.当点Q(﹣1,2)满足(m>0)时,解不等式组得m>3.即可得到m的取值范围.【解答】解:(1)∵函数的图象经过点P(2,2),∴,即m=4.∴y=x+4,当x=0时,y=4;当y=0时,x=﹣4,图象如图所示.(2)当点P(2,2)满足(m>0)时,解不等式组得0<m<4.当点Q(﹣1,2)满足(m>0)时,解不等式组得m>3.∵P,Q两点中恰有一个点的坐标满足(m>0),∴m的取值范围是:0<m≤3,或m≥4.【点评】本题考查待定系数法求反比例函数的解析式,解决本题的关键是明确反比例函数图象上点的坐标特征.23.【分析】(1)连接OE,OF,如图,利用等腰三角形的性质得到∠DOF=∠DOE.而∠DOE=2∠A,所以∠DOF=2α,再根据切线的性质得∠OFD=90°.从而得到∠D=90°﹣2α;(2)连接OM,如图,利用圆周角定理得到∠AEB=90°.再证明OM∥AE得到∠MOB=∠A=30°.而∠DOF=2∠A=60°,所以∠MOF=90°,设⊙O的半径为r,利用含30度的直角三角形三边的关系得OM=BM=r,然后根据勾股定理得到即(r)2+r2=()2,再解方程即可得到⊙O的半径.【解答】解:(1)连接OE,OF,如图,∵EF⊥AB,AB是⊙O的直径,∴∠DOF=∠DOE.∵∠DOE=2∠A,∠A=α,∴∠DOF=2α,∵FD为⊙O的切线,∴OF⊥FD.∴∠OFD=90°.∴∠D+∠DOF=90°,∴∠D=90°﹣2α;(2)连接OM,如图,∵AB为⊙O的直径,∴O为AB中点,∠AEB=90°.∵M为BE的中点,∴OM∥AE,∵∠A=30°,∴∠MOB=∠A=30°.∵∠DOF=2∠A=60°,∴∠MOF=90°,设⊙O的半径为r,在Rt△OMB中,BM=OB=r,OM=BM=r,在Rt△OMF中,OM2+OF2=MF2.即(r)2+r2=()2,解得r=2,即⊙O的半径为2.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和垂径定理.24.【分析】收集数据:根据抽样调查的可靠性解答可得;整理、描述数据:根据所给数据计数即可得;分析数据、得出结论:将2017、2018两年的数据比较即可得(合理即可),再用总人数乘以2018年75分以下的同学数占被调查人数的比例可得.【解答】解:收集数据:取样方法中,合理的是:C.从年级中按学号随机选取男女生各20名学生学生的体质健康测试成绩组成样本,故选:C;整理、描述数据:由所给数据补全统计表如下:去年的体质健康测试成绩比今年好,理由:去年较今年低分更少,高分更多,平均分更大.280×=70(人),即全年级约有70名同学参加此项目故答案为:去年的体质健康测试成绩比今年好、去年较今年低分更少,高分更多,平均分更大、70.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.25.【分析】(1)根据题意:x≥0,且≠1,所以要画的图象是0≤x<1的部分.(2)由图象可以得.(3)设y1=,y2=a(x﹣1),由关于x的方程=a(x﹣1)有两个不相等的实数根可得两图象有两个交点,将特殊点A代入可得a=1,绕着(1,0)旋转y2图象可得范围.【解答】解:(1)(2)当x>1时,y随着x的增大而减小(3)设y1=,y2=a(x﹣1)∴y2过定点(1,0)∵关于x的方程=a(x﹣1)有两个不相等的实数根∴y1的图象与y2的图象有两个交点.若交点为A(0,﹣1),则a=1,∴由图象可得a≥1【点评】本题考查了反比例函数图象上点的坐标特征,关键是能根据解析式画出图象.26.【分析】由抛物线顶点在x轴上,即可得出b=a2.(1)当a=1时,b=1,由此可得出抛物线的解析式为y=x2﹣2x+1.①由m=b=1,可得出关于x的一元二次方程,解之即可得出x1、x2的值;②设平移后的抛物线为y=(x﹣1)2+k,由平移后的抛物线与x轴的两个交点的距离为4,可得出(3,0)是平移后的抛物线与x轴的一个交点,将其代入y=(x﹣1)2+k即可求出结论;(2)解x2﹣2ax+a2=m可得出PQ=2,由x1、x2的范围可得出关于m的不等式,解之即可得出m的取值范围.【解答】解:∵抛物线y=x2﹣2ax+b的顶点在x轴上,∴,∴b=a2.(1)∵a=1,∴b=1,∴抛物线的解析式为y=x2﹣2x+1.①∵m=b=1,∴x2﹣2x+1=1,解得:x1=0,x2=2.②设平移后的抛物线为y=(x﹣1)2+k.∵抛物线的对称轴是x=1,平移后与x轴的两个交点之间的距离是4,∴(3,0)是平移后的抛物线与x轴的一个交点,∴(3﹣1)2+k=0,即k=﹣4,∴变化过程是:将原抛物线向下平移4个单位.(2)∵x2﹣2ax+a2=m,解得:x1=a﹣,x2=a+,∴PQ=2.又∵x1≤c﹣1,x2≥c+7,∴2≥(c+7)﹣(c﹣1)=8,∴m≥16.【点评】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征以及二次函数图象与几何变换,解题的关键是:(1)①通过解一元二次方程求出x1、x2的值;②利用二次函数图象上点的坐标特征求出k值;(2)通过解方程求出PQ=2.27.【分析】(1)如图1,连接DE,作PF⊥DE交DE于F.根据三角形的内角和得到∠OPE=30°,∠EPD=120°,解直角三角形即可得到结论;(2)如图2,当点P与点M不重合时,延长EP到K使得PK=PD.等量代换得到∠KPA=∠DPA,求得∠KPM=∠DPM,根据全等三角形的性质得到MK=MD,作ML⊥OE于L,MN⊥EK于N.解直角三角形得到ML=MO•sin60°=3,根据矩形的性质得到EN=ML=3.于是得到结论.【解答】解:(1)如图1,连接DE,作PF⊥DE交DE于F.∵PE⊥BO,∠AOB=60°,∴∠OPE=30°,∴∠DPA=∠OPE=30°,∴∠EPD=120°,∵DP=PE,DP+PE=6,∴∠PDE=30°,PD=PE=3,∴DF=PD•cos30°=,∴DE=2DF=3;(2)当M点在射线OA上且满足om=2时,的值不变,始终为1.理由如下:如图2,当点P与点M不重合时,延长EP到K使得PK=PD.∵∠DPA=∠OPE,∠OPE=∠KPA,∴∠KPA=∠DPA,∴∠KPM=∠DPM,∵PK=PD,PM是公共边,∴△KPM≌△DPM(SAS),∴MK=MD,作ML⊥OE于L,MN⊥EK于N.∵MO=2,∠MOL=60°,∴ML=MO•sin60°=3,∵PE⊥BO,ML⊥OE,MN⊥EK,∴四边形MNEL为矩形.∴EN=ML=3.∵EK=PE+PK=PE+PD=6,∴EN=NK.∵MN⊥EK,∴MK=ME.∴ME=MK=MD,即=1.当点P与点M重合时,由上过程可知结论成立.【点评】本题考查了全等三角形的判定和性质,特殊角的三角函数,矩形的判定和性质,含30°直角三角形的性质,正确的作出辅助线是解题的关键.28.【分析】(1)①根据⊙A的反射点的定义,画出图形即可判断;②设直线y=﹣x与以原点为圆心,半径为1和3的两个圆的交点从左至右依次为D,E,F,G,过点D作DH⊥x轴于点H,如图.求出点D、E、F、G的横坐标,结合反射点的定义即可解决问题;(3)如图3中,当C坐标为(4,0)时,⊙C的反射点P是以C′为圆心的⊙C′,此时⊙C′与y轴相切,由此即可判断;【解答】解(1)①如图1中,。

2018年北京市海淀区中考一模数学试卷含答案解析 精品

2018年北京市海淀区中考一模数学试卷含答案解析 精品

2018届北京市海淀区初三一模数学试卷一、单选题(共10小题)1.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2018年3月3日在北京胜利召开.截止到2018年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为()A.96.5×107B.9.65×107C.9.65×108 D.0.965×109考点:科学记数法和近似数、有效数字答案:B试题解析:科学记数法是一个数表示成a×10的n次幂的形式,其中1≤|a|<10,n为整数,所以根据题意得96 500 000=9.65×107.故选B.2.如图是某个几何体的三视图,该几何体是()A.长方体B.正方体C.圆柱D.三棱柱考点:立体图形的展开与折叠答案:D试题解析:由图可得此为三棱锥,故选D。

3.一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为()A.B.C.D.考点:概率及计算答案:C试题解析:共有15个球,3个红球,则摸出红球的概率为,故选C。

4.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.考点:中心对称与中心对称图形轴对称与轴对称图形答案:C试题解析:A既不是轴对称图形,也不是中心对称图形;B既是轴对称图形,也是中心对称图形;C 是轴对称图形但不是中心对称图形;D部是轴对称图形但是中心对称图形。

故选C。

5.如图,在四边形ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为()A.5B.4C.3D.2考点:平行四边形的性质答案:D试题解析:由题意可得,AB=AE=3,则ED=2,故选D。

6.如图,等腰直角三角板的顶点A,C分别在直线,上.若∥,,则的度数为()A.B.C.D.考点:平行线的判定及性质答案:C试题解析:根据平行线的性质可得:∠1+∠BAC+∠ACB+∠2=180,则∠2=10°。

北京市各区2018届九年级中考一模数学试卷分类汇编:二次函数综合专题含答案

北京市各区2018届九年级中考一模数学试卷分类汇编:二次函数综合专题含答案

3 个单
4
北京市各区 2018 届九年级中考一模数学试卷精选汇编
( 1)直接写出点 A 的坐标; ( 2)过点(0, 3)且平行于 x 轴的直线 l 与抛物线 G2 交于 B , C 两点.
①当 BAC =90 °时,求抛物线 G2 的表达式; ②若 60° BAC 120°,直接写出 m 的取值范围.
. ………………………………… 7 分
平谷区
26.在平面直角坐标系 xOy 中,抛物线 y x2 2bx 3 的对称轴为直线 x =2.
( 1)求 b 的值; ( 2)在 y 轴上有一动点 P( 0,m),过点 P 作垂直 y 轴的直线交抛物线于点 A( x1,y1),
B( x2 , y2),其中 x1 x2 . ①当 x2 x1 3时,结合函数图象,求出 m 的值; ②把直线 PB 下方的函数图象,沿直线 PB 向上翻折,图象的其余部分保持不变, 得到一
: (3, 2)
设二次函数表达式为: y a( x 3)2 2 …………… 1 分
∵该图象过 A (1 , 0)
∴ 0 a(1 3)2 2 ,解得 a 1
…………… 2 分
y
2
∴表达式为 y
1 (x
3)2
2
2
O
( 2)图象正确………………………………………………………
3分
由已知条件可知直线与图形“ G”要有三个交点 ① 当直线与 x 轴重合时,有 2 个交点 ,由二次函数的轴对称性可求
y
n
( n≠ 0)的图象经过点 M ,求反比例函数的解析式;
x
(3) 当 t<4 时,若直线 y=t 与直线 l 和( 2)反比例函数的图象分别交于点
距离大于等于 2 时,求 t 的取值范围 .

