九年级数学下册-利用二次函数解决抛物线形拱桥问题练习

合集下载

中考数学总复习《拱桥问题(实际问题与二次函数)》专项提升训练题-附答案

中考数学总复习《拱桥问题(实际问题与二次函数)》专项提升训练题-附答案

中考数学总复习《拱桥问题(实际问题与二次函数)》专项提升训练题-附答案学校:___________班级:___________姓名:___________考号:___________ 1.如图,隧道的截面由抛物线和长方形构成,长方形的长为16m,宽为6m,抛物线的AA的距离为8m.最高点C离地面1(1)按如图所示的直角坐标系,求该抛物线的函数表达式.(2)一大型汽车装载某大型设备后,高为7m,宽为4m,如果该隧道内设双向行车道,那么这辆货车能否安全通过?2.如图,三孔桥横截面的三个孔都呈抛物线形,左右两个抛物线形是全等的.正常水PO=),小孔水面宽位时,大孔水面宽度AB为30m,大孔顶点P距水面10m(即10mQD=),建立如图所示的平面直角坐标系.度BC为12m,小孔顶点Q距水面6m(即6m(1)求大孔抛物线的解析式;(2)现有一艘船高度是6m,宽度是18m,这艘船在正常水位时能否安全通过拱桥大孔?并说明理由.(3)当水位上涨4m时,求小孔的水面宽度EF.3.如图是一座拱桥,图2是以左侧桥墩与水面接触点为原点建立的平面直角坐标系,OB=,拱顶A到水面的距离为5m.其抛物线形桥拱的示意图,经测量得水面宽度20m(1)求这条抛物线的表达式;(2)为迎接新年,管理部门在桥下悬挂了3个长为0.4m的灯笼,中间的灯笼正好悬挂在A 处,两边灯笼与最中间灯笼的水平距离为8m,为了安全,要求灯笼的最低处到水面的距离不得小于1m.根据气象局预报,过年期间将会有一定量的降雨,桥下水面会上升0.3m,请通过计算说明,现在的悬挂方式是否安全.4.上杭县紫金中学校园内未名湖中央有一座石拱桥,桥体呈抛物线形状,桥孔呈圆弧型,共同组成一个漂亮的轴对称图形.为进一步了解桥体,小明和小张同学带着一把皮尺和一根一端系着铅块的绳子(铅锤绳)来到石拱桥.首先他们利用皮尺测量了石拱桥点水平宽度(12AB=米),然后来到石拱桥最顶端O处,把铅锤绳的一端放在O处,含铅的一端自然下垂,经过调整让铅块落在直线AB 上的C 点处(此时OC AB ⊥),做好标记测量得到 3.6OC =米,用同样的方法测得0.6OD =米.圆弧与AB 交于M 、N 两点,在N 点处测得2PN =米(此时PN 垂直AB ).根据以上数据,请你帮助他们处理下列问题:(1)根据图形,建立恰当的平面直角坐标系,求出抛物线解析式; (2)根据数据,请判断圆弧MDN 是否为半圆?说明理由; (3)请求出圆弧MDN 所在圆的半径.5.某校想将新建图书楼的正门设计为一个抛物线型门,并要求所设计的拱门的跨度与拱高之积为248m ,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求给出了设计方案,现把这个方案中的拱门图形放入平面直角坐标系中,如图所示:抛物线型拱门的跨度12m ON =,拱高4m PE =,其中,点N 在x 轴上PE ON ⊥,OE EN =要在拱门中设置高为3m 的矩形框架,(框架的粗细忽略不计).矩形框架ABCD 的面积记为S ,点A 、D 在抛物线上,边BC 在ON 上,请你根据以上提供的相关信息,解答下列问题:(1)求抛物线的函数表达式;(2)当3mAB=时,求矩形框架ABCD的面积S.6.如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直坐标系,y 轴也是抛物线的对称轴,顶点E到坐标原点O的距离为6m.(1)求抛物线的解析式..,宽为2.8m,它能从正中间通过该隧道吗?(2)现有一辆货运卡车,高为56mOA=米时,7.图1是一座拱桥,拱桥的拱形呈抛物线形状,在拱桥中,当水面宽度为12水面离桥洞最大距离为4米,如图2,以水平面为x轴,点O为原点建立平面直角坐标系.(1)求该拱桥抛物线的解析式;(2)当河水上涨,水面离桥洞的最大距离为2米时,求拱桥内水面的宽度.AB=,当水位上升8.如图,某市新建的一座抛物线型拱桥,在正常水位时水面宽20m3m时,水面宽10mCD=.(1)按如图所示的直角坐标系,此抛物线的函数表达式为.(2)有一条船以5km/h的速度向此桥径直驶来,当船距离此桥35km时,桥下水位正好在AB处,之后水位每小时上涨0.25m,当水位达到CD处时,将禁止船只通行.如果该船的速度不变继续向此桥行驶35km时,它能否安全通过此桥?9.有一座抛物线型拱桥,在正常水位时(AB所示),桥下水面宽度为20m,拱顶距水面4m.(1)在如图所示的直角坐标系中,求该抛物线的解析式;(2)突遇暴雨,当水面上涨1m时(CD所示),水面宽度减少了多少?(3)雨势还在继续,一满载防汛物资的货船欲通过此桥,已知该船满载货物时浮在水面部分的横截面可近似看成是宽6m,高2m的矩形.那么当水位又上涨了0.5m时,此船是否可以通过,说明理由.10.河上有一座桥孔为抛物线形的拱桥,水面宽为6米时,水面离桥孔顶部4米.如图1,桥孔与水面交于A、B两点,以点A为坐标原点,AB所在水平线为横轴,过原点的铅垂线为纵轴,建立如图所示的平面直角坐标系.(1)请求出此抛物线对应的二次函数表达式;(2)因降暴雨水位上升1.5米,一艘装满货物的小船,露出水面部分的高为0.5m,宽为4.5m(横截面如图2),暴雨后,这艘小船能从这座石拱桥下通过吗?请说明理由.11.某加工厂要加工一种抛物线型钢材构件,如图所示,该抛物线型构件的底部宽度12OM =米,顶点P 到底部OM 的距离为9米.将该抛物线放入平面直角坐标系中,点M 在x 轴上.其内部支架有两个符合要求的设计方案:方案一:“川”字形内部支架(由线段AB PN DC ,,构成),点B N C ,,在OM 上,且OB BN NC CM ===,点A D ,在抛物线上,AB PN DC ,,均垂直于OM ;方案二:“H ”形内部支架(由线段A B '',D C ''和EF 构成),点B ',C '在OM 上,且OB B C C M ''''==,点A ',D 在抛物线上,A B '',D C ''均垂直于OM E F ,,分别是A B '',D C ''的中点.(1)求该抛物线的函数表达式;(2)该加工厂要用某一规格的钢材来加工这种构件,那么哪一个方案的内部支架节省材料?请说明理由.12.如图,一座拱桥的轮廓呈抛物线型,拱高6m ,在高度为10m 的两支柱AC 和BD 之间,还安装了三根立柱,相邻两立柱间的距离均为5m ;(1)建立如图所示的平面直角坐标系,求拱桥抛物线的表达式; (2)求立柱EF 的长;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3.2m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.13.如图,有一条双向隧道,其横断面由抛物线和矩形ABCO 的三边组成,隧道的最大高度为4.9米;10AB =米, 2.4BC =米(1)在如图所示的坐标系中,求抛物线的解析式.(2)若有一辆高为4米,宽为2米装有集装箱的汽车要通过隧道,则汽车靠近隧道的一侧离开隧道壁m 米,才不会碰到隧道的顶部,又不违反交通规则,问m 的取值范围是多少?14.有一个抛物线形的拱形桥洞,当桥洞的拱顶(P 抛物线最高点)离水面的距离为4米时,水面的宽度OA 为12米.现将它的截面图形放在如图所示的直角坐标系中.(1)求这条抛物线的解析式.(2)当洪水泛滥,水面上升,水面的宽度小于5米时,则必须马上采取紧急措施.某日涨水后,观察员测得桥洞的拱顶P 到水面CD 的距离只有1.5米,问:是否要采取紧急措施?并说明理由.15.“卢沟晓月”是著名的北京八景之一,每当黎明斜月西沉,月色倒影水中,更显明媚饺洁.古时乾隆皇帝曾在秋日路过卢沟桥,赋诗“半钩留照三秋淡,一练分波平镜明”于此,并题“卢沟晓月”,立碑于桥头.卢沟桥主桥拱可以近似看作抛物线,桥拱在水面的跨度OB 约为20米,若按如图所示的方式建立平面直角坐标系,则主桥拱所在抛物线可以表示为()211016y x k =-++,求主桥拱最高点A 与其在水中倒影A '之间的距离.参考答案: 1.(1)21832y x =-+ (2)这辆货车能安全通过2.(1)221045y x =-+ (2)这艘船在正常水位时能安全通过拱桥大孔,(3)43m3.(1)2120y x x =-+ (2)安全4.(1)21 3.610y x =-+ (2)圆弧MDN 不是半圆(3)2565.(1)21493y x x =-+; (2)218m .6.(1)2164y x =-+ (2)这辆货运卡车不能从正中间通过该隧道.7.(1)该拱桥抛物线的解析式为()21y x 649=--+; (2)拱桥内水面的宽度62米.8.(1)2125y x =- (2)该船的速度不变继续向此桥行驶35km 时,它能安全通过此桥。

2023年九年级中考数学复习:实际问题与二次函数(拱桥问题)专训(附答案)

2023年九年级中考数学复习:实际问题与二次函数(拱桥问题)专训(附答案)

试卷第1页,共6页2023年九年级中考数学复习:实际问题与二次函数(拱桥问题)训练一、单选题1.如图,一座拱桥的轮廓是抛物线型,拱高6m ,跨度20m ,相邻两支柱间的距离均为5m ,请根据所给的数据,则支柱MN 的长度为( )A .4.5B .5C .5.5D .62.图(1)是一个横断面为抛物线形状的拱桥,当水面在L 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽为4m .如果水面宽度为6m ,则水面下降 ( )A .3.5 mB .3mC .2.5mD .2 m3.如图,花坛水池中央有一喷泉,水管OP=3m ,水从喷头P 喷出后呈抛物线状先向上至最高点后落下,若最高点距水面4m ,P 距抛物线对称轴1m ,则为使水不落到池外,水池半径最小为( ) A .1 B .1.5 C .2D .34.有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正常水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过多少米时,就会影响过往船只的试卷第2页,共6页顺利航行( ) A .2.76米B .7米C .6米D .6.76米5.如图,有一座抛物线形拱桥,当水位线在AB 位置时,拱顶(即抛物线的顶点)离水面2m ,水面宽为4m ,水面下降1m 后,水面宽为( ) A .5mB .6mC.6mD .26m6.有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正常水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过多少米时,就会影响过往船只的顺利航行( ) A .2.76米B .6.76米C .6米D .7米7.如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB 位置时,水面宽度为10m ,此时水面到桥拱的距离是4m ,则抛物线的函数关系式为( ) A .2254y x =B .2254y x =- C .2425y x =-D .2425y x =8.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )A .43米B .52米C .213米D .7米二、填空题9.某古城门断面是由抛物线与矩形组成(如图),一辆高为h 米,宽为2.4米的货车通过该古城门,则h 的最大值是___ __米.试卷第3页,共6页10.拱桥截面是一条抛物线,如图所示,现测得水面宽AB=16m ,拱顶O 到水面的距离为8m ,在图中的直角坐标系内,拱桥所在抛物线的解析式是________11.如图,是某座抛物线型桥的示意图,已知抛物线的函数表达式为211036y x =-+,为保护桥的安全,在该抛物线上距水面AB 高为8.5米的点E 、F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是________米(结果保留根号).12.有一座抛物线形拱桥,正常水位时桥下水面宽度为20米,拱顶距离水面4米.设正常水位时桥下的水深为2米,为保证过往船只顺利航行,桥下水面的宽度不得小于18米,则水深超过_____米时就会影响过往船只在桥下的顺利航行.13.如图,隧道的截面由抛物线和长方形构成.长方形的长为12 m ,宽为5 m ,抛物线的最高点C 离路面AA 1的距离为8 m ,过AA 1的中点O 建立如图所示的平面直角坐标系,则该抛物线的函数表达式为_____.试卷第4页,共6页14.在如图所示的平面直角坐标系中,桥孔抛物线对应的二次函数关系式是y =﹣13x 2,当水位上涨1m 时,水面宽CD 为m ,则桥下的水面宽AB 为_____m .15.某工厂大门是一抛物线形水泥建筑物,大门的地面宽度为8米,两侧距地面3米高处各有一盏壁灯,两壁灯之间的水平距离为6米,如图所示,则厂门的高为________.(水泥建筑物厚度不计,精确到1米);16.如图,一个横断面为抛物线形的拱桥,当水面宽4m 时,拱顶离水面2m .以桥孔的最高点为原点,过原点的水平线为x 轴,建立平面直角坐标系.当水面下降1m 时,此时水面的宽度增加了_____m (结果保留根号).三、解答题17.如图所示,有一个抛物线形的拱形桥洞,桥洞离水面的最大高度AB 为4m ,跨度OC 为10m .试卷第5页,共6页(1)请建立适当直角坐标系,并求这条抛物线所对应的函数关系式. (2)如图,在AB 右边1m 的D 处所对应桥洞离水面的高是多少?18.有一个抛物线形的拱形隧道,隧道的最大高度为6m ,跨度为8m ,把它放在如图所示的平面直角坐标系中.(1)求这条抛物线所对应的函数关系式;(2)若要在隧道壁上点P (如图)安装一盏照明灯,灯离地面高4.5m .求灯与点B 的距离. (3)隧道内设双向单车道(中间有一条隔离带,隔离带宽度忽略不计),一辆满载后车身宽2.5m ,高2.8m 的卡车能否安全通过?19.如图,隧道的截面由抛物线和长方形构成,长方形的长为12m ,宽为5m ,抛物线的最高点C 离路面1AA 的距离为8m ,建立如图所示平面直角坐标系.(1)求该抛物线的表达式,并写出自变量x 的取值范围;(2)一辆大型货运汽车装载大型设备后高为7m ,宽为4m .如果该隧道设双向行车道,那么这辆货车能否安全通过?试卷第6页,共6页20.如图,隧道的截面由抛物线和矩形构成,矩形的长为12m ,宽为4m ,按照如图所示建立平面直角坐标系,抛物线可以表示为216y x c =-+(1)求抛物线的函数表达式,并计算出拱顶E 到地面BC 的距离;(2)一辆货运汽车载一长方体集装箱后,高6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?答案第7页,共1页参考答案:1.C 2.C 3.D 4.D 5.D 6.B 7.C 8.B 9.5.64 10.218y x =-11.6612.2.76 13.y =-2112x +8 14.6 15.6.9 16.6﹣4. 17.(1)()245425y x =--+; (2)962518.(1)238y x =-(2)灯与点B 的距离为7.5m(3)车身宽2.5m ,高2.8m 的卡车能安全通过19.(1)21812y x =-+,66x -≤≤ (2)不能安全通过,20.(1)抛物线的表达式为21106y x =-+,拱顶E 到地面BC 的距离为10m ;(2)这辆货车能安全通过;(3)两排灯的水平距离最小是3。

