(完整版)高三数学二项式定理(知识点和例题)

合集下载

高三复习:二项式定理 知识点、题型方法归纳

高三复习:二项式定理 知识点、题型方法归纳

绵阳市开元中学高2014级高三复习《二项式定理》 知识点、题型与方法归纳制卷:王小凤 学生姓名:___________一.知识梳理1.二项式定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *)这个公式所表示的定理叫二项式定理,右边的多项式叫(a +b )n 的二项展开式. 其中的系数C r n (r =0,1,…,n )叫二项式系数. 式中的C r n a n -r b r 叫二项展开式的通项,用T r +1表示,即通项T r +1=C r n an -r b r . 2.二项展开式形式上的特点 (1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C n n .3.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等.即r n rn n C C -=(2)增减性与最大值:二项式系数C k n ,当k <n +12时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的;当n 是偶数时,中间一项2n nC 取得最大值;当n 是奇数时,中间两项1122n n nnCC-+=取得最大值.(3)各二项式系数和:C 0n +C 1n +C 2n +…+C r n +…+C n n =2n;C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1. 一个防范运用二项式定理一定要牢记通项T r +1=C r n an -r b r ,注意(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C r n ,而后者是字母外的部分.前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负. 一个定理二项式定理可利用数学归纳法证明,也可根据次数,项数和系数利用排列组合的知识推导二项式定理.因此二项式定理是排列组合知识的发展和延续. 两种应用(1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等.(2)展开式的应用:利用展开式①可证明与二项式系数有关的等式;②可证明不等式;③可证明整除问题;④可做近似计算等. 三条性质(1)对称性;(2)增减性;(3)各项二项式系数的和;二.题型示例【题型一】求()n x y +展开特定项例1:(1+3x )n (其中n ∈N *且n ≥6)的展开式中x 5与x 6的系数相等,则n =( )A.6B.7C.8D.9解:由条件得C 5n 35=C 6n 36,∴n !5!(n -5)!=n !6!(n -6)!×3,∴3(n -5)=6,n =7.故选B.例2:(2014·大纲)⎝ ⎛⎭⎪⎫xy-y x 8的展开式中x 2y 2的系数为________.(用数字作答)解:⎝ ⎛⎭⎪⎫x y -y x 8展开式的通项公式为T r +1=C r 8⎝ ⎛⎭⎪⎫x y 8-r ⎝⎛⎭⎪⎫-y x r =()33842281r r r r C x y ---, 令8-32r =2,解得r =4,此时32r -4=2,所以展开式中x 2y 2的系数为(-1)4C 48=70.故填70.【题型二】求()()m n a b x y +++展开特定项例1:在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( ) A .74B .121C .-74D .-121解析 展开式中含x 3项的系数为C 35(-1)3+C 36(-1)3+C 37(-1)3+C 38(-1)3=-121.【题型三】求()()m n a b x y +⋅+展开特定项例1:(2013·全国课标卷Ⅱ)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ) A.-4 B.-3 C.-2 D.-1解:(1+ax )(1+x )5的展开式中x 2项为C 25x 2+ax ·C 15x =10x 2+5ax 2=(10+5a )x 2.∵x 2的系数为5, ∴10+5a =5,a =-1.故选D.例2:(2014·浙江卷)在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( ) A .45B .60C .120D .210解析 在(1+x )6的展开式中,x m 的系数为C m 6,在(1+y )4的展开式中,y n 的系数为C n4,故f (m ,n )=C m 6·C n 4.从而f (3,0)=C 36=20,f (2,1)=C 26·C 14=60,f (1,2)=C 16·C 24=36,f (0,3)=C 34=4,所以f (3,0)+f (2,1)+f (1,2)+f (0,3)=120,故选C.例3:已知数列{}n a 是等差数列,且6710a a +=,则在1212()()()x a x a x a ---的展开式中,11x 的系数为_______.解:11x 的系数为121267()6()60a a a a a -+++=-+=-。

二项式定理知识点及题型归纳总结

二项式定理知识点及题型归纳总结

二项式定理知识点及题型归纳总结知识点精讲一、二项式定理()nn n r r n r n n n n n nb a C b a C b a C b a C b a 01100+⋯++⋯++=+--()*Nn ∈.展开式具有以下特点: (1)项数:共1+n 项.(2)二项式系数:依次为组合数nn n n n C C C C ,⋯,,,21.(3)每一项的次数是一样的,都为n 次,展开式依a 的降幂、b 的升幂排列展开.特别地,()nn n n n n x C x C x C x +⋯+++=+22111.二、二项式展开式的通项(第1+r 项)二项式展开的通项为r r n r n r b a C T -+=1().,,3,2,1,0n r ⋯=.其中rn C 的二项式系数.令变量(常用x )取1,可得1+r T 的系数.注 通项公式主要用于求二项式展开式的指数、满足条件的项数或系数、展开式的某一项或系数.在应用通项公式时要注意以下几点: ①分清r rn rn b aC -是第1+r 项,而不是第r 项;②在通项公式r r n r n r b a C T -+=1中,含n r b a C T rn r ,,,,,1+这6个参数,只有n r b a ,,,是独立的,在未知n r ,的情况下利用通项公式解题,一般都需要先将通项公式转化为方程组求n 和r . 三、二项式展开式中的系数 (1)二项式系数与项的系数二项式系数仅指nn n n n C C C C ,⋯,,,21而言,不包括字母b a ,所表示的式子中的系数.例如:()nx +2的展开式中,含有r x 的项应该是n r n r n r x C T -+=21,其中r n C 叫做该项的二项式系数,而rx 的系数应该是r n r n C -2(即含r x 项的系数).(2)二项式系数的性质①在二项式展开式中,与首末两端“等距离”的两项的二项式系数相等,即22110,,--===n n n n n n n n n C C C C C C ,…,r n n r n C C -=.②二项展开式中间项的二项式系数最大.如果二项式的幂指数n 是偶数,中间项是第12+n 项,其二项式系数n n C 2最大;如果二项式的幂指数n是奇数,中间项有两项,即为第21+n 项和第121++n 项,它们的二项式系数21-n n C 和21+n n C 相等并且最大. (3)二项式系数和与系数和 ①二项式系数和011+12n nnn n n C C C ++⋯+==() .奇数项二项式系数和等于偶数项二项式系数和,02413512n n n n n n n C C C C C C -+++⋯=+++⋯=即 .②系数和求所有项系数和,令1x =;求变号系数和,令1x =-;求常数项,令0x =。

《二项式定理》知识点总结+典型例题+练习(含答案)

《二项式定理》知识点总结+典型例题+练习(含答案)