完整word版,北京市各区2018届九年级中考一模数学试卷精选汇编:压轴题专题(含答案),推荐文档

完整word版,北京市各区2018届九年级中考一模数学试卷精选汇编:压轴题专题(含答案),推荐文档

北京市各区2018届九年级中考一模数学试卷精选汇编压轴题专题东城区28.给出如下定义:对于O O 的弦 MN 和O O 外一点P (M , O , N 三点不共线,且 P , O在直线MN 的异侧),当/ MPN + Z MON= 180°时,则称点 P 是线段MN 关于点O的关联点•图1是点P 为线段MN 关于点O 的关联点的示意图•① / MDN 的大小为加 厂h(\ 丿1.(1)如图•在 A (1 , 0), B (1, 1) , C 「2,0 三占中 是线段MN 关于点O 的关联点的是(2)如图 (0, 1), ND 是线段MN 关于点O 的关联点. ② 在第一象限内有一点E 丿3m,mE 是线段MN 关于点O 的关联点,判断△ MNE 的形状,并直接写出点 E 的坐标;xOy 中,O O 的半径为③点F在直线y 2 2上,当/ MFN汶MDN时,求点F的横坐标X F的取值3范围.------------- 2分28•解:(1) C;(2 [① 60°②△ MNE是等边三角形,点E的坐标为.3,1 ;-------------- 5分③直线y ' x 2交y轴于点K3••• OK 2 , OT 2 .3 •••• OKT 60 •作OG_ KT于点G连接MG•/ M 0, 1 ,•OM1.•M为OK中点••MG=MKOM1.•••/ MGO=Z MO=30°, OG 3.•G迺32 2•/ MON 120 ,GON 90 •又OG 3, ON 1,•OGN 30 ••MGN 60 ••G是线段MN关于点O的关联点•经验证,点E 31在直线y结合图象可知,当点F在线段GE上时,符合题意•T X3 W X F W X E ,• ——w X F W , 3 •------------ 8 分2西城区28.对于平面内的O C和O C外一点Q,给出如下定义:若过点Q的直线与O C存在公共点,记为点A , B,设k AQ BQ,则称点A (或点B )是0 C的k相关依附点”,CQ2AQ 2BQ特别地,当点A和点B重合时,规定AQ BQ , k (或 ).CQ CQ已知在平面直角坐标系xOy中,Q( 1,0) , C(1,0) , O C的半径为r .(1)如图,当r 2时,①若A(0,1)是O C的k相关依附点”,则k的值为______________ .②A2(1 A/2,0)是否为O C的2相关依附点”.答:______________ (填是”或否”).(2)若0 C上存在k相关依附点”点M ,①当r 1,直线QM与O C相切时,求k的值.②当k 3时,求r的取值范围.(3)若存在r的值使得直线y , 3x b与O C有公共点,且公共点时O C的3相关依备用图附点”,直接写出b的取值范围.【解析】(1 [①•②是.(2)①如图,当r 1时,不妨设直线QM与O C相切的切点M在x轴上方(切点M在x轴下方时同理),连接CM,则QM CM ,••• Q( 1,0) , C(1,0) , r 1 ,••• CQ 2 , CM 1 ,• MQ 3 ,此时k 2MQ 3 CQ ,②如图,若直线QM与O C不相切,设直线QM与O C的另一个交点为N (不妨设QN QM,点N , M在x轴下方时同理),作CD QM于点D,则MD ND ,••• MQ NQ (MN NQ) NQ 2ND 2NQ 2DQ ,•/ CQ 2 ,.MQ NQ 2DQ “ k DQ ,CQ CQ•当k、3 时,DQ 3 ,此时CD CQ2 DQ2 1 ,假设O C经过点Q,此时r 2 ,•••点Q早O C外,• r的取值范围是1< r 2 .(3) 3 b 3.3 -海淀区28•在平面直角坐标系xOy中,对于点P和e C,给出如下定义:若e C上存在一点T不与O重合,使点P关于直线OT的对称点P'在eC上,则称P为eC的反射点.下图为eC 的反射点P的示意图.(1)已知点A的坐标为(1,0),e A的半径为2,①在点0(0,0),M(1,2),N(0, 3)中,e A的反射点是 ________ ;②点P在直线y x上,若P为e A的反射点,求点P的横坐标的取值范围;(2)eC的圆心在x轴上,半径为2,y轴上存在点P是eC的反射点,直接写出圆心 C 的横坐标x的取值范围.28 •解(1)①e A的反射点是M , N . ................. 1分②设直线y x与以原点为圆心,半径为1和3的两个圆的交点从左至右依次为 D , E , F , G,过点D作DH丄x轴于点H,如图.A*可求得点D的横坐标为.匕2 .2同理可求得点E , F , G的横坐标分别为,3—.2 2 2点P是e A的反射点,贝U e A上存在一点T,使点P关于直线0T的对称点P'在e A上, 则OP 0P'.•/ K 0P V3 ,••• K 0P W3 •反之,若K 0P W3 , e A上存在点Q,使得OP 0Q,故线段PQ的垂直平分线经过原点,且与e A 相交.因此点P是e A的反射点..•.点P的横坐标x的取值范围是3-2< x< 2,或—2 < x< ^2• ............................... 4分2 2 2 2(2)圆心C的横坐标x的取值范围是4W x W4 • ................. 7分丰台区28.对于平面直角坐标系x0y中的点M和图形W ,她给出如下定义:点P为图形W上一点,点Q 为图形W2上一点,当点M是线段PQ的中点时,称点M是图形W, W2的中立点”如果点P(x i, y i),Q(X2, y2),那么中立点”M的坐标为亠昱,一y2.2 2已知,点A(-3, 0), B(0, 4), C(4, 0).1 1(1)连接BC,在点D(—, 0), E(0, 1), F(0,-)中,可以成为点A和线段BC的中立点”2 2的是_____________ ;(2)已知点G(3, 0), O G的半径为2.如果直线y = - x + 1上存在点K可以成为点A和O G 的中立点”求点K的坐标;(3)以点C 为圆心,半径为2作圆.点N为直线y = 2x + 4上的一点,如果存在点N,使2A ,得y 轴上的一点可以成为点 N 与O C 的中立点”,直接写出点N 的横坐标的取值范围.I I I I ■ I __________________________________ I I ■ I I7 一6 一5 一4 一3 一2 -1 O —1 ―2 3 4 5 6?-1 - -2- -5 6 7 828 .解:(1 )点A 和线段BC 的中立点”的是点D ,点F ;..... 2分(2)点A 和O G 的中立点”在以点0为圆心、半径为1的圆上运动• 因为点K 在直线y=- x+1上, 设点K 的坐标为(x , - x+1 ),则 X 2+ ( - x+1 ) 2=12,解得 X 1=0, X 2=1.所以点K 的坐标为(0,1)或(1, 0) ..... 5分(3) (说明:点N 与O C 的中立点”在以线段NC 的中点P 为圆心、半径为1的圆上运动•圆P 与y 轴相切时,符合题意.) 5 43 2 所以点N 的横坐标的取值范围为-6$N =2.......... 8分vAi28.对于平面上两点 A , B ,给出如下定义:以点A 或B 为圆心,AB 长为半径的圆称为点 B 的“确定圆” •如图为点A , B 的“确定圆”的示意图..(1)已知点A 的坐标为(1,0),点B 的坐标为(3,3),则点A , B 的“确定圆”的面积为 ___________ ;(2)已知点A 的坐标为(0,0),若直线y x b 上只存在一个点 B ,使得点A , B 的“确定 圆”的面积为9 ,求点B 的坐标;(3)已知点A 在以P(m,0)为圆心,以1为半径的圆上,点B 在直线y要使所有点A ,B 的“确定圆”的面积都不小于 9 ,直接写出m 的取值范围.28•解:(1)25 ; .................... 2分A*T x 3上,若(2) •••直线y x b上只存在一个点B,使得点A,B的确定圆”的面积为9 ,•••O A的半AB 3且直线y x b与O A相切于点B,如图,径• AB CD , DCA 45° .①当b 0时,则点B在第二象限.过点B作BE x轴于点E ,••• BE AE 3. 2•••在Rt BEA 中,BAE 45° AB 3,23 2 3,2厂 )2 2②当b 0时,则点B'在第四象限. 同理可得3.2 ^2^3.23,2、 , --- )或(, ).2 2 2 2朝阳区28.对于平面直角坐标系 xOy 中的点P 和线段AB ,其中A(t , 0)、B(t+2 , 0)两点,给出 如下定义:若在线段 AB 上存在一点 Q ,使得P , Q 两点间的距离小于或等于1,则称P 为线段AB 的伴随点. (1) 当 t= 3 时,① 在点P l (1 , 1), P 2 ( 0, 0), P 3 (-2, -1 )中,线段AB 的伴随点是 _____________ ;② 在直线y=2x+b 上存在线段 AB 的伴随点M 、N ,且MN ,求b 的取值范 围; (2) 线段AB 的中点关于点(2, 0)的对称点是 C ,将射线CO 以点C 为中心,顺时 针旋转30°得到射线l ,若射线l 上存在线段AB 的伴随点,直接写出t 的取值范围.28.解:(1)①线段AB 的伴随点是:P 2 ,P 3.............................................2分②如图1,当直线y=2x+b 经过点(3,1)时,b=5,此时b 取得最大值........................................................ 4分如图2,当直线y=2x+b 经过点(1, 1)时,b=3,此时b 取得最小值•••• B(综上所述,点B 的坐标为(b的取值范围是3切< 5.图1 图21(2) t的取值范围是—t 2. ..................................................... 8分2燕山区28 .在Rt△ ABC中,/ ACB=90 ° , CD是AB边的中线,DE丄BC于E,连结CD,点P在射线CB上(与B,C不重合).(1)如果/ A=30 °①如图1,/ DCB= __________ °②如图2,点P在线段CB上,连结DP ,将线段DP绕点D逆时针旋转60 °,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;(2 )如图3,若点P在线段CB的延长线上,且/ A= (0 ° < <90 ° ),连结DP,将线段DP绕点逆时针旋转2 得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明).28.解:⑴①/ DCB=60 ° .................................................. 1'②补全图形CP=BF ............................................. 3'△ DCP ◎△ DBF ...................................................... 6'(2) BF-BP=2DE tan (8)门头沟区28.在平面直角坐标系xOy中,点M的坐标为(洛,%),点N的坐标为(x2, y2),且为冷, y i y2,我们规定:如果存在点P,使MNP是以线段MN为直角边的等腰直角三角形,那么称点P为点M、N的“和谐点”.(1)已知点A的坐标为(1,3),①若点B的坐标为(3,3),在直线AB的上方,存在点A,B的“和谐点” C,直接写出点C的坐标;②点C在直线x=5上,且点C为点A, B的“和谐点”,求直线AC的表达式.(2 )0 O 的半径为r ,点D(1,4)为点E(1,2)、F (m, n)的“和谐点”,若使得厶DEF 与OO 有交点,画出示意图 直接写出半径r 的取值范围28.(本小题满分8分) 解:(1)0(1,5)或 C 2(3,5).由图可知,B (5,3) •/ A(1,3) ••• AB=4ABC 为等腰直角三角形• BC=4当 C 1 (5,7)时,5k b 7当 C 2(5, 1)时,5k b 1y_l1 II 1 l>II 1 1 1 i HII 1 111 l> 1 H 1 1 1 [| I I 1 1 11 1 -- 1 -- 1 -- :O --- 1 1 --- —1 1 1v r r I V —T ・「■广 n i i i T 1 u I... C i (5,7)或C 2(5, 1)设直线AC 的表达式为 y kx b(k0)TJ---- 「—i J------ J "T---- 「—i J------ J "T备用图26•••综上所述,直线AC的表达式是(2)当点F在点E左侧时:大兴区28.在平面直角坐标系 xOy 中,过y 轴上一点A 作平行于x 轴的直线交某函数图象于点D ,点P 是x 轴上一动点,连接 D P ,过点P 作DP 的垂线交y 轴于点E ( E 在线段OA 上,O 重合), DPE P , E 的直角”.图P , E 的直角”的图1 图2如图2,在平面直角坐标系 xOy 中,已知二次函数图象与 y 轴交于点F (0,m ),与x 轴分别 交于点B ( 3,0),C ( 12,0).若过点F 作平行于x 轴的直线交抛物线于点 N .(1) 点N 的横坐标为 ____________ ;(2)已知一直角为点 N,M ,K 的“平横纵直角”,若在线段OC 上存在不同的两点 M t 、M 2 使相应的点K i 、K 2都与点F 重合,试求m 的取值范围;E 不与点 平横纵(3)设抛物线的顶点为点Q ,连接BQ与FN交于点H ,当45 Z QHN 60时,求m 的取值范围.28. (1) 9 ....................................................................................................... 1 分(2)方法一:MK 丄MN ,要使线段0C上存在不同的两点M i、就是使以FN为直径的圆与0C有两个交点,即9 r2m 2.又m 0,c 9 .....................................................0 m .2方法m 0,点K在x轴的上方.过N作NW丄OC于点W,设OM x , OK y , 则CW=OC —OW=3, WM= 9 x.由厶MOKNWM ,得,--y x9x m1 29…y xmx . m当ym时,129m—x x ,m m化为2x9x2m 0当△ =0,即924m20 ,9解得m 时,2M2,使相应的点r m.K i、K2都与点F重合,也24 5线段0C 上有且只有一点 M ,使相应的点 K 与点F 重合.线段0C 上存在不同的两点 M i 、M 2,使相应的点K i 、K 2都与点F 重合时,m 的 取值 c9 .0m_2分(3)设抛物线的表达式为:y a(x 3)( x 12) (a 丰0),又抛物线过点F (0, m ),平谷区过点Q 36a .1m(x 363)(x 1 m . 3612)1 m(x 362)25 m . 16做QG 丄x 轴与FN 交于点RFN // x 轴/ QRH =90°BG25tan BQG-,QG 一QG16(dii Z BQG —24 伽又 45 QHN60 ,30BQ45BGBQG 30 BQG 45m 的取值范围为 时,可求出 时,可求出m15 224、3 ,524 5243 . 51|||III II。