二次函数中抛物线形拱桥及答案

二次函数中抛物线形拱桥及答案

二次函数中抛物线形与拱桥问题1 有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m,拱顶距离水面4m.(1)在如图所示的直角坐标系中,求出该抛物线的表达式;(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),求出将d表示为h 的函数表达式;(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下的顺利航行.解:(1)设抛物线的解析式为y=ax2,且过点(10,-4)∴-==-4101252a a×,故y x=-1252(2)设水位上升h m时,水面与抛物线交于点(dh24,-)则hd-=-412542×∴d h=-104(3)当d=18时,18104076=-=h h,.0762276..+=∴当水深超过2.76m时会影响过往船只在桥下顺利航行。

2、如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽AB=10m,如果水位上升2m,就将达到警戒线CD,这时水面的宽为8m.若洪水到来,水位以每小时0.1m 速度上升,经过多少小时会达到拱顶?解:以AB所在的直线为x轴,AB中点为原点,建立直角坐标系,则抛物线的顶点E在y轴上,且B 、D两点的坐标分别为(5,0)、(4,2)设抛物线为y=ax2+k.由B、D两点在抛物线上,有解这个方程组,得所以,顶点的坐标为(0,)则OE=÷0.1=(h)所以,若洪水到来,水位以每小时0.1m速度上升,经过小时会达到拱顶.3、如图4,有一座抛物线形拱桥,抛物线可用y=表示.在正常水位时水面AB 的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)在正常水位时,有一艘宽8m、高2.5m的小船,它能通过这座桥吗?(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通过:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来的速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米?解:(1)由对称性,当x=4时,y=.当x=10时,y=.故正常水位时,AB距桥面4米,由,故小船能通过.(2)水位由CD处涨到点O的时间为1÷0.25=4小时.货车按原来的速度行驶的路程为40×1+40×4=200<280.∴货车按原来的速度行驶不能安全通过此桥.设货车速度提高到x千米/时,当4x+40×1=280时,x=60.∴要使货车安全通过此桥,货车的速度超过60千米/时。

九年级数学:利用二次函数解决抛物线形拱桥问题

九年级数学:利用二次函数解决抛物线形拱桥问题

九年级数学:利用二次函数解决抛物线形拱桥问题知|识|目|标1.通过对抛物线形的拱桥有关问题的分析,会建立合适的平面直角坐标系解决抛物线形拱桥的有关实际问题.2.通过对抛物线形的隧道有关问题的分析,会建立合适的平面直角坐标系解决抛物线形隧道的有关实际问题.目标一会利用二次函数解决拱桥问题例1 教材问题3针对训练如图5-5-7,一座抛物线形拱桥架在一条河流上,这座拱桥下的水面离桥孔顶部3 m时,水面宽AB为6 m.(1)以拱桥的顶点为原点建立平面直角坐标系,求该抛物线相应的函数表达式;(2)连续几天的暴雨,使水位暴涨,测量知桥孔顶部到水面的距离为43m,此时水面宽CD为多少?图5-5-7【归纳总结】解决抛物线形拱桥问题的步骤(1)建立合适的平面直角坐标系;(2)依据题意,求出函数表达式;(3)根据要求解决问题.目标二会利用二次函数解决隧道问题例2 教材补充例题如图5-5-8所示,一条内设双向道隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8 m,宽AB为 2 m,以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6 m.(1)求抛物线相应的函数表达式;(2)一辆货运卡车高4 m,宽2.4 m,它能通过该隧道吗?图5-5-8【归纳总结】解决能否通过隧道问题的关键点车辆通过隧道问题一般情况是以抛物线的对称轴为车辆的对称轴进行解答.(1)当已知宽度时,将宽度转化为相应的自变量代入到二次函数表达式中,求出高度(函数值).若求得的高度小于车辆的高度,则车辆不能通过;若求得的高度大于车辆的高度,则车辆能通过.(2)当已知高度时,可以将车辆的高度(函数值)代入到二次函数表达式中,求解一元二次方程,得到两个根,若两个根之间的差的绝对值大于车辆的宽度,则车辆能通过;若两个根之间的差的绝对值小于车辆的宽度,则车辆不能通过.知识点一建立适当坐标系,用二次函数知识解决抛物线形拱桥的实际问题此类问题往往以桥拱最高点为坐标原点,以水平线为x轴,铅垂线为y轴,建立平面直角坐标系,然后根据题意确定坐标系内特殊点的坐标,从而确定二次函数表达式,再根据实际问题求出相应的二次函数中的问题,注意要检验结果.知识点二建立适当坐标系,用二次函数知识解决抛物线形建筑物中的实际问题日常生活中常见的抛物线形建筑物,如抛物线形大门、抛物线形隧道、抛物线形大棚等.建立的坐标系不同,得出的二次函数表达式也不同,但实际求得的结果是一致的.应注意选择便于解决问题的坐标系.你知道吗?平时我们在跳绳时,绳甩到最高处的形状可近似地看作抛物线.如图5-5-9所示,甩绳的甲、乙两名学生拿绳的手之间的距离为4 m,距地面均为1 m,学生丁、丙分别站在与甲拿绳的手水平距离为2.5 m,1 m处,绳子在甩到最高处时刚好通过他们的头顶,已知学生丁的身高是1.625 m,求学生丙的身高.图5-5-9解:由抛物线的对称性可知,丙的身高与丁的身高相同,为1.625 m.上述解答正确吗?若不正确,请说明理由,并写出正确的解答过程.详解详析【目标突破】例1解:(1)如图所示.∵这座拱桥下的水面离桥孔顶部3 m时,水面宽AB 为6 m,∴B(3,-3).设抛物线相应的函数表达式为y=ax2,则-3=9a,解得a=-1 3 ,故该抛物线相应的函数表达式为y=-13x2.(2)由题意可得出y=-4 3 ,则-43=-13x2,解得x1=2,x2=-2.故此时水面宽CD为4 m.[备选例题] 如图,河上有一座抛物线形桥洞,已知桥下的水面离桥拱顶部 3 m时,水面宽AB为6 m,当水位上升0.5 m时:(1)求水面的宽度CD为多少米.(2)有一艘游船,它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行.①若游船宽(指船的最大宽度)为2 m ,从水面到棚顶的高度为1.8 m ,则这艘游船能否从桥洞下通过?②若从水面到棚顶的高度为74 m 的游船能从桥洞下通过,则这艘游船的宽度最大是多少米?解:(1)设抛物线形桥洞相应的函数表达式为y =ax 2+c. ∵点A(3,0)和E(0,3)在函数图像上, ∴⎩⎨⎧9a +c =0,c =3,解得⎩⎨⎧a =-13,c =3, ∴y =-13x 2+3.由题意可知,点C 和点D 的纵坐标为0.5, ∴-13x 2+3=0.5,解得x 1=302,x 2=-302, ∴CD =302+302=30(m ). 即水面的宽度CD 为30 m .(2)①当x =1时,y =83,∵83-0.5>1.8,∴这艘游船能从桥洞下通过.②当y =74+0.5=94时,-13x 2+3=94,解得x 1=32,x 2=-32.∴这艘游船的宽度最大是3 m .例2 [解析] 根据题意确定点的坐标,即可求出函数表达式,然后根据车宽求出最大高度,或根据车高求允许通过的车辆宽度.解:(1)由题意知E(0,6),A(-4,2). 设抛物线所对应的函数表达式为y =ax 2+6. 将x =-4,y =2代入上式,得2=(-4)2a +6, 解得a =-14.∴抛物线所对应的函数表达式为y =-14x 2+6.(2)当x =2.4时,y =-14×2.42+6=4.56>4.∴高4 m ,宽2.4 m 的货运卡车能通过该隧道. 【总结反思】[反思] 不正确.错误地认为丙、丁是“对称的”.实际上,抛物线是轴对称图形,其对称轴是甲、乙两名学生的手所连线段的垂直平分线,如图所示.但丙、丁并不关于抛物线的对称轴对称.正解:建立如图所示的平面直角坐标系. 设抛物线的表达式为y =ax 2+k. 将(2,1),(0.5,1.625)代入y =ax 2+k, 得⎩⎨⎧1=4a +k ,1.625=0.25a +k ,解得⎩⎪⎨⎪⎧a =-16,k =53,∴y =-16x 2+53.当x =-1时,y =1.5. 故学生丙的身高为1.5 m .。

二次函数与实际问题(拱桥)

二次函数与实际问题(拱桥)

二次函数的运用拱桥问题学习过程:一、预备练习:1、如图所示的抛物线的解析式可设为 ,若AB ∥x 轴,且AB=4,OC=1,则点A 的坐标为 ,点B 的坐标为 ;代入解析式可得出此抛物线的解析式为 。

2、 某涵洞是抛物线形,它的截面如图所示。

现测得水面宽AB=4m ,涵洞顶点O 到水面的距离为1m ,于是你可推断点A 的坐标是 ,点B 的坐标为 ;根据图中的直角坐标系内,涵洞所在的抛物线的函数解析式可设为 。

二、新课导学:例1、有座抛物线形拱桥(如图),正常水位时桥下河面宽20m ,河面距拱顶4m ,为了保证过往船只顺利航行,桥下水面的宽度不得小于18m ,求水面在正常水位基础上上涨多少米时,就会影响过往船只航行。