二项式定理考纲要求1.了解二项式定理的概念.2.二项展开式的特征及其通项公式.3.会区别二项式系数和系数.4.了解二项式定理及简单应用,并运用二项式定理进行有关的计算和证明. 知识点一:二项式定理设a , b 是任意实数,n 是任意给定的正整数,则0011222333110()n n n n n m n m m n n n nn n n n n n n a b C a b C a b C a b C a b C a b C ab C a b------+=++++⋅⋅⋅++⋅⋅⋅++这个公式所表示的定理叫做二项式定理,其中右边的多项式叫的二项式展开式,每项的0n C ,1n C , 2n C ⋅⋅⋅ n n C 叫做该项的二项式系数.注意:二项式具有以下特征:1.展开式中共有1n +项,n 为正整数.2.各项中a 与b 的指数和为n ,并且第一个字母a 依次降幂排列,第二个字母b 依次升幂排列.3.各项的二项式系数依次为0n C , 1n C , 2n C ⋅⋅⋅ nn C . 知识点二:二项展开式通项公式二项展开式中的m n m mn C a b -叫做二项式的通项, 记作 1m T +. 即二项展开式的通项为 1m n m mm n T C a b -+=.注意:该项为二项展开式的第1m +项,而不是第m 项. 知识点三:二项式系数的性质二项式展开式的二项式系数是0n C , 1n C , 2n C ⋅⋅⋅ nn C .1.在二项展开式中,与首末两端距离相等的两项的二项式系数相等,即m n mn n C C -=.2.如果二项式()na b +的幂指数n 是偶数,那么它的展开式中间一项的二项式系数最大即12n+项的二项式系数最大. 3.如果二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.4.二项式()na b +的展开式中,所有二项式系数的和为01232m nn n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=.5.二项式()na b +的展开式中奇数项和偶数项的二项式系数和相等即02413512n n n n n n n C C C C C C -+++⋅⋅⋅=+++⋅⋅⋅=.知识点四:二项式系数与系数的区别 1.二项展开式中各项的二项式系数: mn C .2.二项展开式中各项的系数:除了字母外所有的数字因数的积. 题型一 二项式定理 例1 求51(2)x x-的展开式. 分析:熟记二项式定理.解答:51(2)x x-=05014123232355551111(2)()(2)()(2)()(2)()C x C x C x C x x x x x -+-+-+-4145055511(2)()(2)()C x C x x x+-+-533540101328080x x x x x x=-+-+-题型二 二项展开式通项公式 例2 求91(3)9x x+的展开式中第3项. 分析:灵活运用通项公式. 解答:272532191(3)()9729T T C x x x+===, 所以第3项为5972x . 题型三 二项式系数的性质例3 求7(2)x +的展开式中二项式系数最大的项.分析:根据二项式()na b +的幂指数n 是奇数,那么它的展开式中间两项的二项式系数最大,并且相等,即第12n +项和第32n +项的二项式系数最大且相等.先求出二项式最大项的项数,再利用通项公式计算.解答:由于7为奇数,所以第4项和第5项的二项式系数最大.即3733343172560T T C x x -+=== 4744454172280T T C x x -+===题型四 二项式系数与系数的区别例4 二项式9(12)x -的二项式系数之和为 . 分析:二项式()na b +的展开式中,所有二项式系数的和为01232m n n n n n n n n C C C C C C ++++⋅⋅⋅++⋅⋅⋅+=。

(完整版)二项式定理知识点和各种题型归纳带答案

(完整版)二项式定理知识点和各种题型归纳带答案

二项式定理1•二项式定理:(a b)n C 0a n C :a n1b L C ;a n r b r L C ;;b n (n N),2. 基本概念:① 二项式展开式:右边的多项式叫做 (a b)n 的二项展开式。

② 二项式系数:展开式中各项的系数 c n (r 0,1,2, ,n).③ 项数:共(r 1)项,是关于a 与b 的齐次多项式④ 通项:展开式中的第 r 1项C :a n r b r 叫做二项式展开式的通项。

用 T r 1 C ;a n r b r 表示。

3. 注意关键点:①项数:展开式中总共有 (n 1)项。

② 顺序:注意正确选择 a ,b ,其顺序不能更改。

(a b)n 与(b a)n 是不同的。

③ 指数:a 的指数从n 逐项减到0,是降幕排列。

b 的指数从0逐项减到n ,是升幕排列。

各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是数是a 与b 的系数(包括二项式系数)。

4. 常用的结论:令 a 1,b x, (1 x)n C 0 C :x C ;x 2 L C :x r L C :x n (n N )5.性质:①二项式系数的对称性: 与首末两端“对距离”的两个二项式系数相等, 即C C , • • • C n k Cn 1②二项式系数和:令 a b 1,则二项式系数的和为 C 0 C : C' L C n L C ;2n ,变形式 C 1 C2L C n rL c :2n1。

③奇数项的二项式系数和 =偶数项的二项式系数和:在二项式定理中,令 a 1,b 1,则 C 0 C : C 2C n 3 L(1)n c ;(1 1)n 0,从而得到:Cn CnCnC ;rc n C n 3L「2r 1C n丄 2n 2n 12④奇数项的系数和与偶数项的系数和:C n , C n ,C n ,, C n ,, C n-项的系令 a 1,b x, (1 x)n C° C 1x C 2x 2 L C :x r L(1)n C :x n (n N )n 22解:由条件知C n 45 ,即C n 45 ,2n n 90 0,解得 n9(舍去)或n 10,由(a x)n C °a n 0 xc n a n1xCna n 2 2x L n 0 n1C na x a 。

二项式定理知识点总结

二项式定理知识点总结

二项式定理知识点总结————————————————————————————————作者: ————————————————————————————————日期:二项式定理.一、二项式定理:()nn n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做()n b a +的二项展开式,其中各项的系数kn C )3,2,1,0(n k ⋅⋅⋅=叫做二项式系数。

对二项式定理的理解: (1)二项展开式有1+n 项(2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n(3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。

在定理中假设x b a ==,1,则()n n n k n k n n n n nx C x C x C x C x +++++=+- 101(*∈N n )(4)要注意二项式定理的双向功能:一方面可将二项式()nb a +展开,得到一个多项式;另一方面,也可将展开式合并成二项式()nb a +二、二项展开式的通项:kk n k nk b a C T -+=1v二项展开式的通项kk n k n k b a C T -+=1)3,2,1,0(n k ⋅⋅⋅=是二项展开式的第1+k 项,它体现了二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用对通项kk n k n k b a C T -+=1)3,2,1,0(n k ⋅⋅⋅=的理解:(1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n(3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素例1.nnn n n n C C C C 1321393-++++ 等于 ( ) A .n4 B 。

二项式定理知识点总结

二项式定理知识点总结

二项式定理一、二项式定理:ab n CaCabCabCb0n1n1knkknnnnnn (nN)等号右边的多项式叫做nab的二项展开式,其中各项的系数kC(k0,1,2,3n)叫做二项式系数。

n对二项式定理的理解:(1)二项展开式有n1项(2)字母a按降幂排列,从第一项开始,次数由n逐项减1到0;字母b按升幂排列,从第一项开始,次数由0逐项加1到n(3)二项式定理表示一个恒等式,对于任意的实数a,b,等式都成立,通过对a,b取不同的特殊值,可为某些问题的解决带来方便。

在定理中假设a1,bx,则nCxCxCxCx1x(nN)nnnn0n1knknn(4)要注意二项式定理的双向功能:一方面可将二项式nab展开,得到一个多项式;n 另一方面,也可将展开式合并成二项式ab二、二项展开式的通项:knkk T k1Cabn二项展开式的通项knkkT k1Cab(k0,1,2,3n)是二项展开式的第k1项,它体现了n二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用对通项knkkT k1Cab(k0,1,2,3n)的理解:n(1)字母b的次数和组合数的上标相同(2)a与b的次数之和为n(3)在通项公式中共含有a,b,n,k,Tk这5个元素,知道4个元素便可求第5个元素1例1.132933等于()n1nC n CCCnnnA.n4B。

n4n34C。

13D.n431例2.(1)求7(12x)的展开式的第四项的系数;(2)求19(x)x的展开式中3x的系数及二项式系数三、二项展开式系数的性质:①对称性:在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即 0n1n12n2knk C n C,CC,C C,CCnnnnnnn,②增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。

