概率论知识点总结
概率论知识点
第一章随机事件及其概率§ 1.1 随机事件及其运算随机现象:概率论的基本概念之一。
是人们通常说的偶然现象。
其特点是,在相同的条件下重复观察时,可能出现这样的结果,也可能出现那样的结果,预先不能断言将出现哪种结果•例如,投掷一枚五分硬币,可能国徽”向上,也可能伍分”向上;从含有5件次品的一批产品中任意取出3件,取到次品的件数可能是0,1,2或3.随机试验:概率论的基本概念之一•指在科学研究或工程技术中,对随机现象在相同条件下的观察。
对随机现象的一次观察(包括试验、实验、测量和观测等),事先不能精确地断定其结果,而且在相同条件下可以重复进行,这种试验就称为随机试验。
样本空间:概率论术语。
我们将随机试验E的一切可能结果组成的集合称为E的样本空间,记为1。
样本空间的元素,即E的每一个结果,称为样本点。
随机事件:实际中,在进行随机试验时,人们常常关心满足某种条件的那些样本点所组成的集合.称试验E的样本空间I ■■的子集为E的随机事件,简称事件•在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别,由一个样本点组成的单点集,称为基本事件.样本空间门包含所有的样本点,它是门自身的子集,在每次试验中它总是发生的,称为必然事件.空集?不包含任何样本点,它也作为样本空间的子集,它在每次试验中都不发生称为不可能事件.互斥事件(互不相容事件):若事件A与事件B不可能同时发生,亦即A B =①,则称事件A与事件B是互斥(或互不相容)事件。
互逆事件:事件A与事件B满足条件A B =①,A B =1 ,则称A与B是互逆事件,也称A与B是对立事件,记作B (或A = B )。
互不相容完备事件组:若事件组A,A2,…A满足条件A i A j二①,(i,i=t n ),nA-、_:,则称事件组A, A2,…A n为互不相容完备事件组(或称A, A2,…A n为样本空i=1间门的一个划分)。
§ 1.2 随机事件的概率概率:随机事件出现的可能性的量度。
概率论的知识点总结
概率论的知识点总结1.概率的基本概念概率是描述随机事件发生可能性的数学工具,其基本概念包括样本空间、事件和概率空间。
样本空间是随机试验的所有可能结果的集合,事件是样本空间的子集,概率空间包括样本空间和定义在样本空间上的概率测度。
2.概率分布概率分布描述了随机变量可能取值的概率情况。
概率分布分为离散分布和连续分布两种。
常见的离散分布包括伯努利分布、二项分布、泊松分布等;常见的连续分布包括均匀分布、正态分布、指数分布等。
概率密度函数和累积分布函数是描述连续分布的重要工具。
3.随机变量随机变量是一种具有随机性的变量,它可以取样本空间中的某些值。
随机变量分为离散随机变量和连续随机变量。
离散随机变量的概率分布由概率质量函数描述,连续随机变量的概率分布由概率密度函数描述。
4.数学期望和方差数学期望是随机变量的平均值,描述了随机变量的位置参数;方差是随机变量与其数学期望之间的离散程度,描述了随机变量的分散程度。
数学期望和方差是描述随机变量性质的重要指标,它们具有许多重要的性质,如线性性质、切比雪夫不等式等。
5.大数定律大数定律是描述随机变量序列平均值的收敛性质的定理。
大数定律包括弱大数定律和强大数定律两种。
弱大数定律描述了随机变量序列平均值收敛于数学期望的概率性质,强大数定律描述了随机变量序列平均值几乎必然收敛于数学期望的性质。
6.中心极限定理中心极限定理是概率论中一个重要的定理,描述了大量独立随机变量的和呈现出正态分布的性质。
中心极限定理包括林德伯格-莱维中心极限定理、李亥莱中心极限定理等。
中心极限定理在统计学和金融学中具有重要的应用价值,它解释了正态分布在自然界和人类活动中的普遍性。
以上是概率论的一些重要知识点,概率论作为一门基础数学学科,不仅具有重要的理论意义,而且在实际应用中有着广泛的应用价值。
随着数据科学和人工智能的快速发展,概率论的应用前景将更加广阔。
概率论复习知识点总结
? P( Ai B) ?
P(Ai )P( B Ai ) ?
n
P(Ai )P( B Ai )
P(Ai )P( B Ai ) ? P(B)
,i
? 1,2,?
,n
i?1
?例1.16,1.17,作业:三、14,15
第1章要点
七、事件的相互独立性
P(AB)= P(A)P(B)
?注意几对概念的区别: ?互不相容与互逆 ?互不相容与相互独立 ?相互独立与两两相互独立 ?作业:一、8;二、8,9; 三、17,19
P(A∪B) = P(A) + P(B)–P(AB).
例1.4;作业: 一、4,11 ; 二、3,5,6
第1章要点
四、古典概型与几何概型 ?古典概型概率计算公式:
P( A) ? 事件A中所包含样本点的个数 ? k
? 中所有样本点的个数 n
作业:三、6,8
第1章要点
五、条件概率与乘法公式 ?若P(A)>0
p
p(1? p)
np
np(1 ? p)
?
?
( a ? b) 2 (b ? a )2 12
θ
θ2
μ
σ2
第4章要点
四、协方差及相关系数 ?定义式:Cov( X,Y) ? E[(X ? EX)(Y ? EY)]
? XY ?