例2、某涵洞是抛物线形,它的截面如图所示,现测得水面宽1.6m ,涵洞顶点O 到水面的距离为2.4m ,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?三、练习:1、河北省赵县的赵州桥的桥拱是抛物线型,建立如图所示的坐标系,其函数的解析式为y=2251x ,当水位线在AB 位置时,水面宽 AB = 30米,这时水面离桥顶的高度h 是( )A 、5米B 、6米;C 、8米;D 、9米2、、一座抛物线型拱桥如图所示,桥下水面宽度是4m,拱高是2m.当水面下降1m 后,水面的宽度是多少?(结果精确到0.1m).3、一个涵洞成抛物线形,它的截面如图,现测得,当水面宽AB =1.6 m 时,涵洞顶点与水面的距离为2.4 m .这时,离开水面1.5 m 处,涵洞宽ED 是多少?是否会超过1 m ?4、某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽AB=4m ,顶部C 离地面高度为4.4m .现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8m ,装货宽度为2.4m .请判断这辆汽车能否顺利通过大门.5、如图,隧道的截面由抛物线和长方形构成,长方形的长是8m ,宽是2m ,抛物线可以用y=-41x 2+4表示. (1)一辆货运卡车高4m ,宽2m ,它能通过该隧道吗?(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?6.如图26.3.2,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA ,OA=1.25m ,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计成水流在离OA 距离为1m 处达到距水面最大高度2.25m .(1)若不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m ,要使水流不落到池外,此时水流最大高度应达多少米?(精确到0.1m )7.一场篮球赛中,球员甲跳起投篮,如图2,已知球在A处出手时离地面20/9 m,与篮筐中心C的水平距离是7m,当球运行的水平距离是4 m时,达到最大高度4m(B处),设篮球运行的路线为抛物线.篮筐距地面3m. ①问此球能否投中? (选做)②此时对方球员乙前来盖帽,已知乙跳起后摸到的最大高度为3.19m,他如何做才能盖帽成功?8.某跳水运动员在进行10m跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线.在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面 10又3分之3m,入水处距池边的距离为4m,同时运动员在距水面高度5m以前,必须完成规定的翻腾动作,并调整好入水姿势时,否则就会出现失误.(1)求这条抛物线的函数关系式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3又5分之3m,问此次跳水会不会失误?并通过计算说明理由.例1、例2:例3:第3题:第8题、。

二次函数的应用 冀教版初中数学九年级下册练习题(含答案)

二次函数的应用 冀教版初中数学九年级下册练习题(含答案)

30.4二次函数的应用练习题一、选择题1.如图,图中是抛物线形拱桥,当拱顶离水面2m时水面宽4m.水面下降1m,水面宽度为()A. 2√6mB. 2√3mC. √6mD. √3m2.如图,用长为24 m的篱笆围成一面利用墙(墙的最大可用长度a为9m)、且中间隔有一道篱笆的长方形花圃,则围成的花圃的面积最大为()A. 48m2B. 45m2C. 16m2D. 44m23.用一根长60cm的铁丝围成一个矩形,则矩形的最大面积为()A. 125cm2B. 225cm2C. 200cm2D. 250cm24.某进货单价为70元的某种单品按零售价100元/个售出时每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价()A. 5元B. 10元C. 15元D. 20元5.小强在一次训练中,掷出的实心球飞行高度y(米)与水平距离x(米)之间的关系大致满足二次函数y=−112x2+23x+53,则小强此次成绩为()A. 8米B. 10米C. 12米D. 14米6.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,若水面下降2.5m,那么水面宽度为()mA. 3B. 6C. 8D. 97.同学发现在宾馆房间的洗手盘台面上有一瓶洗手液(如图①).于是好奇的小王同学进行了实地测量研究.当小王用一定的力按住顶部A下压如图②位置时,洗手液.洗手液瓶子的截面图下部分是矩从喷口B流出,路线近似呈抛物线状,且a=−118形CGHD.小王同学测得:洗手液瓶子的底面直径GH=12cm,喷嘴位置点B距台面的距离为16 cm,且B、D、H三点共线.小王在距离台面15.5cm处接洗手液时,手心Q到直线DH的水平距离为3 cm,若学校组织学生去南京进行研学实践活动,小王小王不去接,则洗手液落在台面的位置距DH的水平距离是()cm.A. 12√3B. 12√2C. 6√3D. 6√28.为了美观,在加工太阳镜时将下半部分轮廓制作成抛物线的形状(如图所示),对应的两条抛物线关于y轴对称,AE//x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm,则右轮廓DFE所在抛物线的表达式为()A. y=14(x+3)2 B. y=14(x−3)2 C. y=−14(x+3)2D. y=−14(x−3)29.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为()A. 3.50分钟B. 3.75分钟C. 4.00分钟D. 4.25分钟10.共享单车为市民出行带来了方便,某单车公司第一个月投放a辆单车,计划第三个月投放单车y辆,设该公司第二、三两个月投放单车数量的月平均增长率为x,那么y与x的函数关系是()A. y=a(1+x)2 B. y=x2+aC. y=(1−x)2+aD. y=a(1−x)2二、填空题11.如图,三孔桥横截面的三个孔都呈抛物线形,左右两个抛物线形是全等的.正常水位时,大孔水面宽度为20m,顶点距水面6m,小孔顶点距水面3m.当水位上涨刚好淹没小孔时,大孔的水面宽度为______m.12.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为________元.13.如图,小明在校运动会上掷铅球时,铅球的运动路线是抛物线,铅球落在A点处,那么小明掷铅球的成绩是____米.14.为运用数据处理道路拥堵问题,现用流量q(辆/小时)、速度v(千米/小时)、密度k(辆/千米)来描述车流的基本特征.现测得某路段流量q与速度v之间关系的部分数据如表:速度v(千米/小时)…1520324045…流量q(辆/小时)…105012001152800450…若已知q、v满足形如q=mv2+nv(m、n为常数)的二次函数关系式,且q、v、k 满足q=vk.根据监控平台显示,当5≤v≤10时,道路出现轻度拥堵,试求此时密度k的取值范围是______.15.如图,李大爷要借助院墙围成一个矩形菜园ABCD,用篱笆围成的另外三边总长为24m,设BC的长为x m,矩形的面积为y m2,则y与x之间的函数表达式为________ .三、解答题16.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?17.为了在校运会中取得更好的成绩,小丁积极训练.在某次试投中铅球所经过的路线米,当铅球是如图所示的抛物线的一部分.已知铅球出手处A距离地面的高度是85运行的水平距离为3米时,达到最大高度5米的B处.小丁此次投掷的成绩是多少2米?18.如图,有一抛物线型拱桥,在正常水位使水面宽AB=20m,当水位上升3m,水面宽CD=10m.(1)按如图所示的直角坐标系,求此抛物线的函数表达式;(2)有一条船以5km/ℎ的速度向此桥径直驶来,当船距离此桥35km,桥下水位正好在AB处,之后水位每小时上涨0.25m,当水位达到CD处时,将禁止船只通行,如果该船的速度不变,那么它能否安全通过此桥?19.如图,某中学准备用长为20m的篱笆围成一个长方形生物园ABCD饲养小兔,生物园的一面靠墙(围墙MN最长可利用15m),设AB长度为x(m),矩形ABCD面积为y(m2).(1)求出y与x的函数关系式,直接写出x的取值范围;(2)当x为何值时,矩形ABCD的面积最大?最大面积为多少?20.春节临近,由于我市城区执行严禁燃放烟花炮竹令,某商店发现了商机:经销一种安全、无污染的电子鞭炮.已知这种电子鞭炮的成本价每盒80元,市场调查发现春节期间,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=−2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.(1)求w与x的函数关系式;(2)该种电子鞭炮的销售单价定为多少元时,每天销售利润最大?最大利润是多少元?(3)若该商店销售这种电子鞭炮要想每天获得销售利润2400元,应如何定价?答案和解析1.【答案】A【解析】【分析】首先建立直角坐标系,设抛物线为y=ax2,把点(2,−2)代入求出解析式,继而求得y=−3时x的值即可得解.本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.【解答】解:建立如图所示直角坐标系:可设这条抛物线为y=ax2,把点(2,−2)代入,得−2=a×22,,解得:a=−12∴y=−1x2,2x2=−3.当y=−3时,−12解得:x=±√6∴水面下降1m,水面宽度为2√6m.故选:A.2.【答案】B【解析】【分析】主要考查了二次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题的关键是垂直于墙的有三道篱笆.设AB为xm,BC就为(24−3x),利用长方体的面积公式,可求出关系式,当墙的宽度为最大时,有最大面积的花圃.【解答】解:设AB的长为xm,则BC的长为(24−3x)m,根据题意,得S=x(24−3x),即所求的函数解析式为:S=−3x2+24x=−3(x−4)2+48,当x=4时,BC=12m,不符合墙的最大可用长度a为9m,∴5≤x<8,∵对称轴x=4,开口向下,∴当x=5m,有最大面积的花圃.即:x=5m,最大面积为=−3(5−4)2+48=45m2.故选B.3.【答案】B【解析】解:设矩形的长为xcm,则宽为60−2x2cm,∴矩形的面积S=(60−2x2)x=−x2+30x,∵a=−1<0,∴S最大=4ac−b24a=−900−4=225(cm2),故矩形的最大面积是225cm2,故选:B.设矩形的长为x,面积为S,再根据矩形的面积公式得出x、S的关系式,求出S的最大值即可.本题主要考查了二次函数的最值问题,解题的关键是正确列出关于矩形面积S与边长x 的关系式式子.4.【答案】A【解析】解:设应降价x元,则(20+x)(100−x−70)=−x2+10x+600=−(x−5)2+625,∵−1<0∴当x=5元时,二次函数有最大值.∴为了获得最大利润,则应降价5元.故选A.设应降价x元,表示出利润的关系式为(20+x)(100−x−70)=−x2+10x+600,根据二次函数的最值问题求得最大利润时x的值即可.应识记有关利润的公式:利润=销售价−成本价.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.5.【答案】B【解析】解:在y=−112x2+23x+53中,当y=0时,−112x2+23x+53=0,解得x1=−2(舍去),x2=10,即小强此次成绩为10米,故选:B.根据实心球落地时,高度y=0,把实际问题可理解为当y=0时,求x的值即可.本题考查了二次函数的应用中函数式中变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.6.【答案】B【解析】【分析】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,学会把实际问题转化为二次函数,利用二次函数的性质解决问题,属于中考常考题型.根据已知确定平面直角坐标系,进而求出二次函数解析式,再通过把y=−2.5代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:如图,建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C 点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,把A点坐标(−2,0)代入得a=−0.5,∴抛物线解析式为y=−0.5x2+2,当水面下降2.5m,通过抛物线在图上的观察可转化为:当y=−2.5时,对应的抛物线上两点之间的距离,也就是直线y=−2.5与抛物线相交的两点之间的距离,可以通过把y=−2.5代入抛物线解析式得出:−2.5=−0.5x2+2,解得:x=±3,2×3−4=2,∴水面下降2.5m,水面宽度增加2m.∴水面宽度为2+4=6(m)故选B.7.【答案】B【解析】【分析】本题考查了二次函数的应用,解决本题的关键是明确待定系数法求二次函数的解析式及准确进行计算.根据题意得出各点坐标,利用待定系数法求抛物线解析式进而求解.【解答】解:以GH所在直线为x轴,GH的垂直平分线所在直线为y轴,建立如图所示的平面直角坐标系,喷口B为抛物线顶点,共线的三点B、D、H所在直线为抛物线的对称轴,根据题意,得Q(9,15.5),B(6,16),OH =6,设抛物线解析式为y =−118x 2+bx +c ,{−118×81+9b +c =15.5−118×36+6b +c =16, 解得{b =23c =14所以抛物线解析式为y =−118x 2+23x +14.当y =0时,即0=−118x 2+23x +14,解得:x =6+12√2(负值舍去),若小王不去接,则洗手液落在台面的位置距DH 的水平距离为6+12√2−6=12√2cm . 故选:B . 8.【答案】B【解析】【分析】本题考查了二次函数的应用:利用实际问题中的数量关系与直角坐标系中线段对应起来,再确定某些点的坐标,然后利用待定系数法确定抛物线的解析式,再利用抛物线的性质解决问题.利用B 、D 关于y 轴对称,CH =1cm ,BD =2cm ,可得到D 点坐标为(1,1),由AB =4cm ,最低点C 在x 轴上,则AB 关于直线CH 对称,可得到左边抛物线的顶点C 的坐标为(−3,0),于是得到右边抛物线的顶点F 的坐标为(3,0),然后设顶点式利用待定系数法求抛物线的解析式.【解答】解:∵高CH =1cm ,BD =2cm ,且B 、D 关于y 轴对称,∴D 点坐标为(1,1),∵AB//x 轴,AB =4cm ,最低点C 在x 轴上,∴AB 关于直线CH 对称,∴左边抛物线的顶点C 的坐标为(−3,0),∴右边抛物线的顶点F 的坐标为(3,0),设右边抛物线的解析式为y =a(x −3)2,把D(1,1)代入得1=a ×(1−3)2,解得a =14,∴右边抛物线的解析式为y =14(x −3)2,故选:B . 9.【答案】B【解析】【分析】本题主要考查了二次函数模型的应用,利用二次函数的图象与性质求函数的最值问题,确定函数模型是关键,根据题目数据求出函数解析式,根据二次函数的图象与性质可得结论.【解答】解:根据题意,将(2.5,0.5)、(4,0.8)、(5,0.5)代入p =at 2+bt +c ,得:{2.52a +2.5b +c =0.516a +4b +c =0.852a +5b +c =0.5,解得:{a =−0.2b =1.5c =−2,即p =−0.2t 2+1.5t −2,当t =− 1.52×(−0.2)=3.75 时,p 取得最大值,故选B . 10.【答案】A【解析】【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设该公司第二、三两个月投放单车数量的月平均增长率为x,然后根据已知条件可得出方程.此题主要考查了根据实际问题列二次函数关系式,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2= b.【解答】解:设该公司第二、三两个月投放单车数量的月平均增长率为x,依题意得第三个月投放单车a(1+x)2辆,则y=a(1+x)2.故选A.11.【答案】10√2【解析】解:如右图所示,点C为抛物线顶点,坐标为(0,6),则点A的坐标为(−10,0),点B的坐标为(10,0),设抛物线ACB的函数解析式为y=ax2+6,∵点A在此抛物线上,∴0=a×102+6,解得,a=−6,100x2+6,即抛物线ACB的函数解析式为y=−6100x2+6,当y=3时,3=−6100解得,x=±5√2,∴当水位上涨刚好淹没小孔时,大孔的水面宽度为:5√2−(−5√2)=10√2(m),故答案为:10√2.根据题意,可以画出相应的抛物线,然后即可得到大抛物线的解析式,然后令y=3,求出相应的x的值,即可得到当水位上涨刚好淹没小孔时,大孔的水面宽度.本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.12.【答案】70【解析】【分析】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.根据题意,可以得到利润和售价之间的函数关系,然后化为顶点式,即可得到当售价为多少元时,利润达到最大值.【解答】解:设每顶头盔的售价为x 元,获得的利润为w 元,w =(x −50)[200+(80−x)×20]=−20(x −70)2+8000,∴当x =70时,w 取得最大值,此时w =8000,故答案为:70.13.【答案】7【解析】【分析】本题考查了二次函数的应用,一元二次方程的加法,关键是掌握掷铅球的成绩就是要求铅球落地时的水平距离.根据掷铅球的成绩就是要求铅球落地时的水平距离令y =0得方程,解方程即可解答.【解答】解:由题意,得当y =0时,0=−15x 2+65x +75,解得:x 1=−1(舍去),x 2=7.故答案为7. 14.【答案】80≤k ≤90【解析】解:把(15,1050)和(20,1200)代入q =mv 2+nv 得,{1050=225m +15n 1200=400m +20n, 解得:{m =−2n =100, ∴q =−2v 2+100v ,∵q =vk ,∴vk =−2v 2+100v ,把v =5和v =10分别代入上式得,5k =−2×52+100×5或10k =−2×102+100×10,解得:k =90或k =80,∴此时密度k的取值范围是80≤k≤90,故答案为:80≤k≤90.把(15,1050)和(20,1200)代入q=mv2+nv解方程组即可得到结论.本题考查了二次函数的应用,待定系数法求函数的解析式,正确的理解题意是解题的关键.x2+12(0<x<24)15.【答案】y=−12【解析】【试题解析】【分析】本题主要考查的是矩形的性质,根据实际问题列出二次函数解析式的有关知识,根据矩形的面积公式进行求解即可.【解答】解:由题意得x2+12(0<x<24).y=−12x2+12(0<x<24).故答案为y=−1216.【答案】解:(1)当售价为55元/千克时,每月销售水果=500−10×(55−50)=450千克;(2)设每千克水果售价为x元,由题意可得:8750=(x−40)[500−10(x−50)],解得:x1=65,x2=75,答:每千克水果售价为65元或75元;(3)设每千克水果售价为m元,获得的月利润为y元,由题意可得:y=(m−40)[500−10(m−50)]=−10(m−70)2+9000,∴当m=70时,y有最大值为9000元,答:当每千克水果售价为70元时,获得的月利润最大值为9000元.【解析】本题主要考查二次函数的应用,一元二次方程的应用,解题的关键是熟练掌握销售问题中关于销售总利润的相等关系,并据此列出函数解析式及熟练掌握二次函数的性质.(1)由月销售量=500−(销售单价−50)×10,可求解;(2)设每千克水果售价为x 元,由利润=每千克的利润×销售的数量,可列方程,即可求解;(3)设每千克水果售价为m 元,获得的月利润为y 元,由利润=每千克的利润×销售的数量,可得y 与x 的关系式,有二次函数的性质可求解.17.【答案】解:建立平面直角坐标系如图所示.则点A 的坐标为(0,85),顶点为B(3,52).设抛物线的表达式为y =a(x −3)2+52,∵点A(0,85)在抛物线上,∴a(0−3)2+52=85,解得a =−110.∴抛物线的表达式为y =−110(x −3)2+52令y =0,则−110(x −3)2+52=0,解得x =8或x =−2(不合实际,舍去).即OC =8.答:小丁此次投掷的成绩是8米.【解析】由点A 、B 的坐标求出函数表达式y =−110(x −3)2+52,令y =0,即可求解. 本题考查的是二次函数的应用,通过建立坐标系,确定相应点的坐标即可求解. 18.【答案】解:(1)设抛物线的解析式为y =ax 2(a 不等于0),桥拱最高点O 到水面CD 的距离为h 米.则D(5,−ℎ),B(10,−ℎ−3)∴{25a =−ℎ100a =−ℎ−3,解得{a=−125ℎ=1,∴抛物线的解析式为y=−125x2;(2)由题意,得船行驶到桥下的时间为:35÷5=7小时,水位上升的高度为:0.25×7=1.75米.∵1.75<3.∴船的速度不变,它能安全通过此桥.【解析】(1)以拱桥最顶端为原点,建立直角坐标系,根据题目中所给的数据设函数解析式为y=ax2,由待定系数法求出其解即可;(2)计算出船行驶到桥下的时间,由这个时间按计算水位上升的高度,比较上升的高度与3的大小就可以求出结论.本题考查了运用待定系数法求二次函数的解析式的运用,行程问题的数量关系的运用,有理数大小的比较的运用,解答时求出函数的解析式是关键.19.【答案】解:(1)当长方形的宽AB=x时,其长BC=20−2x,故长方形的面积y=x(20−2x)=−2x2+20x,即y=−2x2+20x(0<x≤52);(2)y=−2x2+20x=−2(x−5)2+50,∵−2<0,∴当x=5时,y取得最大值,最大值为50,答:当x=5时,面积最大为50m2.【解析】(1)首先表示出长方形的长,根据长方形面积=长×宽列出函数关系式;(2)将函数关系式配方成二次函数顶点式,即可知其最大值.本题主要考查二次函数的实际应用能力,根据题意列出解析式是基础,配方是关键.20.【答案】解:(1)由题意得:w=(x−80)⋅y=(x−80)(−2x+320)=−2x2+480x−25600,∴w与x的函数关系式为:w=−2x2+480x−25600;(2)w=−2x2+480x−25600=−2(x−120)2+3200∵−2<0,80≤x≤160,∴当x=120时,w有最大值,w的最大值为3200元;(3)当w=2400时,−2(x−120)2+3200=2400,解得:x1=100,x2=140∴要想每天获得销售利润2400元,应定价为100元或140元每盒.【解析】本题考查了二次函数在销售问题中的应用,明确销售问题中的成本利润之间的关系以及利用正确利用二次函数的性质,是解题的关键.(1)用每件的利润(x−80)乘以销售量即可得每天的利润,从而得利润函数,再将其化为一般形式;(2)把(1)中的函数解析式配方,写成顶点式,然后根据二次函数的性质可求得最值;(3)令(2)中顶点式函数值等于2400,然后解一元二次方程即可得答案.。