二项式定理知识点总结及例题分析-高中数学2018版

二项式定理知识点总结及例题分析-高中数学2018版

高中数学-二项式定理知识点总结及例题分析一、 基本知识点1.二项式定理(1)0≤k ≤n 时,C k n 与C n -k n 的关系是C k n =C n -kn .(2)二项式系数先增后减中间项最大当n 为偶数时,第n 2+1项的二项式系数最大,最大值为C n2n ;当n 为奇数时,第n +12项和n +32项的二项式系数最大,最大值为C n -12n 或C n +12n. (3)各二项式系数和:C 0n +C 1n +C 2n +…+C nn =2n ; C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1. 方法分析1.二项式系数最大项的确定方法(1)如果n 是偶数,则中间一项⎝⎛⎭⎫第⎝⎛⎭⎫n 2+1项的二项式系数最大; (2)如果n 是奇数,则中间两项(第n +12项与第⎝⎛⎭⎫n +12+1项)的二项式系数相等并最大. 2.二项展开式系数最大项的求法:如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1,从而解出k 来,即得.例题讲解考点一求二项展开式中的项或项的系数 1 (1)⎝⎛⎭⎫12x -2y 5的展开式中x 2y 3的系数是( ) A .-20 B .-5 C .5 D .20(2)二项式⎝⎛⎭⎪⎫x -13x n的展开式中第4项为常数项,则常数项为( )A .10B .-10C .20D .-20解析: (1)由二项展开式的通项可得,第四项T 4=C 35⎝ ⎛⎭⎪⎫12x 2(-2y )3=-20x 2y 3,故x 2y3的系数为-20.(2)由题意可知常数项为T 4=C 3n (x )n -3⎝⎛⎭⎪⎪⎫-13x 3=(-1)3C 3n x 3n -156,令3n -15=0,可得n =5.故所求常数项为T 4=(-1)3C 35=-10,选B.答案: (1)A (2)B 变式练习1.若二项式⎝⎛⎫2x +a x 7的展开式中1x 3的系数是84,则实数a =( ) A .2 B .54 C .1 D .242.⎝⎛⎭⎫x -13x 10的展开式中含x 的正整数次幂的项数是( ) A .0 B .2 C .4 D .6 3.⎝⎛⎭⎫x 3-2x 4+⎝⎛⎭⎫x +1x 8的展开式中的常数项为( ) A .32 B .34 C .36 D .384.(2014·山东卷)若⎝⎛⎭⎫ax 2+bx 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________.5.(2014·皖南八校联考)(x 2-4x +4)5的展开式中x 的系数是________. 答案1C 2.B 3.D 42 5-5120 考点二 二项式系数及项的系数问题(1)(2014·辽宁五校联考)若⎝⎛⎭⎫x +2x 2n 展开式中只有第6项的二项式系数最大,则展开式的常数项是A .360B .180C .90D .45(2)(2014·河北衡水中学五调)已知(x -m )7=a 0+a 1x +a 2x 2+…+a 7x 7的展开式中x 4的系数是-35,则a 1+a 2+a 3+…+a 7=________.解析: (1)展开式中只有第6项的二项式系数最大,则展开式总共11项,所以n =10,通项公式为T r +1=C r 10(x )10-r·⎝ ⎛⎭⎪⎫2x 2r =C r 102rx 5-52r ,所以r =2时,常数项为180.(2)∵T r +1=C r 7x7-r(-m )r,0≤r ≤7,r ∈Z ,∴C 37(-m )3=-35,∴m =1,令x =1,a 0+a 1+…+a 7=(1-1)7=0,令x =0,a 0=(-1)7=-1,∴a 1+a 2+a 3+…+a 7=1.答案: (1)B (2)1变式练习1.设二项式⎝⎛⎭⎪⎫3x +3x n 的展开式各项系数的和为a ,所有二项式系数的和为b ,若a +2b=80,则n 的值为( )A .8B .4C .3D .22.若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为( )A .1或-3B .-1或3C .1D .-3考点三 二项式定理的应用、设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =( ) A .0 B .1 C .1 1D .12 解析: 512 012+a =(52-1)2 012+a =522 012+C 12 012×522 011×(-1)+…+C 2 0112 012×52×(-1)2 011+(-1)2 012+a 能被13整除,只需(-1)2 012+a =1+a 能被13整除即可.∵0≤a <13,∴a =12,故选D.答案: D。

高考数学一轮复习---二项式定理知识点与题型复习

高考数学一轮复习---二项式定理知识点与题型复习

二项式定理知识点与题型复习一、基础知识1.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*)(2)通项公式:T k+1=C k n a n-k b k,它表示第k+1项;(3)二项式系数:二项展开式中各项的系数为C0n,C1n,…,C n n.2.二项式系数的性质注:(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n.二项式系数与项的系数的区别二项式系数是指C0n,C1n,…,C n n,它只与各项的项数有关,而与a,b的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有关.如(a+bx)n的二项展开式中,第k+1项的二项式系数是C k n,而该项的系数是C k n a n-k b k.当然,在某些二项展开式中,各项的系数与二项式系数是相等的.二、考点解析考点一二项展开式中特定项或系数问题考法(一)求解形如(a+b)n(n∈N*)的展开式中与特定项相关的量例1、(1)522⎪⎭⎫⎝⎛+xx的展开式中x4的系数为()A.10B.20C.40D.80(2)若(2x-a)5的二项展开式中x3的系数为720,则a=________.(3)已知5⎪⎭⎫⎝⎛+xax的展开式中x5的系数为A,x2的系数为B,若A+B=11,则a=________.[解题技法]求形如(a+b)n(n∈N*)的展开式中与特定项相关的量(常数项、参数值、特定项等)的步骤第一步,利用二项式定理写出二项展开式的通项公式T r+1=C r n a n-r b r,常把字母和系数分离开来(注意符号不要出错);第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列出相应方程(组)或不等式(组),解出r;第三步,把r代入通项公式中,即可求出T r+1,有时还需要先求n,再求r,才能求出T r+1或者其他量.考法(二)求解形如(a+b)m(c+d)n(m,n∈N*)的展开式中与特定项相关的量例2、(1)(1-x)6(1+x)4的展开式中x的系数是()A.-4B.-3C.3D.4(2)已知(x-1)(ax+1)6的展开式中含x2项的系数为0,则正实数a=________.[解题技法]求形如(a+b)m(c+d)n(m,n∈N*)的展开式中与特定项相关的量的步骤第一步,根据二项式定理把(a+b)m与(c+d)n分别展开,并写出其通项公式;第二步,根据特定项的次数,分析特定项可由(a+b)m与(c+d)n的展开式中的哪些项相乘得到;第三步,把相乘后的项合并即可得到所求特定项或相关量.考法(三)求形如(a+b+c)n(n∈N*)的展开式中与特定项相关的量例3、(1)(x2+x+y)5的展开式中x5y2的系数为()A.10B.20C.30D.60(2)将344⎪⎭⎫⎝⎛-+xx展开后,常数项是________.[解题技法]求形如(a+b+c)n(n∈N*)的展开式中与特定项相关的量的步骤第一步,把三项的和a+b+c看成是(a+b)与c两项的和;第二步,根据二项式定理写出[(a +b )+c ]n 的展开式的通项;第三步,对特定项的次数进行分析,弄清特定项是由(a +b )n -r 的展开式中的哪些项和c r 相乘得到的; 第四步,把相乘后的项合并即可得到所求特定项或相关量. 跟踪训练1.在(1-x 3)(2+x )6的展开式中,x 5的系数是________.(用数字作答)3.5212⎪⎭⎫⎝⎛++x x (x >0)的展开式中的常数项为________.考点二 二项式系数的性质及各项系数和[典例精析](1)若531⎪⎪⎭⎫ ⎝⎛+x x 的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( ) A.63x B.4x C.4x 6x D.4x或4x 6x(2)若nx x ⎪⎭⎫ ⎝⎛-12的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n的值为________.(3)若(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.[解题技法] 1.赋值法的应用二项式定理给出的是一个恒等式,对于x ,y 的一切值都成立.因此,可将x ,y 设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如: (1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可. (2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项展开式各项系数和、奇数项系数和与偶数项系数和的求法 若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中 (1)各项系数之和为f (1).(2)奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2.(3)偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.跟踪训练1.已知(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则|a0|+|a1|+…+|a5|=()A.1B.243C.121D.1222.若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且(a0+a2+…+a8)2-(a1+a3+…+a9)2=39,则实数m的值为________.3.已知(1+3x)n的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为____.考点三二项展开式的应用例、设a∈Z,且0≤a<13,若512 018+a能被13整除,则a=()A.0B.1C.11D.12[解题技法]利用二项式定理解决整除问题的思路(1)要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.因此,一般要将被除式化为含相关除式的二项式,然后再展开.(2)用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开.但要注意两点:①余数的范围,a=cr+b,其中余数b∈[0,r),r是除数,若利用二项式定理展开变形后,切记余数不能为负;②二项式定理的逆用.跟踪训练]1.使得多项式81x4+108x3+54x2+12x+1能被5整除的最小自然数x为()A.1B.2C.3D.4课后作业1.3422⎪⎪⎭⎫ ⎝⎛+x x 的展开式中的常数项为( ) A.-32 B.32 C.6 D.-6 2.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,则a 2+a 4a 1+a 3的值为( )A.-6160B.-122121C.-34D.-901213.若二项式72⎪⎭⎫ ⎝⎛+x a x 的展开式的各项系数之和为-1,则含x 2项的系数为( )A.560B.-560C.280D.-2804.已知(1+x )n 的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为( ) A.29 B.210 C.211 D.2125.二项式9221⎪⎭⎫⎝⎛-x x 的展开式中,除常数项外,各项系数的和为( )A.-671B.671C.672D.673 6.在(1-x )5(2x +1)的展开式中,含x 4项的系数为( )A.-5B.-15C.-25D.257.若(x 2-a )101⎪⎭⎫ ⎝⎛+x x 的展开式中x 6的系数为30,则a 等于( )A.13B.12C.1D.2 8.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为( ) A.1或3 B.-3 C.1 D.1或-3 9.(2x -1)6的展开式中,二项式系数最大的项的系数是________.(用数字作答)10.9⎪⎭⎫ ⎝⎛+x a x 的展开式中x 3的系数为-84,则展开式的各项系数之和为________.11.511⎪⎭⎫ ⎝⎛++x x 展开式中的常数项为________.12.已知nx x ⎪⎪⎭⎫ ⎝⎛+41的展开式中,前三项的系数成等差数列. (1)求n ;(2)求展开式中的有理项;(3)求展开式中系数最大的项.。

