第三章 微波传输线
合集下载
电信传输原理及应用第三章 微波传输线 3微带线.
可以通过保角变换及复变函数求得Zα0及εe的严格解, 但结果仍为 较复杂的超越函数, 工程上一般采用近似公式。 下面给出一组 实用的计算公式。
(1) 导带厚度为零时的空气微带的特性阻抗Zα0及有效介电常
数εe
59.952ln( 8h w )( w 1)
w 4h 4h
z 0
119.904
H jwE
E jwuH 由于理想介质表面既无传导电流, 又无自由电荷, 故由连续 性原理, 在介质和空气的交界面上, 电场和磁场的切向分量均连 续, 即有
Ex1=Ex2 , Ez1=Ez2 Hx1=Hx2 , Hz1=Hz2
第3章 微波传输线 y
h
x
图 3 – 5 微带线及其坐标
当不存在介质基片即空气填充时, 这时传输的是纯TEM波, 此 时的相速与真空中光速几乎相等, 即vp≈c=3×108m/s; 而当微 带线周围全部用介质填充, 此时也是纯TEM波, 其相速vp=c/ r
第3章 微波传输线
由此可见, 实际介质部分填充的微带线(简称介质微带)
的相速vp必然介于c和c/ r 之间。为此我们引入有效介电常数
C1=εeC0
或
e
C1 C0
可见, 有效介电常数εe就是介质微带线的分布电容C1和空
气微带线的分布电容C0之比。
于是,介质微带线的特性阻抗Z0与空气微带线的特性阻抗Zα0
有如下关系:
z0
z 0
e
第3章 微波传输线
由此可见, 只要求得空气微带线的特性阻抗Zα0及有效介电 常数εe, 则介质微带线的特性阻抗就可由式(3 - 1 - 25)求得。
jw 0 E x 2
由边界条件可得
(1) 导带厚度为零时的空气微带的特性阻抗Zα0及有效介电常
数εe
59.952ln( 8h w )( w 1)
w 4h 4h
z 0
119.904
H jwE
E jwuH 由于理想介质表面既无传导电流, 又无自由电荷, 故由连续 性原理, 在介质和空气的交界面上, 电场和磁场的切向分量均连 续, 即有
Ex1=Ex2 , Ez1=Ez2 Hx1=Hx2 , Hz1=Hz2
第3章 微波传输线 y
h
x
图 3 – 5 微带线及其坐标
当不存在介质基片即空气填充时, 这时传输的是纯TEM波, 此 时的相速与真空中光速几乎相等, 即vp≈c=3×108m/s; 而当微 带线周围全部用介质填充, 此时也是纯TEM波, 其相速vp=c/ r
第3章 微波传输线
由此可见, 实际介质部分填充的微带线(简称介质微带)
的相速vp必然介于c和c/ r 之间。为此我们引入有效介电常数
C1=εeC0
或
e
C1 C0
可见, 有效介电常数εe就是介质微带线的分布电容C1和空
气微带线的分布电容C0之比。
于是,介质微带线的特性阻抗Z0与空气微带线的特性阻抗Zα0
有如下关系:
z0
z 0
e
第3章 微波传输线
由此可见, 只要求得空气微带线的特性阻抗Zα0及有效介电 常数εe, 则介质微带线的特性阻抗就可由式(3 - 1 - 25)求得。
jw 0 E x 2
由边界条件可得
(四川理工学院)微波技术与天线-第3章 TEM波传输线
第3章 TEM波传输线理论
3.1 均匀传输线方程及其解
1、传输线等效为分布参数电路的条件 (1)可以定义唯一的电压和电流 (2)采用极限的方法 (3)采用网络的级联方法
2、均匀传输线方程 (1)TEM波均匀传输线的分布参数电路建模
进行单元分割,单元间级联
分布参数R, L, C, G分别为单位长电阻、 单位长电 感、 单位长电容和单位长漏电导,线上电压、电流随Z的位置 变化而变化
第3章 TEM波传输线理论
z Zg Eg
i(z+ z,t)
Rz
L z +
i(z,t)
+
~
z l z+ z (a) z 0
Z1
u(z+z,t) -
C z
G z
u(z,t) - z
(b)
(c)
(d )
图 3- 1 均匀传输线及其等效电路
第3章 TEM波传输线理论
设在时刻t, 位置z处的电压和电流分别为u(z, t)和i(z, t), 而在 位置z+Δz处的电压和电流分别为u(z+Δz, t)和i(z+Δz, t)。 应用基
在传输线的终端,如果接收机的接收特性与传输线的传 输特性不一致,接收机将会把部分电磁波反射回传输线。
定义传输线上任意一点z处的反射波电压(或电流)与入 射波电压(或电流)之比为电压(或电流)反射系数, 即 U 反 (Z ) 电压反射系数 U U 入 (Z )
电流反射系数 I反 (Z ) i I 入 (Z )
第3章 TEM波传输线理论
均匀无耗传输线上任意一点的输入阻抗与观察点的位置、
传输线的特性阻抗、终端负载阻抗及工作频率有关, 且一般为
复数, 故不宜直接测量。另外, 无耗传输线上任意相距λ/2处的阻 抗相同, 一般称之为λ/2重复性。
第三章微波传输线平行双线与同轴线
• 对微波集成传输元件的基本要求之一就是 它必须具有平面型结构, 这样可以通过调 整单一平面尺寸来控制其传输特性, 从而 实现微波电路的集成化。
