材料力学——第8章(平面弯曲杆件的应力与强度计算)

合集下载

材料力学第八章组合变形

材料力学第八章组合变形


A截面
C3
C1
C4


C3
C1
C2

C4
T

C1

C2

三、强度分析
1.主应力计算
1 2 2 1 2 ( ) 4 2 3 2 2 2 2


C1


2 0
2.相当应力计算 第三强度理论,计算相当力
r 3 1 3 4

z0 z
y
z1
F F
350 n n 150
50
50 150
F
n
n
FN My
由弯矩 My产生的最大弯曲正应力为
tmax
max c
M y z0 425 7.5F MPa ( ) Iy 5310 M y z1 425 12.5 F MPa ( ) Iy 5310
杆件将发生拉伸 (压缩 )与弯曲组合变形 示例1 F1 产生弯曲变形 F2 产生拉伸变形 示例2 F2 F1 F2
Fy 产生弯曲变形
Fx 产生拉伸变形
Fy

F
Fx
三、内力分析
横截面上内力 FS Mz
O
z x
FN
1.拉(压) :轴力 FN
2.弯曲
剪力F
弯矩 Mz
s
y
因为引起的切应力较小,故一般不考虑.
2 z 2 y
My Qy T
Mz Qz
T H1 r 510 Nm
l
强度校核
按第四强度理论
r4
1 W
M 0.75T 111 MPa [ ]
2 2

《材料力学》课程讲解课件第八章组合变形

《材料力学》课程讲解课件第八章组合变形

强度条件(简单应力状态)——
max
对有棱角的截面,最大的正应力发生在棱角点处,且处于单向应力状态。
max
N A
M zmax Wz
M ymax Wy
x
对于无棱角的截面如何进行强度计算——
1、确定中性轴的位置;
y
F z
M z F ey M y F ez
ez F ey z
y
zk yk z
y
x
1、荷载的分解
F
Fy F cos
Fz F sin
z
2、任意横截面任意点的“σ”
x
F
y
(1)内力: M z (x) Fy x F cos x
M y (x) Fz x F sin x
(2)应力:
Mz k
M z yk Iz
My k
M y zk Iy
(应力的 “+”、“-” 由变形判断)
F
1, 首先将斜弯曲分解
为两个平面弯曲的叠加 Fy F cos
z
L2
L2
Fz F sin
z
2, 确定两个平面弯曲的最大弯矩
y
Mz
Fy L 4
M
y
Fz L 4
3, 计算最大正应力并校核强度
max
My Wy
Mz Wz
217.8MPa
查表: Wy 692.2cm3
4, 讨论 0
y
Wz 70.758cm3
的直径为d3,用第四强度理论设计的直径为d4,则d3 ___=__ d4。
(填“>”、“<”或“=”)
因受拉弯组合变形的杆件,危险点上只有正应力,而无切应力,
r3 1 3 2 4 2
r4

材料力学第8章应力状态分析

材料力学第8章应力状态分析

点。设想以A点为中心,用相互垂直的6个截面截取一个边长无限小的立方
体,我们将这样的立方体称为单元体。取决于截取平面的倾角变化,围绕同 一个点,可以截取出无数个不同的单元体,
图8.1(b)为依附着杆件横截面所截取单元体(图8.1(c)为其平面图形式),而 图8.1(d)为依附着45°斜截面所截取的单元体。由于杆件轴向拉伸时,横 截面上只有正应力,且与杆件轴向平行的截面没有应力,因此,图8.1(b) 中的单元体只在左右两个面上有正应力作用。对于图8.1(d)中的单元体, 根据拉压杆斜截面应力分析(2.3节)可知,其4个面上既有正应力又有切应 力。
又有切应力。围绕A,B,C三点截取单元体如图8.2(d)所示,单元体的前后
两面为平行于轴线的纵向截面,在这些面上没有应力,左右两面为横截面的 一部分,根据切应力互等定理,单元体B和C的上下两面有与横截面数值相等
的切应力。至此,单元体各面上的应力均已确定。注意到图8.2(d)各单元
体前后面上均无应力,因此也可用其平面视图表示(见图8.2(e))。
图8.2
从受力构件中截取各面应力已知的单元体后,运用截面法和静力平衡条件, 可求出单元体任一斜截面上的应力,从而可以确定出极值应力。
围绕构件内一点若从不同方向取单元体,则各个截面的应力也各不相同。其
中切应力为零的截面具有特殊的意义,称为主平面;主平面上的正应力称为 主应力。一般情况下,过构件内任一点总能找到3个互相垂直的主平面,因
图8.3
运用截面法可以求出与 z 截面垂直的任意斜截面 ac 上的应力(见图 8.3
( a ))。设斜截面 ac 的外法线 n 与 x 轴的夹角为 α (斜截面 ac 称 为 α 截面),并规定从 x 轴正向逆时针转到斜截面外法线 n 时 α 角为正

材料力学第八章组合变形

材料力学第八章组合变形

例题: 图示吊车大梁,由32a热轧普通工字钢制成,许 用应力 [σ]=160MPa ,L=4m 。起吊的重物重量F =80kN,且作用在梁的中点,作用线与y轴之间的夹角α =5°,试校核吊车大梁的强度是否安全。
F
Fy F cos 50
L2
L2
解:1. 外力分解
Fy F cos 80 cos 50 79.7kN Fz F sin 80 sin 50 6.96kN
材料力学
Mechanics of Materials
例:图示梁,已知F1=800N,F2=1650N,截面宽度 b=90mm,高度h=180mm。求:
1、梁上的max及所在位置; 2、若改为a=130mm的正方形截面,梁上的max; 3、若改为d=130mm圆形截面,梁上的max。
F2
F1 z
32
32 6
d3
72.6mm
取 d 73mm
构件在荷载的作用 下如发生两种或两种以 上基本形式的变形,且 几种变形所对应的应力 (和变形)属于同一数 量级,则构件的变形称 为组合变形。
❖组合变形的分析方法 线弹性小变形范围内,采用叠加原理
材料力学
Mechanics of Materials
二.组合变形分析方法 条件:线弹性小变形
组合 变形
0.642q 106 31.5 103
0.266q 106 237 103
160MPa
q 7.44kN / m
材料力学
Mechanics of Materials
M zD 0.456q
M zA 0.266q
z
M yD 0.444q
M yA 0.642q
A截面
y
max