Cov( X ,Y) ( D( X ) ? 0, D(Y ) ? 0) D( X ) D(Y)
第1章要点
二、事件运算满足的定律 ?事件的运算性质和集合的运算性质相同,设 A,B,C为 事件,则有 ?交换律:A? B ? B ? A, AB ? BA ?结合律:( A ? B ) ? C ? A ? (B ? C ), ( AB)C ? A(BC ) ?分配律:( A ? B)C ? ( AC) ? (BC ),
概率论知识点总结归纳
概率论知识点总结归纳概率论是数学中的一个分支,研究随机现象发生的规律性及其数学模型。
概率论广泛应用于统计学、金融、生物学等领域。
本文将对概率论的基本概念、概率计算方法、常见概率分布以及概率论在实际问题中的应用进行总结归纳。
一、基本概念1. 随机试验:在相同的条件下可以重复进行的实验,结果不确定。
2. 样本空间:随机试验所有可能结果的集合,用S表示。
3. 事件:由样本空间S的一个或多个元素构成的子集,表示试验结果的一个集合。
4. 概率:事件发生的可能性大小的度量,用P(A)表示。
二、概率计算方法1. 古典概型:指随机试验中每个基本事件发生的概率相等的情况。
计算概率时可以根据样本空间和事件个数进行计算。
2. 频率派概率:根据大量实验的频率来计算概率,概率等于事件发生的次数与试验次数之比的极限。
3. 主观概率:根据个人主观判断来计算概率,没有明确的计算方法。
三、常见概率分布1. 离散概率分布:表示随机变量在有限取值集合上的概率分布。
a. 伯努利分布:只有两个可能取值的离散概率分布。
b. 二项分布:多次伯努利试验的结果相加,每次试验相互独立。
c. 泊松分布:表示单位时间或空间内随机事件发生的次数的概率分布。
2. 连续概率分布:表示随机变量在一个区间上的概率分布。
a. 均匀分布:随机变量在一段区间上取值的概率相等。
b. 正态分布:最常见的连续概率分布,具有钟形曲线的特点。
四、概率论的应用1. 统计学:概率论是统计学的基础,通过概率论可以推导出统计学各种假设检验和置信区间的计算方法。
2. 金融学:概率论在金融学中被广泛应用,例如在风险管理、期权定价、投资组合构建等方面。
3. 生物学:概率论能够帮助解释生物学中的随机现象,如遗传、进化等过程中的概率计算。
4. 工程学:概率论可以用于工程问题的风险评估和可靠性分析,如工程结构的寿命预测等。
总结:概率论是研究随机现象的规律性及其数学模型的学科,它包括了基本概念、概率计算方法、常见概率分布以及在各个领域的应用。
概率论知识点整理及习题答案
概率论知识点整理及习题答案概率论知识点整理及习题答案第一章随机事件与概率1.对立事件与互不相容事件有何联系与区别?它们的联系与区别是:(1)两事件对立(互逆),必定互不相容(互斥),但互不相容未必对立。
(2)互不相容的概念适用于多个事件,但对立的概念仅适用于两个事件。
(3)两个事件互不相容只表示两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生。
而两个事件对立则表明它们有且仅有一个发生,即肯定了至少有一个发生。
特别地,=A、AU= 、AI=φ。
2.两事件相互独立与两事件互不相容有何联系与区别?两事件相互独立与两事件互不相容没有必然的联系。
我们所说的两个事件A、B相互独立,其实质是事件A是否发生不影响事件B发生的概率。
而说两个事件A、B互不相容,则是指事件A发生必然导致事件B不发生,或事件B发生必然导致事件A不发生,即AB=φ,这就是说事件A是否发生对事件B发生的概率有影响。
3.随机事件与样本空间、样本点有何联系?所谓样本空间是指:随机试验的所有基本事件组成的集合,常用来记。
其中基本事件也称为样本点。
而随机事件可看作是有样本空间中具有某种特性的样本点组成的集合。
通常称这类事件为复合事件;只有一个样本点组成的集合称为基本事件。
在每次试验中,一定发生的事件叫做必然事件,记作。
而一定不发生的事件叫做不可能事件,记作φ。
为了以后讨论问题方便,通常将必然事件和不可能事件看成是特殊的随机事件。
这是由于事件的性质随着试验条件的变化而变化,即:无论是必然事件、随机事件还是不可能事件,都是相对“一定条件”而言的。
条件发生变化,事件的性质也发生变化。
例如:抛掷两颗骰子,“出现的点数之和为3点”及“出现的点数之和大于33点”,则是不可能事件了;而“出现的点数之和大于3点”则是必然事件了。
而样本空间中的样本点是由试验目的所确定的。
例如:(1)={3,4,5,L,18}。
(2)将一颗骰子连续抛掷三次,观察六点出现的次数,其样本空间为 ={0,1,2,3}。
概率知识点总结
概率知识点总结1、确定性现象:在一定条件下必然出现的现象。
2、随机现象:在一定条件下可能发生也可能不发生的现象。
3、概率论:是研究随机现象统计规律的科学。
4、随机试验:对随机现象进行的观察或实验统称为随机试验。
5、样本点:随机试验的每个可能出现的实验结果称为这个试验的一个样本点。
6、样本空间:所有样本点组成的集合称为这个试验的样本空间。
7、随机事件:如果在每次试验的结果中,某事件可能发生,也可能不发生,则这一事件称为随机事件。
8、必然事件:某事件一定发生,则为必然事件。
9、不可能事件:某事件一定不发生,则为不可能事件。
10、基本事件:有单个样本点构成的集合称为基本事件。
11、任一随机事件都是样本空间的一个子集,该子集中任一样本点发生,则该事件发生。
利用集合论之间的关系和运算研究事件之间的关系和运算。
〔1〕事件的包含A B⊂〔2〕事件的并〔和〕A B〔3〕事件的交〔积〕A B〔4〕事件的差A B A B-=-=AB A〔5〕互不相容事件〔互斥事件〕A Bφ=〔6〕对立事件〔互逆事件〕A B Ω=,A B φ=,记B A = 〔7〕完备事件组:事件12,,,n A A A 两两互不相容,且1n A A AΩ=〔8〕事件之间的运算规律:交换律、结合律、分配率、De Morgan 定理 12、概率()1P Ω=,()0P φ=如果12,,,n A A A 两两互不相容,则112()()()()n n P A AP A P P A A A =+++如果,A B 是任意两个随机事件,则()()()P A B P A P AB -=- 如果B A ⊂,则()()()P A B P A P B -=-()()()()P A B P A P B P AB =+-()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+ 1111121()()()()()()(1())()nn j i j i ni n j k n i i i j k nP A AP A P A P A P A P A P A P A A A A ≤<≤=-≤<<≤=-+--+∑∑∑12、古典概型每次试验中,所有可能发生的结果只有有限个,即样本空间是有限集 每次试验中,每一个结果发生的可能性相同()A P A =包含的基本事件数试验的基本事件总数13、条件概率:()(|)()P AB P A B P B =为事件B 发生的条件下,事件A 发生的条件概率加法公式:()()()()P A B P A P B P AB =+-,若,A B 互斥,则()()()P A B P A P B =+乘法公式:()()(|)()(|)P AB P A P B A P B P A B ==,若,A B 独立,则()()()P AB P A P B = 全概率公式:1221()()(|)()(|)()(|)n n P A P B P A B P B P A B P B P A B =+++贝叶斯公式:11()()(|)(|)()()(|)()(|)k k k n n k P AB P B P A B P B A P A P B P A B P B P A B =+=+14、事件独立:如果(|)()P B A P B =,则称事件B 对于事件A 独立,此时,事件A 对于事件B 独立,称,A B 相互独立。
概率论必备知识点