各种微波集成传输线
① 准TEM波传输线, 主要包括微带传输线和共 面波导等(a)-(c);
② 非TEM波传输线, 主要包括槽线、 鳍线等 (d);
③开放式介质波导传输线, 主要包括介质波导、 镜像波导(e-f);
2 从同轴线到金属波导管
• 金属波导:和同轴线比较,波导管除去内 导体,不仅降低了内导体的损耗而且提高 了传输线的功率容量;
• 其缺点是比较笨重、高频下批量成本高、 频带较窄等。
3 微波集成传输线
• 随着航空、航天事业发展的需要, 对微波 设备提出了体积要小、重量要轻、 可靠性 要高、性能要优越、一致性要好、 成本要 低等要求, 这就促成了微波技术与半导体 器件及集成电路的结合, 产生了微波集成 电路。
1
1
c
vp
L0C0
r r
p
2
vp f
0 r r
当同轴线的截面尺寸与工作波长可比 拟时,同轴线内将出现高次模式。 要使同 轴线工作于TEM模式,则同轴线的内外半径 应满足以下条件:
min
1
2
D
d
3 损耗特性
通常同轴线介质损耗很小,其传输 损耗基本上决定于导体的欧姆损失。 同轴线的衰减常数仍可按下式估算
通频带:0~nGHz,语音信号
在实际中,广泛使用不同型号的电缆连 接接头(Cable Connector)以实现电缆的 连接, 尽管其功能相似, 但结构不同。 它们的共同点都是将电缆的内导体和外导 体分别连接起来, 使用时要注意连接头电 气和机械很好的匹配。
各种微波集成传输线
① 准TEM波传输线, 主要包括微带传输线和共 面波导等(a)-(c);
② 非TEM波传输线, 主要包括槽线、 鳍线等 (d);
③开放式介质波导传输线, 主要包括介质波导、 镜像波导(e-f);
2 从同轴线到金属波导管
• 金属波导:和同轴线比较,波导管除去内 导体,不仅降低了内导体的损耗而且提高 了传输线的功率容量;
• 其缺点是比较笨重、高频下批量成本高、 频带较窄等。
3 微波集成传输线
• 随着航空、航天事业发展的需要, 对微波 设备提出了体积要小、重量要轻、 可靠性 要高、性能要优越、一致性要好、 成本要 低等要求, 这就促成了微波技术与半导体 器件及集成电路的结合, 产生了微波集成 电路。
1
1
c
vp
L0C0
r r
p
2
vp f
0 r r
当同轴线的截面尺寸与工作波长可比 拟时,同轴线内将出现高次模式。 要使同 轴线工作于TEM模式,则同轴线的内外半径 应满足以下条件:
min
1
2
D
d
3 损耗特性
通常同轴线介质损耗很小,其传输 损耗基本上决定于导体的欧姆损失。 同轴线的衰减常数仍可按下式估算
通频带:0~nGHz,语音信号
在实际中,广泛使用不同型号的电缆连 接接头(Cable Connector)以实现电缆的 连接, 尽管其功能相似, 但结构不同。 它们的共同点都是将电缆的内导体和外导 体分别连接起来, 使用时要注意连接头电 气和机械很好的匹配。
微波技术_第三章_传输线和波导
3.1.1 TEM波
TEM波的特点
Ez 0 H z 0
必然有
kc 0
E0
2 t
k
H 0
2 t
横向场满足的场方程
TEM波横向场与静场一样都满足二维拉普拉斯方程,可用
势函数来表示
0(3.14)
2 t
E t
电流
I H dl (3.16)
假设时谐场沿z轴传播
j z E( x, y, z ) [et ( x, y) ez ( x, y)]e j z H ( x, y, z ) [ht ( x, y) hz ( x, y)]e
假定传输线或波导区域内是无源的,则Maxwell方程可写为:
场积分(利用安培环路定律)求出电流
6、根据定义求出传播常数、特征阻抗等
3.1.2 TE波
TE波的特征 Ez=0,Hz≠0,即磁场有纵向分量,电场无纵向分量,只 有横向分量。 直角坐标系下横向场与纵向场的关系
j H z Hx 2 kc x j H z Ex 2 k c y j H z Hy 2 kc y j H z Ey 2 k c x
H z j H x j E y x
直角坐标下横向场和纵向场的关系
E z H z j H x 2 (3.5a ) kc y x E z H z j H y 2 (3.5b ) kc x y H z j E z Ex 2 k c x y E z H z j Ey 2 kc y x (3.5c ) (3.5d )
均匀波导的理想化假设
微波传输线
第三章 微波传输线
一、矩形波导中传输波型及其场分量
由于矩形波导为单导体的金属管,波导中不可能传输 TEM波,只能传输TE波或TM波。
(一)TM波
d 2 X x dx 2 d 2Y y dy
2 2 kx X x 0 2 ky Y y 0
三、交变电磁场的能量关系 对于一封闭曲面S,电磁场的能量关系满足复功率 定理,即 1 E H ndS P j 2 W W 2
S L m e
第三章 微波传输线