材料力学 第八章 组合变形

材料力学 第八章 组合变形

度理论校核此杆的强度。 解:①外力分析
y ZC
Mx z P2z
P2y 400N YA 457N Z A 20.1N
P2Z 70.5N YC 257N Z C 90.6N
YA A 150
T M x 120Nm
B 200
C YC D 100
P2y
x
y
M Z (Nm) M (Nm)
建立图示杆件的强度条件
解:①外力向形心
x A 150 P1 T A 150 B 200 C T B 200 C 100 D 简化并分解
z
z P2z D P2y x 弯扭组合变形 y
100
M Z (Nm) M (Nm)
y
②每个外力分量对应 x 的内力方程和内力图 X
(Nm) My (Nm) Mz
x X
125 37.8 162.8MPa
孔移至板中间时
N 100 103 2 A 631.9mm 10(100 x) x 36.8mm 6 σ max 162.8 10
偏心拉伸或压缩:
CL11TU11
任意横截面上的内力: N P,M y Pa,M z Pb
第八章 组合变形
§8–1 组合变形和叠加原理
§8–2 拉(压)弯组合 §8–4 偏心压缩 截面核心 §8-4 弯曲与扭转
§8–1组合变形和叠加原理
一、组合变形 :在复杂外载作用下,构件的变形会包含几种简
单变形,当几种变形所对应的应力属同一量级时,不能忽略
之,这类构件的变形称为组合变形。 P P
弯曲与扭转
P1
80ºP2 z
x A 150 B 200 C 100 D
y

《工程力学(工程静力学与材料力学)(第3版)》习题解答:第8章 剪应力分析

《工程力学(工程静力学与材料力学)(第3版)》习题解答:第8章 剪应力分析
1.绘出梁的剪力图和弯矩图;
2.确定梁内横截面上的最大拉应力和最大压应力;
3.确定梁内横截面上的最大切应力;
4.画出横截面上的切应力流。
知识点:弯曲切应力公式的应用、切应力流
难度:难
解答:
1.图(a):
kN
, kN
剪力与弯矩图如图(b)、(c);
2.形心C位置
MPa
MPa
3. m3
MPa
4.切应力流如图(e)。
(A)下移且绕点O转动;
(B)下移且绕点C转动;
(C)下移且绕z轴转动;
(D)下移且绕 轴转动。
知识点:弯曲中心、薄壁截面梁产生平面弯曲的加载条件
难度:一般
解答:
正确答案是D。
8-19试判断下列图示的切应力流方向哪一个是正确的。
知识点:横向弯曲时梁横截面上的切应力流、弯曲切应力分析方法
难度:难
解答:
(A)细长梁、横截面保持平面;
(B)弯曲正应力公式成立,切应力沿截面宽度均匀分布;
(C)切应力沿截面宽度均匀分布,横截面保持平面;
(D)弹性范围加载,横截面保持平面。
知识点:弯曲时梁横截面上切应力分析
难度:易
解答:
正确答案是B。
公式 推导时应用了局部截面的正应力合成的轴力,该正应力 则要求弯曲正应力公式成立;另外推导时在 时,应用了 沿截面宽度均匀分布假设。
难度:难
解答:
正确答案是D。
8-21简支梁受力与截面尺寸如图所示。试求N-N截面上a、b两点的铅垂方向的切应力以及腹板与翼缘交界处点c的水平切应力。
知识点:弯曲切应力公式的应用、切应力流
难度:难
解答:
FQ = 120kN,形心C位置。

杆件的应力和强度设计(2)

杆件的应力和强度设计(2)

强度计算
等截面杆: FN,max s
A
smax—拉(压)杆的最大工作应力, [s]—材料拉伸(压缩)时的许用应力。
强度条件的应用
三类常见的强度问题
•校核强度:已知外力,s ,A,判断
s max=
FN A
max


s
是否能安全工作?
•截面设计:已知外力,s ,确定
F 4.25 kN
三、圆轴扭转应力
m

m
通过试验、观察变形、
作出假设(平面假设)
t

T
I
t max
T Wt
1)纵向线都倾斜了一个夹角, 且仍为直线 (有切应力)
2)圆周线间的间距没有改变 (无正应力)
3)圆周线的大小和形状均未改 变(切应力方向垂直于径向)
结论:圆轴扭转时,横截面上
只有切应力且垂直于径向。
合理安排梁的载荷
P
L
5L
6
6
Mmax

5 PL 36
q
L
Mmax

1 2
qL2
合理安排梁的约束
q
L
Mmax

1 8
qL2
P/ L
L
1 Mmax 8 PL
q
L 5
3 5
L
L 5
Mmax

1 qL2 40
3. 合理设计梁的外形
等强度梁:梁的每个横 截面上的最大正应力都 等于许用应力的梁。
smaxW Mzxxs
A FN,max
s
•确定承载能力:已知A,s ,确定
FN =As
例 一空心圆截面杆, 外径 D 20 mm ,内径 d 15 mm ,承受