北京市海淀区2018届中考一模数学试题含答案(扫描版)

北京市海淀区2018届中考一模数学试题含答案(扫描版)

∴ MOB A 30 .
∵ DOF 2 A 60 ,
∴ MOF 90 .……………… 4 分
M B D
OC
F
∴ OM 2 +OF 2 MF 2 .
∴四边形 AEBO是平行四边形 .……………… 1 分 ∵四边形 ABCD 是平行四边形, ∴ DC AB . ∵ OE CD , ∴ OE AB . ∴平行四边形 AEBO 是矩形 .……………… 2 分 ∴ BOA 90 . ∴ AC BD . ∴平行四边形 ABCD 是菱形 .……………… 3 分 (2) 正方形; ……………… 4 分
海淀区九年级第二学期期中练习 数学参考答案及评分标准
2018. 5
一、选择题 (本题共 16 分,每小题 2 分)
1
2
3
4
5
6
7
8
A
C
D
B
A
D
B
D
二、填空题 (本题共 16 分,每小题 2 分)
1 9.
10. 7.53
8
10
5
1 11. 2 12. 1(答案不唯一)
x
x 11 x 1 13.
m 4 .……………… 5 分
E
23.解:( 1)连接 OE , OF .
∵ EF⊥ AB , AB 是 O 的直径,
∴ ∠ DOF ∠ DOE . ∵ ∠ DOE 2∠ A , ∠ A , ∴ ∠ DOF 2 .……………… 1 分 ∵ FD 为 O 的切线, ∴ OF ⊥ FD .
∴ ∠ OFD 90 .
∴ m2 2m 3 m m2 1 0.……………… 1 分
∴m
1
.……………… 3 分
3

北京市各区2018届中考数学一模试卷精选汇编压轴题专题(附答案)

北京市各区2018届中考数学一模试卷精选汇编压轴题专题(附答案)