3-3 理想导波系统的一般理论 导波系统中的电磁波按纵向场分量的有无,可分为 以下三种波型(或模): (1) 横磁波(TM波),又称电波(E波): Hz 0, E z 0 (2) 横电波(TE波),又称磁波(H波): (3) 横电磁波(TEM波):
辅助方程
D E B H J E
第三章 微波传输线
场量的瞬时值与复数振幅值之间的关系为
E x , y , z, t E x , y , z cos t Re E x , y , z e j e j t Re E x , y , z e j t
第三章 微波传输线
二、波的传播速度和色散
1. 相速和相波长
相速是指导波系统中传输电磁波的等相位面沿轴向 移动的速度。 dz vp dt 若将等相位面在一个周期T内移动的距离定义为相 波长,则有
p v pT 2 T
第ቤተ መጻሕፍቲ ባይዱ章 微波传输线
对于TEM波,相速为 其相波长为 对于TE波和TM波, 相速为 相波长为
复数表示式为
第三章 微波传输线 1
A+为待定常数, 对无耗波导γ=jβ, 而β为相移常数。 现设Eoz(x, y)=A+Ez(x, y), 则纵向电场可表达为 Ez(x, y, z)=Eoz(x, y)e-jβz 同理, 纵向磁场也可表达为: Hz(x, y, z)=Hoz(x, y)e -jβz
而Eoz(x, y), Hoz(x, y)满足以下方程:
微波传输线 第3章 微波传输线
∇t2 Eoz ( x, y ) + kc2 EOZ ( x, y ) = 0 ∇t2 H oz ( x, y ) + kc2 H OZ ( x, y ) = 0
式中, k2c=k2-β2为传输系统的本征值。 由麦克斯韦方程, 无源区电场和磁场应满足的方程为
k
2 c <0
这时β= k 2 − kc2 > k 而相速vp= ω / β < c ur ε r , 即相速比 无界媒质空间中的速度要慢, 故又称之为慢波。
微波传输线 第3章 微波传输线 3.2 矩形波导 通常将由金属材料制成的、矩形截面的、内充空气的规 则金属波导称为矩形波导, 它是微波技术中最常用的传输系 统之一。 设矩形波导的宽边尺寸为a, 窄边尺寸为b, 并建立如图 2 2 所示的坐标。 1. 矩形波导中的场 矩形波导中的场 由上节分析可知, 矩形金属波导中只能存在TE波和TM 波。下面分别来讨论这两种情况下场的分布。 1)TE波
微波传输线 第3章 微波传输线
图 3 – 1 金属波导管结构图
微波传输线 第3章 微波传输线 ③ 波导管内的场是时谐场。 由电磁场理论, 对无源自由空间电场E和磁场H满足以下矢 量亥姆霍茨方程:
∇2 E + K 2 E = 0
式中, k2=ω2µε。
第三章微波传输线PPT课件
Microwave Technology and Antenna
2020/10/1
copyright@Duguohong
16
特性阻抗
有效介电常数εe就是介质微带线的分布电容C1和 空气微带线的分布电容C0之比
v0
1 LC 0
vp
1 LC 1
C 1 eC 0
e
C1 C0
Z0
Z
a 0
e
结论:微带线特性阻抗的计算归结为求空气微带
13
特性阻抗
微带线的特性阻抗
Z0
L 1 C v pC
1 v p LC
Microwave Technology and Antenna
2020/10/1
copyright@Duguohong
14
特性阻抗
空气微带线
Z
a 0
1 v0C0
介质全填充 实际微带线
v0/ r vp v0 C0C1 rC0
2020/10/1
copyright@Duguohong
6
传输模式
边界条件
nˆ (E 2 - E 1 ) 0 nˆ (H 2 - H 1 ) J s nˆ (D 2 - D 1 ) s nˆ (B 2 - B 1 ) 0
Ex1 Ex2,Ez1 Ez2 Hx1 Hx2,Hz1 Hz2
空气与介质分界面上必然存在场的不连续 场沿空气与介质分界面也不均匀
微带线不能传输 纯TEM 模
由于纵向场分量较小 Microwave Technology
an准d AnTtenEnaM模
2020/10/1
copyright@Duguohong
10
传输模式
第3章微波传输线
第3章 微波传输线
第3章 微波传输线
3―1 引言 3―2 带状线 3―3 微带传输线 3―4 耦合带状线和耦合微带线 3―5 金属波导传输线的一般理论 3―6 矩形波导 3―7 圆波导
第3章 微波传输线
3―1 引言
微波传输线是用来传输微波信号和微波能量的传 输线。微波传输线种类很多,按其传输电磁波的性质可 分 为 三 类 :TEM 模 传 输 线 ( 包 括 准 TEM 模 传 输 线 ), 如 图 3―1―1(1)所示的平行双线、同轴线、带状线及微带线 等双导线传输线;TE模和TM模传输线,
第3章 微波传输线 图 3―4―1
第3章 微波传输线
对于耦合传输线的分析,由于边界条件比较复杂,采 用场解法比较麻烦,通常采用奇偶模参量法进行分析,即 采用如图3―4―2所示的叠加原理进行分析。
图 3―4―2
第3章 微波传输线