《材料力学》教学大纲

《材料力学》教学大纲

《材料力学》课程教学大纲(80学时5学分)一. 课程的地位及其任务材料力学是一门由基础理论课过渡到专业课的技术基础课。

其任务是研究杆件在载荷作用下的强度.刚度和稳定性的问题,为工程有关零构件设计提供必要的基础知识和计算方法。

二. 课程的基础要求(1)基本掌握将一般工程零部件或结构简化为力学简图的方法。

(2)牢固树立四种基本变形及组合变形的概念,熟练掌握直杆的受力分析。

(3)熟练掌握杆件在基本变形下的内力、应力、位移及应变的计算,并能应用强度.刚度条件进行计算。

(4)了解平面几何图形的性质,能计算简单图形的静矩、形心、惯性矩、惯性半径和圆截面的极惯性矩。

能用平行移轴公式求简单组合截面的惯性矩。

会应用型钢表。

(5)熟练掌握求解简单超静定问题的基本原理和方法,正确建立变形条件,掌握用变形比较法解轴向拉压超静定问题及简单超静定梁。

(6)掌握应力状态和强度理论,并能进行组合变形下杆件的强度计算。

(7)掌握常用金属材料的力学性质及测定方法,对电测应力方法有初步认识。

(8)理解剪切的概念,能进行剪切和挤压的实用计算。

(9)正确理解弹性稳定平衡的概念,确定压杆的临界载荷和临界应力,并进行压杆稳定性计算。

(10)掌握受铅垂冲击时杆件的应力和变形计算。

(11)掌握动静法求动载荷问题,掌握用能量法求杆件受冲击时的应力和变形。

(12)认识交变应力及疲劳破坏的涵义,了解交变应力下材料的持久极限及其主要影响因素,初步掌握对称循环下构件的疲劳强度计算。

(13)正确认识能量法的基本原理和方法,熟练掌握用单位力法计算结构的位移。

三. 教学内容及学时分配1. 绪论及基本概念(2学时)材料力学的任务及研究对象;变形固体的概念及基本假设;内力与截面法。

应力与应变的概念。

2. 杆件的内力与内力图(9学时)轴向拉压杆的轴力及轴力图。

功率.转速与外力偶矩的关系。

扭转杆的扭矩及扭矩图。

梁的计算简图。

平面弯曲梁的剪力和弯矩。

弯矩方程和剪力方程。

武汉理工大学材料力学课件8 组合变形及连接部分的计算--JK

武汉理工大学材料力学课件8 组合变形及连接部分的计算--JK
9
若横截面周边具有棱角,则无需确定中性轴的位置,直 接根据梁的变形情况,确定最大拉应力和最大压应力点 的位置。 D D
1 1
z
z D2 y 中性轴
D2
y
中性轴
强度条件:
()若 [ t ] [ c ] [ ], 则 1 (2)若 [ t ] [ c ], 则
t ,max [ t ] ,
z
c ,max
FN M max [ c ] A Wz
(1)若F 的作用点在杆的一对称轴上, F M 则强度条件为: [ t ] t , max A Wz 其中 M Fe
c ,max
F M [ c ] A Wz
23
(2) 若F 的作用点不在杆的任一对称轴上
FN My A Iz
z
c ,max
(2)若 t ] [ c ] [ ] , [

FN M max [ c ] A Wz
max Max { t ,max , c ,max } [ ]
20
[例8-3-1] 最大吊重为 P=20kN的简易吊车,如图所 示,AB为工字A3钢梁,许用应力[σ]=100MPa,试选 T YA 择工字梁型号。 Ty XA D
另外, 和 的正负号可由My和 Mz引起的变形是拉 8 还是压直接判断。
sin cos 则,F引起的应力为: M ( I z I y) y z
二、中性轴的位置 令(y0,z0)是中性轴上任一点,则有: 显然,中性轴是一条通过坐标原点的直线, 设其与z轴的夹角为α,则有:
A Tx
C
B F
A
30° 2m
C
1m

材料力学笔记(第八章)

材料力学笔记(第八章)