压轴题专题东城区28.给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且P,O在直线MN的异侧),当∠MPN +∠MON=180°时,则称点 P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的示意图.在平面直角坐标系xOy中,⊙O的半径为1.(1)如图2,2222M⎛⎫⎪⎪⎝⎭,2222N⎛-⎝⎭.在A(1,0),B(1,1),)2,0C三点中, 是线段MN关于点O的关联点的是;(2)如图3, M(0,1),N312⎫-⎪⎪⎝⎭,点D是线段MN关于点O的关联点.①∠MDN的大小为°;②在第一象限内有一点E)3,m m,点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;③点F在直线323y x=-+上,当∠MFN≥∠MDN时,求点F的横坐标Fx的取值范围.28. 解:(1)C ; --------------2分 (2)① 60°;② △MNE 是等边三角形,点E 的坐标为);--------------5分③ 直线32y x =+交 y 轴于点K (0,2),交x 轴于点()3T ,0. ∴2OK =,23OT =. ∴60OKT ∠=︒.作OG ⊥KT 于点G ,连接MG . ∵()M 0,1, ∴OM =1. ∴M 为OK 中点 . ∴ MG =MK =OM =1.∴∠MGO =∠MOG =30°,OG 3∴33.2G ⎫⎪⎪⎝⎭, ∵120MON ∠=︒, ∴ 90GON ∠=︒. 又3OG 1ON =, ∴30OGN ∠=︒. ∴60MGN ∠=︒.∴G 是线段MN 关于点O 的关联点. 经验证,点)31E,在直线32y =+上. 结合图象可知, 当点F 在线段GE 上时 ,符合题意. ∵G F E x x x ≤≤, ∴33F x ≤分 西城区28.对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQk CQ+=,则称点A (或点B )是⊙C 的“k 相关依附点”,特别地,当点A 和点B 重合时,规定AQ BQ =,2AQ k CQ =(或2BQCQ). 已知在平面直角坐标系xOy 中,(1,0)Q -,(1,0)C ,⊙C 的半径为r . (1)如图,当r =①若1(0,1)A 是⊙C 的“k 相关依附点”,则k 的值为__________.②2(1A 是否为⊙C 的“2相关依附点”.答:__________(填“是”或“否”). (2)若⊙C 上存在“k 相关依附点”点M , ①当1r =,直线QM 与⊙C 相切时,求k 的值.②当k r 的取值范围.(3)若存在r 的值使得直线3y x b =-+与⊙C 有公共点,且公共点时⊙C 3b 的取值范围.图1CyxO A 1A 2Q【解析】(12(2)①如图,当1r =时,不妨设直线QM 与⊙C 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理), 连接CM ,则QM CM ⊥,x∵(1,0)Q -,(1,0)C ,1r =, ∴2CQ =,1CM =,∴MQ = 此时23MQk CQ== ②如图,若直线QM 与⊙C 不相切,设直线QM 与⊙C 的另一个交点为N (不妨设QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,x∴()222MQ NQ MN NQ NQ ND NQ DQ +=++=+=, ∵2CQ =, ∴2MQ NQ DQk DQ CQ CQ+===,∴当k 3DQ = 此时221CD CQ DQ -, 假设⊙C 经过点Q ,此时2r =, ∵点Q 早⊙C 外,∴r 的取值范围是12r <≤. (3)33b <. 海淀区28.在平面直角坐标系xOy 中,对于点P 和C ,给出如下定义:若C 上存在一点T 不与O 重合,使点P 关于直线OT 的对称点'P 在C 上,则称P 为C 的反射点.下图为C 的反射点P 的示意图.(1)已知点A 的坐标为(1,0),A 的半径为2,①在点(0,0)O ,(1,2)M ,(0,3)N -中,A 的反射点是____________;②点P 在直线y x =-上,若P 为A 的反射点,求点P 的横坐标的取值范围;(2)C 的圆心在x 轴上,半径为2,y 轴上存在点P 是C 的反射点,直接写出圆心C 的横坐标x 的取值范围.28.解(1)①A 的反射点是M ,N . ………………1分②设直线y x =-与以原点为圆心,半径为1和3的两个圆的交点从左至右依次为D ,E ,F ,G ,过点D 作⊥DH x 轴于点H ,如图.可求得点D 的横坐标为32. 同理可求得点E ,F ,G 的横坐标分别为2232 点P 是A 的反射点,则A 上存在一点T ,使点P 关于直线OT 的对称点'P 在A 上,则'OP OP =.∵1'3≤≤OP ,∴13≤≤OP .反之,若13≤≤OP ,A 上存在点Q ,使得OP OQ =,故线段PQ 的垂直平分线经过原点,且与A 相交.因此点P 是A 的反射点.∴点P 的横坐标x的取值范围是≤xx .………………4分 (2)圆心C 的横坐标x 的取值范围是44≤≤x -. ………………7分 丰台区28.对于平面直角坐标系xOy 中的点M 和图形1W ,2W 给出如下定义:点P 为图形1W 上一点,点Q 为图形2W 上一点,当点M 是线段PQ 的中点时,称点M 是图形1W ,2W 的“中立点”.如果点P (x 1,y 1),Q (x 2,y 2),那么“中立点”M 的坐标为⎪⎭⎫⎝⎛++2,22121y y x x . 已知,点A (-3,0),B (0,4),C (4,0). (1)连接BC ,在点D (12,0),E (0,1),F (0,12)中,可以成为点A 和线段BC 的“中立点”的是____________; (2)已知点G (3,0),⊙G 的半径为2.如果直线y = - x + 1上存在点K 可以成为点A 和⊙G 的“中立点”,求点K 的坐标;(3)以点C 为圆心,半径为2作圆.点N 为直线y = 2x + 4上的一点,如果存在点N ,使得y 轴上的一点可以成为点N 与⊙C 的“中立点”,直接写出点N 的横坐标的取值范围.54411231213xOy6654327654326528.解:(1)点A 和线段BC(2)点A 和⊙G 的“中立点”在以点O 为圆心、半径为1的圆上运动. 因为点K 在直线y =- x +1上, 设点K 的坐标为(x ,- x +1),则x 2+(- x +1)2=12,解得x 1=0,x 2=1.所以点K 的坐标为(0,1)或(1,0). ………5分(3)(说明:点N 与⊙C 的“中立点”在以线段NC 的中点P 为圆心、半径为1的圆上运动.圆P 与y 轴相切时,符合题意.) 所以点N 的横坐标的取值范围为-6≤x N ≤-2. ………8分石景山区28.对于平面上两点A ,B ,给出如下定义:以点A 或B 为圆心,AB 长为半径的圆称为点A ,B 的“确定圆”.如图为点A ,B 的“确定圆”的示意图.... AB(1)已知点A 的坐标为(1,0)-,点B 的坐标为(3,3), 则点A ,B 的“确定圆”的面积为_________;(2)已知点A 的坐标为(0,0),若直线y x b =+上只存在一个点B ,使得点A ,B 的“确定圆”的面积为9π,求点B 的坐标;(3)已知点A 在以(0)P m ,为圆心,以1为半径的圆上,点B 在直线33y =+ 若要使所有点A ,B 的“确定圆”的面积都不小于9π,直接写出m 的取值范围.28.解:(1)25π; ………………… 2分 (2)∵直线y x b =+上只存在一个点B ,使得点,A B 的“确定圆”的面积 为9π,∴⊙A 的半径3AB =且直线y x b =+与⊙A 相切于点B ,如图, ∴AB CD ⊥,45DCA ∠=°.xy xy①当0b >时,则点B 在第二象限.过点B 作BE x ⊥轴于点E ,∵在Rt BEA ∆中,45BAE ∠=°,3AB =, ∴322BE AE ==.∴323222B -(,. ②当0b <时,则点'B 在第四象限. 同理可得3232'22B -(. 综上所述,点B 的坐标为323222-(,或323222-(. ………………… 6分(3)5m -≤或11m ≥. ………………… 8分朝阳区28. 对于平面直角坐标系xOy 中的点P 和线段AB ,其中A (t ,0)、B (t +2,0)两点,给出如下定义:若在线段AB 上存在一点Q ,使得P ,Q 两点间的距离小于或等于1,则称P 为 线段AB 的伴随点. (1)当t =-3时,①在点P 1(1,1),P 2(0,0),P 3(-2,-1)中,线段AB 的伴随点是 ;②在直线y =2x +b 上存在线段AB 的伴随点M 、N , 且MN =b 的取值范围; (2)线段AB 的中点关于点(2,0)的对称点是C ,将射线CO 以点C 为中心,顺时针旋转30°得到射线l ,若射线l 上存在线段AB 的伴随点,直接写出t 的取值范围.28. 解:(1)①线段AB的伴随点是:23,P P. …………………2分②如图1,当直线y=2x+b经过点(-3,-1)时,b=5,此时b取得最大值.…………………………………………4分如图2,当直线y=2x+b经过点(-1,1)时,b=3,此时b取得最小值.……………………………………………5分∴b的取值范围是3≤b≤5. ……………………………………6分(2)t的取值范围是-12.2t≤≤…………………………………………8分燕山区28.在Rt△ABC中, ∠ACB=90°,CD是AB边的中线,DE⊥BC于E, 连结CD,点P在射线CB上(与B,C不重合).(1)如果∠A=30°①如图1,∠DCB= °②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;( 2 )如图3,若点P在线段CB的延长线上,且∠A=α(0°<α<90°),连结DP, 将线段DP绕点逆时针旋转α2得到线段DF,连结BF, 请直接写出DE、BF、BP三者的数量关系(不需证明).图1图228.解:(1) ①∠DCB=60°…………………………………1′②补全图形CP=BF …………………………………3′△ DCP ≌△ DBF …………………………………6′(2)BF-BP=2DE ⋅tan α…………………………………8′门头沟区28. 在平面直角坐标系xOy 中,点M 的坐标为11(,)x y ,点N 的坐标为22(,)x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使MNP ∆是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的 “和谐点”. (1)已知点A 的坐标为)3,1(,①若点B 的坐标为)3,3(,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标; ②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式.(2)⊙O 的半径为r ,点D (1,4)为点E (1,2)、F ),(n m 的“和谐点”,若使得△DEF 与⊙O 有交点,画出示意..图直接...写出半径r 的取值范围.备用图1 备用图228.(本小题满分8分)解: (1)①)5,3()5,1(21C C 或. ……………………………………………2分②由图可知,B )3,5( ∵A (1,3) ∴AB =4∵ABC ∆为等腰直角三角形 ∴BC =4∴)1,5()7,5(21-C C 或设直线AC 的表达式为(0)y kx b k =+≠ 当)7,5(1C 时,⎩⎨⎧=+=+753b k b k ⎩⎨⎧==∴21b k2+=∴x y …………………………………3分 当)1,5(2-C 时,⎩⎨⎧-=+=+153b k b k ⎩⎨⎧=-=∴41b k4+-=∴x y …………………………………4分 ∴综上所述,直线AC 的表达式是2+=x y 或4+-=x y(2)当点F 在点E 左侧时: 大兴区28.在平面直角坐标系xOy 中,过y 轴上一点A 作平行于x 轴的直线交某函数图象于点D ,点P 是x 轴上一动点,连接D P ,过点P 作DP 的垂线交y 轴于点E (E 在线段OA 上,E 不与点O 重合),则称∠DPE 为点D ,P ,E 的“平横纵直角”.图1为点D ,P ,E 的“平横纵直角”的示意图.图图2如图2,在平面直角坐标系xOy 中,已知二次函数图象与y 轴交于点与x 轴分别交于点B (3-,(0,)F m ,0),C (12,0). 若过点F 作平行于x 轴的直线交抛物线于点N .(1)点N 的横坐标为 ;(2)已知一直角为点,,N M K 的“平横纵直角”, 若在线段OC 上存在不同的两点1M 、2M ,使相应的点1K 、2K 都与点F 重合,试求m 的取值范围;(3)设抛物线的顶点为点Q ,连接BQ 与FN 交于点H ,当4560QHN ︒≤≤︒∠时,求m 的取值范围. 28.(1)9 ………………………………………………………………… 1分 (2)方法一:MK ⊥MN ,∴要使线段OC 上存在不同的两点M 1、M 2,使相应的点K 1、K 2都与点F 重合,也就是使以FN 为直径的圆与OC 有两个交点,即m r >.29=r ,29<∴m .又0>m , 290<<∴m . ………………………………………………4分 方法二:0>m ,∴点K 在x 轴的上方.过N 作NW ⊥OC 于点W ,设OM x =,OK y =, 则 CW =OC -OW =3,WM =9x -. 由△MOK ∽△NWM , 得,∴9y x x m=-. ∴x mx m y 912+-=.当m y =时,219m x x m m=-+, 化为0922=+-m x x . 当△=0,即22940m -=, 解得92m =时, 线段OC 上有且只有一点M ,使相应的点K 与点F 重合.0>m ,∴ 线段OC 上存在不同的两点M 1、M 2,使相应的点K 1、K 2都与点F 重合时,m 的取值范围为290<<m . ………………………………………………………………………………4分(3)设抛物线的表达式为:)12)(3(-+=x x a y (a ≠0),又 抛物线过点F (0,m ),a m 36-=∴.m a 361-=∴.m x m x x m y 1625)29(361)12)(3(3612+--=-+-=∴. …………………………………5分过点Q 做QG ⊥x 轴与FN 交于点RFN ∥x 轴∴∠QRH =90°tan BG BQG QG∠=,2516QG m =,152BG =∴,又4560QHN ︒≤∠≤︒,∴3045BQG ︒≤∠≤︒∴当30BQG ∠=︒时,可求出3524=m ,………………………………… 6分 当45BQG ∠=︒时,可求出524=m . ……………………………………7分m ∴的取值范围为2424355m ≤≤…………………………………8分 平谷区28. 在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y ≠,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”. (1)已知点A (2,0),B (3,则以AB 为边的“坐标菱形”的最小内角为_______;(2)若点C (1,2),点D 在直线y =5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式; (3)⊙O 2P 的坐标为(3,m ) .若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m 的取值范围.28.解:(1)60; ····························· 1 (2)∵以CD 为边的“坐标菱形”为正方形, ∴直线CD 与直线y =5的夹角是45°. 过点C 作CE ⊥DE 于E .∴D (4,5)或()2,5-. ............. 3 ∴直线CD 的表达式为1y x =+或3y x =-+. (5)(3)15m ≤≤或51m -≤≤-. ···················7怀柔区28. P 是⊙C 外一点,若射线..PC 交⊙C 于点A ,B 两点,则给出如下定义:若0<PAPB≤3,则点P 为⊙C 的“特征点”.(1)当⊙O 的半径为1时.①在点P 1(2,0)、P 2(0,2)、P 3(4,0)中,⊙O 的“特征点”是 ; ②点P 在直线y=x+b 上,若点P 为⊙O 的“特征点”.求b 的取值范围;(2)⊙C 的圆心在x 轴上,半径为1,直线y=x+1与x 轴,y 轴分别交于点M ,N ,若线段MN 上的所有点都不是...⊙C 的“特征点”,直接写出点C 的横坐标的取值范围.yx–1–2–3–4–512345–1–2–3–4–512345O28.(1)①P 1(2,0)、P 2(0,2)…………………………………………………………………2分yxE Hy=x+b 2y=x+b1–1–2–3–41234–1–2–3–41234OD②如图, 在y=x+b 上,若存在⊙O 的“特征点”点P ,点O 到直线y=x+b 的距离m≤2. 直线y=x+b 1交y 轴于点E ,过O 作OH ⊥直线y=x+b 1于点H. 因为OH=2,在Rt△DOE 中,可知OE=22. 可得b 1=22.同理可得b 2=-22.∴b 的取值范围是:22-≤b ≤22. …………………………………………………6分 (2)x>3或 3-<x . …………………………………………………………………………8分 延庆区28.平面直角坐标系xOy 中,点1(A x ,1)y 与2(B x ,2)y ,如果满足120x x +=,120y y -=,其中12x x ≠,则称点A 与点B 互为反等点. 已知:点C (3,4)(1)下列各点中, 与点C 互为反等点; D (-3,-4),E (3,4),F (-3,4)(2)已知点G (-5,4),连接线段CG ,若在线段CG 上存在两点P ,Q 互为反等点,求点P 的横坐标p x 的取值范围;(3)已知⊙O 的半径为r ,若⊙O 与(2)中线段CG 的两个交点互为反等点,求r 的取值范围.28.(1)F ……1分(2) -3≤p x ≤3 且p x ≠0 ……4分(3)4 < r≤5 ……7分顺义区点P 任意引出一条射线分别与1L 、2L 交于1Q 、2Q ,总有12PQ PQ 是定值,我们称曲线1L 与2L “曲似”,定值12PQ PQ 为“曲似比”,点P 为“曲心”.例如:如图2,以点O'为圆心,半径分别为1r 、2r (都是常数)的两个同心圆1C 、2C ,从点O'任意引出一条射线分别与两圆交于点M 、N ,因为总有12''r O M O N r =是定值,所以同心圆1C 与2C 曲似,曲似比为12r r ,“曲心”为O'.(1)在平面直角坐标系xOy 中,直线y kx =与抛物线2y x =、212y x =分别交于点A 、B ,如图3所示,试判断两抛物线是否曲似,并说明理由;(2)在(1)的条件下,以O 为圆心,OA 为半径作圆,过点B 作x 轴的垂线,垂足为C ,是否存在k 值,使⊙O 与图2C 2C 1N MO'直线BC 相切?若存在,求出k 的值;若不存在,说明理由;(3)在(1)、(2)的条件下,若将“212y x =”改为“21y x m=”,其他条件不变,当存在⊙O 与直线BC 相切时,直接写出m 的取值范围及k 与m 之间的关系式.28.(1)是.。