令A和B分别与地构成两对传输线,其激励电压分别
为U1和U2,如图(a)所示,将它分解成一对等幅反相的奇模 电压和一对等幅同相的偶模电压,分别如图(b)和(c)所示。
对于图3―3―2(a)所示的空气微带线,微带线中传
输TEM模的相速度vp=v0(光速),并假设它的单位长度上 电容为C01,则其特性阻抗为
Z01
1 v0C01
(3―3―2)
第3章 微波传输线 图 3―3―2
第3章 微波传输线
为此,我们引入一个相对的等效介电常数为εre,其值 介于1和εr之间,用它来均匀填充微带线,构成等效微带线, 并保持它的尺寸和特性阻抗与原来的实际微带线相同,
一、特性阻抗
由长线理论可知,TEM模传输线特性阻抗的计算公
式为
Z0
L1 1 C1 vpC1
第3章 微波传输线
3―1 引言 3―2 带状线 3―3 微带传输线 3―4 耦合带状线和耦合微带线 3―5 金属波导传输线的一般理论 3―6 矩形波导 3―7 圆波导
第3章 微波传输线
3―1 引言
微波传输线是用来传输微波信号和微波能量的传 输线。微波传输线种类很多,按其传输电磁波的性质可 分 为 三 类 :TEM 模 传 输 线 ( 包 括 准 TEM 模 传 输 线 ), 如 图 3―1―1(1)所示的平行双线、同轴线、带状线及微带线 等双导线传输线;TE模和TM模传输线,
第3章 微波传输线 图 3―4―1
第3章 微波传输线
对于耦合传输线的分析,由于边界条件比较复杂,采 用场解法比较麻烦,通常采用奇偶模参量法进行分析,即 采用如图3―4―2所示的叠加原理进行分析。
图 3―4―2
第3章 微波传输线
令A和B分别与地构成两对传输线,其激励电压分别
为U1和U2,如图(a)所示,将它分解成一对等幅反相的奇模 电压和一对等幅同相的偶模电压,分别如图(b)和(c)所示。
对于图3―3―2(a)所示的空气微带线,微带线中传
输TEM模的相速度vp=v0(光速),并假设它的单位长度上 电容为C01,则其特性阻抗为
Z01
1 v0C01
(3―3―2)
第3章 微波传输线 图 3―3―2
第3章 微波传输线
为此,我们引入一个相对的等效介电常数为εre,其值 介于1和εr之间,用它来均匀填充微带线,构成等效微带线, 并保持它的尺寸和特性阻抗与原来的实际微带线相同,
一、特性阻抗
由长线理论可知,TEM模传输线特性阻抗的计算公
式为
Z0
L1 1 C1 vpC1
电磁场课件-第三章微带传输线
导波速度
在微带线中,导波速度受到介质和导 体材料的影响,不同材料的微带线具 有不同的导波速度。
传播常数与衰减
传播常数
传播常数是描述电磁波在传输线中传播特性的参数,包括相位常数和衰减常数。
衰减
在微带线中,电磁波会因为介质和导体材料的损耗而发生衰减,衰减的大小与传输线的长度和频率有 关。
04 微带线的传输模式
降低介质损耗的方法包括选择低损耗的介质材料、降低介质温度和减小电场强度 等。
色散特性
色散是指不同频率的信号在传输过程中具有不同的相速度和 群速度的现象。在微带线中,色散主要与介质的介电常数和 电导率等因素有关。
了解色散特性对于设计高性能的微带线系统和避免信号失真 非常重要。通过优化微带线的结构和参数,可以减小色散效 应,提高信号传输质量。
03 微带传输线的电气特性
电场分布
电场分布特点
在微带线中,电场主要分布在导体和介质之间,而导体内部 电场强度较小。
电场分布与传输模式
电场的分布与传输模式有关,例如在准TEM模式下,电场主 要分布在导体两侧,而在其他模式下,电场分布可能更加复 杂。
阻抗与导波速度
阻抗计算
微带线的阻抗可以通过其几何尺寸和 介质参数计算得出,阻抗值与传输线 的特性阻抗有关。
微带线的宽度通常在几毫米到几十毫 米之间,根据传输信号的频率和介质 基片的电气性能来选择合适的宽度。
厚度
微带线的厚度通常在几微米到几百微 米之间,较薄的介质基片可以减小线 路的介质损耗,提高传输效率。
介质基片
种类
常用的介质基片有氧化铝、陶瓷、聚四氟乙烯等,根据应用场景和性能要求选 择合适的介质基片。
响。
应用场景
01
02
03
在微带线中,导波速度受到介质和导 体材料的影响,不同材料的微带线具 有不同的导波速度。
传播常数与衰减
传播常数
传播常数是描述电磁波在传输线中传播特性的参数,包括相位常数和衰减常数。
衰减
在微带线中,电磁波会因为介质和导体材料的损耗而发生衰减,衰减的大小与传输线的长度和频率有 关。
04 微带线的传输模式
降低介质损耗的方法包括选择低损耗的介质材料、降低介质温度和减小电场强度 等。
色散特性
色散是指不同频率的信号在传输过程中具有不同的相速度和 群速度的现象。在微带线中,色散主要与介质的介电常数和 电导率等因素有关。
了解色散特性对于设计高性能的微带线系统和避免信号失真 非常重要。通过优化微带线的结构和参数,可以减小色散效 应,提高信号传输质量。
03 微带传输线的电气特性
电场分布
电场分布特点
在微带线中,电场主要分布在导体和介质之间,而导体内部 电场强度较小。