高考数学总复习考点知识专题讲解9 二项式定理

高考数学总复习考点知识专题讲解9 二项式定理

高考数学总复习考点知识专题讲解专题9 二项式定理知识点一 二项式定理(a +b )n =C 0n a n +C 1n a n -1b +C 2n a n -2b 2+…+C k n a n -k b k +…+C n n b n (n ∈N *).(1)这个公式叫做二项式定理.(2)展开式:等号右边的多项式叫做(a +b )n 的二项展开式,展开式中一共有n +1项. (3)二项式系数:各项的系数C kn (k ∈{0,1,2,…,n })叫做二项式系数. 知识点二 二项展开式的通项(a +b )n 展开式的第k +1项叫做二项展开式的通项,记作T k +1=C k n an -k b k . 【例1】(2023•上海)设423401234(12)x a a x a x a x a x -=++++,则04a a +=.【例2】(2022•上海)二项式(3)n x +的展开式中,2x 项的系数是常数项的5倍,则n =.【例3】(2021•浙江)已知多项式344321234(1)(1)x x x a x a x a x a -++=++++,则1a =;234a a a ++=.知识点三二项展开式的通项 求二项展开式的特定项的常用方法(1)对于常数项,隐含条件是字母的指数为0(即0次项).(2)对于有理项,一般是先写出通项公式,求其所有的字母的指数恰好都是整数的项.解这类问题必须合并通项公式中同一字母的指数,根据具体要求,令其属于整数集,再根据数的整除性来求解.(3)对于二项展开式中的整式项,其通项公式中同一字母的指数应是非负整数,求解方式与求有理项一致.【例4】(2022•新高考Ⅰ)8(1)()y x y x-+的展开式中26x y 的系数为(用数字作答).【例5】(2022•天津)523)x 的展开式中的常数项为.【例6】(2023•驻马店期末)若7102910012910(2)(1)(1)(1)(1)x x a a x a x a x a x +-=+-+-+⋯⋯+-+-,则5a =.【例7】(2023•海淀区模拟)已知5()x a +的展开式为5432543210p x p x p x p x p x p +++++,若3415p p -=,则a =.知识点四余数和整除的问题利用二项式定理可以解决求余数和整除的问题,通常需将底数化成两数的和与差的形式,且这种转化形式与除数有密切的关系.【例8】(2022秋•杨浦区校级期末)504除以17的余数为.【例9】(2023•沈阳模拟)若20232023012023(1)x a a x a x +=++⋯+,则0242022a a a a +++⋯+被5除的余数是.【例10】(2022•多选•庆阳期末)下列命题为真命题的是() A .61()x x -展开式的常数项为20B .1008被7除余1 C .61()x x-展开式的第二项为46x -D .1008被63除余1知识点五 二项式系数的性质1.对称性:在(a +b )n 的展开式中,与首末两端“等距离”的两个二项式系数相等,即C m n =C n -mn2.增减性与最大值 增减性:当k <n +12时,二项式系数是逐渐增大的;当k >n +12时,二项式系数是逐渐减小的. 最大值:(1)当n 为偶数时,中间一项的二项式系数2C n n最大;当n 为奇数时,中间两项的二项式系数12C n n-,12C n n+相等,且同时取得最大值(2)求二项式系数最大的项,根据二项式系数的性质对(a +b )n 中的n 进行讨论. ①当n 为奇数时,中间两项的二项式系数最大; ②当n 为偶数时,中间一项的二项式系数最大. (3)展开式中系数的最大项的求法求展开式中系数的最大项与求二项式系数最大项是不同的,需要根据各项系数的正、负变化情况进行分析.如求(a +bx )n (a ,b ∈R )的展开式中系数的最大项,一般采用待定系数法.设展开式中各项系数分别为A 0,A 1,A 2,…,A n ,且第k +1项最大,应用⎩⎨⎧A k ≥A k -1,A k ≥A k +1,解出k ,即得出系数的最大项. 3.各二项式系数的和(1)C 0n +C 1n +C 2n +…+C n n =2n ;(2)C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -14.二项展开式中系数和的求法(1)对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R ,m ,n ∈N *)的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可,对(ax +by )n (a ,b ∈R ,n ∈N *)的式子求其展开式的各项系数之和,只需令x =y =1即可.(2)一般地,若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1), 奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.【例11】(2022•北京)若443243210(21)x a x a x a x a x a -=++++,则024(a a a ++=) A .40B .41C .40-D .41-【例12】(2023•新乡开学)若二项式*(2()n x n N∈的展开式中只有第5项的二项式系数最大,则展开式中2x 项的系数为() A .1120-B .1792-C .1792D .1120【例13】(2023•慈溪市期末)若二项式*(12)()n x n N +∈的展开式中第6项与第7项的系数相等,则此展开式中二项式系数最大的项是() A .3448x B .41120x C .51792x D .61792x【例14】(2022秋•葫芦岛期末)设n ∈N +,化简=+++-12321666n n n n n n C C C C ( )A .7nB .C .7n ﹣1D .6n ﹣1【例15】已知(2x -1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5.求下列各式的值:(1)a 0+a 1+a 2+…+a 5;(2)|a 0|+|a 1|+|a 2|+…+|a 5|;(3)a 1+a 3+a 5.(4)a 0+a 2+a 4;(5)a 1+a 2+a 3+a 4+a 5; (6)5a 0+4a 1+3a 2+2a 3+a 4.【例16】(2023•泰州期末)若6652360136()x y a y a xy a x y a x +=++⋯++⋯+,则220246135()()a a a a a a a +++-++的值为()A .0B .32C .64D .128【例17】(2023•静安区期末)在23(3)nx x -+的二项展开式中,533r n r n rnC x--称为二项展开式的第1r +项,其中0r =,1,2,3,⋯,n .下列关于23(3)nx x -+的命题中,不正确的一项是()A .若8n =,则二项展开式中系数最大的项是1426383C xB .已知0x >,若9n =,则二项展开式中第2项不大于第3项的实数x 的取值范围是3540()3x <…C .若10n =,则二项展开式中的常数项是44103C D .若27n =,则二项展开式中x 的幂指数是负数的项一共有12项 【例18】(2023秋•泰兴市月考)设*n N ∈,0101(1)(1)(2)(2)n n n n n x a a x a x b b x b x =+-++-=+-++-,则()A .001132n n n n b a b a b a -+-++-=-B .0101012()nn nb b b a a a a a a +++=+++ C .0101111()211n n a a a a a a n n +++=+++++D .21201(1)4()4n n n n b b n b a a a ++++=+++【例19】(2023•江宁区期末)二项式定理是产生组合恒等式的一个重要源泉,由二项式定理可得:0122*1111(1)(,),1n nn m mn n n n n n C C x C x C x x n N x R C C m n -+++++=+∈∈=+等,则012111231nn n n n C C C C n ++++=+.【例20】(2022•玄武区期末)在231(1)(1)(1)n x x x +++++⋯++的展开式中,含2x 的系数是n a ,8a =;若对任意的*n N ∈,*n N ∈,20n n a λ⋅-…恒成立,则实数λ的最小值是.【例21】(2019•江苏)设2012(1)n n n x a a x a x a x +=+++⋯+,4n …,*n N ∈.已知23242a a a =.(1)求n 的值;(2)设(1n a =+a ,*b N ∈,求223a b -的值.同步训练1.(2021•上海)已知二项式5()x a +展开式中,2x 的系数为80,则a =.2.(2021•上海)已知(1)n x +的展开式中,唯有3x 的系数最大,则(1)n x +的系数和为.3.(2020•浙江)二项展开式52345012345(12)x a a x a x a x a x a x +=+++++,则4a =,135a a a ++=.4.(2020•新课标Ⅲ)262()x x+的展开式中常数项是(用数字作答).5.(2020•天津)在522()x x+的展开式中,2x 的系数是.6.(2023•郫都区模拟)已知921001210(1)(1)x x a a x a x a x --=+++⋯+,则8a =45-.7.(2020•新课标Ⅰ)25()()y x x y x++的展开式中33x y 的系数为()A .5B .10C .15D .208.(2023•湖北模拟)51(1)(12)x x+-的展开式中,常数项是() A .9-B .10-C .9D .109.(2023•曲靖模拟)已知4520222023(1)(12)(12023)(12022)x x x x -++++-展开式中x 的系数为q ,空间有q 个点,其中任何四点不共面,这q 个点可以确定的直线条数为m ,以这q 个点中的某些点为顶点可以确定的三角形个数为n ,以这q 个点中的某些点为顶点可以确定的四面体个数为p ,则(m n p ++=) A .2022B .2023C .40D .5010.(2023•徐汇区期末)1002被9除所得的余数为() A .1B .3C .5D .711.已知f (x )=(3x 2+3x 2)n 的展开式中各项的系数和比各项的二项式系数和大992. (1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.12(2023•河源期末)5(21)x y --的展开式中含22x y 的项的系数为() A .120-B .60C .60-D .3013.(2023•怀化期末)已知10111012n n C C =,设2012(23)(1)(1)(1)n n n x a a x a x a x -=+-+-+⋯+-,下列说法:①2023n =,②20233n a =-,③0121n a a a a +++⋯+=,④展开式中所有项的二项式系数和为1.其中正确的个数有() A .0B .1C .2D .314(2023•青原区期末)若28(1)(1)ax x x -+-的展开式中含2x 的项的系数为21,则(a =) A .3-B .2-C .1-D .115.(2023•常熟市月考)今天是星期五,经过7天后还是星期五,那么经过1008天后是()A .星期三B .星期四C .星期五D .星期六16.(2023•南海区月考)已知012233222281n n n nn n n C C C C C +++++=,则123nn n n n C C C C ++++等于()A .15B .16C .7D .817.(2022•浙江)已知多项式42345012345(2)(1)x x a a x a x a x a x a x +-=+++++,则2a =,12345a a a a a ++++=.。