概率论必备知识点概率论是一门研究随机现象数量规律的数学分支,它在各个领域都有着广泛的应用,从物理学、生物学、经济学到计算机科学等。
以下是一些概率论中的必备知识点。
一、随机事件与概率随机事件是指在一定条件下,可能出现也可能不出现的事件。
例如,抛一枚硬币,正面朝上就是一个随机事件。
概率则是用来衡量随机事件发生可能性大小的数值。
概率的取值范围在 0 到 1 之间,0 表示不可能发生,1 表示必然发生。
计算概率的方法有多种。
对于等可能事件,概率等于事件所包含的基本结果数除以总的基本结果数。
例如,掷一个骰子,出现点数为 3的概率就是 1/6,因为骰子共有 6 个面,每个面出现的可能性相等,而点数为 3 的只有 1 种情况。
二、古典概型古典概型是一种最简单的概率模型。
在古典概型中,试验的结果是有限的,并且每个结果出现的可能性相等。
例如,从装有 5 个红球和 3 个白球的袋子中随机取出一个球,求取出红球的概率,这就是一个古典概型问题。
计算古典概型的概率,可以使用公式:P(A) = n(A) /n(Ω),其中P(A)表示事件 A 发生的概率,n(A)表示事件 A 包含的基本结果数,n(Ω)表示总的基本结果数。
三、几何概型几何概型是古典概型的推广,当试验的结果是无限的,且每个结果出现的可能性相等时,就可以使用几何概型来计算概率。
例如,在一个时间段内等待公交车,求等待时间不超过 5 分钟的概率。
在几何概型中,概率等于事件对应的区域长度(面积或体积)除以总的区域长度(面积或体积)。
四、条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
例如,已知今天下雨,明天晴天的概率就是一个条件概率。
条件概率的计算公式为:P(B|A) = P(AB) / P(A),其中 P(B|A)表示在事件 A 发生的条件下事件 B 发生的概率,P(AB)表示事件 A 和事件 B 同时发生的概率,P(A)表示事件 A 发生的概率。
概率知识点归纳整理总结
概率知识点归纳整理总结概率基础知识1. 样本空间和事件概率论的基本概念是样本空间和事件。
样本空间是一个随机试验所有可能结果的集合,通常用Ω表示。
事件是样本空间的一个子集,表示随机试验的一些结果。
事件的概率描述了该事件发生的可能性有多大。
2. 概率的定义在样本空间Ω中,事件A包含n(A)个基本事件,概率P(A)定义为P(A)=n(A)/n(Ω),即事件A的发生可能性是A包含的基本事件数目与样本空间的基本事件数目之比。
3. 概率的性质概率具有以下几个性质:(1)非负性:对于任意事件A,有0≤P(A)≤1;(2)规范性:样本空间的概率为1,即P(Ω)=1;(3)可列可加性:若事件A1,A2,A3,...两两互斥,则P(A1∪A2∪A3∪...)=P(A1)+P(A2)+P(A3)+...。
4. 条件概率条件概率是指在事件B已经发生的条件下,事件A发生的概率,表示为P(A|B),其定义为P(A|B)=P(A∩B)/P(B)。
5. 独立事件两个事件A和B称为独立事件,当且仅当P(A∩B)=P(A)P(B)。
6. 贝叶斯定理贝叶斯定理是用来计算逆概率的定理,它表示为P(A|B)=P(B|A)P(A)/P(B)。
概率的应用1. 排列与组合排列和组合是概率论的一个重要应用。
排列是指从n个不同元素中取出m个元素进行排列的种数,用P(n,m)表示,其公式为P(n,m)=n!/(n-m)!。
组合是指从n个不同元素中取出m个元素进行组合的种数,用C(n,m)表示,其公式为C(n,m)=n!/(m!(n-m)!)。
2. 事件的独立性在概率论中,独立性是一个重要的概念。
事件A和事件B称为独立事件,如果P(A∩B)=P(A)P(B),即事件A的发生与事件B的发生互不影响。
在实际应用中,很多情况下要求两个事件的独立性,以便于计算事情发生的可能性。
3. 随机变量随机变量是概率论中的一个重要概念,它是一个从样本空间到实数的映射。
随机变量可分为离散型和连续型两种。
概率论知识点总结
概率论知识点总结概率论是数学中的一个重要分支,主要研究随机现象的规律性和概率分布。
在现实生活中,概率论广泛应用于统计学、金融、工程、生物学等领域。
下面将对概率论中的一些重要知识点进行总结。
一、基本概念1. 样本空间:随机试验所有可能结果的集合。
2. 随机事件:样本空间中的一个子集。
3. 概率:随机事件发生的可能性大小,用P(A)表示。
4. 事件的互斥与对立:互斥事件指两个事件不可能同时发生,对立事件指两个事件至少有一个发生。
二、概率的性质1. 非负性:概率值始终大于等于0。
2. 规范性:样本空间的概率为1。
3. 可数可加性:如果事件A和事件B互斥,则P(A∪B) = P(A) + P(B)。
4. 加法定理:P(A∪B) = P(A) + P(B) - P(A∩B)。
三、条件概率1. 定义:在事件B发生的条件下,事件A发生的概率。
2. 计算公式:P(A|B) = P(A∩B) / P(B)。
3. 乘法公式:P(A∩B) = P(A|B) * P(B) = P(B|A) * P(A)。
四、独立事件1. 定义:事件A发生与否不受事件B发生与否的影响。
2. 判别条件:P(A∩B) = P(A) * P(B)。
五、全概率公式与贝叶斯定理1. 全概率公式:设事件B1、B2、...、Bn为样本空间的一个划分,即B1∪B2∪...∪Bn = S,且P(Bi) > 0,有P(A) = ∑P(A|Bi) * P(Bi)。
2. 贝叶斯定理:在全概率公式的基础上,可以得到P(Bi|A) = P(A|Bi) * P(Bi) / ∑P(A|Bi) * P(Bi)。
六、随机变量与概率分布1. 随机变量:将数学状态与随机事件的结果联系起来的变量。
2. 离散型随机变量与连续型随机变量。
3. 概率分布:描述随机变量各个取值的概率情况。
4. 均匀分布、正态分布、泊松分布等。
七、大数定律与中心极限定理1. 大数定律:随着试验次数的增加,样本均值趋于总体均值。
概率问题知识点总结
概率问题知识点总结1. 概率的基本概念概率是描述随机现象发生可能性大小的量。
在概率论中,事件A的概率一般用P(A)表示。
概率的基本性质包括:(1)非负性:对于任意事件A,有P(A)≥0;(2)规范性:必然事件的概率为1,即P(S)=1;(3)可列可加性:对于两个不相容事件A和B,有P(A∪B)=P(A)+P(B)。
2. 条件概率条件概率是指在给定另一事件发生的条件下,某一事件发生的概率。
条件概率常用P(A|B)表示,表示在事件B发生的条件下,事件A发生的概率。
条件概率的计算公式为:P(A|B)=P(A∩B)/P(B)3. 独立事件如果事件A和事件B相互独立,那么P(A|B)=P(A),P(B|A)=P(B)。
也就是说,事件A的发生并不影响事件B的发生,反之亦然。
两个事件相互独立的充分必要条件是P(A∩B)=P(A)P(B)。
4. 随机变量与概率分布随机变量是指对随机现象结果进行量化的变量。
随机变量可以分为离散型随机变量和连续型随机变量。
离散型随机变量的取值有限或者可数,而连续型随机变量的取值是连续的。
随机变量的概率分布是指它取各个可能值的概率。
5. 期望与方差随机变量的期望是对其取值进行加权平均的结果,反映了其平均水平。
期望用E(X)或μ表示。
随机变量的方差是对其取值与期望的偏离程度进行加权平均的结果,反映了其分散程度。
方差用Var(X)或σ²表示。
6. 参数估计参数估计是指在已知数据的情况下,对总体的某种特征(参数)进行估计的过程。
参数估计的方法包括点估计和区间估计。
点估计的目标是寻找一个能够最好地估计总体参数的数值,而区间估计给出的是总体参数的估计范围。
7. 假设检验假设检验是指根据样本信息对总体分布或参数提出的假设进行检验的过程。
在假设检验中,我们首先提出原假设和备择假设,然后计算一个检验统计量,最后根据检验统计量的大小来判断是否拒绝原假设。
8. 贝叶斯定理贝叶斯定理是概率论中的一个重要定理,它描述了在已知事件B发生的条件下,事件A发生的概率。