材料力学(土)笔记第八章 组合变形及连接部分的计算1.概 述工程实际中,构件在荷载作用下往往发生两种或两种以上的基本变形若几种变形所对应的应力(变形)属于同一数量级,则构件的变形成为组合变形对于组合变形下的构件,在线弹性、小变形条件下,可按构件的原始形状和尺寸进行计算 可先将荷载简化为符合基本变形外力作用条件的外力系分别计算构件在每一种基本变形下的内力、应力或变形利用叠加原理,综合考虑各基本变形的组合情况以确定构件的危险截面、危险点的位置及危险点的应力状态,并据此进行强度计算 若构件的组合变形超过了线弹性范围,或虽在线弹性范围内但变形较大则不能按其初始形状或尺寸进行计算,不能用叠加原理工程实际中,经常需要将构件相互连接铆钉、螺栓、键等起连接作用的部件,统称为连接件连接件(或构件连接处)的变形往往比较复杂,而其本身尺寸都比较小在工程设计中,通常按照连接的破坏可能性采用既能反映受力的基本特征,又能简化计算的假设,计算其名义应力然后根据直接试验的结果,确定其相应的许用应力,来进行强度计算这种简化计算的方法,称为工程实用计算法2.两相互垂直平面内的弯曲对于横截面具有对称轴的梁当横向外力或外力偶作用在梁的纵向对称面内时,梁发生对称弯曲 这是,梁变形后的轴线是一条位于外力所在平面内的平面曲线碰到双对称截面梁在水平和垂直两纵向对称平面内同时承受横向外力的作用情况这时梁分别在水平纵对称面(Oxz 平面)和铅垂纵对称面(Oxy 平面)内发生对称弯曲 在梁的任意横截面m-m 上,由1F 和2F 引起的弯矩值依次为1y M F x = 和 2()z M F x a =-梁的任一横截面m-m 上任一点(,)C y z 处与弯矩y M 和z M 相应的正应力分别为'yyM z I σ= 和 ''z z M y I σ=- 由叠加原理,在1F 和2F 同时作用下,截面m-m 上C 点处的正应力为 '''y z y z M M z y I I σσσ=+=-式中y I 和z I 分别为横截面对于两对称轴y 和z 的惯性矩y M 和z M 分别是截面上位于水平和铅垂对称平面内的弯矩且其力矩矢量分别与y 轴和z 轴的正向相一致在具体计算中,也可先不考虑弯矩和坐标的正负号,以其绝对值代入然后根据梁在荷载分别作用下的变形情况,判断由其引起该点处正应力的正负号为确定横截面上最大正应力点的位置,需求截面上中性轴的位置由于中性轴上各点处的正应力均为零,令0y 、0z 代表中性轴上任一点的坐标则由上式可得中性轴方程000yz yzM M z y I I -=由上式可见,中性轴是一条通过横截面形心的直线其与y 轴的夹角为θ,且tan tan y y z I I z M y M I I θϕ==⨯= 对于圆形、正方形等y z ,有由于梁各横截面上的合成弯矩M 所在平面的方位一般不相同所以,虽然每一截面的挠度都发生在该截面的合成弯矩所在平面内梁的挠曲线一般仍是一条空间曲线梁的挠曲线方程仍应分别按两垂直平面内的弯曲来计算,不能直接用合成弯矩计算 确定中性轴位置后,作平行于中性轴的两条直线,分别与横截面周边相切于两点该两点即分别为横截面上拉应力和压应力为最大的点对于工程中常用的矩形、工字型等截面梁其横截面都有都有两个互相垂直的对称轴,且截面的周边具有棱角故横截面上的最大正应力必发生在截面的棱角处于是,可根据梁的变形情况,直接确定截面上最大拉、压应力点的位置,无需定出中性轴 在确定了梁的危险截面和危险点的位置,并算出危险点处的最大正应力之后由于危险点处于单轴应力状态,可按正应力强度条件计算横截面上的切应力,对于一般实体截面梁,其数值较小,可不必考虑3.拉伸(压缩)与弯曲3.1 横向力与轴向力共同作用等直杆受横向力和轴向力共同作用时,杆将发生弯曲与拉伸(压缩)组合变形对于弯曲刚度EI 较大的杆,由于横向力引起的挠度与横截面的尺寸相比很小因此,由轴向力在相应挠度上引起的弯矩可略去不计可分别计算由横向力和轴向力引起的杆横截面上的正应力按叠加原理求其代数和,即得在组合变形下,杆横截面上的正应力max ,max N t t b F M A Wσσσ=+=+ 当材料的许用拉应力和许用压应力不相等时杆内的最大拉应力和最大压应力必须分别满足杆件的拉、压强度条件对于弯曲刚度EI 较小的杆件,在压缩和弯曲组合变形下轴向压力引起的附加弯矩较大,且其转向与横向力引起的弯矩相同因此不能按杆的原始形状来计算,叠加原理也不再适用3.2 偏心拉伸(压缩)作用在直杆上的外力,当其作用线与杆的轴线平行但不重合时,将引起偏心拉伸或偏心压缩 横截面具有两对称轴的等直杆承受矩截面形心为e (称为偏心距)的偏心拉力F 为例 先将作用在杆端截面上A 点处的拉力F 向截面形心1O 点简化得到轴向拉力F 和力偶矩Fe ,将力偶矩分解为ey M 和ez Msin ey F M Fe Fz α==cos ez F M Fe Fy α==式中,坐标轴y 、z 为截面的两个对称轴F y 、F z 为偏心拉力F 作用点(A 点)的坐标于是的得到一个包含轴向拉力和两个在纵对称面内的力偶的静力等效力系此力系将分别使杆发生轴向拉伸和在两相互垂直的纵对称面内的纯弯曲当杆的弯曲刚度较大时,同样可按叠加原理求解在上述力系作用下任一横截面n-n 上的任一点(,)C y z 处相应于轴力N F F =和两个弯矩的正应力,由叠加原理,的C 点处的正应力F F y zFz z Fy y F A I I σ⨯⨯=++ 利用惯性矩与惯性半径间的关系 2y yI A i =⨯,2z z I A i =⨯ 式子可改写为22(1)FF y zz z y y F A i i σ=++ 上式是一个平面方程,表明正应力在横截面上按线性规律变化应力平面与横截面相交的直线(沿该直线0σ=)就是中性轴令0y 、0z 代表中性轴上任一点的坐标,代入即得中性轴方程002210F F y z z y z y i i ++= 在偏心拉伸(压缩)情况下,中性轴是一条不通过截面形心的直线为定出中性轴的位置,可利用其在y 、z 两轴上的截距y a 和z a在上式中,令00z =,相应的0y 即为截距y a ,而令00y =,相应的0z 即为截距z a 由此求得2z y F i a y =-,2y z Fi a z =- A 在第一象限内,F y 、F z 都为正值,则y a 、z a 均为负值即中性轴与外力作用点分别处于截面形心的相对两侧对于周边无棱角的截面,可作两条与中性轴平行的直线与横截面的周边相切两切点即为横街面上最大拉应力和最大压应力所在的危险点将危险点的坐标代入公式即可求得最大拉应力和最大压应力对于周边具有棱角的截面,其危险点必定在截面的棱角处,并可根据杆件的变形来确定 最大拉应力,max t σ和最大压应力,max c σ,其值为,max ,max t F F c yz Fz Fy F A W W σσ⎫⎪=±±⎬⎪⎭ 式子对箱型、工字形等具有棱角的截面都适用当外力的偏心距(F y 、F z )较小时,中性轴可能不与横截面相交即横截面就可能不出现与轴力异号的应力由于危险点仍处于单轴应力状态,可按正应力的强度条件进行计算3.3 截面核心如前所述,当偏心轴向力F 的偏心距较小时,杆横截面上就可能不出现异号应力 因此当偏心压力F 的偏心距较小时,杆的横截面上可能不出现拉应力外力作用点离形心越近,中性轴距形心就越远当外力作用点位于截面形心附近的一个区域内时,就可以保证中性轴不与横截面相交,这个区域就称为截面核心当外力作用在截面核心的边界上时相对应的中性轴正好与截面的周边相切,利用这一关系就可确定截面核心的边界为确定任意形状截面的截面核心边界,可将与截面周边相切的任一直线视作中性轴 在y 和z 形心主惯性轴上的截距分别为1y a 和1z