2015年数学建模B题

合集下载

2015全国大学生数学建模竞赛B题

2015全国大学生数学建模竞赛B题

“互联网+”时代的出租车资源配置摘要随着“互联网+”时代的到来,针对当今社会“打车难”的问题,多家公司建立了打车软件服务平台,并推出了多种补贴方案,这无论是对乘客和司机自身需求还是对出租车行业发展都具有一定的现实意义。

本文依靠ISM解释结构、AHP-模糊综合评价、价格需求理论、线性规划等模型依次较好的解决了三个问题。

对于问题一求解不同时空出租车资源“供求匹配”程度的问题,本文先将ISM模型里的层级隶属关系进行改进,将影响出租车供求匹配的12个子因素分为时间、空间、经济、其它共四类组合,然后使用经过改进的AHP-模糊综合评价方法建立模型,提出了出租车空载率这一指标作为评价因子的方案,来分析冬季某节假日市南岗区出租车资源“供求匹配”程度。

通过代入由1-9标度法确定的各因素相互影响的系数,得出各个影响因素的权重大小,利用无量纲化处理各影响因素,得出最终评判因子为0.3062,根据“供求匹配”标准,得出市南岗区出租车资源“供求匹配”程度处于供需合理状态的结论。

同理,也得到了市不同区县、不同时间的供求匹配程度,最后作出市出租车“供求匹配”程度图。

对于问题二我们运用价格需求理论建立模型,以补贴前后打车人数比值与空驶率变化分别对滴滴和快的两个公司的不同补贴方案进行求解,依次得到补贴后对应的打车人数及空驶率的变化,再和无补贴时的状态对比,最后得出结论:当各公司补贴金额大于5元时,打车容易,即补贴方案能够缓解“打车难”的状况;当补贴小于5元时,不能缓解“打车难”的状况。

对于问题三,在问题二的模型下,建立了一个寻找最优补贴金额的优化模型,利用lingo软件[1]进行求解算出最佳补贴金额为8元,然后将这个值带入问题二的模型进行验证,经论证合理后将补贴金额按照4种分配方案分配给司机乘客。

关键词:ISM解释结构模型;AHP-模糊综合评价;价格需求理论;线性规划一问题重述交通是社会生活众多产业当中的一项基础产业,不但和社会的经济发展关系紧密,与人们的生活也是息息相关。

2015年数模国赛论文B题_3

2015年数模国赛论文B题_3

赛区评阅编号(由赛区组委会填写):2015高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号(从A/B/C/D中选择一项填写):B我们的报名参赛队号(12位数字全国统一编号):参赛学校(完整的学校全称,不含院系名):参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日(此承诺书打印签名后作为纸质论文的封面,注意电子版论文中不得出现此页。

以上内容请仔细核对,如填写错误,论文可能被取消评奖资格。

)赛区评阅编号(由赛区组委会填写):2015高教社杯全国大学生数学建模竞赛编号专用页赛区评阅记录(可供赛区评阅时使用):评阅人备注送全国评阅统一编号(由赛区组委会填写):全国评阅随机编号(由全国组委会填写):(此编号专用页仅供赛区和全国评阅使用,参赛队打印后装订到纸质论文的第二页上。

注意电子版论文中不得出现此页,即电子版论文的第一页为标题、摘要和关键词页。

)“互联网+”时代的出租车资源配置摘要:“互联网+”就是利用互联网平台、信息通信技术,将互联网及包括传统行业在内的诸多领域结合起来,在代表一种新的经济形态,即充分发挥互联网在生产要素配置中的优化和集成作用,将互联网的创新成果深度融合于经济社会各领域之中,提升实体经济的创新力和生产力,形成更广泛的以互联网为基础设施和实现工具的经济发展新形态。

2015年数模国赛论文设计B题_3

2015年数模国赛论文设计B题_3

赛区评阅编号〔由赛区组委会填写〕:2015高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规如此》〔以下简称为“竞赛章程和参赛规如此〞,可从全国大学生数学建模竞赛下载〕。

我们完全明白,在竞赛开始后参赛队员不能以任何方式〔包括、电子、网上咨询等〕与队外的任何人〔包括指导教师〕研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规如此的,如果引用别人的成果或其他公开的资料〔包括网上查到的资料〕,必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们X重承诺,严格遵守竞赛章程和参赛规如此,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规如此的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进展公开展示〔包括进展网上公示,在书籍、期刊和其他媒体进展正式或非正式发表等〕。

我们参赛选择的题号〔从A/B/C/D中选择一项填写〕:B我们的报名参赛队号〔12位数字全国统一编号〕:参赛学校〔完整的学校全称,不含院系名〕:参赛队员 (打印并签名) :1.2.3.指导教师或指导教师组负责人 (打印并签名):日期:年月日〔此承诺书打印签名后作为纸质论文的封面,注意电子版论文中不得出现此页。

以上内容请仔细核对,如填写错误,论文可能被取消评奖资格。

〕赛区评阅编号〔由赛区组委会填写〕:2015高教社杯全国大学生数学建模竞赛编号专用页送全国评阅统一编号〔由赛区组委会填写〕:全国评阅随机编号〔由全国组委会填写〕:〔此编号专用页仅供赛区和全国评阅使用,参赛队打印后装订到纸质论文的第二页上。