完整版)二项式定理知识点及典型题型总结

完整版)二项式定理知识点及典型题型总结

完整版)二项式定理知识点及典型题型总结二项式定理一、基本知识点1、二项式定理:(a+b)^n = C(n,0)a^n + C(n,1)a^(n-1)b +。

+ C(n,n)b^n (n∈N*)2、几个基本概念1)二项展开式:右边的多项式叫做(a+b)^n的二项展开式2)项数:二项展开式中共有n+1项3)二项式系数:C(n,r) = n!/r!(n-r)!4)通项:展开式的第r+1项,即T(r+1) = C(n,r) * a^(n-r) * b^r3、展开式的特点1)系数都是组合数,依次为C(n,1)。

C(n,2)。

…。

C(n,n)2)指数的特点①a的指数由n到0(降幂)。

②b的指数由0到n(升幂)。

XXX和b的指数和为n。

3)展开式是一个恒等式,a,b可取任意的复数,n为任意的自然数。

4、二项式系数的性质:1)对称性: 在二项展开式中,与首末两端等距离的任意两项的二项式系数相等.2)增减性与最值: 二项式系数先增后减且在中间取得最大值当n是偶数时,中间一项取得最大值C(n,n/2)当n是奇数时,中间两项相等且同时取得最大值C(n,(n-1)/2)C(n-1.m) = C(n。

m) + C(n。

m-1)C(n,0) + C(n,1) +。

+ C(n,n) = 2^n3)二项式系数的和:奇数项的二项式系数的和等于偶数项的二项式系数和.即 C(n,0) - C(n,2) + C(n,4) -。

= 2^(n-1)二项式定理的常见题型一、求二项展开式1.“(a+b)^n”型的展开式例1.求(3x+2y)^42.“(a-b)^n”型的展开式例2.求(3x-2y)^43.二项式展开式的“逆用”例3.计算1-3C(n,1) + 9C(n,2) - 27C(n,3) +。

+(-1)^n*3nC(n,n)二、通项公式的应用1.确定二项式中的有关元素例4.已知((-ax)/(9x^2+1))^9的展开式中x^3的系数为9,常数a的值为1/32.确定二项展开式的常数项例5.(x-3/x)^10展开式中的常数项是2433.求单一二项式指定幂的系数例6.(x^2-3y)^6中x^3y^3的系数为-540三、求几个二项式的和(积)的展开式中的条件项的系数例7.(x-1)^-1(x-1)^2(x-1)^3(x-1)^4(x-1)^5的展开式中,x^2的系数等于-101.展开式中,求(x-2)(x^2+1)^7展开式中x^3的系数。

二项式定理知识点和各种题型归纳带答案(可编辑修改word版)

二项式定理知识点和各种题型归纳带答案(可编辑修改word版)