电场分布与传输模式
电场的分布与传输模式有关,例如在准TEM模式下,电场主 要分布在导体两侧,而在其他模式下,电场分布可能更加复 杂。
阻抗与导波速度
阻抗计算
微带线的阻抗可以通过其几何尺寸和 介质参数计算得出,阻抗值与传输线 的特性阻抗有关。
微带线的宽度通常在几毫米到几十毫 米之间,根据传输信号的频率和介质 基片的电气性能来选择合适的宽度。
厚度
微带线的厚度通常在几微米到几百微 米之间,较薄的介质基片可以减小线 路的介质损耗,提高传输效率。
介质基片
种类
常用的介质基片有氧化铝、陶瓷、聚四氟乙烯等,根据应用场景和性能要求选 择合适的介质基片。
响。
应用场景
01
02
03
微波技术-传输线和波导
g
2
1
c
2
TE模和TM模特性总结
——波导参数
➢ 相速
➢ 群速(能速)
vp
v
1
c
2
• 其中,v为波导中介质
vg v
1
c
2
➢且
对应的自由空间光速。 即
vg v
vp v
vpvg v2
TE模和TM模特性总结
——传播特性
1)传播模式
• 每一个m和n的组合,都是波导中一个满足边 界条件的独立解,称为波型或模式。m和n称 为波型指数。
全波分析 ➢ 优点:可以进行高阶模、不连续性和色散的分
析 ➢ 缺点:分析过程复杂 • 分离变量法、谱域法、横向谐振法等
3.1.1 TEM波
——分析过程总结(求解拉普拉斯方程法)
1、在合适的坐标系下分离变量,求解电位 的拉普拉斯方程。
2、由导体的边界条件,求出解的常量。 3、由电场和电位的关系,计算出电场。 4、由电场和磁场的关系,计算出磁场。
Z0
V0 I0
L 1 C Cv
C
C V0 2
E E*ds
R
Rs I0 2
H H *dl
C
v 1 1
LC
规则波导中波的一般传输特性总结 ——TE和TM波
场分析 TE波 • 纵向场:
2 t
k
2 c
Hz
0
• 横向场
规则波导中波的一般传输特性总结 ——TE和TM波
3.3.2 TM模
(条件: Hz=0 Ez≠0)
场解
Ez
Bmn
sin
m
a
x sin n
b
y e jz (3.100)
第3章 微波传输线汇总
带单位长度上对地的奇、偶模电容
C0o(1)、C0e(1) 和C0o(εr)、C0e(εr)
εreo
由准静态分析法
εree
C0o (εr ) C0o (1) C0e (εr ) C0e (1)
第三章 微波传输线
“场”的理论
第三章 微波传输线
3―1 引言 3―2 带状线 3―3 微带传输线 3―4 耦合带状线和耦合微带线 3―5 金属波导传输线的一般理论 3―6 矩形波导 3―7 圆波导 3―8 同轴波导
第三章 微波传输线
3―1 引言
“场”的理论
微波传输线是用来传输微波信号和微波能量的传输线。
带状线
w
t
h
er
平行双线 截断平行线 微带线
第三章 微波传输线
3―2 带状线
“场”的理论
中心导带一条:厚度为t,宽度为W的矩形截面 接地板上、下两块:间距为b 中心导带周围媒质:空气或其它介质
线上传输的主模为TEM模,可用长线理论分析
εr
带状线
第三章 微波传输线
“场”的理论
一、特性阻抗 Z0 由长线理论可知,TEM模传输线特性阻抗的计算公式
抑制波导型TE 波 抑制波导型TM 波 抑制TE 型表面波 抑制TM 型表面波
第三章 微波传输线
“场”的理论
3―4 耦合带状线和耦合微带线
耦合传输线:互相靠近的两对传输线彼此产生电磁耦合
耦合带状线和耦合微带线
第三章 微波传输线
一、结构、尺寸、分析方法
“场”的理论
将激励电压U1和U2分解成一对等幅反相的奇模电压 和一对等幅同相的偶模电压 U1 Ue Uo , U2 Ue Uo
第三章 微波传输线 微带线特性阻抗Z0和相对等效介电常数与尺寸的关系
微波技术原理 第3章 传输线理论(第1-5节)
无失真线的条件 若传输线的损耗较大,β 一般不再是频率的
线性函数,因而相速vp 将随频率变化。即传输过 程中将出现色散,结果会导致传输信号失真。
但如果有损传输线的损耗参量和电抗参量能 满足以下关系:
那么
,就不会出现色散。——无失真线
作业:P118
3.2
§3.4 理想传输线中传输波的特性参量
i ( z , t ) = I(z) e jωt
+
u ( z , t ) = U(z) e jωt
-
Z0 ,β
ZL
-l
0Z
由于电流波和电压波到达终端负载时,都将 发生反射,所以在传输线(Z < 0)中既有入射波 又有反射波,总电压和总电流的波动函数为:
一. 反射系数 定义:反射波电压与入射波电压之比称为电压反
射系数,简称为反射系数,记为:Γ 。
~
Z0
RL>Z0
~
Z0
RL<Z0
|U|
|U|,|I|
|U|
|U|,|I|
|I|
|U|max
|I|
z 5λ/4 λ 3λ/4 λ/2 λ/4 O a)
z 5λ/4 λ 3λ/4 λ/2 b)
|U|min λ/4 O
理想传输线终端接纯电阻负载
五. 利用测量线测量终端负载阻抗的方法
P36 图片
θ=?