2018_2019学年度九年级数学下册5.5.4利用二次函数解决抛物线形拱桥问题同步练习

2018_2019学年度九年级数学下册5.5.4利用二次函数解决抛物线形拱桥问题同步练习

第 4 课时利用二次函数解决抛物线形拱桥问题知|识|目|标1.通过对抛物线形的拱桥有关问题的分析,会建立合适的平面直角坐标系解决抛物线形拱桥的有关实际问题.2.通过对抛物线形的隧道有关问题的分析,会建立合适的平面直角坐标系解决抛物线形隧道的有关实际问题.目标一会利用二次函数解决拱桥问题例 1 教材问题 3 针对训练如图5-5- 7,一座抛物线形拱桥架在一条河流上,这座拱桥下的水面离桥孔顶部 3 m 时,水面宽AB为6 m.(1)以拱桥的顶点为原点建立平面直角坐标系,求该抛物线相应的函数表达式;4(2) 连续几天的暴雨,使水位暴涨,测量知桥孔顶部到水面的距离为 3 m,此时水面宽CD为多少?图 5- 5-7【归纳总结】解决抛物线形拱桥问题的步骤(1)建立合适的平面直角坐标系;(2)依据题意,求出函数表达式;(3)根据要求解决问题.目标二会利用二次函数解决隧道问题例 2 教材补充例题如图5- 5- 8 所示,一条内设双向道隧道的截面由抛物线AED和矩形构成,矩形的长为 8 m,宽为 2 m ,以所在的直线为x 轴,线段的垂ABCD BC AB BC BC直平分线为 y 轴,建立平面直角坐标系,y 轴是抛物线的对称轴,顶点 E 到坐标原点 O的距离为 6 m.(1)求抛物线相应的函数表达式;(2)一辆货运卡车高 4 m,宽 2.4 m ,它能通过该隧道吗?图 5- 5-8【归纳总结】解决能否通过隧道问题的关键点车辆通过隧道问题一般情况是以抛物线的对称轴为车辆的对称轴进行解答.(1) 当已知宽度时,将宽度转化为相应的自变量代入到二次函数表达式中,求出高度( 函数值 ) .若求得的高度小于车辆的高度,则车辆不能通过;若求得的高度大于车辆的高度,则车辆能通过.(2)当已知高度时,可以将车辆的高度 ( 函数值 ) 代入到二次函数表达式中,求解一元二次方程,得到两个根,若两个根之间的差的绝对值大于车辆的宽度,则车辆能通过;若两个根之间的差的绝对值小于车辆的宽度,则车辆不能通过.知识点一建立适当坐标系,用二次函数知识解决抛物线形拱桥的实际问题此类问题往往以桥拱最高点为坐标原点,以水平线为x 轴,铅垂线为 y 轴,建立平面直角坐标系,然后根据题意确定坐标系内特殊点的坐标,从而确定二次函数表达式,再根据实际问题求出相应的二次函数中的问题,注意要检验结果.知识点二建立适当坐标系,用二次函数知识解决抛物线形建筑物中的实际问题日常生活中常见的抛物线形建筑物,如抛物线形大门、抛物线形隧道、抛物线形大棚等.建立的坐标系不同,得出的二次函数表达式也不同,但实际求得的结果是一致的.应注意选择便于解决问题的坐标系.你知道吗?平时我们在跳绳时,绳甩到最高处的形状可近似地看作抛物线.如图5- 5 -9 所示,甩绳的甲、乙两名学生拿绳的手之间的距离为 4 m,距地面均为 1 m,学生丁、丙分别站在与甲拿绳的手水平距离为 2.5 m , 1 m 处,绳子在甩到最高处时刚好通过他们的头顶,已知学生丁的身高是 1.625 m ,求学生丙的身高.图 5- 5-9解:由抛物线的对称性可知,丙的身高与丁的身高相同,为 1.625 m.上述解答正确吗?若不正确,请说明理由,并写出正确的解答过程.详解详析【目标突破】例 1解:(1)如图所示.∵这座拱桥下的水面离桥孔顶部 3 m时,水面宽AB为 6 m,∴B(3,- 3) .设抛物线相应的函数表达式为 y= ax2,则- 3= 9a,1解得 a=-,31 2故该抛物线相应的函数表达式为y=-3x .4(2)由题意可得出 y=-3,4 1 2则-3=-3x ,解得 x1= 2, x2=- 2.故此时水面宽CD为4 .m[ 备选例题 ] 如图,河上有一座抛物线形桥洞,已知桥下的水面离桥拱顶部3 m时,水面宽 AB为 6 m,当水位上升0.5 m时:(1)求水面的宽度 CD为多少米.(2)有一艘游船,它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行.①若游船宽 ( 指船的最大宽度) 为2 m,从水面到棚顶的高度为 1.8m,则这艘游船能否从桥洞下通过?②若从水面到棚顶的高度为7m的游船能从桥洞下通过,则这艘游船的宽度最大是多少4米?解: (1) 设抛物线形桥洞相应的函数表达式为∵点 A(3 , 0) 和 E(0 , 3) 在函数图像上,y= ax2+ c.1∴9a+ c= 0,解得 a=-3,c=3,c=3,1∴y=- x2+ 3.3由题意可知,点 C 和点 D的纵坐标为0.5 ,1 2∴-3x +3= 0.5 ,30- 30解得 x1=2,x2=2,3030∴ CD=2 +2=30(m).即水面的宽度CD为30 m.88(2)①当 x= 1 时, y=3,∵3- 0.5>1.8 ,∴这艘游船能从桥洞下通过.791293 3②当 y=4+ 0.5 =4时,-3x + 3=4,解得 x1=2, x2=-2.∴这艘游船的宽度最大是 3 m.例 2 [ 解析 ] 根据题意确定点的坐标,即可求出函数表达式,然后根据车宽求出最大高度,或根据车高求允许通过的车辆宽度.解: (1) 由题意知 E(0 , 6) , A( - 4, 2) .设抛物线所对应的函数表达式为y=ax2+ 6.2将 x=- 4, y=2 代入上式,得2=( - 4) a+ 6,1解得a=- 4.1 2∴抛物线所对应的函数表达式为y=-4x + 6.1 2(2) 当 x= 2.4 时, y=-4× 2.4 + 6=4.56 > 4.∴高 4 ,宽 2.4 的货运卡车能通过该隧道.m m【总结反思】[ 反思 ] 不正确.错误地认为丙、丁是“对称的”.实际上,抛物线是轴对称图形,其对称轴是甲、乙两名学生的手所连线段的垂直平分线,如图所示.但丙、丁并不关于抛物线的对称轴对称.正解:建立如图所示的平面直角坐标系.2将 (2 ,1) , (0.5 , 1.625) 代入 y = ax 2+ k ,1= 4a + k , 得1.625 = 0.25a + k ,1 a =-,6解得5 k = 3,∴ y =- x 2+ 5.631当 x =- 1 时, y = 1.5.故学生丙的身高为1.5 m .。