概率论知识点总结归纳
概率论知识点总结归纳概率论是一门研究随机现象数量规律的数学学科,它在许多领域都有着广泛的应用,如统计学、物理学、工程学、经济学等。
下面将对概率论中的一些重要知识点进行总结归纳。
一、随机事件与概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。
例如,掷骰子出现的点数就是一个随机事件。
2、样本空间样本空间是指随机试验的所有可能结果组成的集合。
3、事件的关系与运算包括包含、相等、和事件、积事件、差事件、互斥事件、对立事件等。
4、概率的定义概率是对随机事件发生可能性大小的度量。
概率的古典定义适用于等可能概型,几何概型则通过几何度量来计算概率。
5、概率的性质包括非负性、规范性和可加性。
二、条件概率与乘法公式1、条件概率在已知某个事件发生的条件下,另一个事件发生的概率称为条件概率。
2、乘法公式用于计算两个事件同时发生的概率。
三、全概率公式与贝叶斯公式1、全概率公式如果事件组构成一个完备事件组,那么对于任意一个事件,可以通过全概率公式计算其概率。
2、贝叶斯公式在已知结果的情况下,反推导致这个结果的某个原因的概率。
四、随机变量及其分布1、随机变量用来表示随机现象结果的变量。
2、离散型随机变量取值可以一一列举的随机变量,常见的离散型随机变量分布有二项分布、泊松分布等。
3、连续型随机变量取值充满某个区间的随机变量,其概率通过概率密度函数来描述。
常见的连续型随机变量分布有正态分布、均匀分布等。
五、期望与方差1、期望反映随机变量取值的平均水平。
2、方差描述随机变量取值的离散程度。
六、协方差与相关系数1、协方差衡量两个随机变量之间的线性关系程度。
2、相关系数是标准化后的协方差,取值范围在-1 到 1 之间。
七、大数定律与中心极限定理1、大数定律说明在大量重复试验中,随机变量的平均值趋近于其期望值。
2、中心极限定理当样本量足够大时,独立同分布的随机变量之和近似服从正态分布。
在学习概率论的过程中,需要理解各个概念的含义,掌握相关的公式和定理,并通过大量的练习来加深对知识点的理解和应用。
初三数学概率知识点总结
初三数学概率知识点总结一、事件的分类。
1. 必然事件。
- 在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。
例如:太阳从东方升起。
2. 不可能事件。
- 在一定的条件下重复进行试验时,在每次试验中都不可能发生的事件。
例如:掷骰子得到的点数大于6。
3. 随机事件。
- 在一定的条件下重复进行试验时,可能发生也可能不发生的事件。
例如:掷一枚硬币,正面朝上。
二、概率的定义。
1. 概率的概念。
- 一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=(m)/(n)。
- 例如:掷一枚均匀的骰子,共有6种等可能的结果(1点、2点、3点、4点、5点、6点),掷出偶数点(事件A)包含3种结果(2点、4点、6点),则P(A)=(3)/(6)=(1)/(2)。
2. 概率的取值范围。
- 对于任何事件A,0≤ P(A)≤1。
- 当P(A) = 0时,事件A是不可能事件;当P(A)=1时,事件A是必然事件;当0时,事件A是随机事件。
三、用列举法求概率。
1. 直接列举法。
- 当试验的结果较少时,可以直接列举出所有可能的结果,然后计算事件的概率。
- 例如:一个布袋中有1个红球和2个白球,除颜色外其余都相同。
从袋中随机摸出一个球,求摸到红球的概率。
- 这里总共有3个球(1个红球和2个白球),摸出红球这一事件包含1种结果,所以P(摸到红球)=(1)/(3)。
2. 列表法。
- 当一次试验涉及两个因素(例如掷两枚骰子),并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,可以采用列表法。
- 例如:同时掷两枚质地均匀的骰子,求两枚骰子点数之和为7的概率。
- 列表如下:第一枚骰子\\第二枚骰子 1 2 3 4 5 6。
1 2 3 4 5 6 7.2 3 4 5 6 7 8.3 4 5 6 7 8 9.4 5 6 7 8 9 10.5 6 7 8 9 10 11.6 7 8 9 10 11 12.- 共有36种等可能的结果,点数之和为7的情况有6种(1和6、2和5、3和4、4和3、5和2、6和1),所以P(点数之和为7)=(6)/(36)=(1)/(6)。
概率知识点总结职高
概率知识点总结职高一、基本概率概念1. 随机事件及其概率在概率论中,随机事件是指在一定条件下可能发生也可能不发生的现象。
而该事件发生的可能性大小即为概率。
概率通常用P(A)表示,表示事件A发生的概率。
概率的取值范围是0到1之间,即0≤P(A)≤1。
2. 样本空间和事件在概率论中,样本空间是指一个随机试验中所有可能结果的集合,通常用S表示。
而事件则是样本空间的子集,表示样本空间中满足某一特定条件的结果。
3. 事件的互斥和对立事件互斥事件指的是两个事件不可能同时发生的情况,即事件A和事件B互斥,发生A就不可能发生B,反之亦成立。
而对立事件是指两个事件互为补事件,即事件A发生的概率加上事件A不发生的概率等于1。
二、概率的计算方法1. 古典概率古典概率是指在一项随机试验中,所有可能事件出现的概率是相等的,即P(A) = n(A) /n(S),其中n(A)表示事件A出现的结果数,n(S)表示样本空间的结果数。
2. 几何概率几何概率是指根据几何图形的特性来计算概率的方法。
比如将事件A发生的区域面积除以样本空间的面积。
3. 条件概率条件概率是指在已知事件B发生的情况下,事件A发生的概率。
表示为P(A|B),计算方法为P(A|B) = P(AB) / P(B),其中P(AB)表示事件A和事件B同时发生的概率,P(B)代表事件B发生的概率。
4. 乘法定理乘法定理是指在一个随机试验中,多个事件同时发生的概率等于各个事件发生概率的乘积。
比如P(AB) = P(A) * P(B|A)。
5. 加法定理加法定理是指在一个随机试验中,事件A和事件B至少有一个发生的概率等于事件A发生的概率加上事件B发生的概率减去两者同时发生的概率。
表示为P(A∪B) = P(A) + P(B) - P(AB)。
三、概率分布1. 随机变量随机变量是指对随机现象进行量化的一种方式,可以是离散型的也可以是连续型的。
2. 概率质量函数和概率密度函数对于离散型随机变量,其概率分布函数称为概率质量函数(PMF),而对于连续型随机变量,其概率分布函数称为概率密度函数(PDF)。
概率论知识点总结
概率论知识点总结引言概率论是数学中的一个分支,研究随机事件的发生规律以及概率的计算与推理。
本文旨在对概率论的主要知识点进行总结。
基本概念1. 随机试验:具有相同的条件,可以重复进行,结果不确定的试验。
2. 样本空间:随机试验所有可能结果的集合。
3. 随机事件:样本空间的子集。
4. 事件的概率:事件发生的可能性大小。
5. 事件的互斥与独立:互斥事件指的是两个事件不能同时发生,独立事件指的是两个事件的发生不会相互影响。
6. 条件概率:在已知某个事件发生的条件下,另一个事件发生的概率。
概率计算方法1. 古典概型:所有可能的结果都是等可能发生的。
2. 几何概型:通过几何形状的性质计算概率。
3. 组合分析:使用组合数学的方法计算概率。
4. 频率方法:根据大量实验结果的统计规律计算概率。
5. 条件概率计算:根据已知条件和基本概率计算条件概率。
概率分布1. 离散型随机变量:只能取到有限个或可列个数值的随机变量。
2. 连续型随机变量:在某一区间内可以取到任意值的随机变量。
3. 期望值和方差:用于衡量随机变量的平均值和离散程度。
4. 二项分布:描述了重复进行相同试验并且每次试验只有两个可能结果的概率分布。
5. 正态分布:在统计学和自然科学研究中广泛应用的分布。
统计推断1. 参数估计:根据样本数据估计总体分布的未知参数。
2. 假设检验:根据样本数据判断总体分布的某个假设是否成立。