密云18一模数学

密云18一模数学

北京市密云区2018届初三零模 数学试卷2018.4下面各题均有四个选项,其中只有一个..选项是符合题意的. 1. 《红海行动》是一部爱国主义题材的影片,深受广大影迷喜欢.据统计3月29日,影片单日票房达到136.1万. 将1361000用科学记数法表示为A. 41.36110⨯ B. 51.36110⨯ C. 61.36110⨯ D.71.36110⨯2. 实数a b 、在数轴上对应点位置如图所示,则下列说法正确的是A. ||||ab > B. a、b 互为相反数 C. a 、b 互为倒数 D. 0a b +>3. 下列图形中是中心对称图形但不是轴对称图形的是A B C D4.右图是某个几何体的展开图,则该几何体为A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥5. 已知2210m m --=,则244().2m m m m m --- 的值为 A. -1 B. 0 C.1D. 26. 根据规定:空气污染指数为51-100,空气质量状况属于良.空气污染指数为101-150,空气质量状况属于轻度污染.空气污染指数为151-200.下面统计图反映了北京市2016年7月-12月以及2017年7月-12月月平均空气质量指数情况,根据统计图中提供的信息,下列推理不合理...的是 4题图A.2017年7-12月空气质量状况整体上好于2016年7-12月B.2016年7-12月月平均空气质量指数的平均值不到100C. 2017年7-12月中有5个月的月平均空气质量为良D.2016年12月与2017年12月月平均空气质量指数差距最大7.如图,甲、乙两人在某圆形广场上晨练.甲沿O 按逆时针方向匀速步行,乙在线段AB 上匀速往返步行,甲、乙两人同时从点A 出发按照规定的路径步行,直到有一人停止. 其间他们与点B 的距离y 与时间x (单位:分)的对应关系如图2所示.则下列说法正确的是AB图1图2A. 两人在1.25分钟时走过路程相同B. 甲比乙速度慢C. 甲比乙先到B 点D.两人走3分钟时,甲在A 点且乙在B 点.8.以下三个推断:①随着实验次数的增加,硬币正面向上的频率总在0.5附近摆动,且体现出一定的稳定性,则可估计随机抛掷一枚质地均匀的硬币正面向上的概率是0.5.②估计随机抛掷一枚质地均匀的硬币,正面向上的概率是0.5,则抛掷10次,必然有5次是正面向上.③在皮尔逊抛掷次数为24000次实验中,正面向上的频率为0.5005,则硬币正面向上的概率是0.5005. 以上说法正确的是A. ①B. ①②C. ①③D.②③二、填空题(本题共16分,每小题2分)9. 有意义,则x 的取值范围是___________.10. 多边形的每个内角都是120︒,则这个多边形的边数是_________________. 11.任写一个经过(0,1)点的二次函数的表达式___________________.12. 为测量某河的宽度,小强在河对岸选定一个目标点A ,再在他所在的这一侧选点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,然后找出AD 与BC 的交点E. 如图所示,若测得BE=90m ,EC=45m ,CD=60m ,则这条河的宽AB 等于_______________.13. 北京到上海虹桥的铁路长约为1318千米.高铁原平均速度为x 千米/时,提速后平均速度增加了80千米/时,由北京到上海虹桥的行驶时间缩短了2小时,则可列方程为________________________________________.14. 如图,在平面直角坐标系xOy 中,△DBC 可以看作是△写出一中由△AOB 得到△DBC 的过程: ___________________________________.15.在线教育2011-2017年市场规模情况统计如图所示. 根据统计图中提供信息,预估2018年在线教育市场规模为_____________亿元,你的预估理由是____________.16. 下面是“作等边三角形的内切圆”的尺规作图过程.请回答,该作图的依据是以上作图的依据是:________________________________________________.则O 为所求作的等边三、解答题(共68分,其中17~25题每题5分,26题、27题7分,28题每题8分) 17.计算:11()tan 60|12-+︒+18. 求不等式组3(1)3213x x x x -<+⎧⎪+⎨-⎪⎩≥ 的正整数解.19. 如图,ABC ∆中,D 是AB 上一点.110ADC ∠=︒,55DCB ∠=︒,35A ∠=︒.求证:AD=DB.D CBA20. 已知关于x 的一元二次方程2(1)2(1)0x m x m -++-=.其中m 为任意实数. (1)求证:方程总有两个实数根.(2)若方程的两根异号,求m 的取值范围.21. 点A(1,3),B (3,m )是函数(0)ky x x=>图象上两点. (1)求k 值和m 值.(2)点P 是直线y x =上一动点,P 点的横坐标为n. 过点P 作x轴的平行线与函数(0)ky x x=>的图象交于点D. ①当n=1时,求线段PD 的长度;②若2PD ≥,结合函数图象,直接写出n 的取值范围.22. 如图,AB=AC ,D 是BC 中点,连结AD ,过A 作AE//BC ,且AE=12BC. (1)求证:四边形ADCE 是矩形.(2)连结BE.若AB=2,AE =BE 长.EDCB A23. 如图,AB 是O 的直径,C 、D 是O 上两点,连结AD 、CD 、BC ,连结AC 并延长交O 的切线于点P ,DAC PBC ∠=∠. (1)求证:CD=BC.(2)若AD=CD ,O 的半径长.BA24. 甲乙两名同学参加射击训练班,每人打靶各20次,每次射击成绩互不影响.射击成绩按环数计分,统计结果如下:甲:7 7 8 8 9 9 10 8 6 88 10 10 9 8 9 9 8 8 7乙:610 6 9 7 7 6 8 8 997 69877899(1)根据已知条件补全表格中数据.(2①规定射击成绩8环以上(含8环)为优秀.若甲射击30次,估计达到优秀的次数为_____. ②根据统计情况可以推断甲乙两人中________的射击水平较高,理由是_____________. (至少从两个角度说明理由).25. 如图,ABC ∆中, AB=2cm ,AC=3cm ,M 是AB 中点,动点P 沿着B →A →C 的方向从B运动到C.设P 运动经过的路径长为x cm ,PM 长为y cm (当P 与M 重合时,y =0). 小华根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小华的探究过程,请补充完整:P(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:①m ≈ __________(结果保留一位小数).②当点P 在线段AC 上时,PM 的最小值约为____________(结果保留一位小数). (2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:写出PM MB <时,自变量x 的取值范围___________.26. 已知抛物线:2221y x mx m =-+-.(1)求抛物线对称轴的表达式(用含m 的代数式表示). (2)该抛物线与x 轴交于A 、B 两点(A 在B 左边),与y 轴交于点C.抛物线的顶点为D.①当B 、C 两点重合时,求直线AD 的表达式. ②若A 、B 、C 点的横坐标分别为123,,x x x ,当132x x x << 时,求m 的取值范围.27. 已知Rt ABC ∆中,90ACB ∠=︒,AC=BC ,点D 是直线AB 上一点(不与A 、B 重合). 将线段CD 绕点C 逆时针旋转90︒得到线段CE.连结DE ,BE. (1)若点D 在线段AB 上,如图1.①依题意补全图形. ②判断DBE ∆的形状并证明. (2)若点D 在AB延长线上,且AC = 求AE 长.ABC备用图图1DCBA28. 已知在平面直角坐标系xOy 中的点P 和M ,给出如下的定义:若在M 上存在两点A 、B ,使得90APB ∠︒≥,则称P 为M 的关联点.(1)当O时,①点1(1,1)P ,2(2,0)P ,3(0,3)P 中,O 的关联点有_____________________. ②点P在直线23y x =-+上.若P 是O 的关联点,求点P 横坐标m 的取值范围. (2)已知(0,S T .M 的圆心在x 轴上,半径为3.线段ST 上的所有点都在M 外,且都是M 的关联点,直接写出M 圆心的横坐标n 的取值范围.备用图 备用图。

2018北京各区初三数学一模试题分类——相似三角形

2018北京各区初三数学一模试题分类——相似三角形

相似三角形1.(18平谷一模12)如图,测量小玻璃管口径的量具ABC 上,AB 的长为10毫米,AC 被分为60等份,如果小管口中DE 正好对着量具上20份处(DE ∥AB ),那么小管口径DE 的长是_________毫米.2.(18延庆一模12)如图,在△ABC 中,D ,E 分别是AB ,AC 上的点,DE ∥BC ,若AD =1,BD =3,则DEBC 的值为 .3.(18石景山一模14)如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点, DE ∥BC .若6AD =,2BD =,3DE =,则BC = .4.(18西城一模11)如图,在ABC △中,DE AB ∥,DE 分别与AC ,BC 交于D ,E 两点.若49DEC ABC S S =△△,3AC =,则DC =__________.5.(18朝阳一模12) 如图,AB ∥CD ,AB=21CD ,S △ABO :S △CDO = .6.(18丰台一模9)在某一时刻,测得身高为1.8m 的小明的影长为3m ,同时测得一建筑物的影长为10m ,那么这个建筑物的高度为________m .7.(18海淀一模11)如图,AB DE ∥,若4AC =,2BC =,1DC =,则EC = .8.(18怀柔一模12)如图,在四边形ABCD 中,AB ∥CD ,AC 、BD 相交于点E ,若,则_____. 9.(18门头沟一模9)如图,两个三角形相似,2,3,1AD AE EC ===,则BD =______.10. (18燕山一模15)如图,一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第______个41=CD AB =ACAECDEBE DCB A E DCB AB。