二次函数---(拱桥问题)

二次函数---(拱桥问题)

22.3(4.1)---(拱桥问题)一.【知识要点】1.现实生活中的抛物线:喷射的水流、投出的篮球运动轨迹、两端固定自然下垂的绳子、一些拱桥、涵洞等,都给人留下抛物线的印象。

如果把它们放到平面直角坐标系中,结合实际数据即可求解得出抛物线的解析式,再通过二次函数的性质来解决测量问题、最值问题等.二.【经典例题】1.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加__________m。

2.(6分)如右图所示,有一座拱桥圆弧形,它的跨度为60米,拱高为18米,当洪水泛滥到跨度只有30米时,就要采取紧急措施,若拱顶离水面只有4米,即PN=4米时,•是否采取紧急措施?三.【题库】【A】1.如图,是某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯,建立适当坐标系.则两盏景观灯之间的水平距离_________.【B】1.如图,某大桥有一段抛物线形的拱梁,抛物线的解析式为y=ax2+bx,小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10 s时和26 s时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需_____________ s.【C】1.一位运动员投掷铅球的成绩是14m,当铅球运行的水平距离是6m时达到最大高度4m,若铅球运行的路线是抛物线,则铅球出手时距地面的高度是m.【D】1.小明和小丽先后从A地出发沿同一直道去B地.设小丽出发第xmin时,小丽、小明离B地的距离分别为y1m,y2m,y1与x之间的函数表达式是y1=﹣180x+2250,y2与x之间的函数表达式是y2=﹣10x2﹣100x+2000.(1)小丽出发时,小明离A地的距离为m.(2)小丽出发至小明到达B地这段时间内,①两人何时相距180m?②两人何时相距最近?最近距离是多少?。

专题07 二次函数与实际应用(拱桥问题)-2024年中考数学之二次函数重点题型专题(全国通用版)(原

专题07 二次函数与实际应用(拱桥问题)-2024年中考数学之二次函数重点题型专题(全国通用版)(原

专题07 二次函数与实际应用(拱桥问题)一、填空题1.(2024·安徽肥东·中考二模)如图,一座悬索桥的桥面OA 与主悬钢索MN 之间用垂直钢索连接,主悬钢索是抛物线形状,两端到桥面的距离OM 与AN 相等.小强骑自行车从桥的一端O 沿直线匀速穿过桥面到达另一端A ,当他行驶18秒时和28秒时所在地方的主悬钢索的高度相同,那么他通过整个桥面OA 共需_____________秒.2.(2024·江苏工业园区·中考一模)如图①,“东方之门”通过简单的几何曲线处理,将传统文化与现代建筑融为一体,最大程度地传承了苏州历史文化.如图②,“东方之门”的内侧轮廓是由两条抛物线组成的,已知其底部宽度均为80m ,高度分别为300m 和225m ,则在内侧抛物线顶部处的外侧抛物线的水平宽度(AB 的长)为_________m .第1题图 第2题图3.(2024·浙江·温州市中考一模)2024年1月12日世界最大跨度铁路拱桥——贵州北盘江特大桥主体成功合拢.如图2所示,已知桥底呈抛物线,主桥底部跨度400OA =米,以O 为原点,OA 所在直线为x 轴建立平面直角坐标系,桥面//BF OA ,抛物线最高点离路面距离10EF =米,120BC =米,CD BF ⊥,O ,D ,B 三点恰好在同一直线上,则CD =________米.第3题图 第4题图4.(2024·江苏工业园区·中考二模)如图是某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A ,B 两点,拱桥最高点C 到AB 的距离为8m ,24m AB =,D ,E 为拱桥底部的两点,且//DE AB ,若DE 的长为36m ,则点E 到直线AB 的距离为______.二、解答题5.(2024·浙江衢州·中考真题)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱项部O离水面的距离.(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.6.如图,某水库上游有一单孔抛物线型拱桥,它的跨度AB为100米.最低水位(与AB在同一平面)时桥面CD距离水面25米,桥拱两端有两根25米高的水泥柱BC和AD,中间等距离竖立9根钢柱支撑桥面,拱顶正上方的钢柱EF长5米.(1)建立适当的直角坐标系,求抛物线型桥拱的解析式;(2)在最低水位时,能并排通过两艘宽28米,高16米的游轮吗?(假设两游轮之间的安全间距为4米)(3)由于下游水库蓄水及雨季影响导致水位上涨,水位最高时比最低水位高出13米,请问最高水位时没在水面以下的钢柱总长为多少米?7.(2024·山西·长治市实验中学九年级期末)景德桥,俗称西关大桥,是我国一座著名的古代石拱桥.景德桥位于山西省东南部的晋城西门外,横跨沁水河,过去,它是晋城通往沁水河阳城地区交通干道上的一座重要桥梁,故曾又名沁阳桥.桥下水面宽度AB是20米,拱高CD是4米,若水面上升3米至EF处.(1)把拱桥看作抛物线的一部分,建立如图1所示的平面直角坐标系,求水面宽度EF.(2)把拱桥看作圆的一部分,则可构造如图2所示的图形,求水面宽度EF.8.(2024·山东即墨·中考一模)即墨古城某城门横断面分为两部分,上半部分为抛物线形状,下半部分为正方形(OMNE为正方形),已知城门宽度为4米,最高处离地面6米,如图1所示,现以O点为原点,OM所在的直线为x轴,OE所在的直线为y轴建立直角坐标系.(1)求出上半部分抛物线的函数表达式,并写出其自变量的取值范围;(2)有一辆宽3米,高4.5米的消防车需要通过该城门进入古城,请问该消防车能否正常进入?(3)为营造节日气氛,需要临时搭建一个矩形“装饰门”ABCD,该“装饰门”关于抛物线对称轴对称,如图2所示,其中AB,AD,CD为三根承重钢支架,A、D在抛物线上,B,C在地面上,已知钢支架每米50元,问搭建这样一个矩形“装饰门”,仅钢支架一项,最多需要花费多少元?9.(·山东青岛·中考真题)某公司生产A 型活动板房成本是每个425元.图①表示A 型活动板房的一面墙,它由长方形和抛物线构成,长方形的长4AD m =,宽3AB m =,抛物线的最高点E 到BC 的距离为4m .(1)按如图①所示的直角坐标系,抛物线可以用()20y kx m k =+≠表示,求该抛物线的函数表达式;(2)现将A 型活动板房改造为B 型活动板房.如图②,在抛物线与AD 之间的区域内加装一扇长方形窗户FGMN ,点G ,M 在AD 上,点N ,F 在抛物线上,窗户的成本为50元2/m .已知2GM m =,求每个B 型活动板房的成本是多少?(每个B 型活动板房的成本=每个A 型活动板房的成本+一扇窗户FGMN 的成本) (3)根据市场调查,以单价650元销售(2)中的B 型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B 型活动板房.不考虑其他因素,公司将销售单价n (元)定为多少时,每月销售B 型活动板房所获利润w (元)最大?最大利润是多少?10.施工队要修建一个横断面为抛物线的公路隧道,其高度为8米,宽度OM 为16米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x 的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽3.5米、高5.8米的特种车辆?请通过计算说明;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB ,使A .D 点在抛物线上.B 、C 点在地面OM 线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB 、AD 、DC 的长度之和的最大值是多少,请你帮施工队计算一下.11.(2024·辽宁海城·九年级月考)如图,隧道的横截面由抛物线形和矩形OABC 构成.矩形一边OA 的长是12m ,另一边OC 的长是1m .抛物线上的最高点D 到地面OA 的距离为7m .以OA 所在直线为x 轴,以OC所在直线为y 轴,建立平面直角坐标系.(1)求该抛物线所对应的函数表达式;(2)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度为5m ,求两排灯之间的水平距离;(3)隧道内车辆双向通行,规定车辆必须在中心线两侧行驶,并保持车辆顶部与隧道有不少于1m 3的空隙.现有一辆货运汽车,在隧道内距离道路边缘2m 处行驶,求这辆货运汽车载物后的最大高度.12.(·陕西·子长县齐家湾中学九年级期末)小明将他家乡的抛物线型彩虹桥按比例缩小后,绘制成如下图所示的示意图,图中的三条抛物线分别表示桥上的三条钢梁,x 轴表示桥面,y 轴经过中间抛物线的最高点,左右两条抛物线关于y 轴对称,经过测算,右边抛物线的表达式为21(30)520y x =--+. (1)直接写出左边抛物线的解析式; (2)求抛物线彩虹桥的总跨度AB 的长;(3)若三条钢梁的顶点M 、E 、N 与原点O 连成的四边形OMEN 是菱形,你能求出钢梁最高点离桥面的高度OE 的长吗?如果能,请写出过程;如果不能,请说明理由.13.(2024·山东黄岛·九年级期末)为促进经济发展,方便居民出行.某施工队要修建一个横断面为抛物线的公路隧道.抛物线的最高点P离路面OM的距离为6m,宽度OM为12m.(1)按如图所示的平面直角坐标系,求表示该抛物线的函数表达式;(2)一货运汽车装载某大型设备后高为4m,宽为3.5m.如果该隧道内设双向行车道(正中间是一条宽1m 的隔离带),那么这辆货车能否安全通过?(3)施工队计划在隧道口搭建一个矩形“脚手架”ABCD,使A,D点在抛物线上.B,C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根支杆AB,AD,DC的长度之和的最大值是多少?请你帮施工队计算一下.14.(2024·福建厦门·九年级期末)某海湾有一座抛物线形拱桥,正常水位时桥下的水面宽为100m(如图所示).由于潮汐变化,该海湾涨潮5h后达到最高潮位,此最高潮位维持1h,之后开始退潮.如:某日16时开始涨潮,21时达到最高潮位,22时开始退潮.该桥的桥下水位相对于正常水位上涨的高度随涨潮时间t 变化的情况大致如表所示.(在涨潮的5h 内,该变化关系近似于一次函数) 涨潮时间t (单位:h )1 2 3 4 5 6桥下水位上涨的高度(单位:m )4585 1251654 4 (1)求桥下水位上涨的高度(单位:m )关于涨潮时间t (06t ≤≤,单位:h )的函数解析式; (2)某日涨潮期间,某船务公司对该桥下水面宽度进行了三次测量,数据如表所示: 涨潮时间t (单位:h ) 5452 154桥下水面宽(单位:m )202420232022现有一艘满载集装箱的货轮,水面以上部分高15m ,宽20m ,在涨潮期间能否安全从该桥下驶过?请说明理由.15.(·河北·中考一模)有一座抛物线型拱桥,在正常水位时水面AB 的宽为18米,拱顶O 离水面AB 的距离OM 为9米,建立如图所示的平面直角坐标系. (1)求此抛物线的解析式;(2)一艘货船在水面上的部分的横断面是矩形CDEF .①如果限定矩形的长CD 为12米,那么要使船通过拱桥,矩形的高DE 不能超过多少米? ②若点E ,F 都在抛物线上,设L EF DE CF =++,当L 的值最大时,求矩形CDEF 的高.16.(·安徽无为·九年级期末)如图,三孔桥横截面的三个孔都呈抛物线形,两个小孔形状、大小都相同,正常水位时,大孔水面常度AB=20米,顶点M距水面6米(即MO=6米),小孔水面宽度BC=6米,顶点N距水面4.5米.航管部门设定警戒水位为正常水位上方2米处借助于图中的平面直角坐标系解答下列问题:(1)在汛期期间的某天,水位正好达到警戒水位,有一艘顶部高出水面3米,顶部宽4米的巡逻船要路过此处,请问该巡逻船能否安全通过大孔?并说明理由.(2)在问题(1)中,同时桥对面又有一艘小船准备从小孔迎面通过,小船的船顶高出水面1.5米,顶部宽3米,请问小船能否安全通过小孔?并说明理由.17.(2024·贵州安顺·中考真题)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA 可视为抛物线的一部分,在某一时刻,桥拱内的水面宽8m OA =,桥拱顶点B 到水面的距离是4m .(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m 的打捞船径直向桥驶来,当船驶到桥拱下方且距O 点0.4m 时,桥下水位刚好在OA 处.有一名身高1.68m 的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平);(3)如图③,桥拱所在的函数图象是抛物线()20y ax bx c a =++≠,该抛物线在x 轴下方部分与桥拱OBA 在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移()0m m >个单位长度,平移后的函数图象在89x ≤≤时,y 的值随x 值的增大而减小,结合函数图象,求m 的取值范围.。