~
z
z
λ
z
5λ/4
Z0
u i
|U|
|I|
Zin
3λ/4
λ/2
λ/4
ZL=0 u,i 0 |U|,|I| 0 Zin
0
2. 终端开路(ZL=∞)
在这种情况下,传输线中电流波或电压波也是纯 驻波,终端负载Z=0处为电压波的波腹。
第三章微波传输线平行双线与同轴线
• 本章研究几类微波传输线:平行双线、同 轴线、矩形波导、圆截面波导和光波导。
二、几类微波传输线介绍
• 为什么在微波工程中需要各种各样的传输 线?
• 多种多样的微波传输线是针对不同频段和 提高传输线的性能发展起来的,并投入具 体的工程应用。
平行双线 微带线
同轴线
矩形波导
其它微波集成传输线
1从平行双线到同轴线
ln 2D d
2 传输特性
沿平行双线传输的是不均匀的TEM波, 传播方向平行双线的方向。
Z0
L0 120ln 2D 400
C0
d
vp
1 L0C0
1
p
2
vp f
600 .m
3 损耗特性
对于平行双线传输线,线间介质多为 空气或局部优良绝缘支撑物,如果要考虑 传输损耗,则可只计导体损耗而不计介质 损耗。此时平行双线的衰减常数可按下式 估算:
第三章 微波传输线
§3.0 引言 §3.1 平行双线与同轴线 §3.2 微带传输线 §3.3 矩形截面金属波导 §3.4 圆截面金属波导 §3.5 光波导
§3.0 引言
一、微波传输线 二、几类微波传输线介绍 三、传输线研究的问题和分析方法
一、微波传输线
• 微波传输线是用以传输微波信息和能量的 各种形式的传输系统的总称,它的作用是 引导电磁波沿一定方向传输, 因此又称为 导波系统, 其所导引的电磁波被称为导行 波。
通频带:0~nGHz,语音信号
在实际中,广泛使用不同型号的电缆连 接接头(Cable Connector)以实现电缆的 连接, 尽管其功能相似, 但结构不同。 它们的共同点都是将电缆的内导体和外导 体分别连接起来, 使用时要注意连接头电 气和机械很好的匹配。
二、几类微波传输线介绍
• 为什么在微波工程中需要各种各样的传输 线?
• 多种多样的微波传输线是针对不同频段和 提高传输线的性能发展起来的,并投入具 体的工程应用。
平行双线 微带线
同轴线
矩形波导
其它微波集成传输线
1从平行双线到同轴线
ln 2D d
2 传输特性
沿平行双线传输的是不均匀的TEM波, 传播方向平行双线的方向。
Z0
L0 120ln 2D 400
C0
d
vp
1 L0C0
1
p
2
vp f
600 .m
3 损耗特性
对于平行双线传输线,线间介质多为 空气或局部优良绝缘支撑物,如果要考虑 传输损耗,则可只计导体损耗而不计介质 损耗。此时平行双线的衰减常数可按下式 估算:
第三章 微波传输线
§3.0 引言 §3.1 平行双线与同轴线 §3.2 微带传输线 §3.3 矩形截面金属波导 §3.4 圆截面金属波导 §3.5 光波导
§3.0 引言
一、微波传输线 二、几类微波传输线介绍 三、传输线研究的问题和分析方法
一、微波传输线
• 微波传输线是用以传输微波信息和能量的 各种形式的传输系统的总称,它的作用是 引导电磁波沿一定方向传输, 因此又称为 导波系统, 其所导引的电磁波被称为导行 波。
通频带:0~nGHz,语音信号
在实际中,广泛使用不同型号的电缆连 接接头(Cable Connector)以实现电缆的 连接, 尽管其功能相似, 但结构不同。 它们的共同点都是将电缆的内导体和外导 体分别连接起来, 使用时要注意连接头电 气和机械很好的匹配。
第3章微波平面传输线
第3章 微波平面传输线要求
一、知道目前常用的平面传输线和两种近似分析方法 二、了解平面传输线的特点
三、微带线:微带线是由沉积在介质基片上的金属导体 带和接地板构成的一个特殊传输系统;微带线可以看作 是由双线传输线演化而来的;它传输的主模也是TEM模; 是人们最熟悉和在微波集成电路中应用最普遍的传输 线,但其工作频率不能太高.