注意电子版论文中不得出现此页,即电子版论文的第一页为标题、摘要和关键词页。

〕“互联网+〞时代的出租车资源配置摘要:“互联网+〞就是利用互联网平台、信息通信技术,将互联网与包括传统行业在内的诸多领域结合起来,在代表一种新的经济形态,即充分发挥互联网在生产要素配置中的优化和集成作用,将互联网的创新成果深度融合于经济社会各领域之中,提升实体经济的创新力和生产力,形成更广泛的以互联网为根底设施和实现工具的经济开展新形态。

2015年全国数学建模竞赛B题全国一等奖论文6

2015年全国数学建模竞赛B题全国一等奖论文6

pqt , y pqt ) (x
d qst
t 时刻第 q 类乘客类中心到第 s 类出租车类中心的距离
h qt ˆ h qst
tmn
[h L , hU ] t 时刻第 q 类乘客的人数, h qt qt qt
t 时刻离第 q 类乘客类中心最近的第 s 类出租车的数量
L U 乘客乘车从第 m 类出租车类到第 n 类出租车类的时间, tmn [tmn , tmn ]
) FQ (a
dQ( y ) p (a y (a P a L ))dy 0 dy
1
是一个闭区间且下界为正数, R + 是正实数区间, [a L , a P ] .
[a L , aU ] ,若 Q( y ) dy 为态度参数,则 定理 5.1.1 设 a
基于模糊多目标规划的出租车补贴模型 摘要
出租车“打车难”是当前社会的热点话题,乘客与出租车的供需不匹配也成 为实现他们信息互通的障碍,随着多家公司建立打车软件服务平台,推出多种出 租车补贴方案,出租车和乘客间的供需匹配问题逐渐成为“互联网+”时代的重 要课题之一。本文以上海市为例,通过出租车和乘客供求平衡指标,构建基于模 糊多目标规划和层次分析法的出租车资源供求匹配模型,并设计新的补贴方案, 从而有效缓解“打车难”问题。 针对问题一,首先从苍穹滴滴快的智能出行平台和数据堂网站搜集相关数 据, 分析反映出租车资源供需匹配程度的 5 个指标。 由于数据存在一定的模糊性, 本文利用连续区间有序加权平均(COWA)算子将相关指标转化为含参变量的实 指标,通过 K 均值聚类模型将上海的出租车分布和乘客需求量进行聚类,并构 建基于空车率、空车总代价、乘客总成本的模糊多目标规划模型,同时,利用基 于 COWA 算子的模糊层次分析法将模糊多目标规划模型转化为单目标规划模 型,结果表明,上海地区呈现供不应求的出租车资源分布状况,并且在上下班高 峰期时间段显得尤为突出。 针对问题二,通过在模糊多目标规划模型中增加补贴方案,重新求解模型, 并分析出租车等待时间、乘客等待时间、空车率的变动,结果表明,适当的补贴 能够在一定程度上提高供求匹配程度,缓解“打车难”的问题;然而一旦超过一 定补贴范围,出租车的供给与乘客的乘车需求匹配程度就会下降。 针对问题三,根据乘客与出租车的距离、单位出租车服务人数、乘车费用、 乘客人数等因素,构建新的补贴方案,并重新求解模糊多目标规划模型,结果表 明,新的补贴方案能有效地缓解“打车难”问题,模型结果也同时验证了补贴方 案的合理性。 最后,本文对所建模型进行了灵敏度分析,并对模型进行了优缺点分析。 关键词:多目标优化;层次分析法;供求匹配;补贴;COWA 算子.

2015全国数学建模B题第一问模型:分析不同时空出租车资源的“供求匹配”程度

2015全国数学建模B题第一问模型:分析不同时空出租车资源的“供求匹配”程度

模型建立出租车资源的“供求匹配”程度实际就是出租车的合理规模,而合理的规模是由供与需的关系决定的,当供需平衡时显然匹配程度高,供大于求或者供小于求都表示匹配程度低。

因此我们从供需平衡理论出发,试图建立描述出租车资源的“供求匹配”程度的模型。

然后选取几个具有代表性的城市出租车数据,用我们的模型进行分析,以此模拟全国出租车资源的“供求匹配”程度。

1.1出租车供需平衡关系分析当需求量与供给量达到一致时,即处于均衡状态,而这个量就称为供需平衡量,也是一个最佳量。

本文借鉴供需平衡理论的原理,对出租车供需关系进行分析。

出租车供需平衡关系分析模型:出租车流量F是关于出租车服务水平S与出租车出行总量V的函数,即F=f(S,V) (1.1)由出租车客运需求与供给的基本关系可知,当出租车供给量T和乘客出行次数A均为常数(即令T一几,A一而)时,就有唯一的解S*和V*。

由式((1.1)得出一个确定的出租车流量:F*=f(S*,V*).S*和V*可通过下面的方程组得出:(1.2)因此,出租车流量F*实际上是由To和A0决定的。

所以可以将F,写成:(1.3)图1.1描述了这种关系,在一般情况下,乘客主要关心的是候车时间,候车时间越长,乘客就认为出租车服务水平越差;相反,候车时间越短,就认为其服务水平越高,因此,出租车服务水平S常用候车时间的倒数又1/t表示。