a可确定与该中性轴对应的外力作用点1按上述方法求得与其对应的截面核心边界上的点2、3、…的坐标连接这些点所得到的一条封闭曲线,即为所求截面核心的边界该边界曲线所包围的带阴影线的区域,即为截面核心圆截面对于圆心O 时极对称的,因此,截面核心的边界对于圆心也是极对称的为一圆心为O 的圆作一条与圆截面周边相切于A 点的直线,将其视为中性轴取OA 为y 轴,于是,该中性轴在y 和z 形心主惯性轴上的截距为1/2y a d =, 1z a =∞圆截面的222/16y z i i d ==,将其代入公式即得与其对应的截面核心边界上点1的坐标2211/16/28z y y i d d a d ρ=-=-=-,2110y z z i a ρ=-= 从而可知,截面核心边界是一个以O 为圆心,/8d 为半径的圆对于边长为b h ⨯的矩形截面,两对称轴y 和z 为截面的形心主惯性轴将与AB 向切的直线①视作中性轴,其在y 和z 轴上的截距分别为,矩形截面2212yb i =,2212z h i = 将上式代入,即得中性轴①对应的截面核心边界点上点1的坐标为2211/12/26z y y i h h a h ρ=-=-=-, 2110y z z i a ρ=-= 同理,分别将与矩形边界相切的直线②、③、④视作中性轴可得对应的截面核心边界上点2、3、4的坐标从而得到了截面核心边界上的4个点当中性轴从截面的一个侧边绕截面的顶点旋转到其相邻边时 将得到一系列通过边界点B 但斜率不同的中性轴而B 点的坐标(,)B B y z 是一系列中性轴共有的 将其代入中性轴方程,经改写后得2222110F F B B B B F F y z y z z y z y z y z y i i i i ++=++= 上式中,B y 、B z 为常数 因此该式就可看作时表示外力作用点坐标(,)F F y z 间关系的直线方程即当中性轴绕B 点旋转时,相应的外力作用点移动的轨迹是一条连接点1、2的直线将1、2、3、4四点中相邻的两点连以直线,即得矩形截面的截面核心边界截面核心为位于截面中央的菱形对于具有棱角的截面,均可按照上述方法确定其截面核心对于周边有凹进部分的截面(例如槽型或T 字型截面等)在确定截面核心边界时,应该注意不能取与凹进部分的周边相切的直线作为中性轴,因为这种直线显然约横截面相交4.扭转与弯曲一般的传动轴通常发生扭转与弯曲组合变形讨论杆件发生扭转与弯曲组合变形时的强度计算直径为d 的等直圆杆AB ,A 端固定,B 端具有与AB 成直角的刚臂,并受铅垂力F 作用,将F 简化为一作用于杆端截面形心的横向力F 和一作用于杆端的力偶矩e M Fa = 杆AB 将发生弯曲与扭转组合变形分别作杆的弯矩图和扭矩图,可见杆的危险截面为固定端截面,内力分量分别为M Fl =, e T M Fa ==由弯曲和扭转的应力变化规律可知危险截面上的最大弯曲正应力σ发生在铅垂直径的上、下两端点对于许用拉应力,压应力相等的塑性材料来说,该两点的危险程度相同 研究任一点,围绕该点分别用横截面、径向纵截面和切向纵截面截取单元体 该点应力状态如图所示,可见该点处于平面应力状态,其三个主应力为132σσσ⎫=⎬⎭ 20σ= 对于塑性材料制成的杆件,选用第三或第四强度理论来建立强度条件用第三、第四强度理论,将上述各应力代入向相应的应力表达式求得相当应力后,即可根据材料的许用应力[]σ来建立强度条件,对杆进行强度计算 其中弯曲正应力/M W σ=,扭转切应力/p T W τ=,对于圆截面杆2p W W =截面周边各点处弯曲正应力的数值和正负号都将随着轴的转动而交替变化这种应力称为交变应力,交变应力下工作的构件另有相应的计算准则5.连接件的实用计算法5.1 剪切的实用计算设两块钢板用螺栓连接后承受拉力F螺栓在两侧面上分别收到大小相等、反向相反、作用线相距很近的两组分布力系的作用 螺栓在这样的作用下,将沿两侧外力之间,并与外力作用线平行的截面m-m 发生相对错动称为剪切面应用截面法,可得剪切面上的内力,即剪力s F在剪切实用计算中,假设剪切面上各点处的切应力相等 于是剪切面上的名义切应力为S sF A τ=式中s A 为剪切面面积,s F 为剪切面上的剪力 通过试验得到剪切破坏时材料的极限切应力u τ,除以安全因数,得许用应力[]τ 剪切强度表示为[]S sF A ττ=≤ 名义切应力并不反映剪切面上切应力的精确理论值只是剪切平面上的平均切应力但对于低碳钢等塑性材料材料制成的连接件,变形较大而临近破坏时剪切面上的切应力将逐渐趋于均匀而且满足剪切强度条件式,不至于发生剪切破坏,从而满足工程需要对于大多数的连接件来说,剪切变形及剪切强度时主要的5.2 挤压的实用计算螺栓连接中,在螺栓与钢板相互接触的侧面上,将发生彼此间的局部承压现象,称为挤压 在接触面上的压力,称为挤压力,并记为bs F挤压力可根据被连接件所受的外力,由静力平衡条件求得当挤压力过大时,可能引起螺栓压扁或钢板在孔缘压皱,从而导致连接松动失效在挤压实用计算中,假设名义挤压应力的计算式为bs bs bsF A σ= 式中,bs F 为接触面上的挤压力;bs A 为计算挤压面面积当接触面为圆柱面时,计算挤压面面积bs A 取为实际接触面在直径平面上的投影面积 理论表明,这类圆柱状连接件与钢板孔壁间接触面上的理论挤压应力沿圆柱的变化情况如图 计算所得的名义挤压应力与接触面中点处的最大理论挤压应力值相近当连接件与被连接构件的接触面为平面时,计算挤压面面积即为实际接触面的面积 通过试验,按名义挤压应力公式得到的材料的极限挤压应力,除以安全因数确定许用挤压应力[]bs σ,则挤压强度条件可表达为[]bs bs bs bsF A σσ=≤ 注意,挤压应力是在连接件和被连接件之间相互作用的当两者材料不同时,应校核其中许用挤压应力较低的材料的挤压强度6.铆钉连接的计算铆钉连接在建筑结构中被广泛采用铆接的方式主要有搭接、单盖板对接和双盖板对接三种搭接和单盖板对接中的铆钉具有一个剪切面(称为单剪)双盖板对接中的铆钉具有两个剪切面(称为双剪)6.1 铆钉组承受横向荷载在搭接和单盖板对接中,由铆钉的受力可见铆钉(或钢板)显然将发生弯曲在铆钉组连接中,在弹性变形阶段两端铆钉的受力与中间铆钉的受力并不完全相同 为简化计算,并考虑到连接在破坏前将发生塑性变形,在铆钉计算中假设①不论铆接的方式如如何,均不考虑弯曲的影响②若外力的作用线通过铆钉组横截面的形心,且同一组内各铆钉的材料与直径均相同,则每个铆钉的受力相等 按照上述假设,即可得每个铆钉的受力1F 为1F F n= 式中,n 为铆钉组中的铆钉数求得每个铆钉的受力1F 后,即可分别校核其剪切强度和挤压强度被连接件由于铆钉孔的削弱,其拉伸强度应以最弱截面(轴力较大,截面积较小)为依据 不考虑集中应力的影响对于销钉或螺栓连接,其分析计算方法与铆钉连接相同6.2 铆钉组承受扭转荷载承受扭转荷载的铆钉组,由于被连接件(钢板)的转动趋势每一铆钉的受力将不再相同令铆钉组横截面形心为O 点 假设钢板的变形不计,可视为刚体于是,每一铆钉的平均切应变与该铆钉截面中心至O 点的距离成正比,其方向垂直于该点与O 点的连线由合力矩定理,每一铆钉上的力对O 点力矩的代数和等于钢板所受的扭转力偶矩e M ,即 e i i M Fe Fa ==∑式中,i F 为铆钉i 所受的力;i a 为该铆钉截面中心至铆钉组截面形心的距离对于承受偏心横向荷载的铆钉组可将偏心荷载F 向铆钉组截面形心O 简化得到一个通过O 点的荷载F 和一个绕O 点旋转的扭转力偶矩e M Fe =若同一铆钉组中每一铆钉的材料和直径均相同则可分别计算由力F 引起的力'i F 和由转矩e M 引起的力''i F铆钉i 的受力为'i F 和''i F 的矢量和求得铆钉i 的受力i F 后,可分别校核受力最大的铆钉的剪切强度和挤压强度。