初中数学二次函数应用题型分类——抛物线形物体问题4(附答案)

初中数学二次函数应用题型分类——抛物线形物体问题4(附答案)


15.有一座抛物线形拱桥,正常水位时桥下水面宽度为 20 米,拱顶距离水面 4 米.设 正常水位时桥下的水深为 2 米,为保证过往船只顺利航行,桥下水面的宽度不得小于 18 米,则水深超过_____米时就会影响过往船只在桥下的顺利航行.
16.抛物线形拱门的示意图如图所示,底部宽 AB 为 6 米,最高点 O 距地面 5 米.现有
D.2 6 m
5.如图,隧道的截面是抛物线,可以用 y= 1 x2 4 表示,该隧道内设双行道,限 16
高为 3m,那么每条行道宽是( )
A.不大于 4m
B.恰好 4m
C.不小于 4m
D.大于 4m,小于
8m 6.有一座抛物线形拱桥,正常水位桥下面宽度为 20 米,拱顶距离水平面 4 米,如图建
AB 为( )
A.﹣20m
B.﹣10m
C.10m
D.20m
9.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,
其函数的关系式为 y=﹣ x2,当水面离桥顶的高度 DO 是 4m 时,这时水面宽度 AB
为( )
A.﹣20m
B.10m
C.20m
D.﹣10m
10.如图,一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离
1 桥拱的半径; 2 现水面上涨后水面跨度为 60 米,求水面上涨的高度为________米.
(1)建立如图所示的直角坐标系,求此抛物线的解析式; (2)当水位在正常水位时,有一艘宽为 6 米的货船经过这里,船舱上有高出水面 3.6 米的长方体货物(货物与货船同宽).问:此船能否顺利通过这座拱桥?
22.如图,一圆弧形桥拱的圆心为 E ,拱桥的水面跨度 AB 80 米,桥拱到水面的最 大高度 DF 为 20 米.求:

二次函数中抛物线形与拱桥问题[练习版]

二次函数中抛物线形与拱桥问题[练习版]

二次函数中抛物线形与拱桥问题1、有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m,拱顶距离水面4m.(1)在如图所示的直角坐标系中,求出该抛物线的表达式;(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),求出将d表示为h的函数表达式;(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下的顺利航行.2、如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽AB=10m,如果水位上升2m,就将达到警戒线CD,这时水面的宽为8m.若洪水到来,水位以每小时0.1m速度上升,经过多少小时会达到拱顶?3、如图4,有一座抛物线形拱桥,抛物线可用y=表示.在正常水位时水面AB 的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)在正常水位时,有一艘宽8m、高2.5m的小船,它能通过这座桥吗?(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通过:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来的速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米?4、如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小相同。

正常水位时,大孔水面宽度AB=20米,顶点M距水面6米(即MO=6米),小孔顶点N距水面4.5米。

当水位上涨刚好淹没小孔时,借助图中的直角坐标系,求此时大孔的水面宽度EF。

(10m)5、如图所示,有一座拱桥圆弧形,它的跨度为60米,拱高为18米,当洪水泛滥到跨度只有30米时,就要采取紧急措施,若拱顶离水面只有4米,即PN=4米时,是否采取紧急措施?6、有一座抛物线型拱桥,其水面宽AB为18米,拱顶O离水面AB的距离OM为8米,货船在水面上的部分的横断面是矩形CDEF,如图建立平面直角坐标系.(1)求此抛物线的解析式;(2)如果限定矩形的长CD为9米,那么矩形的高DE不能超过多少米,才能使船通过拱桥?(3)若设EF=a,请将矩形CDEF的面积S用含a的代数式表示,并指出a的取值范围.7、(2014•黄石)中华民族的科学文化历史悠久、灿烂辉煌,我们的祖先几千年前就能在生产实践中运用数学.1300多年前,我国隋代建筑的赵州石拱桥的桥拱是圆弧形(如图).经测量,桥拱下的水面距拱顶6m 时,水面宽34.64m,已知桥拱跨度是37.4m,运用你所学的知识计算出赵州桥的大致拱高.(运算时取37.4=14 ,34.64=20 )。

九年级数学下第30章二次函数30.4二次函数的应用第1课时建立坐标系解抛物线形问题习题冀教

九年级数学下第30章二次函数30.4二次函数的应用第1课时建立坐标系解抛物线形问题习题冀教

(2)如图②,桥面上方有3根高度均为4 m的支柱CG、OH、 DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线, 其最低点到桥面距离为1 m.
①求出其中一条钢缆抛物线的函数表达式. 解:由题意可知右边钢缆所在抛物线的顶点坐标为(6, 1),设其表达式为 y2=a2(x-6)2+1. 将点 H(0,4)的坐标代入 y2=a2(x-6)2+1, 得 4=a2(0-6)2+1,解得 a2=112.
(2)在(1)的条件下,当运动员运动的水平距离为多少米时, 运动员与小山坡的竖直距离为1米? 解:设运动员运动的水平距离为 m 米时,运动员与小山
坡的竖直距离为 1 米. 依题意得-18m2+32m+4-(-112m2+76m+1)=1, 整理得(m-12)(m+4)=0,解得 m1=12,m2=-4(舍去). 答:运动员运动的水平距离为 12 米时,运动员与小山坡 的竖直距离为 1 米.
冀教版 九年级
30.4.1
第三十章 二次函数
建立坐标系解抛 物线形问题
习题链接
温馨提示:点击 进入讲评
1
6
2
3
4
5
1 【2021·衢州】如图①是一座抛物线形拱桥侧面示意 图.水面宽AB与桥长CD均为24 m,在距离D点6 m的 E处,测得桥面到桥拱的距离EF为1.5 m,以桥拱顶点 O为原点,桥面为x轴建立 平面直角坐标系.
5 【2021·广西北部湾经济区】2022年北京冬奥会即将召 开,激起了人们对冰雪运动的极大热情.如图是某跳 台滑雪训练场的横截面示意图,
取某一位置的水平线为 x 轴,过跳台终点 A 作水平线 的垂线为 y 轴,建立平面直角坐标系,图中的抛物线 C1:y=-112x2+76x+1 近似表示滑雪场地上的一座小 山坡,某运动员从点 O 正上方 4 米处的 A 点滑出, 滑出后沿一段抛物线 C2:y=-18x2+bx+c 运动.

北师大版数学九年级下册-实际问题与二次函数——抛物、拱桥问题课时对应练习(Word版含答案)

北师大版数学九年级下册-实际问题与二次函数——抛物、拱桥问题课时对应练习(Word版含答案)

第12课时实际问题与二次函数——抛物、拱桥问题1.从地面竖直向上抛出一个小球,小球的上升高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为h=24t﹣4t2,那么,小球从抛出至回落到地面所需的时间是()A.6s B.4s C.3s D.2s 2.(2019•山西)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象﹣抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()A.y=26675x2B.y=−26675x2C.y=131350x2D.y=−131350x23.崇左市政府大楼前广场有一喷水池,水从地面喷出,喷出水的路径是一条抛物线.如果以水平地面为x轴,建立如图所示的平面直角坐标系,水在空中划出的曲线是抛物线y=﹣x2+4x (单位:米)的一部分.则水喷出的最大高度是__________米.4.我国羽毛球球员林丹某次比赛中打出的羽毛球其运动路线可以看作是一条抛物线(如图).若不考虑外力因素,羽毛球行进高度y(米)与水平距离x(米)之间满足关系y=−29x2+89x+109,则羽毛球飞出的水平距离为________米.5.(2018•绵阳)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m.6.图1是一款优雅且稳定的抛物线型落地灯.防滑螺母C为抛物线支架的最高点,灯罩D 距离地面1.86米,灯柱AB及支架的相关数据如图2所示.若茶几摆放在灯罩的正下方,则茶几到灯柱的距离AE为________米.7.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20米,如果水位上升3米,则水面CD的宽是10米.(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)当水位在正常水位时,有一艘宽为6米的货船经过这里,船舱上有高出水面3.6米的长方体货物(货物与货船同宽).问:此船能否顺利通过这座拱桥?8.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围.9.一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()A.此抛物线的解析式是y=−15x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2m10.某校的围墙上端由一段段相同的凹曲拱形栅栏组成,如图所示,栅栏的跨径AB间,按相同的间距0.2米用5根立柱加固,拱高OC为0.6米,以O为原点,OC所在的直线为y轴建立平面直角坐标系,根据以上的数据,则这段栅栏所需立柱的总长度(精确到0.1米)为()A.1.5米B.1.9米C.2.3米D.2.5米11.如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度AB=20m,顶点M距水面6m(即MO=6m),小孔顶点N距水面4.5m(即NC=4.5m).当水位上涨刚好淹没小孔时,借助图中的平面直角坐标系,则此时大孔的水面宽度EF为________m.12.如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为8m,两侧距地面4m高处各有一盏灯,两灯间的水平距离为6m,则这个门洞的高度为________m.(精确到0.1m)13.如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端安有一个喷水池,使喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,水柱落地点D 离池中心A处3m,以水平方向为x轴,建立平面直角坐标系,若选取A点为坐标原点时的抛物线的表达式为y=−34(x−1)2+3(0≤x≤3),则选取点D为坐标原点时的抛物线表达式为________________,水管AB的长为________m.14.某民房发生火灾.两幢大楼的部分截面及相关数据如图,小明在甲楼A处透过窗户E发现乙楼F处出现火灾,此时A,E,F在同一直线上.跑到一楼时,消防员正在进行喷水灭火,水流路线呈抛物线,在1.2m高的D处喷出,水流正好经过E,F.若点B和点E、点C和点F的离地高度分别相同,现消防员将水流抛物线向上平移5m,再向左后退________m,恰好把水喷到F处进行灭火.15.如图,龙丽公路某隧道横截面为抛物线,其最大高度为9米,底部宽度OM为18米.现以O点为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD﹣DC﹣CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?16.如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的解析式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=−1128(t﹣19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?【参考答案】1.A.2.B.3.4.4.5.5.4√2−4.6.2.7.7.(1)设抛物线解析式为y=ax2,因为抛物线关于y 轴对称,AB =20,所以点B 的横坐标为10,设点B (10,n ),点D (5,n +3),n =102•a =100a ,n +3=52a =25a ,即{n =100a n +3=25a, 解得{n =−4a =−125, ∴y =−125x 2;(2)∵货轮经过拱桥时的横坐标为x =3,∴当x =3时,y =−125×9∵−925−(﹣4)>3.6∴在正常水位时,此船能顺利通过这座拱桥.答:在正常水位时,此船能顺利通过这座拱桥.8.(1)∵h =2.6,球从O 点正上方2m 的A 处发出,∴抛物线y =a (x ﹣6)2+h 过点(0,2),∴2=a (0﹣6)2+2.6,解得:a =−160,故y 与x 的关系式为:y =−160(x ﹣6)2+2.6,(2)当x =9时,y =−160(x ﹣6)2+2.6=2.45>2.43, 所以球能过球网;当y =0时,−160(x −6)2+2.6=0, 解得:x 1=6+2√39>18,x 2=6﹣2√39(舍去)故会出界;(3)当球正好过点(18,0)时,抛物线y =a (x ﹣6)2+h 还过点(0,2),代入解析式得: {2=36a +ℎ0=144a +ℎ, 解得:{a =−154ℎ=83, 此时二次函数解析式为:y =−154(x ﹣6)2+83,此时球若不出边界h ≥83,当球刚能过网,此时函数解析式过(9,2.43),抛物线y =a (x ﹣6)2+h 还过点(0,2),代入解析式得:{2.43=a(9−6)2+ℎ2=a(0−6)2+ℎ, 解得:{a =−432700ℎ=19375, 此时球要过网h >19375,故若球一定能越过球网,又不出边界,h 的取值范围是:h ≥83.解法二:y =a (x ﹣6)2+h 过点(0,2)点,代入解析式得:2=36a +h ,若球越过球网,则当x =9时,y >2.43,即9a +h >2.43解得h >19375 球若不出边界,则当x =18时,y ≤0,解得h ≥83.故若球一定能越过球网,又不出边界,h 的取值范围是:h ≥83.9.A .10.C .11.10.12.9.1.13.y =−34(x +2)2+3(﹣3≤x ≤0);2.25.14.5.提示:由图可知:A (0,21.2),B (0,9.2),C (0,6.2),D (0,1.2),∵点B 和点E 、点C 和点F 的离地高度分别相同,∴E (20,9.2),设AE 的直线解析式为y =kx +b ,{9.2=20k +b b =21.2, ∴{k =−35b =21.2, ∴y =−35x +21.2,∵A ,E ,F 在同一直线上.∴F (25,6.2),设过D ,E ,F 三点的抛物线为y =ax 2+bx +c ,∴{c=1.29.2=400a+20b+c 6.2=625a+25b+c,∴y=−125x2+65x+65,水流抛物线向上平移5m,设向左退了m米,∴D(0,6.2),设平移后的抛物线为y=−125(x+m)2+65(x+m)+1.2+5,经过点F,∴m=5或m=﹣25(舍),∴向后退了5米.15.(1)由题意可得:M(18,0),P(9,9).(2)设抛物线解析式为:y=a(x﹣9)2+9 ∵抛物线y=a(x﹣9)2+9经过点(0,0)∴0=a(0﹣9)2+9,即a=−1 9,∴抛物线解析式为:y=−19(x﹣9)2+9,即y=−19x2+2x.(3)设A(m,0),则B(18﹣m,0),C(18﹣m,−19m2+2m),D(m,−19m2+2m).则“支撑架”总长AD+DC+CB=(−19m2+2m)+(18﹣2m)+(−19m2+2m)=−29m2+2m+18=−29(m﹣4.5)2+22.5.∵此二次函数的图象开口向下.∴当m=4.5米时,AD+DC+CB有最大值为22.5米.16.(1)∵点C到ED的距离是11米,∴OC=11,设抛物线的解析式为y=ax2+11,由题意得B(8,8),∴64a+11=8,解得a=−3 64,∴y=−364x2+11;(2)水面到顶点C的距离不大于5米时,即水面与河底ED的距离h至少为11﹣5=6(米),∴6=−1128(t﹣19)2+8,∴(t﹣19)2=256,∴t﹣19=±16,解得t1=35,t2=3,∴35﹣3=32(小时).答:需32小时禁止船只通行.。