由于候车时间比较直观,所以常用候车时间t代替服务水平S。

则式(1.2)中的函数J, D分别改写为:(1.4)因为候车时间t和服务水平S是成反比的,所以候车时间t对出行总量V的曲线形状也发生了变化,如图1.1所示。

图1.1出租车供需平衡关系1.2出租车供需平衡的动态关系分析1.2.1出租车在城市客运交通系统中的供需平衡分析城市客运交通需求与供给受城市经济的发展、城市人口及规模等多种因素的影响,当城市客运交通供需情况发生变化时,若城市客运交通需求量下降,出现城市客运交通供过于需的局面,出租车客运需求量也势必随着下降,则出租车供给量超出需求量,出租车空驶率上升,导致出租车行业利润下降,部分出租车将退出出租车市场;若城市客运交通需求量上升,出现城市客运交通供不应需的局面,相应的出租车也势必会承担一部分供给不足的部分,出租车需求量上升,出租车空驶率随之下降,出租车行业利润上涨,刺激市场增加出租车的供给。

2015年B题数学建模_滴滴打车模型分析

2015年B题数学建模_滴滴打车模型分析

2015 数学建模B题(公选课)后打车时代究竟能走多远--基于数学分析的打车软件盈利模式的评估体系1.摘要打车软件作为新兴的交易平台,增加了交易机会。

且与街头扬招方式相比,打车软件优势也很明显,它可以让出租车司机迅速找到它的客户。

出租车正在寻找客人而“空跑”。

打车软件的出现则改变了这种信息不对称,大大降低了司机的“空载率”,减少了司机和乘客之间的交易成本——司机扫街和乘客扫街的时间成本。

其次,改变了支付方式。

传统现金交易有两个弊病,一是安全性。

另外,大量现金交易增加了司机的交易成本:时不时收到假钞,蒙受经济损失;每周几次到银行存钱也增加了时间成本。

这些优势就使得打车软件极具有盈利的可能,只有软件找到用户并增强对他们的粘性,就有许多渠道来针对他们来盈利。

随着近两年打车软件的兴起,从原先40多款打车软件的百花齐放演变成现在的嘀嘀、快的双雄争霸,市场竞争也趋于白热化。

2014年伊始,嘀嘀打车和快的打车进入史上空前的“烧钱大战”,在高峰期甚至达到2月17日乘客返现10—15元,新司机首单立奖50元,而且每单都有补贴十块。

目前两大打车软件纷纷将针对乘客的补贴降至3元/单,对司机端的补贴,嘀嘀是5元/单,快的4元/单。

部分城市的嘀嘀打车更已取消“立减优惠”,取而代之的是“用嘀嘀添新衣”的广告或改送购物网站现金券。

那么,在后打车时代,滴滴打车这类打车软件还能走多远了?我们通过对打车软件盈利模式的研究来探索这个问题。

关键词:空载率,支付方式,交易成本,后打车时代2.模型的假设①打车软件开拓的市场基本成熟,大公司的投资也不再,补贴也不再,利用生活服务来增强对用户的粘性。

②假设软件公司为用户提高的生活服务质量日趋完善,出租车司机的覆盖率每年增长,但增长速度每年递减,最后使用打车软件的人数稳定在一定数量(即达到饱和状态)。

③假设出租车司机的覆盖率与顾客的等待时间成反比,即t=k2/p2;k2为常系数。

假设顾客的满意度跟等待时间成负相关,且满足s=100-k1*t,其中t顾客等待打车的时间,k1为常系数,顾客的满意度跟的士的覆盖率成正相关,可以这么理解,使用打车软件的出租车越多,乘客越容易在短时间内打到车,即满意度越高。

2015年数学建模B题全国一等奖论文

2015年数学建模B题全国一等奖论文

基于供求匹配率的出租车资源配置模型摘要本文针对城市出租车资源配置问题,采用定性与定量相结合的研究方法,建立衡量出租车供求匹配程度的指标,分析打车软件各种补贴方案对所建指标的影响,在充分考虑各方利益的前提下,得到打车软件的最优补贴方案,对城市出租车行业资源优化配置、持续良性发展具有一定的参考意义。

为分析不同时空出租车资源的供求匹配程度,引入出租车资源供求匹配率这一指标,指标的定义为城市中实际运行的出租车辆数与居民出行需要的出租车辆数之比,反映城市中实际运行的出租车辆数与居民出行需要的出租车辆数之间的差异。

计算得出2013年出租车供求匹配率为0.7766,表示供不应求。

居民出行需要的出租车辆数与居民人均日出行次数、城市总人口数量、居民出行选择乘坐出租车的比例有关,也与每辆出租车日均载客次数、每单载客人数和车辆满载率有关。

对于居民人均日出行次数,利用十五个国大中城市的数据,将十二个城市经济指标聚类分析选出每类指标中典型的经济指标,建立居民人均日出行次数与这些典型经济指标间的多元线性回归方程,而与居民出行需要的出租车辆数相关的其他指标可查阅文献或年鉴获得。

分析市每天6:00-8:30,11:00-12:30,13:30-14:30,17:00-18:30四个时间段得供求匹配率分别为0.4111,0.5678,0.6062,0.5631,结果显示供不应求。

得到、、、、、、、八座城市的出租车资源供求匹配率分别为1.0936、0.8827、0.9430、0.7040、0.7049、0.7666、0.6583、0.5252,表明只有的出租车资源是供大于求,而其余七座城市为供小于求。

为了分析各公司的出租车补贴方案对缓解打车难是否有帮助,定性分析出租车日均载客次数、出租车满载率随打车软件对出租车司机每单补贴金额的变化趋势,分别建立阻滞增长模型,进而分析打车软件对出租车司机每单补贴金额的变化对所建指标的影响。