练:求 (x2 1 )9 展开式中 x9 的系数? 2x
解: Tr1
C9r
(
x
2
)9
r
(
1 2x
)r
C9r
x182r
(
1 2
)r
xr
C9r
(
1 2
)r
x183r
,令18
3r
9 ,则 r
3

x9
的系数为 C93 (
1 )3 2
21 2

题型三:利用通项公式求常数项;
例:求二项式 (x2 1 )10 的展开式中的常数项? 2x
令x则①1, a0 a1 a2 a3 an (a 1)n
令x则 1, a0 a1 a2 a3 an (a 1)n ②
①② 得奇,数a0项 的 a2 系 a数4 和
an
(a
1)n
2
(a
1) n
(
)
①② 得偶,数a1项 a的3 系a数5 和 an
(a
1)n
(a 2
1) n
(
)
n
⑤二项式系数的最大项:如果二项式的幂指数 n 是偶数时,则中间一项的二项式系数 Cn2 取得最大
值。
n1
n1
如果二项式的幂指数 n 是奇数时,则中间两项的二项式系数 Cn 2 , Cn 2 同时
取得最大值。
⑥系数的最大项:求 (a bx)n 展开式中最大的项,一般采用待定系数法。设展开式中各项系数分
变形式 Cn1 Cn2 Cnr Cnn 2n 1 。
③奇数项的二项式系数和=偶数项的二项式系数和:
在二项式定理中,令 a 1, b 1 ,则 Cn0 Cn1 Cn2 Cn3 (1)n Cnn (11)n 0 ,

二项式定理知识点及典型题型总结(经典)强烈推荐

二项式定理知识点及典型题型总结(经典)强烈推荐

二项式定理一、基本知识点1、二项式定理:0111()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈2、几个基本概念(1)二项展开式:右边的多项式叫做n b a )(+的二项展开式 (2)项数:二项展开式中共有1n +项(3)二项式系数:(0,1,2,,)rnr C n =叫做二项展开式中第1+r 项的二项式系数(4)系数:未知数前的常数叫做系数(注意系数不同于二项式系数)(4)通项:展开式的第1+r 项,即1(0,1,,)r n r rr nT C a b r n -+==3、展开式的特点(1)二项式系数都是组合数,依次为012,,,,,k nn n n n n C C C C C ⋅⋅⋅(2)指数的特点:① a 的指数 由0n → ( 降幂)。

② b 的指数由0n →(升幂)。

③ a 和b 的指数和为n 。

(3)展开式是一个恒等式,a ,b 可取任意的复数,n 为任意的自然数,一般2n ≥。

4、二项式系数的性质: (1)对称性:在二项展开式中,与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -=(2)增减性与最值二项式系数先增后减且在中间取得最大值当n 是偶数时,中间一项取得最大值2n nC当n 是奇数时,中间两项相等且同时取得最大值1122n n nnCC-+=(3)二项式系数的和:0122k n n nn n n n C C C C C +++⋅⋅⋅++⋅⋅⋅+= 变形式:1221k nn n n n n C C C C +++++=-奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令1,1a b ==-,则0123(1)(11)0n nn nn n n n C C C C C -+-++-=-=,从而得到:0242132111222r r n n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⨯=(4)奇数项的系数和与偶数项的系数和(注意不是二项式系数和):0011222012012001122202121001230123()()1, (1)1,(1)n n n n n nnn n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----令则①令则024135(1)(1),()2(1)(1),()2n nn n nn a a a a a a a a a a a a ----++-++++=+---+++=②①②得奇数项的系数和①②得偶数项的系数和(5)二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n nC 取得最大值。

二项式定理知识点总结

二项式定理知识点总结

二项式定理知识点总结二项式定理专题一、二项式定理:二项式定理是一个重要的恒等式,它表示了任意实数a,b 和正整数n之间的关系。

具体地,对于任意正整数n和实数a,b,有以下恒等式成立:a+b)^n = C(n,0)*a^n + C(n,1)*a^(n-1)*b +。

+ C(n,n-1)*a*b^(n-1) + C(n,n)*b^n其中,C(n,k)表示从n个元素中选取k个元素的组合数,也就是n个元素中取k个元素的方案数。

右边的多项式叫做(a+b)的二项式展开式,其中各项的系数C(n,k)叫做二项式系数。

二项式定理的理解:1)二项展开式有n+1项。

2)字母a按降幂排列,从第一项开始,次数由n逐项减1到0;字母b按升幂排列,从第一项开始,次数由0逐项加1到n。

3)二项式定理表示一个恒等式,对于任意的实数a,b,等式都成立。

通过对a,b取不同的特殊值,可为某些问题的解决带来方便。

例如,当a=1,b=x时,有以下恒等式成立:1+x)^n = C(n,0) + C(n,1)*x +。

+ C(n,n-1)*x^(n-1) +C(n,n)*x^n4)要注意二项式定理的双向功能:一方面可将二项式(a+b)展开,得到一个多项式;另一方面,也可将展开式合并成二项式(a+b)^n。

二、二项展开式的通项公式:二项展开式的通项公式是指,二项式展开式中第k+1项的系数C(n,k)的公式。

具体地,对于任意正整数n和实数a,b,有以下通项公式成立:T(k+1) = C(n,k)*a^(n-k)*b^k其中,T(k+1)表示二项式展开式中第k+1项的系数。

通项公式体现了二项展开式的项数、系数、次数的变化规律,是二项式定理的核心。

它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用。

三、二项展开式系数的性质:在二项式展开式中,二项式系数具有以下性质:①对称性:与首末两端“等距离”的两项的二项式系数相等,即C(n,0) = C(n,n)。

高三数学二项式定理(知识点和例题)

高三数学二项式定理(知识点和例题)

二项式定理1. 知识精讲:(1)二项式定理:()nn n r r n r n n n n n nb C b a C b a C a C b a +++++=+-- 110(*∈N n )其通项是=+1r T r r n r n b a C - (r=0,1,2,……,n ),知4求1,如:555156b a C T T n n -+== 亦可写成:=+1r T rnr n aba C )(()()()n n n n r r n r n r n n n n n b C b a C b a C a C b a 11110-++-++-=--- (*∈N n ) 特别地:()n n n r n r n n n n nx C x C x C x C x +++++=+- 101(*∈N n )其中,rn C ——二项式系数。

而系数是字母前的常数。

例1.n nn n n n C C C C 1321393-++++ 等于 ( ) A .n4 B 。

n43⋅ C 。

134-n D.314-n 解:设nnn n n n n C C C C S 1321393-++++= ,于是: n n n n n n n C C C C S 3333333221++++= =13333332210-+++++nn n n n n n C C C C C故选D例2.(1)求7(12)x +的展开式的第四项的系数;(2)求91()x x-的展开式中3x 的系数及二项式系数解:(1)7(12)x +的展开式的第四项是333317(2)280T C x x +==,∴7(12)x +的展开式的第四项的系数是280. (2)∵91()x x-的展开式的通项是9921991()(1)r rr r r r r T C xC x x--+=-=-, ∴923r -=,3r =,∴3x 的系数339(1)84C -=-,3x 的二项式系数3984C =.(2)二项展开式系数的性质:①对称性,在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即 ,,,,2211kn nkn n n n n n n nn n C C C C C C C C ---====②增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。