(一)微带线的几何参数(教材图3-5) (二)微带线的分析公式(教材71页) (三)微带线的设计方法(公式法和图解法)例3-1 注意:1、微带线中线内波长的公式(教材图 3-5)2、当导带的厚度不为0时,要修正导带 宽度 (四)微带线的色散、屏蔽、损耗、最大工作频率等
对tem模由静态法得到的传输参量理论上仅适用于直流但在实际中其结果被应用到较高的频率适用于直流但在实际中其结果被应用到较高的频率在较高的频率尤其是毫米波动态法将更为准确而静态法:在20世纪50年代以 前,所有的微波设备几乎都采用金属波导和同轴线电路 (也即采用由金属波导传输线及其元件构成的立体型微 波电路).随着航空航天事业的发展,要求微波电路和系 统做到小型、重量轻、性能可靠.首当其冲的问题是要 有新的导行系统,使微波电路和系统能集成化.50年代出 现了第1代微波印制传输线-带状线,在有些场合,它可取 代同轴线和波导,用来制作微波无源电路.60年代初出现 了第2代微波印制传输线-微带线.随后又相继出现了鳍 线、槽线、共面波导和共面带状线等平面型微波集成 传输线.(各种平面传输线见本章图,不仅限于图3-1)
四、带状线:带状线有上下两块接地板,中间的导体带位 于上下板间的对称面上,导体带与接地板之间可以是空 气或填充其它介质;带状线可以看作是由同轴线演化而 来的;它传输的主模是TEM模;在无源微波集成电路中 普遍应用带状线,带状线更适合于微波的低频段. 五、耦合传输线(简称耦合线):当两对非屏蔽的传输线 互相靠得很近时,彼此会产生电磁耦合,这种传输线(或导 行系统)称为耦合传输线;两类重要的耦合线为耦合带状 线和耦合微带线,耦合带状线和耦合微带线常用来构 造定向耦合器、功率分配器、移相器、匹配网络和滤 波器等微波元件。 六、其它平面传输线(略)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微波技术与天线
第三章 导波与波导
导模
①在导行系统横截面上的电磁场呈驻波分布,且是完全确定的。这一 分布与频率无关,并与横截面在导行系统上的位置无关; ②导模是离散的,具有离散谱,当工作频率一定时,每个导模具有唯 一的传播常数; ③导模之间相互正交,彼此独立,互不耦合; ④具有截止特性,截止条件和截止波长因导行系统和模式而异。
TM:
Z TM
kc 0
p
fc
kc 2
c 2 kc
2 2
2 2 1 fc / f 1 / c
fc d g 1/ 1 1 d f c
kc2 0
2 k 2 kc2 0
c
g
c
1) k 2 kc2
p
rr
rr
g
0 rr
这种导行波的特点是相速大于平面波速,即大于该媒质中的光速,而群速则 小于该媒质中的光速,同时导波波长大于空间波长。这是一种快波。
12:23
电子科技大学电子工程学院
D
2 R0
g pT p f
12:23
电子科技大学电子工程学院
微波技术与天线
第三章 导波与波导
E0t ZTE H0t ez
H0t YTE ez E0t
TE:
Z TE
1 j k ZTEM YTE
1 ZTEM YTM j k
1 2 PTE ZTE 2 2 kc
s
Hz
2
1 2 dS ZTE 2 2 kc
s
H 0 z dS
2
PTM
1 2 YTM 2 2 kc
s
Ez
2
1 2 dS YTM 2 2 kc
s
E0 z dS
2
12:23
电子科技大学电子工程学院
微波技术与天线
第三章 导波与波导
导波的能量: 单位长导波系统中传播波的电能和磁能可由能量 密度时均值积分:
12:23
C0 ln
D R0 R0
ln
D R0
电子科技大学电子工程学院
微波技术与天线
第三章 导波与波导
则平行双线特性阻抗:
Z0 L0 1 C0
D R0 1 D ln ln R0 R0
当平行双线周围介质为空气时: 120 D D Z0 ln 120ln R0 R0 即:平行双线的特性阻抗与双线间距及导线半径有关。 一般 Z 0 : 400 ~ 600
微波技术与天线
第三章 导波与波导
1 Er cos(t z ) r
电场只有 Er 磁场只有 H
1 H cos(t z ) r
12:23
电子科技大学电子工程学院
微波技术与天线
第三章 导波与波导
n E r a ,b
s
n H r a ,b J s
g
p
f
1 / c
2
1 fc / f
2
12:23
电子科技大学电子工程学院
微波技术与天g p 2
2、 ƒ的函数 ,色散波
vp v vg v
3
2
vp v
TE TM TEM
k
1
kc
vg v
2
A
450
2 S
dl (Np/m)
c
TM
Rm H0t dl 2ZTM H 0t dS
2 S
Rm n E0 z dl
2 l