得到的结论为:对于使用打车软件的乘客来说,出租车补贴方案能够缓解打车难的问题;而对于不使用打车软件的乘客来说,出租车补贴方案则不能缓解打车难的问题。

2015数学建模竞赛B题优秀论文介绍

2015数学建模竞赛B题优秀论文介绍
关键字:DEA 模型 数据处理 多元线性回归模型
一、问题重述
随着科技与经济的飞速发展,“互联网+”战略的影响已经深入各行各业。出 租车作为城市的交通工具之一,对人们的出行起着重要的影响,然而,“打车难” 一直是人们关注的一个社会热点问题。近几年来,“互联网+”战略与传统出租车 行业深度融合,打车软件作为其中典型的应用,已对传统出租车行业市场产生了 深远影响。依托移动互联网建立的打车软件服务平台,实现了乘客与出租车司机 之间的信息互通。同时,各家公司推出了多种出租车的补贴方案,进一步加强了 “互联网+”战略与传统出租车行业的融合,优化了出租车资源配置.
三、符号说明
符号 t ij k ij m ij n ij n ik Tij K ij M ij N ij
N ik
说明
2015.9.05-9.10 i 市6天每第 j 个 时间段抢单时间的均值
2015.9.05-9.10 i 市天每第 j 个时 间段的打车难度系数的均值
2015.9.05-9.10 i 市 7 天每第 j 个 时间段的乘客乘坐出租车总费用的 均值
基于“互联网+”对出租车资源配置影响的问题研究
摘要
本文通过对网络上收集的数据进行合理分析和处理,进一步研究发现,一段 时间内的出租车的车费(即所有司机此段时间内的收入之和),需求(此段时间 内通过打车软件呼叫车辆的人数),车辆分布(此段时间内的该市的处于运营的 出租车数量)相当于生产的环境因素,而打车难易度(网络资源综合实时数据提 供的衡量打车难度的数据),抢单时间(通过打车软件呼叫出租车到出租车司机 接 单 的 时 间 差 ) 可 以 看 做 产 出 的 “ 效 益 ”. 数 据 包 络 分 析 (Data Envelopment analysis, 简称 DEA 模型)的方法,用于评价相同部门间的 相对有效性(因此被称为 DEA 有效).DEA 模型是经济理论中估计具有多个输 入,特别是具有多个输出的“生产前沿函数”(也称生产前沿面)的有力工具.因此 本文将 DEA 模型合理应用于问题一的模型构建。本文通过在苍穹网抓取到北京, 上海,深圳三个城市24个小时段的上述五个信息,经过合理的处理,将 DEA 模型应用在数据上,再通过 MATLAB 编程,最后分析结果.问题二要求分析打 车软件的补贴政策是否有助于缓解“打车难”问题,这样就要求我们找到出现补 贴前后的情况.通过查找我们发现新华网报道中信银行旗下“中信打车付”将于 10 日启动新一轮立减补贴活动。本文将针对北京市的补贴政策前后的 EDA 值采 用多元线性回归分析法建立回归模型,在回归方程中加入 dummy 变量,没有补 助时,dummy 值为0,有补助时其值为1.利用 MATLAB 编程,得出相应结果.第 三问采用理论分析。

2015年数模国赛论文B题-1

2015年数模国赛论文B题-1

互联网时代的出租车资源配置摘要出租车是市民出行的重要交通工具之一,“打车难”是人们关注的一个社会热点问题。

随着互联网时代的到来,很多家出租车公司建立了自己的打车软件服务平台,打车软件服务平台也走进了人们的生活,增加了交易机会,实现了乘客与出租车司机之间的信息互通,同时推出了多种出租车的补贴方案。

我们通过建立合适的数学模型来分析如今的补贴方案是否能缓解打车难的问题。

针对问题一,为了将“供求匹配程度”这一抽象的概念进行定量研究,我们试图建立出租车万人拥有量、空驶率、乘客等车时间、里程利用率等四个指标结合经济学的角度来进行问题的分析,并基于层次分析模型进行模糊综合评价来分析不同时空出租车资源的“供求匹配”程度。

针对问题二,要求我们分析各公司的出租车补贴方案是否对缓解打车难问题有帮助,我们利用数学期望假设检验的方法,主要通过对使用打车软件前后乘客平均等车时间和出租车司机驾车空驶率两个因素的分析,验证出租车补贴方案是否对缓解打车难问题,并验证了这些打车软件服务平台和出台的相应的出租车及乘客补贴政策提高了打车双方的积极性,对缓解“打车难”的问题起到了一定的帮助。

针对问题三,建立一个新的打车软件服务平台首先应该考虑在缓解“打车难“这个难题基础上,增加其核心竞争力,再充分汲取现有打车软件服务平台的优点,寻找背后合作伙伴,在初期实施一些大型的优惠补贴政策,吸引客户,并抢占市场份额。