二项式定理(通项公式)知识讲解

二项式定理(通项公式)知识讲解

六、二项式定理一、指数函数运算知识点:1.整数指数幂的概念*)(N n a a a a a an n ∈⋅⋅=43421Λ个 )0(10≠=a a ,0(1N n a aa n n ∈≠=- 2.运算性质: ),(Z n m a a a n m n m ∈=⋅+ ,),()(Z n m a a mn n m ∈=,)()(Z nb a ab n n n ∈⋅= 3.注意 ① nma a ÷可看作nmaa -⋅ ∴n m a a ÷=nm aa -⋅=m a-② n ba )(可看作n nb a -⋅ ∴n b a )(=n n b a -⋅=n nb a4、n m nma a = (a >0,m ,n ∈N *,且n >1)例题:例1求值:4332132)8116(,)41(,100,8---.例2用分数指数幂的形式表示下列各式:1) a a a a a a ,,3232⋅⋅ (式中a >0) 2)43a a ⋅ 3)a a a例3计算下列各式(式中字母都是正数));3()6)(2)(1(656131212132b a b a b a -÷- .))(2(88341n m 例4计算下列各式: );0()1(322>a a a a 435)12525)(2(÷-例5化简:)()(41412121y x y x -÷-例6 已知x+x -1=3,求下列各式的值:.)2(,)1(23232121--++x x xx二、二项式知识回顾1. 二项式定理0111()n n n k n k k n nn n n n a b C a C a b C a b C b --+=+++++L L ,以上展开式共n+1项,其中kn C 叫做二项式系数,1k n k k k n T C a b -+=叫做二项展开式的通项.(请同学完成下列二项展开式)0111()(1)(1)n n n k k n k k n n n n n n n a b C a C a b C a b C b ---=-++-++-L L ,1(1)k k n k kk n T C a b -+=- 01(1)n k k n n n n n n x C C x C x C x +=+++++L L ① 0111(21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=+++++L L1110n n n k n n n k a x a x a x a x a ----=+++++L L ②① 式中分别令x=1和x=-1,则可以得到 012n nn n n C C C +++=L ,即二项式系数和等于2n ; 偶数项二项式系数和等于奇数项二项式系数和,即021312n n n n n C C C C -++=++=L L② 式中令x=1则可以得到二项展开式的各项系数和. 2. 二项式系数的性质(1)对称性:与首末两端等距离的两个二项式系数相等,即m n mn n C C -=.(2)二项式系数kn C 增减性与最大值: 当12n k +<时,二项式系数是递增的;当12n k +≥时,二项式系数是递减的. 当n 是偶数时,中间一项2nnC 取得最大值.当n 是奇数时,中间两项12n nC -和12n nC+相等,且同时取得最大值.3.二项展开式的系数a 0,a 1,a 2,a 3,…,a n 的性质:f(x )= a 0+a 1x +a 2x 2+a 3x 3……+a n x n⑴ a 0+a 1+a 2+a 3……+a n =f(1) ⑵ a 0-a 1+a 2-a 3……+(-1)n a n =f(-1) ⑶ a 0+a 2+a 4+a 6……=2)1()1(-+f f ⑷ a 1+a 3+a 5+a 7 (2)1()1(--f f三、经典例题1、“n b a )(+展开式例1.求4)13(xx +的展开式;解:原式=4)13(xx +=24)13(x x +=])3()3()3()3([144342243144042C CCCC x x x x x ++++=54112848122++++xx x x【练习1】求4)13(xx -的展开式2.求展开式中的项例2.已知在33()2n x x-的展开式中,第6项为常数项.(1) 求n ; (2)求含2x 的项的系数;(3)求展开式中所有的有理项. 解:(1)通项为2333111()()22n r rn r rr r r r nn T C xx C x ---+=-=- 因为第6项为常数项,所以r=5时,有23n r-=0,即n=10. (2)令1023r -=2,得2r =所以所求的系数为2210145()24C -=.(3)根据通项公式,由题意1023010,rZ r r Z-⎧∈⎪⎨⎪≤≤∈⎩ 令102()3rk k Z -=∈,则352k r =-,故k 可以取2,0,2-,即r 可以取2,5,8. 所以第3项,第6项,第9项为有理项,它们分别为22255882101010111(),(),()222C x C C x ----.【练习2】若n 展开式中前三项系数成等差数列.求:(1)展开式中含x 的一次幂的项;(2)展开式中所有x 的有理项. 3.二项展开式中的系数例3.已知22)n x 的展开式的二项式系数和比(31)n x -的展开式的二项式系数和大992,求21(2)nx x-的展开式中:(1)二项式系数最大的项;(2)系数的绝对值最大的项(先看例9). 解:由题意知,222992nn -=,所以232n =,解得n=5.(1) (1)由二项式系数性质,101(2)x x-的展开式中第6项的二项式系数最大.5556101(2)()8064T C x x=-=-. (2) 设第1r +项的系数的绝对值最大,110r r T C +=Q 10(2)r x -10102101()(1)2r r r r rC xx---=- 101111010101910102222r r r r r r r r C C C C ----+-⎧≥∴⎨≥⎩得110101101022r r r r C C C C -+⎧≥∴⎨≥⎩,即1122(1)10r r r r -≥⎧⎨+≥-⎩,解得81133r ≤≤.,3r Z r ∈∴=Q ,故系数的绝对值最大的项是第4项,3744410215360T C x x =-=-. [练习3]已知*22)()nn N x-∈的展开式中的第五项的系数与第三项的系数之比是10:1. (1)求展开式中含32x 的项;(2)求展开式中系数最大的项和二项式系数最大的项. 4、求两个二项式乘积的展开式指定幂的系数例4.72)2)(1-+x x (的展开式中,3x 项的系数是 ; 解:在展开式中,3x 的来源有:① 第一个因式中取出2x ,则第二个因式必出x ,其系数为667)2(-C ;② 第一个因式中取出1,则第二个因式中必出3x ,其系数为447)2(-C3x ∴的系数应为:∴=-+-,1008)2()2(447667C C 填1008。

高中数学二项式定理知识梳理与题型归纳

高中数学二项式定理知识梳理与题型归纳

高中数学二项式定理知识梳理与题型归纳知识点梳理一、定理内容二、基本概念①二项式展开式:等式右边的多项式叫作(a+b)n的二项展开式②二项式系数:展开式中各项的系数中的③项数:展开式第r+1项,是关于a,b的齐次多项式.④通项:展开式的第r+1项,记作三、几个提醒①项数:展开式共有n+1项.②顺序:注意正确选择a与b,其顺序不能更改,即:(a+b)n和(b+a)n是不同的.③指数:a的指数从n到0, 降幂排列;b的指数从0到n,升幂排列。

各项中a,b的指数之和始终为n.④系数:正确区分二项式系数与项的系数:二项式系数指各项前面的组合数;项的系数指各项中除去变量的部分(含二项式系数)。

⑤通项:通项是指展开式的第r+1项.四、常用结论由此可得贝努力不等式。

当x>-1时,有:n≥1时,(1+x)n≥1+nx;0≤n≤1时,(1+x)n≤1+nx.(贝努力不等式常用于函数不等式证明中的放缩)五、几个性质①二项式系数对称性:展开式中,与首末两项等距的任意两项二项式系数相等。

②二项式系数最大值:展开式的二项式系数中,最中间那一项(或最中间两项)的二项式系数最大。

即:③二项式系数和:二项展开式中,所有二项式系数和等于,即:奇数项二项式系数和等于偶数项二项式系数和,即:(注:凡系数和问题均用赋值法处理)④杨辉三角中的二项式系数:题型归纳一、求二项展开式二、求展开式的指定项在二项展开式中,有时存在一些特殊的项,如常数项、有理项、整式项、系数最大的项等等,这些特殊项的求解主要是利用二项展开式的通项公式,然后依据条件先确定r的值,进而求出指定的项。

说明:凡二项展开式中指定项的问题,均直接使用通项公式处理.说明:对于位置指定的展开项问题,要注意用原式,底数中项的顺序不得随意调整。

说明:积的展开式问题,一般分别计算两个因式的通项。

练习:1. 求常数项1、已知的展开式中第三项与第五项的系数之比为,其中,则展开式中常数项是()A. -45i B. 45i C. -45 D. 45解析:第三项、第五项的系数分别为,由题意有整理得解得n=10设常数项为则有得r=8故常数项为,选D。