2018年北京海淀、密云区初三一模数学试卷

2018年北京海淀、密云区初三一模数学试卷

7. 在线教育使学生足不出户也能连接全球优秀的教育资源,下面的统计图反映了我国在线 用户规模的变化情况.
目录
选择题 填空题 解答题
学生版
教师版
答案版
编辑
(以上数据摘自《2017年中国在线少儿英语教育白皮书》) 根据统计图提供的信息,下列推断一定不合理的是( ). A. 2015年12月至2017年6月,我国在线教育用户规模逐渐上升 B. 2015年12月至2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升 C. 2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万 D. 2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70%
教师版
答案版
∴ , AE = EC
∵ , ED⊥AB F D = BD
∴ , EF = EB
∵ , AF = AD − F D = 6
∴ , AF = BC
∴ ≌ , △AEF △C EB(SSS)
∴ . ∠1 = ∠2
∵ , ∘ ∠ABC = 60
∴ , ∘ ∠2 + ∠3 + ∠4 = 120
∴∘ ∠1 + ∠3 + ∠4 = 120
A. b + c > 0 C. ad > bc
B.
c >1
a
D. |a| > |d|
答案 D
解 析 由b + d = 0 可知,b与d互为相反数,
则原点在b与c的中点处,如图.
, a < b < 0 < c < d
, A |b| > , |c| b + c < 0 ,故A选项错误.

2018北京市中考数学一模分类27题二次函数及答案解析

2018北京市中考数学一模分类27题二次函数及答案解析

2018北京市中考数学一模分类27题二次函数及答案解析(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--222017年北京中考数学一模 27题“二次函数综合题”西城. 在平面直角坐标系xOy 中,二次函数5)12(2-++-=m x m mx y 的图象与x 轴有两个公共点.(1)求m 的取值范围;(2)若m 取满足条件的最小的整数,①写出这个二次函数的解析式;②当n ≤x ≤1时,函数值y 的取值范围是-6≤y ≤4-n ,求n 的值;③将此二次函数图象平移,使平移后的图象经过原点O . 设平移后的图象对应的函数表达式为k h x a y +-=2)(,当x <2时,y 随x 的增大而减小,求k 的取值范围东城.二次函数2(2)2(2)5y m x m x m =+-+-+,其中20m +>. (1)求该二次函数的对称轴方程; (2)过动点C (0, n )作直线l ⊥y 轴.① 当直线l 与抛物线只有一个公共点时, 求n 与m 的函数关系;② 若抛物线与x 轴有两个交点,将抛物线在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象. 当n =7时,直线l 与新的图象恰好有三个公共点,求此时m 的值;33(3)若对于每一个给定的x 的值,它所对应的函数值都不小于1,求m 的取值范围.朝阳.在平面直角坐标系中xOy 中,抛物线2211222y x mx m m =-++-的顶点在x 轴上. (1)求抛物线的表达式; (2)点Q 是x 轴上一点,①若在抛物线上存在点P ,使得∠POQ =45°,求点P 的坐标;②抛物线与直线y =2交于点E ,F (点E 在点F 的左侧),将此抛物线在点E ,F (包含点E 和点F )之间的部分沿x 轴平移n 个单位后得到的图象记为G ,若在图象G 上存在点P ,使得∠POQ =45°,求n 的取值范围.44xy直线lCBA–1–21234–1–2–31234O房山. 在平面直角坐标系xOy 中,直线32-=x y 与y 轴交于点A ,点A 与点B 关于x轴对称,过点B 作y 轴的垂线l ,直线l 与直线32-=x y 交于点C. (1)求点C 的坐标;(2)如果抛物线n nx nx y 542+-= (n >0)与线段BC 有唯一公共点,求n 的取值范围.顺义.如图,已知抛物线28(0)y ax bx a =++≠与x 轴交于A (-2,0),B 两点,与y轴交于C 点,tan ∠ABC =2.(1)求抛物线的表达式及其顶点D 的坐标; (2)过点A 、B 作x 轴的垂线,交直线CD 于点E 、F ,将抛物线沿其对称轴向上平移m 个单位,使抛物线与线段EF (含线段端点)只有1个公共点.求m 的取值范围.55平谷.直线33y x =-+与x 轴,y 轴分别交于A ,B 两点,点A 关于直线1x =-的对称点为点C .(1)求点C 的坐标;(2)若抛物线()230y mx nx m m =+-≠经过A ,B ,C 三点,求该抛物线的表达式; (3)若抛物线()230y ax bx a =++≠ 经过A ,B 两点,且顶点在第二象限,抛物线与线段AC 有两个公共点,求a 的取值范围.门头沟. 在平面直角坐标系xOy 中,抛物线()()13y a x x =+-与x 轴交于A ,B 两点,点A 在点B 的左侧,抛物线的顶点为P ,规定:抛物线与x 轴围成的封闭区域称为“G 区域”(不包含边界).66(1)如果该抛物线经过(1, 3),求a 的值,并指出此时“G 区域”有______个整数点;(整数点就是横纵坐标均为整数的点) (2)求抛物线()()13y a x x =+-的顶点P 的坐标(用含a 的代数式表示); (3)在(2)的条件下,如果G 区域中仅有4个整数点时,直接写出a 的取值范围.海淀.平面直角坐标系xOy 中,抛物线2222y mx m x =-+交y 轴于A 点,交直线x =4于B 点.(1)抛物线的对称轴为x = (用含m 的代数式表示); (2)若AB ∥x 轴,求抛物线的表达式; (3)记抛物线在A,B 之间的部分为图象G (包含A ,B 两点),若对于图象G 上任意一点P (P x ,P y ),2P y ≤,求m 的取值范围.77丰台.在平面直角坐标系xOy 中,抛物线()01242≠-+-=m m mx mx y 与平行于x 轴的一条直线交于A ,B 两点. (1)求抛物线的对称轴;(2)如果点A 的坐标是(-1,-2),求点B 的坐标;(3)抛物线的对称轴交直线AB 于点C ,如果直线AB 与y 轴交点的纵坐标 为-1,且抛物线顶点D 到点C 的 距离大于2,求m 的取值范围.石景山.在平面直角坐标系xOy 中,抛物线2443(0)y ax ax a a =-+-≠的顶点为A . (1)求顶点A 的坐标;(2)过点(0,5)且平行于x 轴的直线l ,与抛物线2443(0)y ax ax a a =-+-≠交于B ,C 两点.①当2a =时,求线段BC 的长;②当线段BC 的长不小于6时,直接写出a 的取值范围.88通州.在平面直角坐标系xOy 中,抛物线2222+-+-=m m mx x y 的顶点为D.线段AB 的两个端点分别为A (-3,m ),B (1,m ). (1)求点D 的坐标(用含m 的代数式表示); (2)若该抛物线经过点B (1,m ),求m 的值;(3)若线段AB 与该抛物线只有一个公共点,结合函数的图象,求m 的取值范围.怀柔.已知二次函数122-++=a ax ax y (a>0). (1)求证:抛物线与x 轴有两个交点; (2)求该抛物线的顶点坐标;(3)结合函数图象回答:当x ≥1时,其对应的函数值y 的最小值范围是2≤y ≤6,求a 的取值范围.西城.解:(1)∵ 二次函数5)12(2-++-=m x m mx y 的图象与x 轴有两个交点,∴≠0[]054122>)()+(---m m m解得 241->m 且m ≠0. ∴m 的取值范围是241->m 且m ≠0. ·············································· 2分(2)①m 取满足条件的最小的整数,由(1)可知m =1.∴ 二次函数的表达式为234y x x =--. ··································· 3分② 图象的对称轴为直线23=x . 当n ≤x ≤1<32时,函数值y1010∵ 函数值y 的取值范围是-6≤y ≤4-n , ∴ 当x =1时,函数值为- 6.当x =n 时,函数值为4-n.∴ n 2 – 3n - 4 = 4-n.,解得n = - 2或n = 4(不合题意,舍去). ∴ n 的值为- 2. ③由①可知,a =1. 又函数图像经过原点, ∴k =-h 2,∵当x <2时,y 随x 的增大而减小, ∴h ≥ 2 ∴k ≤-4.············································································································································· 7分 东城.解:(1)对称轴方程:2(2)12(2)m x m -+=-=+. …………1分(2)①∵直线l 与抛物线只有一个公共点,∴23n m =-+. …………3分② 依题可知:当237m -+=-时,直线l 与新的图象恰好有三个公共点. ∴5m =. …………5分(3)抛物线2(2)2(2)5y m x m x m =+-+-+的顶点坐标是(1,23)m -+.依题可得 20,23 1.m m +>⎧⎨-+≥⎩解得2,1.m m >-⎧⎨≤⎩∴ m 的取值范围是21m -<≤. …………7分朝阳.解:(1)222111-2()2222y x mx m m x m m =++-=-+-.由题意,可得m -2=0. ∴2m =. ∴21(2)2y x =-. (2)①由题意得,点P 是直线y x =与抛物线的交点.∴21-222x x x =+. 解得 135x =+,235x =-. ∴P 点坐标为(35,35)++或 (35,35)--.②当E 点移动到点(2,2)时,n =2.当F 点移动到点(-2,2)时,n =-6.由图象可知,符合题意的n 的取值范围是26-≤≤n .房山解:(1)∵直线y=2x-3与y 轴交于点A (0,-3) ------1分 ∴点A 关于x 轴的对称点为B (0,3),l 为直线y=3 ∵直线y=2x-3与直线l 交于点C ,∴点C 的坐标为(3,3) ------2分(2)∵抛物线n nx nx y 542+-= (n >0) ∴y = nx2-4nx+4n+n = n(x-2)2+n∴抛物线的对称轴为直线x=2,顶点坐标为(2,n ) ------3分 ∵点B (0,3),点C (3,3)①当n >3时,抛物线最小值为n >3,与线段BC 无公共点; ②当n=3时,抛物线顶点为(2,3),在线段BC 上,此时抛物线与线段BC 有一个公共点; ------4分 ③当0<n <3时,抛物线最小值为n ,与直线BC 有两个交点 如果抛物线y=n(x-2)2+ n 经过点B (0,3),则3=5n ,解得53=n由抛物线的对称轴为直线x=2,可知抛物线经过点(4,3)点(4,3)不在线段BC 上,此时抛物线与线段BC 有一个公共点B ------5分如果抛物线y=n(x-2)2+ n 经过点C (3,3),则3=2n ,解得23=n 由抛物线的对称轴为直线x=2,可知抛物线经过点(1,3)点(1,3)在线段BC 上,此时抛物线与线段BC 有两个公共点 ------6分综上所述,当53≤n <23或n=3时,抛物线与线段BC 有一个公共点. ------7分顺义27.解:(1)由抛物线的表达式知,点C (0,8),即OC =8;Rt△OBC 中,OB =OC ?tan ∠ABC =8×12=4, 则点B (4,0). ………………………… 1分 将A 、B 的坐标代入抛物线的表达式中,得:428016480a b a b -+=⎧⎨++=⎩,解得12a b =-⎧⎨=⎩, ∴抛物线的表达式为228y x x =-++.…… 3分 ∵2228(1)9y x x x =-++=--+ ,∴抛物线的顶点坐标为D (1,9). ………… 4分(2)设直线CD 的表达式为y =kx +8,∵点D (1,9),∴直线CD 表达式为y =x +8.∵过点A 、B 作x 轴的垂线,交直线CD 于点E 、F , 可得:E (-2,6),F (4,12). ………… 6分 设抛物线向上平移m 个单位长度(m >0), 则抛物线的表达式为:2(1)9y x m =--++;当抛物线过E (-2,6)时,m =6,当抛物线过F (4,12)时,m =12, ∵抛物线与线段EF (含线段端点)只有1个公共点, ∴m 的取值范围是6<m ≤12. ………………………………………… 7分平谷27.解:(1)令y =0,得x =1.∴点A 的坐标为(1,0). ··············································································· 1 ∵点A 关于直线x =﹣1对称点为点C , ∴点C 的坐标为(﹣3,0). ··············· 2 (2)令x =0,得y =3.∴点B 的坐标为(0,3).∵抛物线经过点B ,∴﹣3m =3,解得m =﹣1. ·················· 3 ∵抛物线经过点A ,y x–2–112345–4–3–2–112A BCO∴m+n ﹣3m =0,解得n =﹣2. ∴抛物线表达式为223y x x =--+. ···· 4 (3)由题意可知,a <0.根据抛物线的对称性,当抛物线经过(﹣1,0)时,开口最小,a =﹣3, ·································································································································· 5 此时抛物线顶点在y 轴上,不符合题意.当抛物线经过(﹣3,0)时,开口最大,a =﹣1. ......................................... 6 结合函数图像可知,a 的取值范围为31a -<≤-. (7)门头沟27. (1)()()3a 1113=+- ……………1分解得:34a =- ………………………2分6个 ………………………3分(2)由()()y a 13x x =+-配方或变形()()()2y a 13=14x x a x a =+--- .所以顶点P 的坐标为(1,-4a ). ……………………………………5分(3) a <0时, ; ………………………………………6分a >0时, . 2132a --≤<1223a <≤海淀27.(1)m ; -------------------------------------------------------------------------------------------- 2分 (2)∵ 抛物线2222y mx m x =-+与y 轴交于A 点,∴ A (0,2).------------------------------------------------------------------------------------- 3分 ∵ AB ∥x 轴,B 点在直线x =4上,∴ B (4,2),抛物线的对称轴为直线x =2. --------------------------------------------- 4分 ∴ m =2.∴ 抛物线的表达式为2282y x x =-+. --------------------------------------------------- 5分 (3)当0m >时,如图1.∵()02A ,,∴要使04P x ≤≤时,始终满足2P y ≤, 只需使抛物线2222y mx m x =-+的对称轴与直线x=2重合或在直线x=2的右侧.∴2m ≥. -------------------------------------------- 6分当0m <时,如图2,0m <时,2P y ≤恒成立. ------------------- 7分图1综上所述,0m <或2m ≥.丰台27. 解:(1)∵抛物线()12212422---=-+-=m x m m mx mx y ,∴对称轴为x = 2.…………………………………2分(2)①∵抛物线是轴对称图形,∴点A 点B 关于x = 2轴对称, ∵A (﹣1,-2) ,∴B (5,-2).……………………………………………3分②∵抛物线()12212422---=-+-=m x m m mx mx y ,∴顶点D (2,﹣2m -1). …………………………………………………4分∵直线AB 与y 轴交点的纵坐标为-1,∴C (2,-1). ……………………………………………………………5分∵顶点D 到点C 的距离大于2,∴﹣2m ﹣1 +1 > 2或﹣1+ 2m +1 > 2,∴m <﹣1或m > 1.………………………………………………………… 7分石景山27.解:(1)解法一: ∵2443y ax ax a =-+-2(2)3a x =--, ………………………………… 1分 ∴顶点A 的坐标为(2,3)-. ………………………………… 2分 解法二: ∵244(43)(4)2,324a a a a aa-⨯----==-,∴顶点A 的坐标为(2,3)-. ………………………………… 2分 (2)①当2a =时,抛物线为2285y x x =-+令5y =,得22855x x -+=, ……………… 3分解得,1204x x ==,.……………… 4分 ∴线段BC 的长为4. ……………… 5分 ② 80<9a ≤. ……………… 7分通州27. 解:(1)D (m ,-m +2) ……………………..(2分)(2)m =3或m =1 ……………………..(5分) (3)1≤m ≤3 ……………………..(7分)怀柔27.解:(1)令y=0.∴0122=-++a ax ax .∵△=)1(442--a a a =4a,……………………………1分 ∵a>0,∴4a>0.∴△>0.∴抛物线与x 轴有两个交点. …………………2分 (2)212ax a=-=-.……………………………3分 把x=-1代入122-++=a ax ax y .∴y=-1. ∴顶点坐标(-1,-1).…………………4分(3)①把(1,2)代入122-++=a ax ax y . ∴43=a .……………………………5分 ②把(1,6)代入122-++=a ax ax y . ∴74a =.……………………………6分 ∴由图象可知:43≤a ≤74.……………………………7分。