这就需要我们设计出自己的补贴方案,与在原来的补贴方案下相关数据进行比较,分析原来的补贴数目,做出相应的调整。

并进行试验,从而得出其合理性。

关键词:层次分析法,模糊综合评价法,经济学,数学期望假设检验一、问题重述随着人民生活水平的日益提高,出行乘坐出租汽车的人越来越多。

但是,在许多大城市中,打车已经变得越来越难,特别是在上下班高峰期和恶劣天气时更是“一车难求”。

出租车是市民出行的重要交通工具之一,“打车难”是人们关注的一个社会热点问题。

随着“互联网+”时代的到来,有多家公司依托移动互联网建立了打车软件服务平台,实现了乘客与出租车司机之间的信息互通,同时推出了多种出租车的补贴方案。

2015年数学建模B题全国一等奖论文

2015年数学建模B题全国一等奖论文

精心整理“互联网+”时代的出租车资源配置模型摘要本文针对城市出租车资源配置问题,采用定性与定量相结合的研究方法,建立衡量出租车供求匹配程度的指标,分析打车软件各种补贴方案对所建指标的影响,在充分考虑各方利益的前提下,得到打车软件的最优补贴方案,对城市出租车行业资源优化配置、持续良性发展具有一定的参考意义。

软件公司三方的满意度,利用熵值法确定这三方各自满意度的权重,将三方满意度加权之和作为综合满意度,进而以综合满意度为目标函数,以打车软件对出租车司机每单补贴金额为控制变量,以补贴金额设置的范围为约束条件建立优化模型。

遍历所有可能的方案得到最优补贴方案为对出租车司机每单补贴9元,综合满意度为0.5710。

关键词:聚类分析;回归分析;灰色预测;阻滞增长模型;熵值法;最优化一、问题重述随着经济的发展,近年来,人们对出行的要求不断提高,城市出租车以其方便、快捷、舒适和私密性的特点成为越来越多人的出行选择。

但是,国内各大城市交通问题日趋严重,“打车难”也是人们关注的一个社会热点问题。

数据显示,包括上海、杭州等众多大城市,出租车非高峰期的空驶率始终在30%上下徘徊,而高峰期却打不到车。

这与众多市民反映的打车难背后所隐藏的强烈需求看似形成了一个矛盾。

究其原因,最主要的莫过于司机与乘客需求信息不对称,缺乏及时沟通交流的平台。

通过查阅文献可以确定居民出行选择出租车作为出行方式的比例从而,计算得出城市的出租车运输量的需求量。

然后根据供需平衡法预测出城市出租车需求量。

将城市实际出租车数量与城市出租车需求数量作比,得到衡量出租车资源的供求匹配程度的指标即供求匹配率。

对未来城市的出租需求量进行灰色关联预测,得到未来城市的出租需求量,通过计算不同城市的出租车需求量,进行不同时空的出租车资源供求匹配的分析。

对于各公司的出租车补贴方案是否对“缓解打车难”有帮助问题,由于难以得到各公司不同时间的补贴方案对居民打车难度的实际影响效果数据,我们从公司对每单的补贴金额入手,分析每单补贴金额范围为0~15元,认为补贴金额再高对公司利益有较大损失。

2015年数学建模 B题

2015年数学建模 B题

B题“互联网+”时代的出租车资源配置摘要本文针对现代生活中“打车难”这一问题,寻找引起其发生的主要因素,并在此基础上建立了与之相对应的打车软件服务信息平台,提出了最优控制策略,最后通过对深圳市出租车辆的调查做出了具体检验措施,验证出此模型的合理性。

针对问题一,本文首先运用层次分析方法,筛选出四至五个相对合理的指标以此来评判出对出租车供求的影响;其次运用SPSS软件对这些指标的数据进行预处理,应用主成分分析法从中再次筛选出三个重要指标,分别得出深圳市和佛山市供给量与需求量与对应三个重要指标间的关系,并利用MATLAB软件绘制供求量随影响因素变化的模型。

利用灰色预测模型来分别预测未来几年深圳市和佛山市供给量与需求量发展趋势,验证其匹配状况,进而解决不同时间下的匹配度问题。

运用灵敏度分析法,修正误差,完善模型。

针对问题二,考虑到出租车补贴主要为燃油补贴,由问题一的模型可知,燃油价格因素直接影响了供给量,通过问题一得出出租车补贴方案对缓解打车难有明显影响。

针对问题三,在软件平台建立上,为实现匹配度最佳,基于打车者与出租车距离最短,等待时间最短,首先利用图论的知识找出最短路径,进而运用改进的遗传算法求出最短时间,寻求到最优方案。

其次根据空载量,分情况讨论具体补贴方案。

最后根据GPS定位数据随机选取出“滴滴打车”某一时间内的经纬度,对以上服务信息平台进行检验,得出该平台较之前具有更好的合理性。

关键词:主成分分析灰色预测模型SPSS数据处理遗传算法一、问题重述随着经济的快速发展,人口密度的增大,“打车难”已成为全国大部分城市所面临的主要问题,人们均是采取“招手打车”方式,这不仅降低了司机载客量,而且对顾客来说,也浪费了很多时间。

现在出现了“滴滴打车”,“快的打车”等软件服务平台,让人们利用“互联网+”方便快捷地打到车。

而我们这个模型的主要目的既是通过搜集相关合理数据,从而进行以下问题的讨论。

1.寻找合适指标,建立数学模型,分析在不同时间地点的出租车需求量以及供应量之间的匹配程度。

2015年全国大学生数学建模竞赛B题

2015年全国大学生数学建模竞赛B题

2015年全国大学生数学建模竞赛B题“互联网+”时代的出租车资源配置摘要近几年来,随着燃油价格、维修等费用的上涨,导致了出租车运行成本显著上涨,“打车难”成了人们关注的一个热点问题。