应用领域概率论在各个领域都有广泛的应用,包括金融、保险、工程、生物学、医学等。
结论概率论作为一门基础数学学科,具有重要的理论和实践意义。
通过研究概率论可以更好地理解和应用随机事件的规律,为各行各业的决策提供支持。
以上是对概率论的一个简要总结,希望对您有所帮助。
概率论知识点
(10)加法公式
P(A+B)=P(A)+P(B)-P(AB)
当P(AB)=0时,P(A+B)=P(A)+P(B)
(11)减法公式
P(A-B)=P(A)-P(AB)
当B A时,P(A-B)=P(A)-P(B)
当A=Ω时,P( )=1- P(B)
(12)条件概率
定义 设A、B是两个事件,且P(A)>0,则称 为事件A发生条件下,事件B发生的条件概率,记为 。
泊松分布
设随机变量 的分布律为
, , ,
则称随机变量 服从参数为 的泊松分布,记为 或者P( )。
泊松分布为二项分布的极限分布(np=λ,n→∞)。
超几何分布
随机变量X服从参数为n,N,M的超几何分布,记为H(n,N,M)。
几何分布
,其中p≥0,q=1-p。
随机变量X服从参数为p的几何分布,记为G(p)。
若事件、相互独立,则可得到与、与、与也都相互独立。
必然事件和不可能事件Ø与任何事件都相互独立。
Ø与任何事件都互斥。
②多个事件的独立性
设ABC是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
并且同时满足P(ABC)=P(A)P(B)P(C)
Z=X+Y
根据定义计算:
对于连续型,fZ(z)=
两个独立的正态分布的和仍为正态分布( )。
n个相互独立的正态分布的线性组合,仍服从正态分布。
,
Z=max,min(X1,X2,…Xn)
若 相互独立,其分布函数分别为 ,则Z=max,min(X1,X2,…Xn)的分布函数为:
(完整版)概率论知识点总结
概率论知识点总结第一章 随机事件及其概率第一节 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。
随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。
不可能事件:在试验中不可能出现的事情,记为Ф。
必然事件:在试验中必然出现的事情,记为Ω。
样本点:随机试验的每个基本结果称为样本点,记作ω.样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示.一个随机事件就是样本空间的一个子集。
基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。
事件的关系与运算(就是集合的关系和运算)包含关系:若事件 A 发生必然导致事件B 发生,则称B 包含A ,记为A B ⊇或B A ⊆。
相等关系:若A B ⊇且B A ⊆,则称事件A 与事件B 相等,记为A =B 。
事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 的和事件。
记为 A ∪B 。
事件的积:称事件“事件A 与事件B 都发生”为A 与B 的积事件,记为A∩ B 或AB 。
事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为 A -B 。
用交并补可以表示为B A B A =-。
互斥事件:如果A ,B 两事件不能同时发生,即AB =Φ,则称事件A 与事件B 是互不相容事件或互斥事件。
互斥时B A ⋃可记为A +B 。
对立事件:称事件“A 不发生”为事件A 的对立事件(逆事件),记为A 。
对立事件的性质:Ω=⋃Φ=⋂B A B A ,。
事件运算律:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA(2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC(3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C) A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)对偶律(摩根律):B A B A ⋂=⋃ B A B A ⋃=⋂第二节 事件的概率 概率的公理化体系: (1)非负性:P(A)≥0; (2)规范性:P(Ω)=1(3)可数可加性: ⋃⋃⋃⋃n A A A 21两两不相容时++++=⋃⋃⋃⋃)()()()(2121n n A P A P A P A A A P概率的性质: (1)P(Φ)=0(2)有限可加性:n A A A ⋃⋃⋃ 21两两不相容时)()()()(2121n n A P A P A P A A A P +++=⋃⋃⋃当AB=Φ时P(A ∪B)=P(A)+P(B) (3))(1)(A P A P -=(4)P(A -B)=P(A)-P(AB)(5)P (A ∪B )=P(A)+P(B)-P(AB)第三节 古典概率模型1、设试验E 是古典概型, 其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A 的概率为nk A P =)( 2、几何概率:设事件A 是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为)()()(Ω=μμA A P 假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可.第四节 条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作 P(A|B).)()()|(B P AB P B A P =乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设n A A A ,,,21 是一个完备事件组,则P(B)=∑P(i A )P(B|i A ) 贝叶斯公式:设n A A A ,,,21 是一个完备事件组,则∑==)|()()|()()()()|(jj i i i i A B P A P A B P A P B P B A P B A P第五节 事件的独立性两个事件的相互独立:若两事件A 、B 满足P(AB)= P(A) P(B),则称A 、B 独立,或称A 、B 相互独立.三个事件的相互独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),P(ABC)= P(A) P(B)P(C),则称A 、B 、C 相互独立三个事件的两两独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),则称A 、B 、C 两两独立独立的性质:若A 与B 相互独立,则A 与B ,A 与B ,A 与B 均相互独立总结:1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。
概率论与数理统计知识点总结
概率论与数理统计知识点总结1. 概率论基础- 随机事件:一个事件是随机的,如果它可能发生也可能不发生。
- 样本空间:所有可能事件发生的集合。
- 事件的概率:事件发生的可能性的度量,满足0≤P(A)≤1。
- 条件概率:在另一个事件发生的条件下,一个事件发生的概率。
- 贝叶斯定理:描述了随机事件A和B的条件概率和边缘概率之间的关系。
- 独立事件:两个事件A和B是独立的,如果P(A∩B) = P(A)P(B)。
- 互斥事件:两个事件A和B是互斥的,如果它们不能同时发生,即P(A∩B) = 0。
2. 随机变量及其分布- 随机变量:将随机事件映射到实数的函数。
- 离散随机变量:取值为有限或可数无限的随机变量。
- 连续随机变量:可以在某个区间内取任意值的随机变量。
- 概率分布函数:描述随机变量取值的概率。
- 概率密度函数:连续随机变量的概率分布函数的导数。