《材料力学》第八章组合变形

《材料力学》第八章组合变形
解 (1)外力分析,确定变形类型—拉弯组合;
(2)内力分析,确定危险截面—整个轴;
M=600(kN·cm) FN=15(kN)
(3)应力计算,确定危险点—a、b点;
P产生拉伸正应力: t
FN AFNd 2源自4FNd 24
M拉产弯生组弯合曲:的正应力:wmax
M Wy
M
d3
32
32M
d3
P M= a Pe
补例8.1 已知: P=2kN,L求=:1mσm,Iazx=628×104mm4,Iy=64×1040mm2740 2844
解:1.分解P力。 Py Pcos φ Pz Psin φ 2.画弯矩图,确定危险截面--固定端截面。 3.画应力分布图,确定危险点—A、 B点
σ” σ’
A
x
y
Pyl
M
z
践中,在计算中,往往忽略轴力的影响。
4.大家考虑扭转、斜弯曲与拉(压)的组合怎么处理?
例8.5 图8.14a是某滚齿机传动轴AB的示意图。轴的直径为35 mm,材料为45钢, [σ]=85 MPa。轴是由P=2.2kW的电动机通过
带轮C带动的,转速为n=966r/min。带轮的直径为D=132 mm,
Mz Py l - x Pcosφ l - x Mcosφ My Pz l - x Psinφ l - x Msinφ
式中的总弯矩为:M Pl- x
3.计算两个平面弯曲的正应力。在x截面上任取一点A(z 、y),
与弯矩Mz、My对应的正应力分别为σ’和σ”,故
- Mz y , - M yz
第八章 组合变形
基本要求: 掌握弯曲与拉伸(或压缩)的组合、扭转与弯曲的组合 的强度计算。
重点: 弯曲与拉伸(或压缩)的组合,扭转与弯曲的组合。

材料力学第8章组合变形

材料力学第8章组合变形

MB
M
2 yB
M
2 zB
(364 N m)2 (1000N m)2 1064N m
•由Mz图和My图可知, B截面上的总弯矩最大, 并且由扭矩图可见B截 面上的扭矩与CD段其 它横截面上相同,TB =-1000 N·m,于是判 定横截面B为危险截面。
3. 根据MB和TB按第四强度理论建立的强度条件为
Wp
r4
M 2 0.75T 2
W
300N.m 1400N
300N.m
1500N 200
150
300N.m
128.6N.m
120N.m
(2)作内力图
危险截面E 左处
T 300N.m
M
M
2 y
M
2 z
176N.m
(3)由强度条件设计d
r3
M2 T2 W
W d 3
32
32 M 2 T 2
第8章 组合变形
8.1 组合变形和叠加原理 8.2 拉伸或压缩与弯曲的组合 8.3 偏心压缩和截面核心 8.4 扭转与弯曲的组合 8.5 组合变形的普遍情况
8.1 组合变形和叠加原理
组合变形——实际构件由外力所引起的变形包含两种或两 种以上的基本变形。如压力框架、烟囱、传动轴、有吊车 的立柱。 叠加原理——如果内力、应力、变形等与外力成线性关系, 则在小变形条件下,复杂受力情况下组合变形构件的内力, 应力,变形等力学响应可以分成几个基本变形单独受力情 况下相应力学响应的叠加,且与各单独受力的加载次序无 关。 前提条件:
即 亦即 于是得
r4
M 2 0.75T 2 [ ]
W
•请同学们按
照第三强度理 (1064 N m)2 0.75(1000 N m)2 100106 Pa W

材料力学第八章组合变形及连接部分的计算

材料力学第八章组合变形及连接部分的计算
t . max
Mz 0 FN Iy A
F
350
M
FN
425 10 3 F 0.075 F 5.3110 5 15 10 3 667 F Pa F Mz c. max 1 N Iy A
t .max
c.max
425 10 3 F 0.125 F 5 5.31 10 15 10 3 934 F Pa
50 150
425F 103 N.m
A 15000 mm2 z0 75mm z1 125mm I y 5.31107 mm4
y1
z0
y
z1
150 50 150
(2)立柱横截面的内力 FN F 50 M 425103 F N.m (3)立柱横截面的最大应力
az
中性轴
z0 0 y0 0
i z2 a y yo ey 2 iy a z zo ez
截面核心
y
中性轴
F (e y , e z )
z
求直径为D的圆截面的截面核心.
d a y1 2
i z2 ay ey
a z1
az
2 iy
2 4 d d 64 2 iy i z2 2 A d 4 16
F
1, 首先将斜弯曲分解 为两个平面弯曲的叠加
Fy F cos

L2
L2
Z y
My Wy
Fz F sin
2, 确定两个平面弯曲的最大弯矩
Z y
Wz 70.758cm 3
Mz
Fy L 4
Fz L My 4
查表: W y 692.2cm 3

材料力学习题及答案

材料力学习题及答案

材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。

试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。

解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。

1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。

解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。

试问杆件横截面上存在何种内力分量,并确定其大小。

图中之C点为截面形心。

解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。

试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。

解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。

解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。

材料力学第八章压杆的稳定性

材料力学第八章压杆的稳定性
第八章
压杆的稳定性
§8-1 压杆稳定性的概念
工程中存在着很多受压杆件。 受轴向压缩的直杆,其破坏有两种形式: 1)短粗的直杆,其破坏是由于横截面上的正应力达到 材料的极限应力,为强度破坏。 2)细长的直杆,其破坏 是由于杆不能保持原有的直线 平衡形式,为失稳破坏。 对于相对细长的压杆,其 破坏并非由于强度不足,而是 由于荷载(压力)增大到一定 数值后,不能保持原有直线平 衡形式而失效。
z y x 轴销
解:先计算压杆的柔度。 在xz面内,压杆两端可视为铰支,μ=1。查型钢表,得 l 1 2 iy=4.14cm,故 y 48.3 i y 0.0414
在xy面内,压杆两端可视为固支, μ=0.5。查型钢表,得iz=1.52cm, 故 l 0.5 2 z 65.8 iz 0.0152
n2π2EI l2
(n = 0,1,2…)
(Euler公式)
x Fcr
π w =Asin l x (半波正弦曲线) l x= 2 时 w0= A
A是压杆中点的挠度w0。为任意的微小值。
l
w
F与中点挠度w0之间的关系 (1) 若采用近似微分方程,则F 与如折线OAB所示; (2) 若采用精确的挠曲线微 分方程,则可得F与w0之间的 关系如曲线OAB'所示; F B'
例 某钢柱长7m,由两根16b号槽钢组成,材料 为Q235钢,横截面如图所示,截面类型为b类。钢柱 的两端截面上有4个直径为30mm的螺栓孔。钢柱μ=1.3 , 受260kN的轴向压力,材料的[σ]=170MPa。 (1)求两槽钢的间距h。 (2)校核钢柱的稳定性和强度。
解:(1) 确定两槽钢的间距h 钢柱两端约束在各方向均相同, 因此,最合理的设计应使Iy=Iz , 从 而使钢柱在各方向有相同的稳定性。