2018年北京各区中考数学一模试卷及答案

2018年北京各区中考数学一模试卷及答案

8
(3)若关于 x 的方程 1 a(x 1) 有两个不相等的实数根,结合图象,直接写出实数 a 的取值范围: x 1
___________________________.
26.在平面直角坐标系 xOy 中,已知抛物线 y x2 2ax b 的顶点在 x 轴上, P(x1, m) ,Q(x2, m) ( x1 x2 )
17.计算: (1)1 12 3 tan 30 | 3 2 | . 3
5x 3 3 x 1,
18.解不等式组:

x
2
2

6

3x.
19.如图,△ ABC 中, ACB 90 , D 为 AB 的中点,连接 CD ,过点 B 作 CD 的平行线 EF ,求证: BC 平分 ABF .
50 x 55 55 x 60 60 x 65 65 x 70 70 x 75 75 x 80 80 x 85 85 x 90 90 x 95 95 x 100
1
1
2
2
4
5
5
2
分析数据、得出结论 调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了对比,
x
,y
)满足不等式组

y

m x
,
y x m
( m >0),求 m 的取值范围.
6
23.如图, AB 是 O 的直径,弦 EF AB 于点 C ,过点 F 作 O 的切线交 AB 的延长线于点 D . (1)已知 A ,求 D 的大小(用含 的式子表示); (2)取 BE 的中点 M ,连接 MF ,请补全图形;若 A 30 , MF 7 ,求 O 的半径.