5 .5 用二次函数解决问题 (2)

5 .5  用二次函数解决问题 (2)

2、小明利用上题中的自由落体计算公式,用一块 小石子来估算一口枯井的深度.如果石子从井口脱 手1. 3s时听到石子落到井底的声音(不计声音传播 的时间),那么该枯井大约有多深(精确到O.lm)?
3、正常水位时,抛物线形桥孔下的水面宽20 m,水面
上升3m达到该地警戒水位时,桥下水面宽10 m.
(1)建立恰当的平面直角坐标系,把抛物线形的桥孔看
高 7.23 m.试建立恰当的平面直角坐标系,把桥拱看作一个 二次函数的图像,写出这个函数的表达式.
约40m,拱高7. 23 m看作约8m计算.) (把跨径37. 02 m看作
1、比萨抖塔是意大利的一座著名抖塔,据说物理学家伽利 略曾在塔顶上做过著名的自由落体试验:在地球上同一地点, 不同质量的物体从同一高度同时下落,如果除地球引力外不 1 考虑其他外力的作用,那么它们的落地时间相同,物体的下 2 1 落距离h(m)与下落时间t(s)之间的函数关系式为h= gt2, 2 2 取g的值为9. 8,即h = 4. 9 t .已知比萨抖塔的高度为55 m, 试计算试验物大约经过多少时落地(精确到0. 1 s).
课堂作业:讲学稿
下课了!
因为当水面宽AB = 6 m时,水面离桥孔顶部3 m,所以点A的坐标是(3,一3).
Hale Waihona Puke 根据问题3给出的条件,一艘装满物资的小船, 露出水面部分的高为0.5 m、宽为4 m(横断面如图5一 15).暴雨后这艘船能从这座拱桥下通过吗?
练一练:1300多年前,我国隋朝建造的赵州石拱桥闻名中外.
假设石拱桥的桥拱是抛物线形,已知石拱跨径 37.02 m,拱
初中数学 九年级(下册)
5 .5 用二次函数解决问题 (2)
制作:wyx 2014年12月12日

二次函数拱桥问题应用题单元测试题(含答案)

二次函数拱桥问题应用题单元测试题(含答案)

二次函数拱桥问题一、单选题(共2题;共4分)1.(2020·绵阳)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A. 4 米B. 5 米C. 2 米D. 7米2.(2019九上·蜀山月考)赵州桥的桥拱可以用抛物线的一部分表示,函数关系为,当水面宽度AB为20m时,水面与桥拱顶的高度DO等于()A. 2mB. 4mC. 10mD. 16m二、填空题(共3题;共3分)3.(2020·永嘉模拟)小林家的洗手台面上有一瓶洗手液(如图1),当手按住顶部A下压时(如图2),洗手液瞬间从喷口B流出,已知瓶子上部分的弧CE和弧FD的圆心分别为D,C,下部分的视图是矩形CGHD,GH=10cm,GC=8cm,点E到台面GH的距离为14cm,点B距台面GH的距离为16cm,且B,D,H三点共线.如果从喷口B流出的洗手液路线呈抛物线形,且该路线所在的抛物线经过C.E两点,接洗手液时,当手心O距DH的水平距离为2cm时,手心O距水平台面GH的高度为________cm.4.(2020·吉林模拟)如图是抛物线型拱桥,当拱顶离水面时,水面宽,水面下降,水面宽度增加________ .5.(2019九上·长春期中)如图,一个横截面为抛物线形的隧道底部宽12米、高6米.车辆双向通行,若规定车辆必须在中心线两侧、距离道路边缘2米的范围内行使,并保持车辆顶部与隧道有不少于米的空隙,则通过隧道车辆的高度限制应为________米.三、解答题(共4题;共20分)6.(2019九上·北京月考)图中所示的物线形批桥,当找顶离水面m时,水面宽m,水面上升米,水面宽度减少多少?7.(2019九上·西岗期末)某工厂大门是一抛物线形水泥建筑物(如图),大门地面宽AB=4米,顶部C 离地面高度为4.4米.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8米,装货宽度为2.4米.请通过计算,判断这辆汽车能否顺利通过大门?8.(2019九上·海淀期中)悬索桥,又名吊桥,指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁. 其缆索几何形状一般近似于抛物线.从缆索垂下许多吊杆(吊杆垂直于桥面),把桥面吊住.某悬索桥(如图1),是连接两个地区的重要通道. 图2是该悬索桥的示意图.小明在游览该大桥时,被这座雄伟壮观的大桥所吸引. 他通过查找资料了解到此桥的相关信息:这座桥的缆索(即图2中桥上方的曲线)的形状近似于抛物线,两端的索塔在桥面以上部分高度相同,即AB=CD, 两个索塔均与桥面垂直. 主桥AC的长为600 m,引桥CE的长为124 m.缆索最低处的吊杆MN长为3 m,桥面上与点M相距100 m处的吊杆PQ长为13 m.若将缆索的形状视为抛物线,请你根据小明获得的信息,建立适当的平面直角坐标系,求出索塔顶端D与锚点E的距离.图29.(2019九上·吉林月考)如图是一个抛物线形拱桥的示意图,桥的跨度AB为100米,支撑桥的是一些等距的立柱,正中间的立柱OC的高为10米(不考虑立柱的粗细),相邻立柱间的水平距离为10米.建立如图坐标系,求距A点最近处的立柱EF的高度.四、作图题(共1题;共10分)10.(2019九上·西城期中)要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷头,使喷出的抛物线形水柱在与水池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离中心3m.(1)在给定的坐标系中画出示意图;(2)求出水管的长度.五、综合题(共8题;共87分)11.(2020·浙江模拟)一隧道内设双行公路,隧道的高MN为6米.下图是隧道的截面示意图,并建立如图所示的直角坐标系,它是由一段抛物线和一个矩形CDEF的三条边围成的,矩形的长DE是8米,宽CD是2米.(1)求该抛物线的解析式;(2)为了保证安全,要求行驶的车辆顶部与隧道顶部至少要有0.5米的距离.若行车道总宽度PQ(居中,两边为人行道)为6米,一辆高3.2米的货运卡车(设为长方形)靠近最右边行驶能否安全?请写出判断过程;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABHG,使H、G两点在抛物线上,A、B两点在地面DE 上,设GH长为n米,“脚手架”三根木杆AG、GH、HB的长度之和为L,当n为何值时L最大,最大值为多少?12.(2020·淮安模拟)如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.(1)写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式.13.(2020·武汉模拟)某坦克部队需要经过一个拱桥(如图所示),拱桥的轮廓是抛物线形,拱高OC=6m,跨度AB=20m,有5根支柱:AG、MN、CD、EF、BH,相邻两支柱的距离均为5m.(1)以AB的中点为原点,AB所在直线为x轴,支柱CD所在直线为y轴,建立平面直角坐标系,求抛物线的解析式;(2)若支柱每米造价为2万元,求5根支柱的总造价;(3)拱桥下面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道是坦克的行进方向,现每辆坦克长4m,宽2m,高3m,行驶速度为24km/h,坦克允许并排行驶,坦克前后左右距离忽略不计,试问120辆该型号坦克从刚开始进入到全部通过这座长1000m的拱桥隧道所需最短时间为多少分钟?14.(2019九上·长春月考)图中是抛物线形拱桥,点处有一照明灯,水面宽,以为原点,所在直线为轴建立平面直角坐标系,以为一个单位长度,已知点的坐标为.(1)求这条抛物线的表达式;(2)当水面上升后,水面的宽为________ .15.(2019九上·西安月考)跳绳时,绳甩到最高处时的形状是抛物线. 正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0. 9米,身高为1. 4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E. 以点O为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为y=ax2+bx+0.9.(1)求该抛物线的解析式;(2)如果身高为1. 85米的小华也想参加跳绳,问绳子能否顺利从他头顶越过?请说明理由;(3)如果一群身高在1. 4米到1. 7米之间的人站在OD之间,且离点O的距离为t米, 绳子甩到最高处时必须超过他们的头顶,请结合图像,写出t的取值范围________.16.(2019九上·邗江月考)有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m,如图所示,把它的图形放在直角坐标系中.(1)求这条抛物线所对应的函数关系式;(2)一辆宽为2米,高为3米的货船能否从桥下通过?17.(2019九上·龙泉驿月考)如图隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=表示,且抛物线上的点C到OB的水平距离为3m,到地面OA的距离为m.(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?18.(2019九上·宜昌期中)某隧道横断面由抛物线与矩形的三边组成,尺寸如图所示.(1)以隧道横断面抛物线的顶点为原点,以抛物线的对称轴为y轴,建立直角坐标系,求该抛物线对应的函数关系式;(2)某卡车空车时能通过此隧道,现装载一集装箱箱宽3m,车与箱共高4.5m,此车能否通过隧道?并说明理由答案解析部分一、单选题1.【答案】B【解析】【解答】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO= ,设大孔所在抛物线解析式为y=ax2+ ,∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+ ,∴a=- ,∴大孔所在抛物线解析式为y=- x2+ ,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,∵EF=14,∴点E的横坐标为-7,∴点E坐标为(-7,- ),∴- =m(x﹣b)2,∴x1= +b,x2=- +b,∴MN=4,∴| +b-(- +b)|=4∴m=- ,∴顶点为A的小孔所在抛物线的解析式为y=- (x﹣b)2,∵大孔水面宽度为20米,∴当x=-10时,y=- ,∴- =- (x﹣b)2,∴x1= +b,x2=- +b,∴单个小孔的水面宽度=|(+b)-(- +b)|=5 (米),故答案为:B.【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=﹣10代入可求解.2.【答案】B【解析】【解答】根据题意B的横坐标为10,把x=10代入,得y=﹣4,∴A(﹣10,﹣4),B(10,﹣4),即水面与桥拱顶的高度DO等于4m.故答案为:B.【分析】根据题意,水面宽度AB为20则B点的横坐标为10,利用B点是函数为图象上的点即可求解y的值即DO二、填空题3.【答案】11【解析】【解答】解:如图:由题意可知:CD=DE=10cm,根据题意,得C(﹣5,8),E(﹣3,14),B(5,16).设抛物线解析式为y=ax2+bx+c,因为抛物线经过C、E、B三点,∴,解得,所以抛物线解析式为当x=7时,y=11,∴Q(7,11),所以手心O距水平台面GH的高度为11cm.故答案为11.【分析】如图建立平面直角坐标系,从而可得C(﹣5,8),E(﹣3,14),B(5,16),利用待定系数法求出经过C、E、B三点的抛物线解析式,求出当x=7时,y=11,即得Q(7,11)从而得出结论.4.【答案】;【解析】【解答】如右图建立平面直角坐标系,设抛物线的解析式为y=ax2,由已知可得,点(2,-2)在此抛物线上,则-2=a×22,解得,∴,当y=-3时,,解得,,∴此时水面的宽度为:,∴水面的宽度增加,故答案为.【分析】根据题意建立合适的平面直角坐标系,设出抛物线的解析式,从而可以求得水面的宽度增加了多少,本题得以解决.5.【答案】3【解析】【解答】解:建立如图所示的平面直角坐标系,根据题意得:A(0,6),B(6,0),设抛物线解析式为y=ax2+6,把B(6,0)代入,得,所以抛物线的解析式为,当x=4时,y= ,∴.∴通过隧道车辆的高度限制应为3米.故答案为:3.【分析】首先建立适当的平面直角坐标系,根据图中数据求抛物线解析式再进行求解即可.三、解答题6.【答案】解:建立如图所示坐标系.则可得过点设解析式为代入得.所以解析式为.把代入,得,则水面的宽减少米【解析】【分析】根据已知得出直角坐标系,再设抛物线解析式,求出解析式确定出水面的宽度即可.7.【答案】解:根据题意知,A(-2,-4.4),B(2,-4.4),设这个函数为y=kx2.将A的坐标代入,得y=-1.1x2,∴E、F两点的横坐标就应该是-1.2和1.2,∴将x=1.2代入函数式,得y≈-1.6,∴GH=CH-CG=4.4-1.6=2.8m,因此这辆汽车正好可以通过大门.【解析】【分析】本题只要计算大门顶部宽2.4米的部分离地面是否超过2.8米即可.如果设C点是原点,那么A的坐标就是(-2,-4.4),B的坐标是(2,-4.4),可设这个函数为y=kx2,那么将A的坐标代入后即可得出y=-1.1x2,那么大门顶部宽2.4m的部分的两点的横坐标就应该是-1.2和1.2,因此将x=1.2代入函数式中可得y≈-1.6,因此大门顶部宽2.4m部分离地面的高度是4.4-1.6=2.8m,因此这辆汽车正好可以通过大门.8.【答案】解:如图所示建立平面直角坐标系..依题意可知, .由抛物线的对称性可知,.则可得点坐标:.设抛物线的表达式为.因为抛物线经过点Q,所以将点Q的坐标带入得.解得.得抛物线的表达式为.当时,得.因为,所以.所以.答:索塔顶端D与锚点E的距离为155米.【解析】【分析】先建立适当的平面直角坐标系,AC所在直线为x轴,MN所在直线为y轴,再由已知条件和抛物线的对称性确定出点坐标:.设抛物线的表达式为.将Q的坐标带入.,解得a的值,就可得出抛物线的表达式.当MC= 时,带入抛物线的表达式,得出y值就是CD 的长度,在Rt△DCE中利用勾股定理得出DE的长度.也就是塔顶端D与锚点E的距离9.【答案】解:EF高为3.6米.【解析】【解答】解:设的解析式是y=a(x-h)2+k∵抛物线的顶点为C(50,10)∴y=a(x-50)2+10把点B(100,0)的坐标代入上式,得a(100-50)2+10=0解得a=-0.004∴抛物线的解析式是y=-0.004(x-50)2+10=-0.004x2+0.4x当x=10时,y=-0.004×102+0.4×10=3.6∴立柱EF的高度为3.6米。