2ZTM kc
2
S
E0 z dS
2
( Np / m)
实际导波系统的衰减还与导波场进入导体的表面光洁程 度有关,当表面不平度超过趋肤深度时,将使表面面积加大, 从而衰减比理论计算值高。因此,对不同波段的导波系统要 求一定的表面光洁度,以保证不平度小于趋肤深度。同时, 还应保持表面的光洁,表面氧化、油污等均会使衰减增大。
U 0 1 j ( t z ) J s r a n H r a ezYTEM e ln(b / a) a U 0 1 j (t z ) J s r b n H r b ezYTEM e ln(b / a) b
Ez
微波技术与天线
第三章 导波与波导
2)
k 2 kc2
0
沿z方向各点场的振幅、相位相同,即沿方向没有波的传播过程
c kc
fc kc 2
2 k 2 kc2 0
3)
k 2 kc2
j kc2 k 2
衰减场
这种情况下:
TE TM EH
2 2
12:23
电子科技大学电子工程学院
微波技术与天线
第三章 导波与波导
3.2 各类导波的特性 导波系统中的电磁波按纵向场分量的有无,可分为
以下三种波型(或模):
(1) 横磁波(TM波),又称电波(E波):Hz 0, E z 0
j (2) 横电波(TE波),又称磁波 (H波):E z 0, Hz 0
We we平均dS
s
s
4 s
E E dS
s
Wm wm平均dS
WeTEM
4
4 s 2 WmTEM H 0t dS 4 s 2 WeTE E0t dS 4 s E0t dS
2
H H dS
WmTE
WeTM
H 4 E 4
(3) 横电磁波(TEM波):
E z 0, Hz 0
横电磁波只存在于多导体系统中;横磁波和横电波 一般存在于单导体系统中。 色散方程:
kc k
2 2
2
无耗
j
kc 2 2 k 2
12:23
电子科技大学电子工程学院
微波技术与天线
第三章 导波与波导
TEM: 双导体系统
12:23
电子科技大学电子工程学院
微波技术与天线
第三章 导波与波导
常见微波传输线结构 (1)TEM波传输线
(2)TE、TM波传输线
(3)表面波传输线
平行双导体线 (米波频率)
同轴线 (分米波甚 至厘米波)
金属波导 (厘米波和 毫米波)
介质波导 (毫米波、亚毫米 波乃至光波 )
12:23
电子科技大学电子工程学院
12:23
电子科技大学电子工程学院
微波技术与天线
第三章 导波与波导
3.3 导行波的传输功率、能量及衰减 导波的传输功率 :
1 1 P Re E H ez dS Re Et H t ez dS 2 2 s s
PTEM
1 1 2 2 Z TEM H t dS YTEM Et dS 2 2 s s 1 1 2 2 Z TEM H 0t dS YTEM E0t dS 2 2 s s
二、特性参数 1、特性阻抗
b 单位长度分布电感:L0 ln 2 a L0 r b Z 60 ln 0 2 C0 r a 单位长度分布电感:C0
ln
12:23
b a
电子科技大学电子工程学院
微波技术与天线
第三章 导波与波导
2 1 1 2 t ( r , ) (r ) 2 0 2 r r r r
g 2 0 r r
E z 与 H z 不可能同时为零
3、
kc2 0
慢波
k 2 kc2 k
p c r r
具有齐次边界条件的导波系统不可能存在,因此,光滑导体壁构成的导波 系统中不可能存在慢波。存在慢波的传输系统必然是由某些阻抗壁构成的。
z)
H (r , , z, t ) YTEM
1 ZTEM j
U 0 et j (t e ln(b / a) r
vp
z)
YTEM
r r Y0 j r 120
1 1 L0C0
12:23
电子科技大学电子工程学院
2 z PP e 0
将上式对z求导得导波系统单位长度上的损耗功率 Pl
P Pl 2 P z
A dB 1 P0 lg dB 2 P 1 P A Np ln 0 Np 2 P
Pl 2P
12:23
电子科技大学电子工程学院
微波技术与天线
第三章 导波与波导
s
2 0t
2
H0z
2
2
WmTM
12:23
4
s
0t
2
E0 z
dS
dS
在无耗导波系统中, 传播 波的 电能 时均 值与 磁能时均值彼此相等
s
H 0t dS
电子科技大学电子工程学院
微波技术与天线
第三章 导波与波导
导波的衰减: 没有导体损耗 没有介质损耗 , 为实数 设在z=0处的传输功率为P0,则在z处的传输功率为
2、传播相速
假设平行双线损耗极小可忽略不计,则传播常数
j j L0C0 1 1 vp L0C0
12:23
, 为双线周围介质参数
电子科技大学电子工程学院
微波技术与天线
第三章 导波与波导
3.4.2 同轴线 一、结构