为了缓解大城市打车难的问题,打车软件应运而生。

本文通过Matlab拟合和定性分析以及计算等方法,建立演化博弈模型,针对打车难问题设计出了合理的补贴方案。

针对问题一,根据2014年各省拥有的出租车总数量情况和城市人口情况,发现北京、上海、杭州、武汉等城市具有拥有出租车数量较多,常驻人口多,流动人口大,出租车需求量大等特点,所以选取这四个城市,查找高峰期与非高峰期时刻的出租车需求量和实载量数据,以实载量与需求量的比值作为指标,通过计算,分析出不同时空的出租车资源的供求匹配程度,在凌晨一点时上海出租车需求量大,其次是杭州、北京,武汉需求量小,早上七点时,北京出租车需求量大,其次是上海、杭州,武汉需求量小,下午一点时,北京需求量大,其次是上海、杭州,武汉需求量小,晚上19点时,上海出租车需求量大,其次是北京、杭州,武汉需求量小,但总体供小于求。

并采用Matlab 软件画出各个城市对应的供求关系图。

针对问题二,建立出租车司机与乘客对打车软件使用意向的演化博弈模型,通过乘客与出租车司机效益的对比,对模型求解与分析,得出结论,认为乘客由于出租车价格偏高而不愿意使用打车软件,又通过计算,发现出租车司机使用打车软件后由于较高的燃油费导致收入增加不明显,而不太愿意使用打车软件。

所以公司只在司机收入方面部分缓解了打车难这个问题。

针对问题三,通过分析传统打车方式下的出租车的供求关系,可以看出打车软件的出现却有其现实意义,但在实践过程中也存在一些不足,比如部分出租车司机抱怨有较高的燃油费,收入相对来说偏低。

面对燃油价格的变化,出租车经营者不能按照自己目标制定出租车经营策略。

本文根据燃油价格变化情况,以达到利润最大化为目标,制定了基于经营合理利润水平的出租车补贴方案;又根据出租车经营利润的变化率与燃油价格变化率成正比,制定了基于燃油价格变化率的出租车补贴方案。

15年数学建模B题

15年数学建模B题
本文针对飞机失事搜寻问题,通过数学建模提供了一套全面的解决方案。首先,建立动力学模型以计算失事飞机的落水点和水平位移,从而确定目标搜索区域。其次,为提高搜索效率,在目标区域内建立发现概率模型,计算各任务区域的发现概率。考虑到失联飞机和搜寻飞机型号的差异,建立了海上立体搜寻模型,以优化搜寻力量和方案。此外,还构建了优化扇形搜寻模型以辅助搜索。最后,为降低搜救成本,建ngo软件进行求解。这套方案能够帮助搜索人员在大规模搜索时降低成本、节省消耗,并有序进行搜救行动。

2015年全国大学生数学建模竞赛B题

2015年全国大学生数学建模竞赛B题

“互联网+”时代的出租车资源配置摘要近几年来,随着燃油价格、维修等费用的上涨,导致了出租车运行成本显著上涨,“打车难”成了人们关注的一个热点问题。

为了缓解大城市打车难的问题,打车软件应运而生。

本文通过Matlab拟合和定性分析以及计算等方法,建立演化博弈模型,针对打车难问题设计出了合理的补贴方案。

针对问题一,根据2014年各省拥有的出租车总数量情况和城市人口情况,发现北京、上海、杭州、武汉等城市具有拥有出租车数量较多,常驻人口多,流动人口大,出租车需求量大等特点,所以选取这四个城市,查找高峰期与非高峰期时刻的出租车需求量和实载量数据,以实载量与需求量的比值作为指标,通过计算,分析出不同时空的出租车资源的供求匹配程度,在凌晨一点时上海出租车需求量大,其次是杭州、北京,武汉需求量小,早上七点时,北京出租车需求量大,其次是上海、杭州,武汉需求量小,下午一点时,北京需求量大,其次是上海、杭州,武汉需求量小,晚上19点时,上海出租车需求量大,其次是北京、杭州,武汉需求量小,但总体供小于求。

并采用Matlab软件画出各个城市对应的供求关系图。

针对问题二,建立出租车司机与乘客对打车软件使用意向的演化博弈模型,通过乘客与出租车司机效益的对比,对模型求解与分析,得出结论,认为乘客由于出租车价格偏高而不愿意使用打车软件,又通过计算,发现出租车司机使用打车软件后由于较高的燃油费导致收入增加不明显,而不太愿意使用打车软件。

所以公司只在司机收入方面部分缓解了打车难这个问题。

针对问题三,通过分析传统打车方式下的出租车的供求关系,可以看出打车软件的出现却有其现实意义,但在实践过程中也存在一些不足,比如部分出租车司机抱怨有较高的燃油费,收入相对来说偏低。

面对燃油价格的变化,出租车经营者不能按照自己目标制定出租车经营策略。

本文根据燃油价格变化情况,以达到利润最大化为目标,制定了基于经营合理利润水平的出租车补贴方案;又根据出租车经营利润的变化率与燃油价格变化率成正比,制定了基于燃油价格变化率的出租车补贴方案。

15年国赛建模B题

15年国赛建模B题

2015高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题“互联网+”时代的出租车资源配置出租车是市民出行的重要交通工具之一,“打车难”是人们关注的一个社会热点问题。