拱桥二次函数应用题

拱桥二次函数应用题

1、一座抛物线形拱桥,当水面距拱顶5米时,水面宽度为10米。

若水面下降2米,则水面宽度会变为:A. 12米B. 14米C. 16米D. 18米(答案)C2、某拱桥的形状为抛物线,其最高点距地面6米,且桥拱跨度为10米。

若以桥拱最高点为原点建立坐标系,则桥拱所在的抛物线方程可能为:A. y = -3/25 * x2 + 6B. y = -6/25 * x2 + 6C. y = -9/25 * x2 + 6D. y = -12/25 * x2 + 6(答案)D3、一座抛物线形拱桥,桥下水面宽度为8米时,拱高为2米。

若一艘小船的顶部宽为4米,且高出水面1.5米,则该小船:A. 能顺利通过桥下B. 不能通过桥下C. 刚好能通过桥下D. 无法确定是否能通过桥下(答案)A4、某抛物线形拱桥的跨度为20米,拱高为5米。

若桥下水面宽度增加到16米,则水面距离拱顶的高度为:A. 2米B. 3米C. 4米D. 5米(答案)B5、一座抛物线形拱桥,其方程为y = -ax2 + 4(a > 0)。

若桥下水面宽度为6米时,水面距离拱顶2米,则a的值为:A. 1/9B. 4/9C. 1/3D. 2/3(答案)B6、某抛物线形拱桥的跨度为12米,拱高为3米。

若一货车的高度为2.5米,且货车的宽度不超过多少米时,货车能安全通过桥下?A. 4米B. 6米C. 8米D. 10米(答案)C7、一座抛物线形拱桥,当水面宽度为12米时,拱高为4米。

若水面上升1米,则水面宽度会:A. 增加B. 减少C. 不变D. 无法确定(答案)B8、某抛物线形拱桥的方程为y = -kx2 + 4(k > 0),且当x = 2时,y = 2。

若桥下水面宽度增加到8米,则水面会:A. 上升B. 下降C. 保持不变D. 无法确定(答案)A9、一座抛物线形拱桥,其最高点距水面6米,且当水面宽度为8米时,拱高为2米。

若一艘小船高出水面1.5米,且顶部宽度不超过多少米时,小船能安全通过桥下?A. 2米B. 4米C. 6米D. 8米(答案)B10、某抛物线形拱桥的跨度为16米,拱高为4米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用二次函数解决抛物线形拱桥问题练习
知|识|目|标
1.通过对抛物线形的拱桥有关问题的分析,会建立合适的平面直角坐标系解决抛物线形拱桥的有关实际问题.
2.通过对抛物线形的隧道有关问题的分析,会建立合适的平面直角坐标系解决抛物线形隧道的有关实际问题.
目标一会利用二次函数解决拱桥问题
例1 教材问题3针对训练如图5-5-7,一座抛物线形拱桥架在一条河流上,这座拱桥下的水面离桥孔顶部3 m时,水面宽AB为6 m.
(1)以拱桥的顶点为原点建立平面直角坐标系,求该抛物线相应的函数表达式;
(2)连续几天的暴雨,使水位暴涨,测量知桥孔顶部到水面的距离为4
3
m,此时水面宽CD
为多少?
图5-5-7
【归纳总结】解决抛物线形拱桥问题的步骤
(1)建立合适的平面直角坐标系;
(2)依据题意,求出函数表达式;
(3)根据要求解决问题.
目标二会利用二次函数解决隧道问题
例2 教材补充例题如图5-5-8所示,一条内设双向道隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8 m,宽AB为 2 m,以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6 m.
(1)求抛物线相应的函数表达式;
(2)一辆货运卡车高4 m,宽2.4 m,它能通过该隧道吗?
图5-5-8
【归纳总结】解决能否通过隧道问题的关键点
车辆通过隧道问题一般情况是以抛物线的对称轴为车辆的对称轴进行解答.
(1)当已知宽度时,将宽度转化为相应的自变量代入到二次函数表达式中,求出高度(函数值).若求得的高度小于车辆的高度,则车辆不能通过;若求得的高度大于车辆的高度,则车辆能通过.
(2)当已知高度时,可以将车辆的高度(函数值)代入到二次函数表达式中,求解一元二次方程,得到两个根,若两个根之间的差的绝对值大于车辆的宽度,则车辆能通过;若两个根之间的差的绝对值小于车辆的宽度,则车辆不能通过.
知识点一建立适当坐标系,用二次函数知识解决
抛物线形拱桥的实际问题
此类问题往往以桥拱最高点为坐标原点,以水平线为x轴,铅垂线为y轴,建立平面直角坐标系,然后根据题意确定坐标系内特殊点的坐标,从而确定二次函数表达式,再根据实际问题求出相应的二次函数中的问题,注意要检验结果.
知识点二建立适当坐标系,用二次函数知识解决
抛物线形建筑物中的实际问题
日常生活中常见的抛物线形建筑物,如抛物线形大门、抛物线形隧道、抛物线形大棚等.建立的坐标系不同,得出的二次函数表达式也不同,但实际求得的结果是一致的.应注意选择便于解决问题的坐标系.
你知道吗?平时我们在跳绳时,绳甩到最高处的形状可近似地看作抛物线.如图5-5-9所示,甩绳的甲、乙两名学生拿绳的手之间的距离为4 m,距地面均为1 m,学生丁、丙分别站在与甲拿绳的手水平距离为2.5 m,1 m处,绳子在甩到最高处时刚好通过他们的头顶,已知学生丁的身高是1.625 m,求学生丙的身高.
图5-5-9
解:由抛物线的对称性可知,丙的身高与丁的身高相同,为1.625 m.
上述解答正确吗?若不正确,请说明理由,并写出正确的解答过程.
详解详析
【目标突破】
例1 解:(1)如图所示.∵这座拱桥下的水面离桥孔顶部3 m 时,水面宽AB 为6 m ,
∴B(3,-3).
设抛物线相应的函数表达式为y =ax 2
, 则-3=9a, 解得a =-1
3
,
故该抛物线相应的函数表达式为y =-13x 2
.
(2)由题意可得出y =-4
3,
则-43=-13
x 2
,解得x 1=2,x 2=-2.
故此时水面宽CD 为4 m .
[备选例题] 如图,河上有一座抛物线形桥洞,已知桥下的水面离桥拱顶部3 m 时,水面宽AB 为6 m ,当水位上升0.5 m 时:
(1)求水面的宽度CD 为多少米.
(2)有一艘游船,它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行.
①若游船宽(指船的最大宽度)为2 m ,从水面到棚顶的高度为1.8 m ,则这艘游船能否从桥洞下通过?
②若从水面到棚顶的高度为7
4 m 的游船能从桥洞下通过,则这艘游船的宽度最大是多少
米?
解:(1)设抛物线形桥洞相应的函数表达式为y =ax 2
+c. ∵点A(3,0)和E(0,3)在函数图像上,
∴⎩⎪⎨⎪⎧9a +c =0,c =3,解得⎩⎪⎨
⎪⎧a =-13,c =3,
∴y =-13
x 2
+3.
由题意可知,点C 和点D 的纵坐标为0.5, ∴-13x 2
+3=0.5,
解得x 1=302,x 2=-302
, ∴CD =
302+302
=30(m ). 即水面的宽度CD 为30 m .
(2)①当x =1时,y =83,∵8
3-0.5>1.8,
∴这艘游船能从桥洞下通过.
②当y =74+0.5=94时,-13x 2+3=94,解得x 1=32,x 2=-3
2
.
∴这艘游船的宽度最大是3 m .
例2 [解析] 根据题意确定点的坐标,即可求出函数表达式,然后根据车宽求出最大高度,或根据车高求允许通过的车辆宽度.
解:(1)由题意知E(0,6),A(-4,2).
设抛物线所对应的函数表达式为y =ax 2
+6.
将x =-4,y =2代入上式,得2=(-4)2
a +6,
解得a =-1
4
.
∴抛物线所对应的函数表达式为y =-14x 2
+6.
(2)当x =2.4时,y =-14×2.42
+6=4.56>4.
∴高4 m ,宽2.4 m 的货运卡车能通过该隧道. 【总结反思】
[反思] 不正确.错误地认为丙、丁是“对称的”.实际上,抛物线是轴对称图形,其对称轴是甲、乙两名学生的手所连线段的垂直平分线,如图所示.但丙、丁并不关于抛物线的对称轴对称.
正解:建立如图所示的平面直角坐标系.
设抛物线的表达式为y =ax 2
+k.
将(2,1),(0.5,1.625)代入y =ax 2
+k,
得⎩
⎪⎨⎪⎧1=4a +k ,1.625=0.25a +k , 解得⎩⎪⎨⎪⎧a =-1
6,k =53,
∴y =-16x 2+53
.
当x =-1时,y =1.5.
故学生丙的身高为1.5 m .。

相关文档
最新文档