- 累积分布函数:随机变量取小于或等于某个值的概率。
- 期望值:随机变量的长期平均值。
- 方差:衡量随机变量取值的离散程度。
3. 多维随机变量及其分布- 联合分布:描述两个或多个随机变量同时取特定值的概率。
- 边缘分布:通过联合分布求得的单个随机变量的分布。
- 条件分布:给定一个随机变量的值时,另一个随机变量的分布。
- 协方差:衡量两个随机变量之间的线性关系。
- 相关系数:协方差标准化后的值,表示变量间的线性相关程度。
4. 大数定律和中心极限定理- 大数定律:随着试验次数的增加,样本均值以概率1收敛于总体均值。
- 中心极限定理:独立同分布的随机变量之和,在适当的标准化后,其分布趋近于正态分布。
5. 数理统计基础- 样本:从总体中抽取的一部分个体。
- 总体:研究对象的全体。
- 参数估计:用样本统计量来估计总体参数。
- 点估计:给出总体参数的一个具体估计值。
- 区间估计:给出一个包含总体参数可能值的区间。
- 假设检验:对总体分布的某些假设进行检验。
- 显著性水平:拒绝正确假设的最大概率。
概率论知识点
概率论主要知识点 ch 11.事件之间的关系与运算,互不相容事件、对立事件; 2.概率的公理化定义和概率的性质;(公式的应用:)AB (P )B (P )A (P )B A (P -+=⋃)C (P )B (P )A (P )C B A (P ++=⋃⋃)ABC (P )BC (P )AC (P )AB (P +---)3.古典概型的定义和概率的计算;基本事件总数中包含的基本事件个数A nr )A (P ==4.条件概率和三大公式应用;(1)乘法公式)|()()(B A P B P AB P =;)|()|()()(111211-=n n n A A A P A A P A P A A P(2)全概率公式 ∑==n1i i i)B |A (P )B(P )A (P (核心是全概率公式)(3)贝叶斯公式∑===n1i i ij j j j )B |A (P )B(P )B |A (P )B (P )A (P )AB (P )A |B (P5.独立性和贝努利试验和二项概率。
kn k k nn )p 1(p C )k (P --= Ch21. 离散型随机变量及其分布律、分布函数; 2. 几种重要的离散型随机变量:(1)二项分布:)p 1q (n ,2,1,0k qp C )k X (P kn kkn -====-(2)泊松分布:)0(,2,1,0k e !k )k X (P k>===-λλλ(3)超几何分布:n ,2,1,0k CC C )k X (P n Nkn MN kM ==--(4)几何分布: ,2,1k p q )k X (P 1k ===-3. 随机变量的分布函数:)x X (P )x (F ≤=及其性质: 4.连续型随机变量的密度函数及其性质:⎰+∞∞-=≥1dx )x (f )2(;0)x (f )1('()()..;()()x F x f x a e F x f x dx -∞==⎰(主要是变上限的分段函数的积分)5. 几种重要的连续型随机变量的密度函数:⎪⎩⎪⎨⎧<<-=其它:均匀分布0b x a a b 1)x (f )1( 记为]b ,a [U ~X⎩⎨⎧≤>=-0x 0x e )x (f )2(x λλ指数分布: 记为)(~λπX222)x (e21)x ()3(σμσπϕ--=正态分布: 记为),(~2σμN X6. 关于标准正态分布的结论: ⎰+∞∞-=1dx )x ()1(ϕ21)0()2(=Φ)0x ()x (1)x ()3(>-=-ΦΦ)x ()x X (P )x X (P ),(N ~X )4(2σμΦσμσμσμ-=-≤-=≤7.一维随机变量的函数的分布(1)公式法:X~)x (f X ,设)x (g 处处可导且0)x ('g >或0)x ('g <,则)X (g Y =的分布密度为⎩⎨⎧<<=其它y |)y ('h |)]y (h [f )y (f X Y βα特别地,2X Y =的分布密度为:⎪⎩⎪⎨⎧≤>-+==0y 0y )]y (f )y (f [y21)y ('F )y (f X X Y Y (2)分布函数法:)y )X (g (P )y (F ≤=ch31. 二维离散型随机变量及其分布律、分布函数; 2. 二维均匀分布 3.二维正态分布 ]}V UV 2U [)1(21exp{121)y ,x (f 222221+----=ρρρσπσ(+∞<<∞-+∞<<∞-y ,x ) 其中11x U σμ-=,22y V σμ-=,则称(X,Y)服从二维正态分布.记为 )Y ,X (~);,,(N 22;11ρσμσμ 4.边缘分布关于X 的边缘分布:⋅∞====∑i 1j iji P P}x X {P ;关于Y 的边缘分布为 ∑∞=∙===1}{i j ij j P P y Y P5.对于连续型随机变量: ⎰+∞∞-=dy )y ,x (f )x (f X 为(X,Y)关于X 的边缘密度函数。
概率论期末复习知识点
知识点第一章 随机事件与概率本章重点:随机事件的概率计算. 1.**事件的关系及运算 (1) A B ⊂(或B A ⊃).(2) 和事件: A B ⋃; 12n A A A ⋃⋃⋃(简记为1nii A =).(3) 积事件: AB , 12n A A A ⋂⋂⋂(简记为12n A A A 或1nii A =).(4) 互不相容:若事件A 和B 不能同时发生,即AB φ= (5) 对立事件: A .(6) 差事件:若事件A 发生且事件B 不发生,记作A B -(或AB ) .(7) 德摩根(De Morgan )法则:对任意事件A 和B 有A B A B ⋃=⋂, A B A B ⋂=⋂.2. **古典概率的定义 古典概型:()A n A P A n ==Ω中所含样本点的个数中所含样本点的个数.几何概率()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·3.**概率的性质 (1) ()0P φ=.(2) (有限可加性) 设n 个事件1,2,,n A A A 两两互不相容,则有121()()nn i i P A A A P A =⋃⋃⋃=∑.(3)()1()P A P A =-.(4) 若事件A ,B 满足A B ⊂,则有()()()P B A P B P A -=-,()()P A P B ≤.(5) ()1P A ≤.(6) (加法公式) 对于任意两个事件A ,B ,有()()()()P A B P A P B P AB ⋃=+-.对于任意n 个事件1,2,,n A A A ,有111111()()()()(1)()nnn i i i j i j k ni i j ni j k ni P A P A P A A P A A A P AA -=≤<≤≤<<≤==-+-+-∑∑∑.4.**条件概率与乘法公式()(|)()P AB P A B P B =.乘法公式:()()(|)()(|)P AB P A P B A P B P A B ==.5.*随机事件的相互独立性事件A 与B 相互独立的充分必要条件一:()()()P AB P A P B =,事件A 与B 相互独立的充分必要条件二:(|)()P A B P A =.对于任意n 个事件1,2,,n A A A 相互独立性定义如下:对任意一个2,,k n =,任意的11k i i n ≤<<≤,若事件1,2,,n A A A 总满足 11()()()k k i i i i P A A P A P A =,则称事件1,2,,n A A A 相互独立.这里实际上包含了21n n --个等式.6.*贝努里概型与二项概率设在每次试验中,随机事件A发生的概率()(01)P A p p =<<,则在n 次重复独立试验中.,事件A恰发生k 次的概率为()(1),0,1,,k n k n n P k p p k nk -⎛⎫=-= ⎪⎝⎭,7.