随着“互联网+”时代的到来,有多家公司依托移动互联网建立了打车软件服务平台,实现了乘客与出租车司机之间的信息互通,同时推出了多种出租车的补贴方案。

请你们搜集相关数据,建立数学模型研究如下问题:(1) 试建立合理的指标,并分析不同时空出租车资源的“供求匹配”程度。

(2) 分析各公司的出租车补贴方案是否对“缓解打车难”有帮助?(3) 如果要创建一个新的打车软件服务平台,你们将设计什么样的补贴方案,并论证其合理性。

1选取几个打车平台的补贴方案去分析,比如:快的打车补贴变化2014年1月20日快的打车乘客车费返现10元,司机奖励10元2014年2月17日快的打车乘客返现11元,司机返5-11元[10]2014年2月18日快的打车乘客返现13元[11]2014年3月4日快的打车乘客返现10元/单,司机端补贴不变[6]2014年3月5日快的打车乘客补贴金额变为5元2014年3月22日快的打车乘客返现3—5元2014年5月17日软件乘客补贴“归零”2014年7月9日,将司机端补贴降为2元/单。

[12]2014年8月9日,滴滴、快的两大打车软件再出新规,全面取消司机端现金补贴。

滴滴打车1月10日,滴滴打车乘客车费立减10元、司机立奖10元2月17日,滴滴打车乘客返现10-15元,新司机首单立奖50元2月18日,滴滴打车乘客返现12至20元3月7日,滴滴打车乘客每单减免随机“6-15元”3月23日,滴滴打车乘客返现3-5元5月17日,打车软件乘客补贴“归零”7月9日,软件司机端补贴降为2元/单8月12日,滴滴打车取消对司机接单的常规补贴2分析传统出租车公司的补贴方案3最后一定要联系到是否对“缓解打车难”有帮助上,结论是:有一定帮助,但并未完全解决问题(),同时产生了新的问题。

2015年数学建模试题B结果

2015年数学建模试题B结果

参赛密码(由组委会填写)第十二届“中关村青联杯”全国研究生数学建模竞赛学校**参赛队号***队员姓名1.*2.*3.*参赛密码(由组委会填写)第十二届“中关村青联杯”全国研究生数学建模竞赛题目数据的多流形结构分析摘要:本文按照题目要求,建立局部稀疏约束特性模型,解决了独立子空间局内问题;建立基于差分演化算法的加强型的软子空间聚类(ESSC)模型和稀疏子空间聚类(SSC)算法模型,解决了低维子空间聚类问题和多流形聚类问题;建立改进稀疏子空间聚类算法模型,解决了实际应用中的子空间聚类问题;建立谱多流形聚类(SMMC)模型解决了实际应用中的多流行聚类问题。

针对问题一:先采用局部线性嵌入(LLE)算法对题目所给的高维数据进行降维处理,再建立局部稀疏约束特性模型,采用K-means算法对数据进行聚类,最终将序号1-40、141-200的数据点聚一类,序号41-140的数据点聚为另一类,类别比例1:1,样本的类别标签见表5-2。

针对问题二:对于两条不相交的二次曲线分类问题,采用K-means算法对其进行聚类,聚类结果如正文图6-4;对于两条交点不在原点且相互垂直的直线和两条相交螺旋线的分类问题,建立基于差分演化算法的加强型的软子空间聚类模型,采用加强型的软子空间聚类算法求解,聚类结果如正文图6-2和图6-3;对于一个平面和两条直线图形分类问题,建立稀疏子空间聚类算法模型,并采用交替方向解法求解,聚类结果如正文图6-5。

针对问题三:引入稀疏奇异值矩阵和噪声矩阵,建立了改进的稀疏子空间聚类算法模型进行聚类,对于将十字中的点按照“横”和“竖”分类的聚类结果见正文图(7-1)。

对于运动特征点提取问题,聚类得到三类特征点,样本类别标签如正文表7-1,各类别序号分别为:1-138,139-214,215-297,对应于图中小轿车,公交车,树及房屋;并采用基于光流场矢量图的方法验证了运动特征点聚类效果,根据光流场矢量图的趋势,进一步分析出小轿车和摄像者在此序列帧图像中处于运动状态,公交车处于静止状态。