2018年海淀区初三数学一模答案知识讲解

2018年海淀区初三数学一模答案知识讲解

2018年海淀区初三数学一模答案海淀区九年级第二学期期中练习数学参考答案及评分标准2018.5一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.1510.87.5310⨯ 11.2 12.11x=(答案不唯一)13.1118012030x x--= 14.36 15.6016.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;经过半径的外端并且垂直于这条半径的直线是圆的切线;两点确定一条直线.三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题6分;第27~28小题,每小题7分)17.解:原式=332-+………………4分=5-………………5分18.解:()5331,263.2x xxx+>-⎧⎪⎨-<-⎪⎩①②解不等式①,得3x>-. ………………2分解不等式②,得2x<. ………………4分所以原不等式组的解集为32x-<<. ………………5分19. 证明:∵90ACB ∠=︒,D 为AB 的中点,∴12CD AB BD ==.∴ABC DCB ∠=∠. ………………2分 ∵DC EF ∥,∴CBF DCB ∠=∠. ………………3分 ∴CBF ABC ∠=∠.∴BC 平分ABF ∠. ………………5分20.解:(1)∵m 是方程的一个实数根,∴()222310m m m m --++=. ………………1分∴13m =-. ………………3分(2)24125b ac m ∆=-=-+. ∵0m <,∴120m ->.∴1250m ∆=-+>. ………………4分 ∴此方程有两个不相等的实数根. ………………5分21.(1)证明:∵AE BD ∥,BE AC ∥,∴四边形AEBO 是平行四边形. ………………1分 ∵四边形ABCD 是平行四边形,∴DC AB =. ∵OE CD =, ∴OE AB =.∴平行四边形AEBO 是矩形. ………………2分 ∴90BOA ∠=︒. ∴AC BD ⊥.∴平行四边形ABCD 是菱形. ………………3分(2) 正方形; ………………4分2. ………………5分22.解:(1)∵函数my x=的图象经过点()22P ,, ∴2=2m,即4m =. ………………1分 图象如图所示. ………………2分(2)当点()22P ,满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0)时, 解不等式组2222m m⎧>⎪⎨⎪<+⎩,得04m <<. ………………3分当点()12Q -,满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0)时, 解不等式组221m m>-⎧⎨<-+⎩,得3m >. ………………4分∵P Q ,两点中恰有一个点的坐标满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0), ∴m 的取值范围是:03m <≤,或4m ≥. ………………5分23.解:(1)连接OE ,OF .∵EF AB ⊥,AB 是O 的直径, ∴DOF DOE =∠∠.DA∵2DOE A =∠∠,A α=∠, ∴2DOF α=∠. ………………1分 ∵FD 为O 的切线, ∴OF FD ⊥.∴90OFD ︒=∠.∴+90D DOF ︒=∠∠. 902D α∴∠=︒-. ………………2分(2)图形如图所示.连接OM .∵AB 为O 的直径, ∴O 为AB 中点, 90AEB ∠=︒. ∵M 为BE 的中点,∴OM AE ∥,1=2OM AE . ………………3分∵30A ∠=︒, ∴30MOB A ∠=∠=︒. ∵260DOF A ∠=∠=︒ ,∴90MOF ∠=︒. ………………4分∴222+OM OF MF =. 设O 的半径为r . ∵90AEB ∠=︒,30A ∠=︒,∴cos30AE AB ︒=⋅=.∴OM . ………………5分∵FMDA∴222)+r =. 解得=2r .(舍去负根)∴O 的半径为2. ………………6分24.………………1分………………2分(2)去年的体质健康测试成绩比今年好.(答案不唯一,合理即可) ………………3分去年较今年低分更少,高分更多,平均分更大.(答案不唯一,合理即可)………………4分 (3)70. ………………6分25.(1)如图: ………………2分(2)当1x >时,y 随着x 的增大而减小;(答案不唯一) ………………4分 (3)1a ≥. ………………6分26.解:抛物线22y x ax b =-+的顶点在x24(2)04b a --∴=.2b a ∴=. ………………1分(1)1a =,1b ∴=.∴抛物线的解析式为221y x x =-+.①1m b ==,2211x x ∴-+=,解得10x =,22x =. (2)分②依题意,设平移后的抛物线为2(1)y x k =-+.抛物线的对称轴是1x =,平移后与x 轴的两个交点之间的距离是4,∴(3,0)是平移后的抛物线与x 轴的一个交点.2(31)0k ∴-+=,即4k =-.∴变化过程是:将原抛物线向下平移4个单位. ………………4分(2)16m ≥. ………………6分27..解:(1)作PF ⊥DE 交DE 于F . ∵PE ⊥BO ,60AOB ∠=,∴30OPE ∠=. ∴30DPA OPE ∠=∠=.∴120EPD ∠=. ………………1分 ∵DP PE =,6DP PE +=, ∴30PDE ∠=,3PD PE ==.∴cos30DF PD =⋅︒=∴2DE DF ==………………3分 (2)当M 点在射线OA上且满足OM =DMME的值不变,始终为1.理由如下:………………4分当点P 与点M 不重合时,延长EP 到K 使得PK PD =. ∵,DPA OPE OPE KPA ∠=∠∠=∠, ∴KPA DPA ∠=∠. ∴KPM DPM ∠=∠. ∵PK PD =,PM 是公共边, ∴KPM △≌DPM △.∴MK MD =. ………………5分 作ML ⊥OE 于L ,MN ⊥EK 于N . ∵23,60MO MOL =∠=,∴sin 603ML MO =⋅=. ………………6分 ∵PE ⊥BO ,ML ⊥OE ,MN ⊥EK , ∴四边形MNEL 为矩形. ∴3EN ML ==.∵6EK PE PK PE PD =+=+=, ∴EN NK =. ∵MN ⊥EK , ∴MK ME =. ∴ME MK MD ==,即1DMME=. 当点P 与点M 重合时,由上过程可知结论成立. ………………7分28.解(1)①A 的反射点是M ,N . ………………1分②设直线y x =-与以原点为圆心,半径为1和3的两个圆的交点从左至右依次为D ,E ,F ,G ,过点D 作⊥DH x 轴于点H ,如图.可求得点D 的横坐标为32-. NMD KA P同理可求得点E ,F ,G 的横坐标分别为2,2,2. 点P 是A 的反射点,则A 上存在一点T ,使点P 关于直线OT 的对称点'P 在A 上,则'OP OP =.∵1'3≤≤OP ,∴13≤≤OP .反之,若13≤≤OP ,A 上存在点Q ,使得OP OQ =,故线段PQ 的垂直平分线经过原点,且与A 相交.因此点P 是A 的反射点.∴点P 的横坐标x 的取值范围是22≤x --22≤x . ………………4分 (2)圆心C 的横坐标x 的取值范围是44≤≤x -. ………………7分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上,
且由图可知,当 时, ,
即 ,所以当 时, ,
此时矩形的另一边长
,不符合题意,
所以点 的横坐标不可能大于 ,故 选项错误.
当矩形 是正方形时,则


,易得
与函数
, 的交点在区域③中,故 选项错误.
矩形的面积
,为开口向下的二次函数,
当点 沿双曲线向上移动时, 逐渐减小,此时面积逐渐增大,故 选项错误.
1当
时,求 , 的值.
2 将抛物线沿 轴平移,使得它与 轴的两个交点间的距离为 ,试描述出这一变化过
程.
( 2 )若存在实数 ,使得
,且
成立,则 的取值范围

【答案】( 1 )1


2 将原抛物线向下平移 个单位.
(2)
【解析】( 1 )1 ∵抛物线
2018年北京海淀、密云区初三一模数学试卷(详解)
乙、钉掉龟
(本题共16分,每小题2分)
1. 用三角板作 A.
的边 上的高,下列三角板的摆放位置正确的是( ). B.
C.
D.
【答案】 A
【解析】 高的定义:过三角形的一个顶点向对边作垂线,顶点与垂足之间的线段叫做三角形 的高线,简称高, 由定义可知选 .
( 1 )已知
,求 的大小(用含 的式子表示).
( 2 )取 的中点 ,连接 ,请补全图形,若

,求⊙ 的半径.
/
【答案】( 1 )

( 2 )⊙ 的半径为 .
【解析】( 1 )连接 , .

, 是⊙ 的直径,







∵ 为⊙ 的切线,








( 2 )图形如图所示.连接 .
∵ 为⊙ 的直径,


∴四边形
是平行四边形,
∵四边形
是平行四边形,






∴平行四边形
是矩形,




∴平行四边形
是菱形.
( 2 )略.
时,四边形
的面积最大,最大值
22. 在平面直角坐标系 中,已知点

,反比例函数

/
( 1 )当函数
的图象经过点 时,求 的值并画出直线
( 2 )若 , 两点中恰有一个点的坐标
满足不等式组




故答案为: .
15. 定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦.
阿基米德折弦定理:如图 , 和 组成圆的折弦,
, 是弧 的中点,
于 ,则

如图 ,
中,


, 是 上一点,
,作

的外接圆于 ,连接 ,则
度.
M
B
A
F
C
A
O
E
O DB
C


【答案】
【解析】 方法一:在 上截取

连接 、 、 ,
【解析】 与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;经过半径的外端 并且垂直于这条半径的直线是圆的切线;两点确定一条直线.
上、谣纹龟
17. 计算:

【答案】

【解析】 原式 .
18. 解不等式组:

【答案】 【解析】




/
解不等式②,得 ,
所以原不等式组的解集为

19. 如图
中,
【答案】( 1 )画图见解析. ( 2 )当 时, 随着 的增大而减小;(答案不唯一) (3) .
【解析】( 1 )
y
x
O
( 2 )观察图像可得, 当 时, 随着 的增大而减小;(答案不唯一)
(3) .
/
26. 在平面直角坐标系 中,已知抛物线
的顶点在 轴上,

是此抛物线上的两点.
( 1 )若 .
的图象与性质时,我们对函数解析式进行了深入分析.
首先,确定自变量 的取值范围是全体非零实数,因此函数图象会被 轴分成两部分,其次,分
析解析式,得到 随 的变化趋势.当 时,随着 值的减小, 的值会越来越大 ,由
此,可以大致画出
在 时的部分图象,如图 所示:
y
x
O

( 1 )利用同样的方法,我们可以研究函数
2. 图 是数学家皮亚特.海恩(
)发明的索玛立方块,它由四个及四个以内大小相同的立
方体以面相连接构成的不规则形状组件组成,图 不可能是下面哪个组件的视图( ).
图1
图2
A.
B.
C.
D.
【答案】 C
/
【解析】 由视图的定义可知, 选项, 选项, 选项的俯视图通过旋转后均可成为图 , 只有 选项的三视图与图 都不符合,所以选择 .
A E
OF DB
C
A E
OF DB
C
/
O P
作法:如图, ( )作射线 . ( )以点 为圆心,小于 的长为半径作弧交射线 于 、 两点. ( )分别以点 、 为圆心,大于 的长为半径作弧,两弧交于 、 两点. ( )作直线 ,则 就是所求作的⊙ 的切线.
O P
请回答:该尺规作图的依据是

【答案】 与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;经过半径的外端 并且垂直于这条半径的直线是圆的切线;两点确定一条直线.
当点 在区域①时,不妨取
,矩形 在区域④,不放取

此时两个矩形都是一边长为 ,另一边长为 的矩形,两个矩形全等,故 选项正
确.
故选 .
于、境粟龟
(本题共16分,每小题2分)
9. 从 张上面分别写着“加”“油”“向”“未”“来”这 个字的卡片(大小、形状完全相同)
中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是
( 3 )分析数据、得出结论 调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了 对比. 年九年级部分学生体质健康成绩直方图
你能从中得到的结论是
,你的理由是

/
体育老师计划根据 年的统计数据安排 分以下的同学参加体质加强训练项目,则全
年级约有
名同学参加此项目.
【答案】( 1 )C (2) ; ( 3 )去年的体质健康测试成绩比今年好.(答案不唯一,合理即可) ; 去年较今年 低分更少,高分更多,平均分更大.(答案不唯一,合理即可) ;
证: 平分

, 为 的中点,连接 ,过点 作 的平行线 .求
【答案】 证明见解析.
【解析】 ∵
, 为 的中点,










∴ 平分

20. 关于 的一元二次方程

( 1 )若 是方程的一个实数根,求 的值.
( 2 )若 为负数,判断方程根的情况.
【答案】( 1 )

( 2 )此方程有两个不相等的实数根.
/
(以上数据摘自《 年中国在线少儿英语教育白皮书》)
根据统计图提供的信息,下列推断一定不合理的是( ).
A.
年 月至 年 月,我国在线教育用户规模逐渐上升
B.
年 月至 年 月,我国手机在线教育课程用户规模占在线教育用户规模的比例持
续上升
C.
年 月至 年 月,我国手机在线教育课程用户规模的平均值超过 万
值范围.
【答案】( 1 ) (2)
,画图见解析.
,或

【解析】( 1 )∵函数
的图象经过点


,即

图象如图所示


,求 的取
( 2 )当点
满足
时,
解不等式组


当点
满足
时,
解不等式组


∵ 两点中恰有一个点的坐标满足

∴ 的取值范围是:
,或

23. 如图, 是⊙ 的直径,弦
于点 ,过点 作⊙ 的切线交 的延长线于点 .
/






根据阿基米德折线定理可知,
点为优弧 的中点,




















又∵



方法二:在 上截取

连接 、 、 ,






根据阿基米德折线定理可知,
点为优弧 的中点,




∴ 、 、 为圆的三等分点,

,即
为等边三角形,


16. 下面是“过圆上一点作圆的切线”的尺规作图过程. 已知:⊙ 和⊙ 上一点 . 求作:⊙ 的切线 ,使 经过点 .
D.
年 月,我国手机在线教育课程用户规模超过在线教育用户规模的
【答案】 B
【解析】 ∵ 年 月至 年 月,我国在线教育用户规模分别



逐渐上升,故 选项正确.
年 月我国手机在线教育课程用户规模占在线教育用户规模的比例是

年 月我国手机在线教育课程用户规模占在线教育用户规模的比例是

可得占比出现下降,故 错误.
/
图 图
相关文档
最新文档