**全概率公式与贝叶斯公式 贝叶斯公式:如果事件1,2,,n A A A 两两互不相容,且1ni i A ==Ω,()0i P A >,1,2,,i n =,则1()(|)(|),1,2,,()(|)k k k niii P A P B A P A B k nP A P B A ===∑.第二章 一维随机变量及其分布本章重点:离散型和连续性随机变量的分布及其概率计算.概率论主要研究随机变量的统计规律,也称这个统计规律为随机变量的分布. 1.**离散型随机变量及其分布律(),1,2,,,.i i p P X a i n ===分布律也可用下列表格形式表示:2.*概率函数的性质 (1) 0i p ≥, 1,2,,,;i n =(2)11ii p∞==∑.3.*常用离散型随机变量的分布(1) 0—1分布(1,)B p ,它的概率函数为1()(1)i i P X i p p -==-,其中,0i =或1,01p <<.(2) 二项分布(,)B n p ,它的概率函数为()(1)i n in P X i p p i -⎛⎫==- ⎪⎝⎭,其中,0,1,2,,i n =,01p <<.(4)** 泊松分布()P λ,它的概率函数为()!iP X i e i λλ-==,其中,0,1,2,,,i n =,0λ>..4.*二维离散型随机变量及联合概率二维离散型随机变量(,)X Y 的分布可用下列联合概率函数来表示:(,),,1,2,,i j ij P X a Y b p i j ====其中,0,,1,2,,1ij ijijp i j p≥==∑∑.5.*二维离散型随机变量的边缘概率 设(,)X Y 为二维离散型随机变量,ij p 为其联合概率(,1,2,i j =),称概率()(1,2,)i P X a i ==为随机变量X 的边缘分布律,记为i p 并有.(),1,2,i i ij jp P X a p i ====∑,称概率()(1,2,)j P Y b j ==为随机变量Y 的边缘分布率,记为.j p ,并有.j p =(),1,2,j ij iP Y b p j ===∑.6.随机变量的相互独立性 .设(,)X Y 为二维离散型随机变量,X 与Y 相互独立的充分必要条件为,,1,2,.ij i j p p p i j ==对一切多维随机变量的相互独立性可类似定义.即多维离散型随机变量的独立性有与二维相应的结论.7.*随机变量函数的分布设X 是一个随机变量,()g x 是一个已知函数,()Y g X =是随机变量X 的函数,它也是一个随机变量.对离散型随机变量X ,下面来求这个新的随机变量Y 的分布.设离散型随机变量X 的概率函数为则随机变量函数Y g =的概率函数可由下表求得但要注意,若()i g a 的值中有相等的,则应把那些相等的值分别合并,同时把对应的概率i p 相加.第三章 连续型随机变量及其分布本章重点:一维及二维随机变量的分布及其概率计算,边缘分布和独立性计算. 1.*分布函数随机变量的分布可以用其分布函数来表示,.2.分布函数()F x 的性质 (1) 0()1;F x ≤≤(2) ()0,()1lim lim x x F x F x →-∞→+∞==;由已知随机变量X 的分布函数()F x ,可算得X 落在任意区间(,]a b 内的概率 .3.联合分布函数二维随机变量(,)X Y 的联合分布函数. 4.联合分布函数的性质 (1) 0(,)1F x y ≤≤;(2)(,)0,(,)0lim lim x y F x y F x y →-∞→-∞==,(,)0,(,)1lim lim x x y y F x y F x y →-∞→+∞→-∞→+∞==;(3) 121222211211(,)(,)(,)(,)(,)P x X x y Y y F x y F x y F x y F x y <≤<≤=--+. 5.**连续型随机变量及其概率密度设随机变量X 的分布函数为()F x ,如果存在一个非负函数()f x ,使得对于任一实数x ,有()()F x P X x =<()()()P a X b F b F a ≤<=-(,)(,)F x y P X x Y x =<<()()xF x f x dx-∞=⎰成立,则称X 为连续型随机变量,函数()f x 称为连续型随机变量X 的概率密度. 6.**概率密度()f x 及连续型随机变量的性质 (1)()0;f x ≥ (2)()1f x dx +∞-∞=⎰;(3)()()F x f x '=;(4)设X 为连续型随机变量,则对任意一个实数c ,()0P X c ==; (5) 设()f x 是连续型随机变量X 的概率密度,则有()()()()P a X b P a X b P a X b P a X b <<=≤<=≤≤=<≤=()baf x dx⎰.7.**常用的连续型随机变量的分布 (1) 均匀分布(,)R a b ,它的概率密度为1,;()0,a xb f x b a⎧<<⎪=-⎨⎪⎩其余. 其中,)a b -∞<<<+∞.(2) 指数分布()E λ,它的概率密度为,0;()0,x e x f x λλ-⎧>=⎨⎩其余. 其中,0λ>.(3) 正态分布2(,)N μσ,它的概率密度为22()2(),x f x x μσ--=-∞<<+∞,其中,,0μσ-∞<<+∞>,当0,1μσ==时,称(0,1)N 为标准正态分布,它的概率密度为22(),x f x x -=-∞<<+∞,标准正态分布的分布函数记作()x Φ,即22()t xx dt -Φ=⎰,当出0x ≥时,()x Φ可查表得到;当0x <时,()x Φ可由下面性质得到()1()x x Φ-=-Φ.设2~(,)X N μσ,则有()()x F x μσ-=Φ;()()()b a P a X b μμσσ--<≤=Φ-Φ.8.**二维连续型随机变量及联合概率密度对于二维随机变量(X ,Y)的分布函数(,)F x y ,如果存在一个二元非负函数(,)f x y ,使得对于任意一对实数(,)x y 有(,)(,)xyF x y f s t dtds-∞-∞=⎰⎰成立,则(,)X Y 为二维连续型随机变量,(,)f x y 为二维连续型随机变量的联合概率密度. 9.**二维连续型随机变量及联合概率密度的性质 (1) (,)0,,f x y x y ≥-∞<<+∞; (2)(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰;’(3) 在(,)f x y 的连续点处有2(,)(,)F x y f x y x y ∂=∂∂;(4) 设(,)X Y 为二维连续型随机变量,则对平面上任一区域D 有((,))(,)DP X Y D f x y dxdy∈=⎰⎰.10,**二维连续型随机变量(,)X Y 的边缘概率密度设(,)f x y 为二维连续型随机变量的联合概率密度,则X 的边缘概率密度为()(,)X f x f x y dy+∞-∞=⎰;Y 的边缘概率密度为()(,)Y f y f x y dx+∞-∞=⎰.11.常用的二维连续型随机变量 (1) 均匀分布如果(,)X Y 在二维平面上某个区域G 上服从均匀分布,则它的联合概率密度为1,(,)x y f x y G ⎧∈⎪=⎨⎪⎩,()G;的面积0,其余. (2) 二维正态分布221212(,,,,)N μμσσρ 如果(,)X Y 的联合概率密度2211212221121()()()()1(,)22(1)x x y x f x y μμμμρρσσσσ⎧⎫⎡⎤----⎪⎪=--+⎨⎬⎢⎥-⎪⎪⎣⎦⎩⎭则称(,)X Y 服从二维正态分布,并记为221212(,)~(,,,,)X Y N μμσσρ.如果221212(,)~(,,,,)X Y N μμσσρ,则211~(,)X N μσ,222~(,)Y N μσ,即二维正态分布的边缘分布还是正态分布. 12.**随机变量的相互独立性 .(,)()(),,X Y F x y F x F y x y =-∞<<+∞对一切,那么,称随机变量X 与Y 相互独立.设(,)X Y 为二维连续型随机变量,则X 与Y 相互独立的充分必要条件为(,)()(),X Y f x y f x f y =在一切连续点上.如果221212(,)~(,,,,)X Y N μμσσρ.那么,X 与Y 相互独立的充分必要条件是0ρ=.第四章 随机变量的数字特征本章重点:随机变量的期望。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论知识点总结