2015数学建模竞赛B题优秀论文

2015数学建模竞赛B题优秀论文

万人拥有量
人均 GDP
由上表1,可得出不同地区的出租车万人拥有量与该地区的人均 GDP的相伴概率值:
Sig 0.05,
即这两个变量在0.05水平(双侧)上显著相关。故GDP是影响出租车“供求匹配”程度 的一个合理性指标。 除此之外,车辆满载率是通过在客流集散较为集中的地点选取几个长期观测点, 公式为:车辆满载率=载客车数(辆)/总通过车数(辆)×100%;里程利用率是一般以一 辆车为单位,公式为:里程利用率=营业里程(公里)/行驶里程(公里)×100%[1]。此指 标反映车辆载客效率,若比例高,说明车辆行驶中载客率比例高,空驶率比较低,乘 客等待时间增加,对于要车的乘客来说供求关系比例紧张;若比例低,说明车辆空驶 率比例高,乘客打车方便,但司机的经济效益下降。 5.1.2 模型的准备 为了衡量指标对出租车的“供求匹配”程度的影响,本文采用出租车万人拥有量 以及 GDP 作为衡量出租车的“供求匹配”程度。 从时间分布上,出租车出行时间分布包括载客时间随时间轴的变化、载客里程随 时间轴的变化以及空驶时间随时间轴的变化,出租车出行在不同时间段上的分布,反映 了城市居民的生活节奏和交通需求在时间上的分布;从空间分布上,出租车的出行空 间分布反映了居民出行空间的流动规律及城市交通的主要流向 , 不同出行目的, 有不 同的空间分布规律[2]。 现采用北京市 24 小时车辆数数据(附件三),通过 MATLAB 软件编程实现,得到 北京市一天出租车需求分布图,如图 1:
4
150 北京市一天出租车需求图 北京市 0 0
5
10 时间t
15
20
25
图 1
北京市郊区一天出租车需求分布图
图 1 表示北京市郊区一天中出租车分布量与需求量,从图中可以得出一天中出租 车的需求量最大的时候就是上下班高峰的时候,出租车的需求量明显增多。而由于一 天二十四小时的出租车分布量与需求量的变化不是固定的。郊区的出租车分布量少, 在一天中大部分时间都小于其需求量,即该地出租车资源“供应匹配”程度明显较低。 5.1.3 模型的求解 为满足在不同时空的条件下,本文分别在不同地点相同时间、不同时间相同地点 下研究供求匹配程度[3]。 (1)不同地点相同时间的出租车“供求匹配”程度分析 首先本文对于不同地点相同时间的出租车“供求匹配”程度进行分析。分别选取 经济发展情况不同的八个城市,分别为:北京、南京、成都、大连、宁波、济南、深 圳、杭州,各城市的人均 GDP 和万人拥有量运用 Excel 进行分析如下图 2:

2015数学建模竞赛B题优秀论文

2015数学建模竞赛B题优秀论文

判断符合零 和博弈模型
构建“互联 网+”打车双 方博弈模型ຫໍສະໝຸດ 求解方程 并结合实 际分析
建立新的 补贴方案
进行灵敏 度分析
图 1 问题总分析的流程图
2
二、对具体问题的分析 1.对问题一的分析 问题一要求建立合理的指标并分析不同时空出租车资源的“供求匹配”程度。我们首 先从宏观的角度分析全国普遍城市的出租车的供求关系,再根据数据分析出不同时间段 的出租车供需不平衡,由此将全国普遍城市分成 8 个不同的时空场景,并引出 6 个描述 “供求匹配”程度的指标,得到原始指标矩阵。再将原始指标矩阵进行无量纲化得到效益 型指标矩阵,然后利用夹角余弦法建立权重向量,最后根据得到矩阵和权重计算综合评 价得分,从而得到不同时空场景对应的“供求匹配”程度不同。 2.对问题二的分析 问题二要求我们分析各公司的出租车补贴方案是否对“缓解打车难”有帮助。实行补 贴方案是对乘客支付价格和司机收益的刺激,价格影响了供需平衡,再进一步影响打车 等候时间、司机空载率等因素。我们从基础层面利用价格供求模型分析补贴方案在影响 供需关系之后是否对“缓解打车难”有帮助。 3.对问题三的分析 问题三要求我们创建一个新的打车软件服务平台,设计出合理补贴方案并论证合理 性。考虑到乘客和司机利益相冲突,且符合零和博弈模型中博弈各方的收益和损失相加 总和永远为“零”的原则,我们需要先对博弈双方——司机和乘客做出相关假设,然后 运用博弈论相关知识构建“互联网+”打车双方博弈模型。

Ps CC V B1 B2 p N
wi Hi Qs ui Pi Mi Qd Ed Hn F W
4
§ 5 模型的建立与求解
一、问题一的分析与求解 1.对问题的分析 问题一要求建立合理的指标, 并分析不同时空出租车资源的“供求匹配”程度。 对此, 我们根据各打车软件平台给出的报表, 搜集了一年内出租车总数的供给量及用户通过打 车软件打车的需求量,从宏观的角度分析普遍城市出租车数量的供求关系。根据数据, 我们发现不同时空场景的出租车的”供求匹配”程度不同,据此本文将全国普遍城市划分 为8个不同的时空场景。为了便于说明不同时空出租车资源的“供求匹配”程度,消除量 纲因素,我们引入空载率和时间利用率概念。 定义1 空载率 K i 表示出租车没有搭载乘客的行车里程占总运营里程的百分比; 空 载率越高, 说明乘客对出租车的需求量越低, 反之越高。 一般认为, 空载率介于30%~40% 之间说明城市出租车的供求匹配程度较高。 无客行驶路程 由空载率的定义得:空载率= 100% 无客行驶路程 载客行驶路程 设 k i 表示某个时空场景出租车的空载率,因此,第i个时空场景出租车的空载率为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)
B题“互联网+”时代的出租车资源配置
出租车是市民出行的重要交通工具之一,“打车难”是人们关注的一个社会热点问题。

随着“互联网+”时代的到来,有多家公司依托移动互联网建立了打车软件服务平台,实现了乘客与出租车司机之间的信息互通,同时推出了多种出租车的补贴方案。

请你们搜集相关数据,建立数学模型研究如下问题:
(1) 试建立合理的指标,并分析不同时空出租车资源的“供求匹配”程度。

(2) 分析各公司的出租车补贴方案是否对“缓解打车难”有帮助?
(3) 如果要创建一个新的打车软件服务平台,你们将设计什么样的补贴方案,并论证其合理性。

相关文档
最新文档