《二项式定理》 知识清单

《二项式定理》 知识清单

《二项式定理》知识清单一、二项式定理的定义对于任意正整数 n,有\((a + b)^n = C_{n}^{0}a^n + C_{n}^{1}a^{n 1}b + C_{n}^{2}a^{n 2}b^2 +\cdots + C_{n}^{r}a^{n r}b^r +\cdots + C_{n}^{n}b^n\)其中,各项的系数\(C_{n}^{r}\)(\(r = 0, 1, 2, \cdots,n\))称为二项式系数,通项公式为\(T_{r + 1} = C_{n}^{r}a^{n r}b^r\)二、二项式系数的性质1、对称性与首末两端“等距离”的两个二项式系数相等,即\(C_{n}^{r} =C_{n}^{n r}\)2、增减性与最大值当\(n\)是偶数时,中间一项\(C_{n}^{\frac{n}{2}}\)取得最大值;当\(n\)是奇数时,中间两项\(C_{n}^{\frac{n 1}{2}}\)和\(C_{n}^{\frac{n + 1}{2}}\)相等且同时取得最大值。

3、各二项式系数的和\(C_{n}^{0} + C_{n}^{1} + C_{n}^{2} +\cdots +C_{n}^{n} = 2^n\)\(C_{n}^{0} + C_{n}^{2} + C_{n}^{4} +\cdots =C_{n}^{1} + C_{n}^{3} + C_{n}^{5} +\cdots = 2^{n 1}\)三、二项展开式的通项公式通项公式\(T_{r + 1} = C_{n}^{r}a^{n r}b^r\)(\(r = 0, 1, 2, \cdots, n\))是展开式的第\(r + 1\)项。

在使用通项公式时,要注意以下几点:1、通项公式表示的是展开式中的任意一项,只要将通项中的\(r\)确定,就能得到相应的项。

2、通项公式中涉及到\(a\)、\(b\)、\(n\)、\(r\)四个量,在解题时,需要根据已知条件,灵活运用这四个量之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二项式定理
1.知识精讲:
(1)二项式定理:()
()n
n n r r n r n n n n
n n
b C b a C b a
C a C b a +++++=+-- 1
1
*∈N n 其通项是 (r=0,1,2,……,n )
,知4求1,如:=+1r T r r
n r n b a
C -555
156b a C T T n n -+==亦可写成:=+1r T r
n
r n a
b
a C (()
()()()n
n n n r r n r n r n n n n n b C b a C b a C a C b a 11110-++-++-=--- *∈N n 特别地:()
(
)n
n n r
n r
n n n
n n
x C x C x C x C x +++++=+- 1
1*∈N n 其中,——二项式系数。

而系数是字母前的常数。

r
n C 例1.等于 ( )
n
n n n n n C C C C 1
3213
93-++++ A . B 。

C 。

D.
n
4n
43⋅134-n 3
1
4-n 解:设,于是:
n
n n n n n n C C C C S 1
3213
93-++++= =n n n n n n n C C C C S 333333
3221++++= 1
33333
32210
-+++++n
n n n n n n C C C C C 故选D
例2.(1)求的展开式的第四项的系数;
7
(12)x +(2)求的展开式中的系数及二项式系数
91
(x x
-3
x 解:(1)的展开式的第四项是,7
(12)x +333
317(2)280T C x x +==∴的展开式的第四项的系数是.7
(12)x +280(2)∵的展开式的通项是,91()x x
-9921991
()(1)r r
r r r r r T C x
C x x
--+=-=-∴,,
923r -=3r =∴的系数,的二项式系数.
3
x 339(1)84C -=-3
x 3
984C =(2)二项展开式系数的性质:①对称性,在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即
,,,,2
2
1
1
k
n n k n n n
n n n n n
n n C C C C C C C C ---====②增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。


果二项式的幂指数是偶数,中间一项的二项式系数最大,即偶数:
n
;如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最
()
1
22
max
+==n n n r n
T C C 大,即。

()
1211
212
12
1
max
++-+-====n n n n n n r
n
T T C C C ③所有二项式系数的和用赋值法可以证明等于即;n
2n
n n n n C C C 210=+++ 奇数项的二项式系数和与偶数项的二项式系数和相等,即
1
31202-=++=++n n n n n C C C C 例3.已知,求:
7270127(12)x a a x a x a x -=++++ (1); (2); (3).127a a a +++ 1357a a a a +++017||||||a a a +++ 解:(1)当时,,展开式右边为
1x =7
7
(12)(12)1x -=-=-0127
a a a a ++++ ∴,
0127a a a a ++++ 1=-当时,,∴,0x =01a =127112a a a +++=--=- (2)令, ① 1x =0127a a a a ++++ 1=-令, ②
1x =-7012345673a a a a a a a a -+-+-+-=①② 得:,∴ .
-7
13572()13a a a a +++=--1357a a a a +++=7132
+-(3)由展开式知:均为负,均为正,1357,,,a a a a 0248,,,a a a a ∴由(2)中①+② 得:,
702462()13a a a a +++=-+∴ ,
7
0246132
a a a a -++++=∴017||||||a a a +++= 01234567
a a a a a a a a -+-+-+-
702461357()()3a a a a a a a a =+++-+++=例4.(1)如果在 的展开式中,前三项的系数成等差数列,求展开式中的n
x x ⎪⎪⎭⎫

⎛+4
21
有理项。

(2)求
的展开式的常数项。

3
21⎪⎪⎭
⎫ ⎝⎛-+x x 解:(1)展开式中前三项的系数分别为1, ,,
2n 8
)
1(-n n 由题意得:2×=1+得=8。

2n 8
)
1(-n n n 设第r+1项为有理项,,则r 是4的倍数,所以r=0,4,8。

4
3168
12
1
r r r r x
c T -+⋅⋅=有理项为。

2954
12561,835,x
T x T x T ==
=【思维点拨】 求展开式中某一特定的项的问题时,常用通项公式,用待定系数法确定r 。

(2),其展开式的通项为
3
21⎪⎪⎭⎫

⎛-+x x 6
1⎪⎪⎭⎫ ⎝⎛-=x x ()2
2
661
11r r
r
r
r x x
C T ⎪⎪⎭
⎫ ⎝⎛-=-+,令得()2
2661r
r r
r
x
C ---=02r
26=-—r 3
=r
所以,常数项为
20
4-=T 【思维点拨】 密切注意通项公式的使用。

(3)二项式定理的应用:近似计算和估计、证不等式,如证明:取
()N n n n n
∈≥>,322的展开式中的四项即可。

()n
n 112+=例5、 若为奇数,则被9除得的余数是 ( )
n 777
71221
1---++++n n n n n n n C C C A .0 B 。

2 C 。

7 D.8
解:77771
221
1---++++n n n n n n n C C C ()1
1918--=-=n
n =()()1
19199
11
11--+-++----n
n n n n n n
C C 因为为奇数,所以原式=n ()2
]9199
[11
11--++----n n n n n n
C C 所以,其余数 为9 – 2 = 7,选C
例6:当且>1,求证N n ∈n 3)11(2<+
<n
n
证明: 2
111111)11(1221=+>++++=+n
C n C n C n C n n
n n n n n n ()()()()()n n
n n n n n n n n n n n n 12321!1!321!212112⋅⋅--++--+-+
=⎪⎭

⎝⎛+
2
112112122
121212!1!31!212112-⎪
⎭⎫ ⎝⎛-+
=++++<++++<--n n n 从而.
32131
<-
-n 3)11(2<+<n n 【思维点拨】这类是二项式定理的应用问题,它的取舍根据题目而定。

2.重点难点: 二项式定理,和二项展开式的性质。

3.思维方式:一般与特殊的转化,赋值法的应用。

4.特别注意:①二项式的展开式共有n+1项,是第r+1项。

r r
n r
n b a C -②通项是 (r=0,1,2,……,n )中含有五个元素,只要知道其
=+1r T r r
n r
n b a
C -r n b a T r ,,,,1+中四个即可求第五个元素。

③注意二项式系数与某一项系数的异同。

④当n 不是很大,||比较小时可以用展开式的前几项求的近似值。

x n
x )1(+。

相关文档
最新文档