材料力学第八章-组合变形

材料力学第八章-组合变形

12 103 141106
94.3MPa 100MPa
故所选工字钢为合适。
材料力学
如果材料许用拉应力和许用压应力不 同,且截面部分 区域受拉,部分区域 受压,应分别计算出最大拉应力 和最 大压应力,并分别按拉伸、压缩进行 强度计算。
材料力学
=+
材料力学
t,max
=+
t,max
①外力分析:外力向形心简化并沿主惯性轴分解。
②内力分析:求每个外力分量对应的内力方程和 内力图,确定危险面。
③应力分析:画危险面应力分布图,叠加,建立 危险点的强度条件。
一般不考虑剪切变形;含弯曲组合变形,一般以弯
曲为主,其危险截面主要依据Mmax,一般不考虑弯
曲切应力。
材料力学
四.叠加原理
构件在小变形和服从胡克定律的条件下, 力的独立性原理是成立的。即所有载荷作用 下的内力、应力、应变等是各个单独载荷作 用下的值的代数和。
材料力学
F F
350
150
y
50 z
50 150 z0 z1
显然,立柱是拉伸和弯曲的 组合变形。
1、计算截面特性(详细计算略) 面积 A 15103 m2
z0 75mm I y 5310 cm4
材料力学
2、计算内力 取立柱的某个截面进行分析
FN F
M (35 7.5) 102 F 42.5102 F
组合变形
§8.1 组合变形和叠加原理 §8.2 拉伸或压缩与弯曲的组合 §8.3 偏心压缩和截面核心 §8.4扭转与弯曲的组合
content
1、了解组合变形杆件强度计算的基本方法 2、掌握拉(压)弯组合变形和偏心拉压杆 件的应力和强度计算 3、掌握圆轴在弯扭组合变形情况下的强度 条件和强度计算

杆件的强度计算公式

杆件的强度计算公式

杆件的强度、刚度和稳定性计算1.构件的承载能力,指的是什么?答:构件满足强度、刚度和稳定性要求的能力称为构件的承载能力。

(1)足够的强度。

即要求构件应具有足够的抵抗破坏的能力,在荷载作用下不致于发生破坏。

(2)足够的刚度。

即要求构件应具有足够的抵抗变形的能力,在荷载作用下不致于发生过大的变形而影响使用。

(3)足够的稳定性。

即要求构件应具有保持原有平衡状态的能力,在荷载作用下不致于突然丧失稳定。

2.什么是应力、正应力、切应力?应力的单位如何表示?答:内力在一点处的集度称为应力。

垂直于截面的应力分量称为正应力或法向应力,用σ表示;相切于截面的应力分量称切应力或切向应力,用τ表示。

应力的单位为Pa。

1 Pa=1 N/m2工程实际中应力数值较大,常用MPa或GPa作单位1 MPa=106Pa1 GPa=109Pa3.应力和内力的关系是什么?答:内力在一点处的集度称为应力。

4.应变和变形有什么不同?答:单位长度上的变形称为应变。

单位纵向长度上的变形称纵向线应变,简称线应变,以ε表示。

单位横向长度上的变形称横向线应变,以ε/表示横向应变。

5.什么是线应变?什么是横向应变?什么是泊松比?答:(1)线应变单位长度上的变形称纵向线应变,简称线应变,以ε表示。

对于轴力为常量的等截面直杆,其纵向变形在杆内分布均匀,故线应变为l l∆=ε(4-2)拉伸时ε为正,压缩时ε为负。

线应变是无量纲(无单位)的量。

(2)横向应变拉(压)杆产生纵向变形时,横向也产生变形。

设杆件变形前的横向尺寸为a,变形后为a1,则横向变形为aaa-=∆1横向应变ε/为a a∆=/ε(4-3)杆件伸长时,横向减小,ε/为负值;杆件压缩时,横向增大,ε/为正值。

因此,拉(压)杆的线应变ε与横向应变ε/的符号总是相反的。

(3)横向变形系数或泊松比试验证明,当杆件应力不超过某一限度时,横向应变ε/与线应变ε的绝对值之比为一常数。

此比值称为横向变形系数或泊松比,用μ表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

z
h
τ
max
2 B b h * 2 2 2 SZ ( H h ) y 8 2 4

S
bh
min
27 max
工字形截面:
切应力流
η b
翼缘上垂直切应力分量佷小,通常略去不计 翼缘上存在与中心线平行的切应力分量, 假定沿翼缘厚度均匀分布
δ
h
H
z
τ
aa
τ
min
max
Iz Wz 令 ymax
弯曲截面系 数(m3, mm3)
max
Wz
14
bh 2 Wz 6
aa
y2
Wz
D 3
32
Wz
D 3
32
(1 4 )
当中性轴不是截面对称轴时,最大拉应 力和最大压应力数值不相同 正弯矩作用下:
z
y1
y
t max
My1 IZ
c max
y1 R dy1 y
max
FS R 2 FS R 2 4 FS 4 FS 4 2 3I Z 3 R / 4 3 R 3 A
29
例:一闭口圆环形截面薄壁梁,横截面如图所示,剪力位于y 轴且方向向下。已知截面的平均半径为R0 ,壁厚为δ ,试画截 y 面上弯曲切应力的分布图,并求其最大值。 解:对于薄壁截面,假设横截面上切应力 FS 沿壁厚均匀分布,且与周边切线平行。 z
根据弹性力学的分析结果表明:
l 5的细长梁,用公式 My h Iz
计算横力弯曲时
的正应力,可以满足工程所需的精度
13
My Iz
弯矩 a 大正应力发生在弯矩最大的截面上下边缘处。
max