基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。
随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。
不可能事件:在试验中不可能出现的事情,记为Ф。
必然事件:在试验中必然出现的事情,记为Ω。
样本点:随机试验的每个基本结果称为样本点,记作ω、样本空间:所有样本点组成的集合称为样本空间、样本空间用Ω表示、一个随机事件就是样本空间的一个子集。
基本事件多点集一个随机事件发生,当且仅当该事件所包含的一个样本点出现。
事件的关系与运算(就是集合的关系和运算)包含关系:若事件A 发生必然导致事件B发生,则称B包含A,记为或。
相等关系:若且,则称事件A与事件B相等,记为A=B。
事件的和:“事件A与事件B至少有一个发生”是一事件,称此事件为事件A与事件B的和事件。
记为A∪B。
事件的积:称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB。
事件的差:称事件“事件A发生而事件B不发生”为事件A 与事件B的差事件,记为 A-B。
用交并补可以表示为。
互斥事件:如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件B是互不相容事件或互斥事件。
互斥时可记为A+B。
对立事
件:称事件“A不发生”为事件A的对立事件(逆事件),记为。
对立事件的性质:。
事件运算律:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律:
A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C)
A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)对偶律(摩根律):
第二节事件的概率概率的公理化体系:(1)非负性:
P(A)≥0;(2)规范性:P(Ω)=1(3)可数可加性:两两不相容时概率的性质:(1)P(Φ)=0(2)有限可加性:两两不相容时当AB=Φ时P(A∪B)=P(A)+P(B)(3)(4)P(A-B)=P(A)-
P(AB)(5)P(A∪B)=P(A)+P(B)-P(AB)第三节古典概率模型
1、设试验E是古典概型, 其样本空间Ω由n个样本点组成,事件A由k个样本点组成、则定义事件A的概率为
2、几何概率:设事件A是Ω的某个区域,它的面积为
μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可、第四节条件概率条件概率:在事件B发生的条件下,事件A发生的概率称为条件概率,记作 P(A|B)、乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设是一个完备事件组,则
P(B)=∑P()P(B|)贝叶斯公式:设是一个完备事件组,则第五节事件的独立性两个事件的相互独立:若两事件
A、B满足P(AB)= P(A)
P(B),则称
A、B独立,或称
A、B相互独立、三个事件的相互独立:对于三个事件
A、
B、C,若P(AB)= P(A)
P(B),P(AC)= P(A)P(C),P(BC)= P(B)
P(C),P(ABC)= P(A)
P(B)P(C),则称
A、
B、C相互独立三个事件的两两独立:对于三个事件
A、
B、C,若P(AB)= P(A)
P(B),P(AC)= P(A)P(C),P(BC)= P(B)
P(C),则称
A、
B、C两两独立独立的性质:若A与B相互独立,则与B,A 与,与均相互独立总结:
1、条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。
2、乘法公式、全概公式、贝叶斯公式在概率论的计算中经常使用,应牢固掌握。
3、独立性是概率论中的最重要概念之一,应正确理解并应用于概率的计算。
第二章一维随机变量及其分布第二节分布函数分布函数:设X是一个随机变量,x为一个任意实数,称函数为X 的分布函数。
如果将X看作数轴上随机点的坐标,那么分布函数F(x)的值就表示X落在区间内的概率分布函数的性质:(1)单调不减;(2)右连续;(3)第三节离散型随机变量离散型随机变量的分布律:设(k=1,2, …)是离散型随机变量X所取的一切可能值,称为离散型随机变量X的分布律,也称概率分布、当离散性随机变量取值有限且概率的规律不明显时,常用表格形式表示分布律。
分布律的性质:(1);(2)离散型随机变量的概率计算:(1)已知随机变量X的分布律,求X的分布函数;(2)已知随机变量X的分布律, 求任意随机事件的概率;(3)已知随机变量X的分布函数,求X的分布律三种常用离散型随机变量的分布:
1、(0-1)分布:参数为p的分布律为
2、二项分布:参数为n,p的分布律为,。
例如n重独立重复实验中,事件A发生的概率为p,记X为这n次实验中事件A发生的次数,则X~B(n,p)
3、泊松分布:参数为λ的分布率为,。
例如记X为某段事件内电话交换机接到的呼叫次数,则X~P(λ)第四节连续型随
机变量连续型随机变量概率密度f(x)的性质(1)f(x)≥0(2),(3)(4)连续型随机变量的概率计算:(1)已知随机变量X的密度函数,求X的分布函数;(2)已知随机变量X的分布函数,求X的密度函数;(3)已知随机变量X的密度函数, 求随机事件的概率;(4)已知随机变量X的分布函数,求随机事件的概率;三种重要的连续型分布:
1、均匀分布:密度函数,记为 X~U[a,b]、
2、指数分布:密度函数,记为X~E(λ)
3、正态分布:密度函数,记为N(0,1)称为标准正态分布、标准正态分布的重要性在于,任何一个一般的正态分布都可以通过线性变换转化为标准正态分布,然后再计算概率、第五节随机变量函数的分布离散型:在分布律的表格中直接求出;连续型:寻找分布函数间的关系,再求导得到密度函数间的关系;注意分段函数情况可能需要讨论,得到的结果也可能是分段函数。
第三章多维随机变量及其分布第一节二维随机变量的联合分布函数联合分布函数,表示随机点落在以(x ,y)为顶点的左下无穷矩形区域内的概率。
联合分布函数的性质:(1)分别关于x和y单调不减;(2)分别关于x和y右连续;(3)F (-∞ , y ) = 0,F ( x ,-∞ )
=0,F(-∞,-∞)
= 0F ( +∞ ,+∞ )
=1第二节二维离散型随机变量联合分布律:联合分布律的性质:;第三节二维连续性随机变量联合密度:联合密度的性质:;;第四节边缘分布二维离散型随机变量的边缘分布律:在表格边缘,对应概率相加求出;二维连续性随机变量的边缘密度:先求出边缘分布函数,在求导求出边缘密度第六节随机变量的独立性独立性判断:(1)若取值互不影响,可认为相互独立;(2)根据独立性定义判断离散型可用连续型可用独立性的应用:(1)判断独立性;(2)已知独立性,由边缘分布确定联合分布第四章随机变量的数字特征离散型随机变量数学期望的计算,连续型随机变量数学期望的计算,方差的计算:,数学期望的性质(1)E (C )
= C(2)E (CX )
= CE (X )(3)E (X + Y )
= E (X )
+ E (Y )(4)当 X ,Y 独立时,E (X Y )
= E (X )E (Y )方差的性质(1)D (C)
= 0(2)D (CX )
= D(X)(3)若 X ,Y 相互独立,则D ( X Y )
= D ( X )
+ D (Y )常见分布的数学期望和方差两点分布,二项分布,泊松分布,均匀分布,正态分布,指数分布。