M max ymax Iz M
max
FS 横截面腹板上切应力分布与矩形截 ( 轧制工字型钢) I Z b S z 面相同 *
工字形截面:
翼缘 b y
FS S Z IZb
H
2 FS B b h 2 2 2 腹板 ( y ) y ( H h ) I b 8 2 4 aa τ min Z y 2 2 F bH h B 翼缘 S max y 0 (Bb) IZb 8 8 h / 2 ~ 2 2 FS bdy FS ( 96 ~ 97 )% F BH Bh S h / 2 min y h 2 IZb 8 8 工字形截面的剪力主要由腹 板承担 F b B
1 A
q=60kN/m B
FRA FRB 90kN
从M图可知:
qLx qx 2 M1 ( ) x 1 60kNm 2 2 aa
FRA
1m
2m
FRB
M图
1
M max qL / 8 60 3 / 8 67.5kNm
2 2
M1
+ qL2 8 Mmax
17
1 ⑵求应力
梁的纵向材料其变形是伸长或缩短; 为简单拉伸和压缩变形。
M
A
B
M
a
a
b B
b A
凹部材料aa 缩短,凸部bb材料伸长, M 总有一层材料既不伸长又不缩短,此层 称为中性层。
d
A a b A B a b B
M
⒊推论: 有中性层存在
中性层与横截面的交线称为中性轴。
变形后
中性轴
中性层(面)
6
⒋变形几何关系
§8-1 纯弯曲时梁横截面上的正应力
§8-2 横力弯曲时梁横截面的应力
§8-3 梁的强度计算 §8-4 梁的合理强度设计
1
概念回顾: 1.平面弯曲
q 纵向对称面
F
梁有纵向对称面,且载荷均作用在纵向对称面内, 变形后梁的轴线仍在该平面内,称为平面弯曲。
2
2.纯弯曲
F
a
F FS图 M图 Fa
F
a
M0
4
AA、BB仍保持直线,但相对地 转过一角度d。 aa 缩短,bb伸长,变为弧形, 但仍与AA、BB线正交。
M a
A b A
B
M
a
b B
M
d
A a b A
⒉弯曲的基本假设 平面假设 梁的横截面在弯曲变形后仍保持为 平面,且仍与梁的轴线垂直。
B a b B
M
变形后
5
纵向材料之间无挤压假设
考虑梁AA-BB间的微段,oo在 中性层上,ρ 为中性层的曲率半 径。截面坐标如图。 M
y
d
A o a A B o a B

M
距中性层为y的纵向材料aa: 变形前: aa oo 变形后: aa y d
l
应变: e aa aa ( y )d d y l aa d
180 30
1
2
M1
+ qL2 8 Mmax
18
120 y
z
M1 1 max Wz 60 10 3 10 4 92.6MPa 6.48 M max max Wz
67.5 10 10 4 104.2MPa aa 6.48
3
1
2
120 y
z
c max
A
M z ydA
A
Ey
E
A


y dA
2

Iz M
E

Iz M
dA y
M EI z
式中:
1
中性轴 x
z
1
yd d
M d
梁轴线变形后的曲率 梁的弯曲刚度
y
y
aa
EI z
纯弯曲梁 的正应力 公式
E
y

M My E Ey EI z Iz
最大切应力为平均切应力的1.5倍。
aa
25
⒉其它截面梁横截面上的切应力
⑴研究方法与矩形截面相同;切应力的计算公式亦为:
Fs S z bI z
其中FS为截面剪力;Sz为y点以下的面积对中性轴之静矩; Iz为整个截面对z轴之惯性矩;b 为y点处截面宽度。 ⑵几种常见截面的最大弯曲切应力
aa
26
* FS S Z ( ) F S z ( ) s z IZ bI z h 1 * h max S Z
B
F1 dx
* FS S Z FS h z ( ) I Z 2I Z
2
2
2
dx

翼缘上切应力与中性轴平行,沿翼缘线 性分布
FS图 M图
FS=0
M=M0
一般情况
横力弯曲: 若梁的横截面上既有弯矩,又有剪力。
简单特例
纯弯曲:梁横截面上的内力只有弯矩。
3
§8-1
纯弯曲时梁横截面上的正应力
方法: 与求扭转杆横截面上的应力方法相同。
变形的几何协调 (几何分析) 力与变形之关系 (物理关系) 力的平衡 (静力关系)
一、弯曲变形几何分析(矩形截面纯弯曲梁) ⒈ 弯曲变形实验现象
max压

y d d
中性轴
z
Ee E
问题: aa
y

M d

y
x
?
max拉 y

9
三、静力平衡关系
在截面上取微面积dA,微内力 为σ dA。这些平行微内力可能组成 三个内力分量:
FN dA
A
dA y
中性轴 x
z
M y zdA
A
由于纯弯曲时横截面上只有弯矩, 于是有 aa
y
0 FRB 2.75F
最大正弯矩发生在D截面,
M D 0.75Fl
最大负弯矩发生在B截面,
M B Fl
20
⑵画出B、D截面的正应力分布示意图 由于截面不对称于中性轴,且
c max
MB MD
故梁内最大压应力发生 在B截面的下边缘处:
t max
aa
梁内最大拉应力可能发生在D截面的下边缘处或B截面 的上边缘处:

t max

B

MB a Iz
Fla Iz

t max

D
M D 2a 0.75Fl 2a 1.5Fla Iz Iz IZ
21
故梁内最大拉应力发生在D截面的下边缘处。
二、横力弯曲时梁横截面上的切应力 ⒈矩形截面梁横截面上的切应力
x y M(x) Fs(x)
aa
dx
⑴两点假设: 切应力与剪力平行;

MS z( y) y d A A Iz
x y M(x) Fs(x)
aa
dx 图a Fs(x)+dFs(x) 图b dx M(x)+d M(x) z
( M dM )S z ( y ) F2 Iz
F2 F1 dMS z ( y ) 1 bdx dxbI z FS S z ( y ) bI z
1
F1

y
x
F2
图c
23
由切应力互等原则
FS S z ( y ) ( y ) 1 bI z
x y M(x)
h 2
dx 图a Fs(x)+dFs(x)
aa
图b dx M(x)+d M(x) z
y
Fs(x)
S z ( y ) y c A h y h 2 b( y ) 2 2 b h2 ( y2 ) 2 4
相关文档
最新文档